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Abstract

Cross-border transfer of electric power promotes collaboration in power generation between integrated electricity markets. It

resolves grid reinforcement issues in existing transmission networks. Because of that, researchers have given higher attention to this

field and conducted various studies on the subject using technical simulation approaches. Yet, substantial work has to be done for

quantifying the socioeconomic benefits of the mechanism. This paper intends to fill the gap by introducing a method for analyzing

the mechanism by representing it as a game of incomplete information. The subject is modeled as a Bayesian game in which the

type of marginal generators located within one (or more) external market area is not known. Based on that, the Bayesian equilibrium

which represents the state where all marginal generators would incline to converge is found. The authors suggest that the method

is robust and can be used for quantifying the performance of a market coupling mechanism because it realistically considers all

marginal generation scenarios.
c© 2014 The Authors. Published by Elsevier Ltd.
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1. Introduction

Previously, transmission lines that span across regions within Europe are primarily used for stabilizing the transmis-

sion network [1]. Because of the recommendation in EU Directive 96/92 for creating a harmonious Internal Electricity

Market (IEM), these transmission lines are increasingly used in the trade of electric power across borders. Consequently,

the transmission bottlenecks become a major concern. These issues are treated in the successive legislations: (i.) the EU

Regulation 1228/2003 which promotes development of market-based congestion management to appropriately reflect

price signals and incentive of investments; and (ii.) Commission Decision 2006/770/EC which suggests implementation

of flow-based allocation governed by physical flow of electric power. These directives further promote the sharing of

power generation and implementation of Flow Based Market Coupling (FBMC) mechanisms.
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Generally, cross-border transfer of electric power is a known mechanism which encourages the sharing of power

generation resources. It promotes liquidity and competition among stakeholders of connected electricity markets,

while reducing the tendency of price hoarding [2]. This further enhances the welfare and security of power supply

in interconnected market areas. Additionally, it is viewed as a viable means for resolving grid reinforcement issues.

Nonetheless, the implementation of FBMC is not without its challenges. Most noticeably, the tie lines connecting many

European countries possess limited transfer capacity. This complicates the quantification of operational parameters

(i.e., transfer capacity of flow-gates) within the mechanism.

Therefore, it is crucial for developing a viable analytical method for quantifying the extent of improvement that

FBMC could bring to an electricity market. The model should simultaneously consider the transmission network

limitations and the strategic trading behavior of stakeholders. By doing so, we have to deal with many unknown

variables in the electricity market model. Particularly, the exact setup that the market (and transmission network) would

eventually evolve has yet to be publicly announced. Furthermore, the details of marginal cost of generators located

within relevant market areas are not publicly accessible. Fortunately, game theory offers several analytical methods that

could be applied for serving the purpose in the absence of clear price information [3].

In this paper, the authors outline a game theoretic approach for quantifying the expected performance of FBMC

scenarios. The mechanism is modeled as a game of incomplete information played by active generators located within

market areas which implement FBMC. This approach adopts the Bayesian game theory [4,5,6], which is known as

a robust means for deriving the expected utility of a game [7]. The remainder of this paper is organized as follows.

Section II describes the equilibriums in strategic interactions; Section III outlines strategic interactions and equilibriums

in FBMC; Section IV describes the methods and steps implemented in the analysis; Section V shows and discusses the

results obtained in the analysis; and Section VI concludes the paper.

2. Equilibriums in strategic interactions

The Bayesian game theory developed by John C. Harsanyi [4,5,6] is a field of non-cooperative game theory which

was initially established by John F. Nash [8,9]. In 1949 [10], Nash (by generalizing the two-player zero-sum games

developed by von Neumann and Morgenstern [11]) proved that every multi-player, non-cooperative game possesses at

least one equilibrium state where all of the players would incline to converge. The states are known as Nash equilibrium

(NE) where the players receive no incentive for changing their incumbent strategy.

Essentially, game theorists study the strategic interactions among players participating in a strategic game and

how NE would be achieved. The strategic interactions are defined as a situation in games where each player intends

to maximize his respective payoff while his payoff depends on the strategies taken by his opponents [7]. Such

interdependence of outcome is indicated with a Cartesian product in player i’s utility function, ui = Ai × · · · × AN → R,

where Ai = {a1, . . . , aN} represents the set of actions taken by player i.
Broadly, Ai consists of the following types: (i.) player i may execute an action, ak which he thinks is the best response

to his opponents (i.e., he may bid in the market using his true marginal cost); and (ii.) player i may consecutively

execute Ai following a probability distribution (i.e., he may bid in the market in a random manner, with probability x at

high price, and probability 1 − x at true marginal cost). The players achieve a pure-strategy NE if they reached the

equilibrium state while all of them consistently execute an action (following the former type). Otherwise, they achieve

a mixed-strategy NE if they reached the equilibrium state while some (or all) of them execute a finite list of actions in a

random manner (following the latter type).

Based on that, we can mathematically denote the strategy taken by player i with Si ≡ {s1, . . . , sN}, where sk is the

probability for executing ak (the subset of Ai) owned by player i. A mixed-strategy NE is therefore, an NE state achieved

when each of the players executes a list of his actions following sk : ak → [0, 1) and
∑

sk(ak) = 1. Pure-strategy NE is

the degenerated case of mixed-strategy NE, in which all players execute only one ak with probability sk(ak) = 1.

In its original form, NE possesses some limitations related to its strict rationality assumptions. Although the game is

assumed as imperfect (each player does not know exactly the action that his opponents are about to take), it assumes that

all of them know exactly the type of their opponents [12]. This assumption is not always true. For instance, in coupled

electricity market, a generator could neither know the type of marginal generators (thermal, hydro, etc) located in other

market areas that would participate in short-term bidding nor their exact location within the transmission network. Even
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though he may guess the marginal cost of generation owned by these generators based on past experience (empirical

information) [12], he cannot decide any action because of the incomplete knowledge on the type of his opponents.

Although NE does not apply well in such cases, we can use Bayesian game theory for solving the problem. This

method allows a player to form first-order believe on the type of his opponent before determining his best response in a

game [13]. The best responses are determined based on expected utility functions. As an extension of NE, the method

allows us to consider all possible types of each player in game based on the probability of occurrence. For instance,

suppose a generator located within an area is proposing a bid price at hour t. Meanwhile, its operator believes that

another connected market area possesses two generators which have the following similarities: (i.) marginal cost, (ii.)

remaining generation capacity; and (iii.) ramping characteristics. Also, he knows that both of them share the same

possibility of being the marginal generator. Then, he can include this perception by modeling the marginal generator in

that area as a Bayesian player, with p = 0.5 for being either the first or the second unit.

Formally, let θi be the type of player i in a game, and p(θ−i|θi) represents the first-order belief owned by player i
towards the type of his opponent (given that his type is θi, which is known only to himself). The set of all types of

player i is Θi and θi ∈ [0, 1) for all θi ∈ Θi. Under such conditions, a player would choose his action based on his type,

and different actions may be assigned to different types. Based on that, he owns a strategy, si that maps Θi to Ai. Hence,

si : Θi → Ai. Since Bayesian game theory suggests that the choice of a player’s action follows θi and p(θ−i|θi), the

expected payoff for player i in the game becomes:

E[ui(si|s−i, θi)] =
∑

θi∈Θ−i

ui(si, s−i(θi), θi, θ−i)p(θi|θ−i) (1)

where, s−i(θi) is the strategy taken by players except player i, given that the type of player i is θi. A Bayesian equilibrium

(BE) is the Nash equilibrium of the Bayesian game, formulated as follows.

E[ui(si|s−i, θi)] ≥ E[ui(s′i |s−i, θi)] (2)

Upon achieving BE, player i receives a lower expected utility if he uses a strategy other than si (denoted by s′i ). The

existence of BE is guaranteed because of the proven existence of NE.

3. Strategic interactions and equilibriums in coupled electricity markets

Interactions between strategic players (marginal generators) participating in a wholesale electricity market could be

defined as a non-cooperative strategic game. Ideally, we assume that the players do not resort to collusions and treat

each of their counterparts as an opponent. They too have small influence on the outcome of the bid [14]. They compete

in the two-sided auction process by means of selecting a marginal cost from a finite range of values and propose it to

the market organizer [15]. Their aim is to receive the highest possible payoff after the market is cleared. They are said

to behave strategically if they propose a price other than their true marginal cost in the bidding process [16]. They have

market power if they receive increased profit by implementing strategic bidding.

Many important assumptions adopted in non-cooperative game theory are applicable in analyzing such scenarios.

Most importantly, bidding activities in an electricity market are an iterated game. This suits the mass action principle

proposed by Nash [17,18,19]. Subsequently, the rationality assumptions in NE also apply well in this area [7]. The mass

action theorem states that players in an iterative game would continually adapt their strategy following the direction of

a better reply to whatever is being played by the entire population of players. The adjustment stops only when an NE

state is achieved. The theorem fits well with the operation of an electricity market because (i.) the main structure of the

transmission network does not change in short time; and (ii.) the load demand within the market follows a consistent

cyclical trend over weeks, months, quarters and years. This forms an iterative environment where active generators

gain empirical information on the relative consequence of their strategies [19]. Later, they are able to make correct

judgments hence stabilizing themselves in NE.

The use of NE theory alone is limited in the analysis of coupled electricity markets because of its strict rationality

assumptions. Before the implementation of market coupling, active generators located within a market area only

possess empirical information leading to the formation of strategies within their local market. Nonetheless, they do not

have sufficient information for dealing with strategic bidding of active generators located in other market areas. After
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the implementation of market coupling, they have to observe various uncertainties in the operation of the market while

each of them only has experience dealing with active generators located in their local market. They would not know the

type of marginal generator they shall compete with, under various load levels. They become ex-interim players (who

know about their own type but not the type of the other players [20]) and fail to immediately form exact common priors.

Literally, BE theory can be applied for adressing this issue. Based on incomplete information, it is able to quantify

the potential influence of market coupling on the expected payoffs received by generators located in each area. This

helps in justifying the overall performance of a proposed market design involving market couplings. As mentioned in

Port Royal Logic [21], we should consider the probabilities of all scenarios, and put them in geometrical proportions

when considering a combined effect of the scenarios. BE theory deals with incomplete information problems in that

manner.

In the following sections, the authors explore the implementation of FBMC. Generally, FBMC is an extension

of the zonal pricing scheme which is intended for use in organizing the bidding of cross-border transfer of electric

power within a common Day-Ahead (DA) market [22]. The dispatch within the entire network is cleared based on an

approximated transmission network that closely represents the physical flow of electric power. Hence, three unknown

variables may affect the expected utilities received by the generators within each market area: (i.) the transmission

network configuration characteristics (especially, the Power Transfer Distribution Factors (PTDFs)) of an external

market; (ii.) the possibility that an external market may divide into smaller market areas in order to deal with internal

congestion issues or to allow better involvement of generators in cross-border DA bidding; and (iii.) the type of

marginal generators located in external market areas for all load instances.

The authors show a case study of FBMC in a transmission network. The implementation intends to cover the

mentioned unknowns and outline the method implemented for computing the expected payoffs received by all marginal

generators located in each market area at BE.

4. Implementation

The construction of the FBMC model begins with representation of each market area in the transmission network

as a node (copper-plate) [22]. The combined characteristics of transmission lines (also known as the interfaces

connecting them) are represented as fictitious transmission lines which possess flow characteristics computed as close

as possible to their physical value. The method neither modifies the existing network configurations nor the market area

arrangements. The optimal dispatch can be computed with Direct Current Optimal Power Flow (DC-OPF) computation.

It simultaneously clears the generation dispatch and physical flow of power within the entire network.

The key to implementing a successful FBMC model is the correct representation of power flow between market

areas (nodes in the approximated transmission network model) through the interfaces. Any deviation from the real

characteristics would create an inefficient (suboptimal) generation dispatch plan [2]. Specifically, the Generation

Shift Factors (GSFs) at all interfaces have to be properly computed. Various methods have been used by researchers

to achieve this. For instance, Krause [22] represented each of the interfaces as a line of equivalent reactance, and

Kurzidem [23] used Interface-GSF (I-GSF) for representing the total power flow on each of the interfaces, when

one unit of power is generated within a market area while another unit of power is consumed in a reference market

area. Domestic congestion within each market area is ignored because FBMC concerns only cross-border transfer of

power. Furthermore, it is built upon the existing arrangement of market areas, which has already resolved the internal

congestion issues.

The use of I-GSF is practical because Transmission System Operators (TSOs) of connected market areas are able

to estimate this variable without knowing the details of the transmission network located in an external market area.

Nevertheless, the method too has limitations. Due to the aggregation of buses in a market area as a single node, we

have difficulties in choosing the right reference bus for establishing the I-GSF matrices. The I-GSF computed using

different reference bus varies, thus creating an asymmetric power flow in the network. Also, DC-OPF would compute

power flow with the assumption that in the market area where the reference bus is located, power is only consumed at

the reference bus. In most cases, this does not represent the real consumption of power within that area because power

retrieved from buses other than the reference bus (within the same area) is not taken into account.

In view of that, the authors redefine I-GSF as the extent of changes in power flow on all interfaces caused by the

generation of one unit of power in the marginal bus located within a market area, followed by the consumption of
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one unit of power in the reference market area. The method does not lose its generality because market areas in large

transmission networks (i.e., pan-European transmission network) may cover a substantially wide geographical region.

In that case, it is reasonable to assume that the load is distributed evenly to all buses within a market area. Furthermore,

the market areas are arranged such that the load at all enclosed buses does not differ significantly from the average

value (especially if rural areas and urban areas form different market areas because of the transmission bottlenecks).

Let’s apply the method on a case study using the transmission network model shown in Fig. 1. The model is

constructed by slightly modifying the standard IEEE 30-bus test system. Each generator in the model comprises

two units, with a generation capacity, and marginal cost of generation, Cg shown in Table 1. The transfer limit of

transmission lines other than L12, L14, L15, L26 and L36 is infinite. The transfer limit of these lines (L12, L14, L15,

L26 and L36) is considered as a binding constraint in the power flow computation (the same technique is applied in

[24], where the transfer limit of some transmission lines in the model is regarded as binding constraint). The power

generated is dispatched in two consecutive stages. First, 60% of the total load demand (170.04 MW) is cleared with

DC-OPF computation. This forms the base case of dispatch, which represents the arrangement to supply the base load

and intermediate load pre-defined in long-term markets. It is assumed that the generators do not interact strategically at

this stage.

Afterwards, the remaining transfer capacity in each of the interfaces is used in FBMC. Three parameters are required

in this stage of computation:

i. The marginal generator located in each area

The marginal generator located in each area is determined after the implementation of DC-OPF at 60% total load

level. A generator is selected from each area, to supply the next unit of power.

ii. The computation of I-GSF

The I-GSF computation begins with the selection of the reference area. Basically, it either comprises one or

multiple areas selected within the model. They are chosen based on the following criteria: (i.) areas possessing

insufficient generation capacity, where the remaining generation capacity of the marginal generator is inadequate

for supplying the local load demand; and (ii.) the area with the marginal generator that possesses the highest Cg,

if all areas do not meet the former criterion. Next, I-GSF is computed by summing the total GSF created, when

one unit of power is generated within each area (by their respective marginal generators) followed by withdrawal

of one unit of power evenly distributed to all buses within the reference area. If the reference area consists of

more than one area, the load is first proportionately distributed to these areas before the average value of load is

computed for all enclosed buses.

iii. The transfer capacity at the interfaces

The transfer capacity at the interfaces is computed by means of determining the maximum value of distributed load

demand in the reference area (as in the case of I-GSF) that could be supported by the transmission network. The

load demand at the reference area is incrementally increased, and DC-OPF is implemented after each increment

until an infeasible solution is found (this indicates that a transmission constraint is violated). At that point, the

total power flow within each interface is used as the available transfer capacity.

The marginal generators that serve the load demand in the DA market (after 60% of the total load demand is served

in the base case) are shown in Table 2. The remaining load demand in areas 1, 2, and 3 is 71.48 MW, 19.4 MW, and

22.48 MW respectively. In addition, four generators are identified as marginal generators in the DA market, which are

G11 (in area 1), G41 and G61 (in area 2) and G31 (in area 3). Two marginal generators are identified for area 2 because

they possess similar Cg. Area 1 is selected as the reference area (in the establishment of I-GSF) because it possesses

the marginal generator with the highest Cg.

The marginal generators located in area 2 could exist in three different forms, causing area 2 to exhibit different

types of unknown to marginal generators in other areas. Most importantly, the actual type in area 2 is unknown to the

marginal generator in area 3 which strategically interacts with it for serving the load demand in the net importing area

(area 1). The types are listed as below:

i. Only G41 is used as the marginal generator in area 2 for serving the load demand in the DA market (type a).
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Fig. 1. A slightly modified IEEE 30-bus test system.

Table 1. Generators in the transmission network model (Fig. 1).

Name Generator Capacity [MW] Cost [$/h]

G1 1 35 55

2 20 50

G2 1 30 55

2 25 50

G3 1 35 25

2 20 30

G4 1 40 30

2 30 10

G5 1 35 25

2 30 10

G6 1 35 30

2 35 10

Table 2. Load served, DA load demand, and marginal generator for use in the DA market.

Area Load served DA load demand Marginal unit

A1 107.22 71.48 G11

A2 29.1 19.4 G41 and G61

A3 33.72 22.48 G31
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ii. Either G41 or G61 is used as the marginal generator in area 2 (type b). Each of them may create different patterns

of power flow on the interfaces. This is because of their relative location within the transmission network, which

creates different I-GSFs.

iii. Both G41 and G61 are used as marginal generators in area 2 (type c). This is possible if area 2 divides itself

into two smaller local areas either for resolving internal congestion issues or for allowing both generators to

simultaneously participate in the DA market. The I-GSF for this case is again, different compared with types a and

b.

Based on that, we can define the strategic interactions between marginal generators in areas 2 and 3 as a Bayesian

game (see Fig. 2). Conventionally, a virtual player called “nature” is included in this game, which assigns the probability

of area 2 in exhibiting each of the mentioned types. The assignment depends on the first-order belief (on the type of

marginal generator in area 2) owned by the marginal generator located within area 3. Let’s assume that the probability

of area 2 to appear respectively as types a, b and c is 0.4, 0.3, and 0.3. Hence, we assume that the likelihood for area 2

in using G41 as the marginal generator is higher.

Four non-singleton information sets exist in the game, each related to the first-order belief of the marginal generators

on the types of their opponents. The first information set which includes node 2 to 5 of the game tree shown in Fig. 2

relates to the generators located within area 2 . The remainder of the information sets relates to the response of G31

located within area 3, based on the perceived types of marginal generators in area 2.

Fig. 2. The Bayesian game in cross-border trade of electric power simulated in this work.

Three matrix games (subgames in normal form) are established based on the perception of G31 on the types of

marginal generators in area 2. First, the matrix game I is played when G41 is used in area 2 as the marginal generator.

This happens when area 2 is perceived as either type a or b. Second, the matrix game II is played when G61 is used as

the marginal generator in area 2 (type b). Third, the matrix game III is played when both G41 and G61 are used as

marginal generators in area 2 (type c). In these games, the marginal generators interact with each other by adjusting

their proposed Cg, so as to gain the highest payoff through the bidding process. Three levels of Cg can be proposed by

each of them, which are low (l, equal to true Cg), medium (m, equal to true Cg + 5) or high (h, equal to true Cg + 10)

values. For instance, the list of candidate Cg for G31 is {25, 30, 35}. The payoffs received by the marginal generators in
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the matrix games are obtained through DC-OPF computation implemented on the approximated transmission network

model. The payoff values are shown in Tables 3, 4, and 5, respectively.

Table 3. Payoffs received by G41 and G31 if marginal generator in area 2 consists of type a or b.

G41 – G31 Low bid Medium bid High bid

Low bid 700, 1000 700, 800 700, 600

Medium bid 525, 1000 525, 800 525, 600

High bid 350, 1000 350, 800 350, 600

Table 4. Payoffs received by G61 and G31 if marginal generator in area 2 consists of type b.

G61 – G31 Low bid Medium bid High bid

Low bid 700, 875 700, 700 700, 525

Medium bid 525, 875 525, 700 525, 525

High bid 350, 875 350, 700 350, 525

Table 5. Payoffs received by i.) G41 and G61, and ii.) G31 if marginal generator in area 2 consists of type c.

G41, G61 – G31 Low bid Medium bid High bid

Low bid 1400, 465.83 1400, 372.66 1400, 592.12

Medium bid 1050, 465.83 1050, 372.66 1050, 600

High bid 700, 465.83 700, 372.66 700, 279.5

5. Results and discussion

The Bayesian game is solved with Gambit solver [25]. In the process, it is found that a pure-strategy NE exists in

each of the matrix games. These NEs happen when (i.) G41 and G31 simultaneously propose a low bid in matrix game

I (Table 3); (ii.) G61 and G31 simultaneously propose a low bid in matrix game II (Table 4); and (iii.) G41 and G61

propose a low bid while G31 proposes a high bid in matrix game III (Table 5). A BE is as well identified in the game,

which happens when G31 proposes a low bid in matrix games I and II (if marginal generator in area 2 is of types a and

b), and a high bid in matrix game III (if marginal generator in area 2 is of type c). Meanwhile,the marginal generators

in area 2 (G41 and G61) propose a low bidding price in all of the matrix games. When BE is reached, the marginal

generators in area 2 (G41 and G61) collectively earn 910 as payoff. Simultaneously, the marginal generator in area 3

(G31) earns 858 as payoff.

Consequently, it is known that the players in the game would propose bidding prices to the DA market following the

strategy suggested by BE. This is because, BE is the state where all of them would incline to converge after interacting

iteratively with each other within the same market framework. This certainty is assured as long as they make rational

decisions at all time. For instance, G31 receives less incentive if he deviates from the BE strategy and proposes a

medium bidding price in matrix game I (Table 3). In that case, he would receive 800 instead of 1000 as payoff. In view

of that, we can apply Bayesian game analysis for determining the expected payoffs received by all market areas when

an equilibrium state is achieved within a proposed market design. In other words, BE can be used as a criterion for

quantifying the impact and performance of a market design option. As in the case study, it is clearly shown that the

expected payoffs received by the generators within areas 2 and 3 do not differ substantially. This indicates that the

market mechanism works well.

Also, BE is guaranteed to exist in all strategic games of incomplete information. This is well supported by practical

reasons. BE is the state where all of the marginal generators receive the best award as they depend on their opponents

for determining the power dispatch.
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6. Conclusions

This paper presents the Bayesian game theory and its application in analyzing cross-border transfer of electric

power. It explains how the method could be used in dealing with cross-border transfer within a market mechanism

that contains market players possessing uncertain types of marginal generators. The method described in this paper is

demonstrated with a case study that comprises a simple three-area transmission network implementing FBMC. It is

shown that BE could be a good indicator for representing the impact and performance of a market design framework.

Based on that, the authors suggest (at least in the planning stage) that the Bayesian game theory can be applied for

creating baseline performance indicators that take all possible types (that may exist within external market areas) into

account. These indicators can as well be used as a means for comparing market design proposals, which lead to the

selection of the best possible option for implementation.
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