
Impact of Outcome-Based Education on Software

Engineering Teaching: a Case Study

Hong-Ning Dai, Wei Wei

Macau Univ. of Science & Technology

Macau SAR, China

hndai@ieee.org, wewei@must.edu.mo

Hao Wang

Norwegian Univ. of Sci. & Tech.

Norway

hawa@ntnu.no

Tak-Lam Wong

Douglas College

Canada

tlwong@ieee.org

Abstract— This paper investigates the impact of outcome-

based education (OBE) on students’ learning achievement from a

software engineering (SE) program. It is not easy to transform an

SE curriculum from traditional knowledge-based education

(KBE) method to OBE method since it requires us to identify the

outcomes clearly and map the outcomes with the expected

capabilities of students. We first give a briefing on our SE

program and outline the curriculum, then investigate the impact

of OBE in two selected courses in SE program, with the

completion of one course being the prequisite for admission into

the other one. Experimental results show that OBE can greatly

improve the learning effectiveness of students and teaching

quality.

Keywords—Outcome-based education; Software Engineering;

Information Technology curriculum

I. INTRODUCTION

Outcome-based education (OBE) approaches have received
extensive attention recently. An outcome is a clear learning
result that learners must demonstrate at the end of the learning
phase. In particular, learners should demonstrate what they can
actually do with what they have learned and know. Compared
with traditional education methods (such as knowledge-
oriented education and skill-oriented education), OBE has the
following benefits [1]: 1) Clarity. Teachers know what they
will teach in courses and students have clear goals to be
achieved after taking courses. 2) Flexibility. Teachers have
freedom to choose any method to teach students. 3)
Involvement. OBE emphases on student involvement. In this
manner, students are expected to actively participate into the
learning activities instead of passively memorizing knowledge
like traditional education methods. The learning effectiveness
can be greatly improved.

In our university, we have three information technology
(IT) related majors: Computer Technology and Application
(CTA), Electronic Information Technology (EIT) and Software
Technology and Application (STA). The curricula of these
three programs were revised in 2009 under the approval of
Tertiary Education Services Office of Macau SAR. The
previous teaching and learning methods used in our programs
were largely designed in accordance with the principles in
knowledge-oriented education (KOE), in which instructors
delivered knowledge and skills to students. This method
presumes that student learning outcomes can be guaranteed by
a provision of high quality and large quantity of instruction
However; we found that those teaching pedagogies associated

with KOE are likely to result in learning at a superficial level,
which means students can recite the concepts or the knowledge
after taking the courses but fail to demonstrate problem-solving
capability and initiatives to solve authentic problems. This
becomes even worse in some upper-division courses, e.g.,
operating systems and network programming.

We are now reforming our education approach from
traditional KOE to OBE. Compared with other disciplines, the
OBE approach is relatively new to IT or computer science [2]
[3] [9] [10]. Although it is shown in [4] [5] [6] that OBE can
improve the perceived learning outcome perception of students
and enhance the teaching quality, there are some limitations
and drawbacks in OBE as shown in [7], which may potentially
affect the learning quality [8]. Therefore, it is worth to
investigate the impact of OBE on IT-related courses.

The research question is what the impact of OBE on IT
education is. To be more specific, we are interested in find out,
comparing with the KOE approach, how effective the OBE
approach is in terms of improving student learning outcomes.
Therefore, we investigate the impacts of OBE on IT education
in this paper. In particular, we have initiated a real intervention
of OBE in three IT-related majors for nearly three years. As
indicated in a case study on courses of STA major, we
demonstrate that this OBE method has greatly enhanced the
learning effectiveness in our IT curricula and has improved the
problem-solving capabilities of our students.

The remainder of the paper is organized as follows. Section
II gives an overview of our OBE approach. Section III then
presents learning activities in our curricular. Section IV gives
the evaluation on learning performance. Finally, we conclude
the paper in Section V.

II. OBE APPROACH

A. Overview of IT Curricula

There are three IT majors in our faculty: Computer
Technology and Application (CTA), Electronic Information
Technology (EIT) and Software Technology and Application
(STA). When implementing OBE approach in all the three
majors, we have carefully designed 10 curricular outcomes as
shown in Table I. Most of them emphasize on the practical
problem-solving capability of students. We have formally
enforced this OBE approach in all three programs since
January 2015.

TABLE I. PROGRAM LEVEL OUTCOMES

No. Outcome description

(a) Apply fundamental knowledge of mathematics, algorithmic principles,
computer theory, and principles of computing systems in the modeling
and design of computer-based systems that demonstrate an
understanding of tradeoffs involved in design choices.

(b) Analyze a problem, specify the requirements appropriate to its
computing solution, design, implement, and evaluate a computer-based
system, process, component, or program that satisfies the requirements.

(c) Apply design and development principles in the construction of
software systems of varying complexity.

(d) Use current skills, techniques, and tools necessary for computing
practice.

(e) Function effectively as a member of a team to accomplish a common
goal.

(f) Understand professional, ethical, legal, social, and security issues and
responsibilities.

(g) Analyze the local and global impact of computing on individuals,
organizations, and society.

(h) Write effectively.

(i) Give effective oral presentations.

(j) Recognize the need for, and an ability to engage in, continuing
professional development.

B. Case Study on STA Major

Our study in this paper is mainly focused on STA. The
overriding teaching objective of STA major is to train students
to become software engineers, make them familiar with the
development of enterprises scale software and organizations. In
other words, it targets on the development of students’ practical
problem-solving capability in software development. Students
are required to complete at least 160 units of courses, including
major courses (106 units), general education courses (36 units),
and final year project (18 units). Take Fig. 1 as an example,
where the knowledge of data structures is the necessity to take
a course on operating systems.

Fig. 1. Prerequisite relationships in STA program, where only part of the

whole relationship diagram is shown.

In this paper, we attempt to investigate the impact of OBE
in STA major. In particular, we consider two typical courses in
STA major: Data Structures with course code LP002 and
Operating Systems with course code CO004, where a
completion of LP002 is the prerequisite for taking course
CO004. We then test the effectiveness of OBE by evaluations
of two groups of students (experimental group and control

group). Details on OBE evaluations will be shown in Section
IV.

III. ASSESSMENT METHODS AND LEARNING ACTIVITIES

We have carefully designed courses LP002 and CO004 to
fulfill the program level outcomes as listed in Table I. In
particular, we offer students with lectures, tutorials, exercises
and programming assignments so that they can learn from
practical examples. In order to assess the performance of
students, we also design assessment approaches. Note that the
assessment approaches should be mapped to our program
learning outcomes.

A. Assessment Methods

We first give the mappings from assessment methods to
program learning outcomes of course LP002 (Data structures)
in Table II, where a tick indicates a mapping from the
assessment method to the learning outcomes (otherwise it is
left with a blank).

TABLE II. MAPPINGS FROM ASSESSMENT METHODS TO PROGRAM LEVEL

OUTCOMES OF COURSE LP002

Assessment

method

% Assessment related to intended learning outcomes

Weight (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Participation 5

Programming

assignments
15

Exercises 15

Midterm

exam
15

Final exam 50

Total 100%

Similarly, we then give the mappings from assessment
methods to program learning outcomes of course CO004
(Operating Systems) in Table III, where a tick indicates a
mapping from the assessment method to the learning outcomes
(otherwise it is left with a blank).

TABLE III. MAPPINGS FROM ASSESSMENT METHODS TO PROGRAM LEVEL

OUTCOMES OF COURSE CO004

Assessment

method

% Assessment related to intended learning outcomes

Weight (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Participation 10

Labs 20

Projects 40

Exams 30

Total 100%

Comparing Table II with Table III, we can find that LP002

and CO004 share common outcomes. In order to evaluate the
impacts of OBE, we investigate how the outcomes of the
prerequisite course LP002 affect course CO004. To quantify
the effects of OBE, we choose outcomes (a), (b), (c) and (d) to
make the evaluations.

B. Learning Activities

LP002 is a second-year course, which introduces the
fundamental algorithms and data structures in computer
science. In particular, this course will concentrate on sorting,
searching and graph algorithms as well as the fundamental data
structures such as linked lists, queues, stacks, trees and graphs.
Students are expected to be able to analyze the learned
algorithms, evaluate the performance of algorithms, design and
implement the learned algorithms.

We employ the following learning activities: 1) lectures, in
which instructors introduce the topics and students are
encouraged to ask questions or involved with class discussions;
2) tutorials, in which instructors or teaching assistants offer the
Q/A discussions on the assignments or programming projects;
3) programming labs, in which students can complete the
programming exercises or projects under the guidance of
instructors or tutors.

CO004 is a third-year course, which aims to introduce the
basic design principles and implementation techniques of
Operating Systems to students by offering several small
projects. Following the guidance and instructions, students
should be able to implement the fundamental parts of a UNIX
(LINUX) system such as a process scheduler and a file system.
Compared with LP002, CO004 more concentrates on the
practical aspect while we have the similar learning activities
such as lectures, tutorials and labs.

IV. EVALUATION OF OBE METHOD

In order to test the effectiveness of OBE method in STA
major, we select courses LP002 and CO004. Besides, we also
select two groups of students:

1) Control group: The 2013 intake students who took

course LP002 in September 2014 and course CO004 in

January 2016;
2) Experimental group: The 2014 intake students who took

course LP002 in September 2015 and course CO004 in January
2017.

Note that the OBE method has been formally enforced in
our faculty in January 2015. Thus, the students in control group
were taught in traditional method (i.e., KBE) when they took
course LP002 in September 2014. They then were taught in
OBE method in CO004 when they took course CO004 in
January 2016. Between the two cohorts of students, they share
similar demographic information (such as gender ratio and
family backgrounds). They obtained the admission to study in
the program with the similar academic performance in the
university entrance examination, and have experienced the
same group of lecturers in year one. Differently, the students in
experimental group were taught in OBE method in both LP002
and CO004. We choose the same size for control group and
experimental group, i.e., the number of students is 40.

A. Comparison on learning performance with/without OBE

We first investigate the effectiveness of OBE method in
control group and experimental group in course LP002. In
particular, we make a comparison on the learning performance
of control group (without OBE) with that of experimental
group (with OBE). Note that we choose the same teaching

materials and design the same learning activities (lectures,
tutorials and labs) for both the aforementioned groups.

In particular, we conduct a statistical analysis on the final
scores of both control group and experiment group. Table IV
shows the results.

TABLE IV. FINAL SCORE STATISTICS OVER TWO GROUPS OF STUDENTS

 Control Group

(2013 intake)

Experimental Group

(2014 intake)

 No. Percentage No. Percentage

<60 22 55.00% 13 32.50%

60-70 3 7.50% 4 10.00%

70-80 8 20.00% 8 20.00%

80-90 4 10.00% 6 15.00%

>90 3 7.50% 9 22.50%

Total 40 100.00% 40 100.00%

As shown in Table IV, we can see that there are more

students in experimental group who can achieve high score
(i.e., above 90) than those in control group; moreover, fewer
students in experimental group fall into the low score range
(i.e., below 70). In summary, the number of students scoring
higher grades increases and the number of students scoring
lower grades decreases after introducing OBE method. This
result indicates that OBE method can significantly improve the
effectiveness of learning performance.

B. Impact of OBE on follow-up courses

We then investigate the impact of OBE on other follow-up
courses. In particular, we taught the 2013 intake students in
LP002 by traditional method (KBE) and taught them in CO004
by OBE method. Our assumption is that the students who have
been taught in OBE approach in previous semester can
demonstrate a higher level of learning outcomes than those
who have not in subsequent semester. In other words, we ask if
the students in experimental group achieve higher score in
CO004 course than students in control groups with special
reference to their performances in relation to learning outcomes
a, b, c, and d (see Table 1 for reference).

We conduct a comparison study on the two groups
students. The control group consists of students who first took
LP002 in traditional method and took CO004 in OBE method.
The experimental group consists of students who took both
LP002 and CO004 in OBE method. We employ the same
learning activities for the control group and the experimental
group. The activities include: 1) seven labs, 2) two projects, 3)
two computer-based exams. We mainly evaluate the
performance of students on the outcomes (a), (b), (c) and (d) of
CO004. Please refer to Table I for the detailed descriptions of
outcomes (a), (b), (c) and (d). Among them, outcome (a) is
relatively difficult to be achieved since it requires the strong
problem-solving capability of students.

Table V shows the mapping from learning activities to
outcomes (a tick means a mapping and a blank means no
mapping). It is worth mentioning that exams 1 and 2 emphaze
on different outcomes. In particular, exam 1 mainly tests the
capability of using Linux/Unix commands or other tools while
exam 2 tests the comprehensive capabilities of programming,
problem-solving and analyzing.

TABLE V. MAPPING FROM LEARNING ACTIVITIES TO OUTCOMES IN

CO004

Activities Outcome (a) Outcome (b) Outcome (c) Outcome (d)

Labs

Projects

Exam 1

Exam 2

We next give the statistical analytical results on the

outcomes (a), (b), (c) and (d) of CO004 in control group and
experimental group. Note that each percentage score is
calculated by averaging the obtained points over the total
points in each outcome over every student; this procedure is
involved with the calculation of points in different learning
activities (according to the mappings in Table V). Table VI
lists the comparison of outcomes in CO004 in different groups
of students.

TABLE VI. COMPARISON OF OUTCOMES IN CO004 IN TWO GROUPS

 Control Group

(2013 intake)

Experimental Group

(2014 intake)

Outcome (a) 50.9% 74.1%

Outcome (b) 67.8% 69.3%

Outcome (c) 61.2% 75.2%

Outcome (d) 73.8% 91.3%

We can see from Table VI that the students from the

experimental group can achieve higher outcome scores than
those from the control group. This result implies that there are
impacts on OBE method on the follow-up courses. Recall that
the students from the experimental group in CO004 were
taught by OBE method while those from the control group in
CO004 were also taught by OBE method. However, unlike the
students from the experimental group, the students from the
control group were taught in non-OBE method when they took
LP002, which is a prerequisite for taking course CO004. As
shown in our aforementioned results in LP002 (refer to Section
IV-A), the students from the control group performed worse in
LP002 than those from the experimental group. As a result, the
capabilities (i.e., the outcomes) that they obtained from LP002
were poorer than those from the experimental group; it
consequently affects their performance in the follow-up course
CO004. Take Table VI as an example again. The students from
the control group achieved outcome (a) in the proportion of
50.9%, much lower than those from the experimental group
(i.e., 74.1%). This result implies that OBE method can improve
the learning performance of students.

V. CONCLUSION

In this paper, we investigate the impact of outcome-based
education (OBE) method on information technology (IT)
education. We have implemented OBE method in three IT
related majors for more than two years in our faculty. In this
work, we select two representative courses in Software
Technology and Application program in our faculty; one
course is the prerequisite of the other one. We give the course
descriptions and analyze the mappings from learning activities
to learning outcomes. Experimental results demonstrate that

OBE method can greatly improve the learning effectiveness of
students, especially in problem-solving capability in software
design and implementation. In the future, we will investigate
the impact of OBE on other courses and the whole curriculum.

REFERENCES

[1] Bouslama, Faouzi, Azzedine Lansari, Akram Al-Rawi, and Abdullah

Abonamah. "A novel outcome-based educational model and its effect on
student learning, curriculum development, and assessment." Journal of
Information Technology Education: Research 2, no. 1 (2003): 203-214.

[2] Wong, Gary KW and H. Y. Cheung. "Outcome-based teaching and
learning in computer science education at sub-degree level."
International Journal of Information and Education Technology 1, no. 1
(2011): 40.

[3] Bansal, Srividya, Ajay Bansal, and Odesma Dalrymple. "Outcome-based
Education Model for Computer Science Education." Journal of
Engineering Education Transformations 28, no. 2 & 3 (2015): 113-121.

[4] Rigby, Steve, and Melissa Dark. "Using outcomes-based assessment
data to improve assessment and instruction: A case study." ACM SIGITE
Newsletter 3, no. 1 (2006): 10-15.

[5] Au, Oliver, and Reggie Kwan. "Experience on outcome-based teaching
and learning." Hybrid Learning and Education (2009): 133-139.

[6] Pang, Mary, To Ming Ho, and Ryan Man. "Learning Approaches and
Outcome‐Based Teaching and Learning: A Case Study in Hong Kong,
China." Journal of Teaching in International Business 20, no. 2 (2009):
106-122.

[7] Brady, Laurie. "Outcome‐based education: a critique." The Curriculum
Journal 7, no. 1 (1996): 5-16.

[8] Havnes, Anton, and Tine Sophie Prøitz. "Why use learning outcomes in
higher education? Exploring the grounds for academic resistance and
reclaiming the value of unexpected learning." Educational Assessment,
Evaluation and Accountability 28, no. 3 (2016): 205-223.

[9] Wang, Haodong. "Enhancing Java programming teaching effectiveness
for u-shaped class students." Journal of Computing Sciences in
College 31, no. 1 (2015): 117-125.

[10] Cooper, Stephen, Lillian Cassel, Barbara Moskal, and Steve
Cunningham. Outcomes-based computer science education. Vol. 37, no.
1. ACM, 2005.

