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Abstract – This paper proposes a multiobjective 

optimization technique that maximizes the active power 

generation from single-phase distributed generators, and 

minimizes the unbalance factor at the point of common 

coupling of the network. Such technique is incorporated 

into a centralized control strategy for optimal power flow 

control purpose. The centralized control strategy used 

herein is the Power-Based Control that coordinates the 

distributed units to contribute to the network´s active and 

reactive power needs, per phase, in proportion of their 

power capacity. The simulation results of a simplified 

network with three single-phase distributed generators 

validate the proposal in terms of power flow control, 

voltage regulation and power quality. 

 

Keywords – Distributed generation, Genetic algorithm, 

Microgrid, Multiobjective power flow, Unbalance. 

I. INTRODUCTION 

With the steady growing of energy demand and society 

concerns about the environment, alternative methods for 

energy generation have been studied by many research groups. 

Distributed generation has emerged as a feasible and smart 

solution to bring the conventional and centralized grid towards 

a modern paradigm of generation in a distributed fashion [1]. 

Although, new technological developments carry new 

challenges, such as reliable and efficient operation of parallel 

small distributed units, how to incorporate new devices into 

the already existed grid, and optimal and high quality of power 

supplying are typical examples of obstacles that must be 

overcome. 

An apparent and efficient model to deal with the distributed 

generation and energy storage systems is gathering them in 

microgrid structures, where the distributed energy resources 

(DERs) and loads are interconnected to the distribution 

systems. These DERs are fully controlled as dispatch units. 

DERs commonly consist of renewable energy sources (e.g., 

photovoltaic, wind, full-cell, etc.), energy storage, and a 

single- or three-phase inverter (e.g., DC-AC converter) that 

performs the interconnection between the primary energy 

source (PES) and the distribution network. Besides injecting 

active power into the network, DERs can perform ancillary 

services in order to enhance the system power quality and 

reliability [2], [3], [4]. Some of these ancillary services are: 

voltage support under low-voltage ride-through, reactive 

compensation, harmonic mitigation, and power unbalance 

reduction, mainly due to load unbalance and intermittent 

power generation from single-phase converters. 

When those DERs are incorporated into a network and they 

are coordinately controlled through a central agent-based unit, 

they may cooperate to achieve a common goal at the point of 

common coupling (PCC) of the network [5]. One of the major 

advantages of such structure is the accurate power flow and 

power factor control at the PCC allowing the utility to 

exchange power with the microgrid, within high quality and 

respecting their limited power/current capability. 

However, when the network is full of heavy single-phase 

power generation, there exist a trade-off between power 

generation from single-phase DERs and power unbalance at 

the PCC of the network. It occurs because the distributed units 

are arbitrarily connected to the grid worsening the power 

unbalance. In [3] it was shown how to distributedly 

compensate load unbalance through coordinating single-phase 

DERs arbitrarily connected to a three-phase network. To 

optimize the use of energy, a generation energy cost dispatch 

system was proposed in [6] and [7], but no energy quality 

issues were explored. In [5] an association of central and local 

controller to regulate active and reactive power of DERs was 

proposed in order to enhance the voltage profile. The 

optimization algorithm manipulates ten neighboring nodes to 

guarantee that the voltage value stays within acceptable limits, 

but it is needed to know the power line impedances and the 

location of each DER. These conditions are tough to comply 

with in distributed networks. A methodology to reduce the 

power line losses, voltage deviation and inverter losses was 

proposed in [8], which is based on injection of reactive power 

under voltage deviation control. However, it is also needed to 

know the system parameters, and the optimization processing 

time is critical. 

Then, due to the trade-off abovementioned, this paper 

proposes the application of a multiobjective optimization 

technique to set the power flow at the PCC maximizing the 

active power generation from single-phase distributed units 

and minimizing the power unbalance. The optimization 

technique is incorporated into a centralized control strategy 

called Power-Based Control (PBC) [9]. This control strategy 

drives the DERs to contribute to the active and reactive power 

needs of the network in proportion to their capability. As a 

result, the utility may choose from prioritizing active power 

generation extracting maximum power from DERs, reducing 

the power unbalance at the PCC for enhancing power quality, 

or an intermediate action between these goals. 



 

II. NETWORK STRUCTURE 

A. The network architecture and control structure 

The simplified network structure considered in this work is 

shown in Fig. 1. The role of the DERs is to enable the 

management of resources (e.g., compliance with current 

standards, storage devices and renewable sources) that may be 

available on the premises of integration between DERs and 

distribution network [10]. 

The three-phase four-wire network of Fig. 1 is composed 

of three single-phase DERs connected line-to-neutral (DER1-

phase a, DER2-phase b and DER3-phase c), two passive loads 

(Load1-phase a and load2-phase b), and a central controller 

(CC) placed at PCC. CC and DERs are interconnected through 

a low-rate communication link. 

The central agent-based unit of this modern power system 

structure is placed at the PCC (i.e., central controller) and 

coordinates the active power injection and ancillary services 

of each DER through a low-rate communication link. In 

general terms, the distributed units send a data packet to the 

CC, which also measures the PCC power flow and sets its 

references, and thereupon processes the PBC. Finally, the CC 

sends power commands to drive the distributed units. 

The centralized controller is often divided into three 

hierarchical levels [10], in which the first control level (local) 

manages the basic/specific functions, such as local power 

management, harmonic and reactive compensation of local 

load, and stabilization of local voltage. The second level of 

control is the coordinated integration of DERs and CC, and it 

distributively regulates the active and reactive power across 

the network. The PBC is included in the secondary level, and 

it is described in Section II. Finally, the third control level 

(global) represents the negotiation between the network and 

the utility, i.e., distribution system operator (DSO). The 

proposed optimal algorithm takes part in the tertiary level 

control sending PCC power flow references to the secondary 

level control, in this case the PBC. 

B. The Power-Based Control 

The PBC was initially proposed in [9] and premises that 

DERs contribute to the power needs of the network in 

proportion to their power capacity [2]. To regulate the power 

flow in each m-phase (m = a, b and c) of the network, PBC 

uses certain coefficients representing the percentage of actual 

power capability to be dispatched by DERs, called scalar 

coefficients (αPm, αQm). These coefficients are calculated in the 

CC and then broadcasted to every DER participating in the 

PBC [3]. 

The basics operation of PBC is shortly described by means 

of few steps. The first stage consists of the CC gathering a data 

packet from each j-th DER (j = 1,2,...,J, where J is the number 

of DERs in the network). Such data packet comprises of: 1) 

actual injecting active power 𝑃𝐺𝑗(𝑘), 2) actual injecting 

reactive power 𝑄𝐺𝑗(𝑘), 3) the maximum active power 

generation capacities 𝑃𝐺𝑗
𝑚𝑎𝑥(𝑘), e.g., in a photovoltaic source 

would be the maximum power point, 4) the power storage 

capacities 𝑃𝐺𝑗
𝑚𝑖𝑛(𝑘), and 5) the rated power of converter 

𝐴𝐺𝑗(𝑘). Where k is the current control cycle. 

Then, in the basis of the data packet gathered from 

distributed units, and the grid variables measured 𝑃𝐺𝑅𝐼𝐷𝑚(𝑘) 

and 𝑄𝐺𝑅𝐼𝐷𝑚(𝑘), the CC calculates the contributions that each 

 
Fig. 1.  Simplified network with single-phase DERs and loads. 

DER must provide in the next control cycle. Thereupon, CC 

broadcasts scalar coefficients (αPm, αQm) to every DER. 

For a proper operation of the power unbalance 

compensation, it is necessary knowing the m-phase to which 

each DER is connected, so the DER can send a request to the 

CC and then update a phase list [3]. 

Based on the received data the CC, calculates: 

• The total active and reactive power per phase provided by 

DERs for the current control cycle (k): 

𝑃𝐺𝑚𝑡(𝑘) =  ∑ 𝑃𝐺𝑚𝑗(𝑘)

𝐽

𝑗=1

 (1) 

𝑄𝐺𝑚𝑡(𝑘) =  ∑ 𝑄𝐺𝑚𝑗(𝑘)

𝐽

𝑗=1

 (2) 

Likewise, the CC computes, the total minimum active 

power, 𝑃𝐺𝑚𝑡
𝑚𝑖𝑛(𝑘), and total maximum active 𝑃𝐺𝑚𝑡

𝑚𝑎𝑥(𝑘), and 

reactive 𝑄𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘) power per phase. The maximum total 

reactive power that can be generated by each j-th DER is 

calculated as: 

𝑄𝐺𝑗
𝑚𝑎𝑥(𝑘) =  √𝐴𝐺𝑗(𝑘)2 − 𝑃𝐺𝑗(𝑘)2 (3) 

• The total active and reactive power consumed by the loads 

in the current operating cycle k: 

𝑃𝐿𝑚𝑡(𝑘) =  𝑃𝐺𝑅𝐼𝐷𝑚(𝑘) + 𝑃𝐺𝑚𝑡(𝑘) (4) 

𝑄𝐿𝑚𝑡(𝑘) =  𝑄𝐺𝑅𝐼𝐷𝑚(𝑘) + 𝑄𝐺𝑚𝑡(𝑘) (5) 

where 𝑃𝐺𝑅𝐼𝐷𝑚(𝑘) and 𝑄𝐺𝑅𝐼𝐷𝑚(𝑘) are the measured active 

and reactive power per phase on the main network side of 

the PCC. 

• The active 𝑃𝐺𝑚𝑡
∗ (𝑘 + 1) and reactive 𝑄𝐺𝑚𝑡

∗ (𝑘 + 1) power 

reference per phase for the next control cycle (k + 1) are: 
𝑃𝐺𝑚𝑡

∗ (𝑘 + 1) =  𝑃𝐿𝑚𝑡(𝑘) − 𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1) (6) 

𝑄𝐺𝑚𝑡
∗ (𝑘 + 1) =  𝑄𝐿𝑚𝑡(𝑘) − 𝑄𝑃𝐶𝐶𝑚

∗ (𝑘 + 1) (7) 

where 𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1) and 𝑄𝑃𝐶𝐶𝑚

∗ (𝑘 + 1) are the references 

of active and reactive power per phase at the PCC in the 

next control cycle (k + 1). 

The proposed multiobjective optimization technique is 

used to define the active power reference 𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1) to 

maximize the active power generation from single-phase 

DERs, and to minimize the unbalance factor at the PCC. 

max 𝐹𝐺 

min 𝐹𝑁𝑎 

s.t. 

𝑃𝑃𝐶𝐶𝑚
∗ 𝑚𝑖𝑛(𝑘 + 1) ≤ 𝑃𝑃𝐶𝐶𝑚

∗ (𝑘 + 1) ≤ 𝑃𝑃𝐶𝐶𝑚
∗ 𝑚𝑎𝑥(𝑘 + 1) 

(8) 
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where FG and FNa are the factor of generation, and the factor 

of active unbalance, both described in Section IV. 

It is worth mentioning that the reactive power flowing to 

grid is fully compensated by setting 𝑄𝑃𝐶𝐶𝑚
∗ (𝑘 + 1) to zero. 

• Finally, the scalar coefficients per phase αPm and αQm (both 

ranging between [-1, 1]) are calculated and broadcasted to 

all DERs. The active power per phase is controlled by αPm, 

while the reactive power per phase is controlled by αQm. 

Table I shows the scalar coefficients calculated in CC, and 

Table II shows the active and reactive power references 

calculated locally by each DER. 

TABLE I 

Scalar coefficients implemented in the central control 

Power conditions Scalar Coefficients 

𝑃𝐺𝑚𝑡
∗ (𝑘 + 1) < 𝑃𝐺𝑚𝑡

𝑚𝑖𝑛(𝑘)  𝛼𝑃𝑚 = −1 

𝑃𝐺𝑚𝑡
𝑚𝑖𝑛(𝑘) ≤ 𝑃𝐺𝑚𝑡

∗ (𝑘 + 1) ≤ 𝑃𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘) 𝛼𝑃𝑚 =

𝑃𝐺𝑚𝑡
∗ (𝑘 + 1)

𝑃𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘)

 

𝑃𝐺𝑚𝑡
∗ (𝑘 + 1) > 𝑃𝐺𝑚𝑡

𝑚𝑎𝑥(𝑘) 𝛼𝑃𝑚 = 1 

𝑄𝐺𝑚𝑡
∗ (𝑘 + 1) ≤ 𝑄𝐺𝑚𝑡

𝑚𝑎𝑥(𝑘) 𝛼𝑄𝑚 =
𝑄𝐺𝑚𝑡

∗ (𝑘 + 1)

𝑄𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘)

 

TABLE II 

Power references of DERs – Implemented in each DER 

Scalar Coefficients Power Reference 

−1 ≤ 𝛼𝑃𝑚 ≤ 1  𝑃𝐺𝑚𝑗
∗ (𝑘 + 1) = 𝛼𝑃𝑚 ∗ 𝑃𝐺𝑚𝑗

𝑚𝑎𝑥(𝑘) 

−1 ≤ 𝛼𝑄𝑚 ≤ 1 𝑄𝐺𝑚𝑗
∗ (𝑘 + 1) = 𝛼𝑄𝑚 ∗ 𝑄𝐺𝑚𝑗

𝑚𝑎𝑥(𝑘) 

III. MULTIOBJECTIVE OPTIMIZATION 

Multiobjective optimization problems usually work with 

different and conflicting goals. Given the clashing nature of 

the problem, there is a natural trade-off in the solutions of 

multiobjective functions, and no single solution exists that 

simultaneously optimizes each function. Then, a number of 

Pareto-optimal solutions may exist, and they are equally good, 

since none of the objective functions can be improved in value 

without degrading some of the other objective values. The 

image of the Pareto-optimal set defines a framework for 

partially evaluating a set of feasible solutions, which is called 

Pareto-optimal front [11]. 

The Pareto-optimal front is defined through a 

multiobjective optimization algorithm, which must be selected 

according to the defining features of the problem. To solve 

multimodal and non-convex problems the genetic algorithms 

(GAs) are commonly used [12]. In the basis of the estimated 

Pareto-optimal front, a decision-making method selects a 

single solution that satisfies the preset preferences defined for 

a decision maker (i.e, utility grid) [13]. 

A. Genetic Algorithms 

GAs are based on the evolutionary theory of Charles 

Darwin, where the most adapted individuals tend to survive 

and reproduce generating adapted individuals. From the 

various multiobjective genetic algorithms in the literature the 

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), 

the second version of the Pareto Evolutionary Algorithm 

Strength (SPEA-2) and the Elitist Distance-Based Pareto 

Algorithm (DPGA) stand out. 

Herein, the NSGA-II algorithm was chosen, although it 

requires higher computational processing in contrast to the 

other algorithms. On the other hand, the NSGA-II is well-

known and a quite standard method for multiobjective 

optimization with few parameters [13]. 

A.1) NSGA-II 

The NSGA-II uses an elitist approach (i.e., permanence of 

the fittest individuals for future generations) that provides a 

higher speed in convergence towards Pareto-optimal front 

[12]. The classification of individuals is related to dominance 

relation where individuals are classified into different Pareto 

fronts according to the dominance criteria. It is called as Fast 

Non-dominated Sorting Approach. To compare non-

dominated individuals in each Pareto front, the NSGA-II 

algorithm suggests a second classification based on density 

solutions, where individuals that are not dominated and with 

less density (lower neighbor concentration) are preferred. This 

classification is known as Crowding Distance and allows a 

better distribution of solutions on the estimation of the Pareto-

optimal front. 

B. Decision-making methods 

The decision-making methods assist in selecting a single 

solution among the feasible ones tracked by the GA, i.e., 

estimate Pareto-Optimal front. This is required due to the 

conflicting criteria between the objective functions. 

Among the many decision-making methods, the Analytic 

Hierarchy Process (AHP), Simple Multi-Attribute Rating 

Technique (SMART), Weighted Sum (WSM), Weighted 

Product (WPM), Weighted Aggregated Sum Product 

Assessment (WASPAS), Elimination and Choice Expressing 

Reality (ELECTRE), Preference Ranking Organization 

Method for Enrichment Evaluations (PROMETHEE), 

VIKOR Method stand out. 

In this paper, VIKOR method was chosen because of its 

low computational cost and superior performance when 

compared to other low computational cost methods [14]. 

B.1) VIKOR method 

The VIKOR method was introduced as a Multicriteria 

Decision Making (MCDM) [11], and it consists in finding a 

compromise solution by ranking and selecting from a set of 

feasible solutions in the presence of conflicting criteria. The 

ideal point is also known as the utopian point, that means, it is 

a point in the objective space corresponding to the best values 

of each criterion. The VIKOR method introduces multicriteria 

ranking index based on the measure of “closeness” to the 

“ideal” solution [14]. 

The VIKOR method can be implemented as follows [14]: 

1) Determine the best 𝑓𝑖
∗ and worst 𝑓𝑖

− values of all criterion 

functions (i = 1, 2,…, n. Where n is the number of criteria 

or objective functions in this paper). 

If the i-th function represents a benefit, then: 

𝑓𝑖
∗ = 𝑚𝑎𝑥𝑓𝑖𝑙    𝑓𝑖

− = 𝑚𝑖𝑛𝑓𝑖𝑙 

If the i-th function represents a cost, then: 

𝑓𝑖
∗ = 𝑚𝑖𝑛𝑓𝑖𝑙    𝑓𝑖

− = 𝑚𝑎𝑥 𝑓𝑖𝑙 

 Where 𝑓𝑖𝑙 is the value of i-th criterion function for the l-th 

alternative (l = 1, 2, …, L. Where L is the number of 



 

solutions found by the Pareto-optimal front). 

2) Compute the values 𝑆𝑙 and 𝑅𝑙 by the relations: 

𝑆𝑙 = ∑ 𝑤𝑖(𝑓𝑖
∗ − 𝑓𝑖𝑙)/(𝑓𝑖

∗ − 𝑓𝑖
−)

𝑛

𝑖=1

 (9) 

𝑅𝑙 = max [𝑤𝑖(𝑓𝑖
∗ − 𝑓𝑖𝑙)/(𝑓𝑖

∗ − 𝑓𝑖
−)] (10) 

where wi are the weights of each criteria and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . 

3) Compute the value 𝑇𝑙  by the relation: 

𝑇𝑙 =
𝑣(𝑆𝑙 − 𝑆∗)

(𝑆− − 𝑆∗)
+ (1 − 𝑣)

(𝑅𝑙 − 𝑅∗)

(𝑅− − 𝑅∗)
 (11) 

where, 𝑆∗ = 𝑚𝑖𝑛 𝑆𝑙, 𝑆− = 𝑚𝑎𝑥 𝑆𝑙 , 𝑅∗ = 𝑚𝑖𝑛 𝑅𝑙 ,   
𝑅− =  𝑚𝑎𝑥 𝑅𝑙. And v is introduced as the weight of the 

strategy of “the majority of criteria” (or the maximum group 

utility), due to the concave form of the estimated Pareto-

optimal front. Herein v = 0. 

4) Rank the alternatives by sorting from minimum to 

maximum value of S, R, and T. The results are three 

ranking lists. 

5) The selected solution will be (𝑎′) the best one ranked by T 

(minimum) list, if the following two conditions are 

satisfied: 

C1: Acceptable advantage: 

𝑇(𝑎′′) − 𝑇(𝑎′) ≥ 𝐷𝑇 (12) 

where 𝑎′′ is alternative with second position in the list ranking 

by T. 𝐷𝑇 = 1/(𝐿 − 1).  

C2: Acceptable stability in decision making: 

Alternative 𝑎′ must also be the best ranked by S or/and R. 

This compromised solution is stable within a decision-making 

process, which could be: “voting by majority rule” (where 

v > 0.5 is needed), or “by consensus” (v ≈ 0.5), or “with veto” 

(v < 0.5). 

If one of the conditions is not satisfied, a set of 

compromised solution is proposed, which consists of: 1) 

alternatives 𝑎′ and 𝑎′′ if only condition C2 is not satisfied, 

or 2) alternatives 𝑎′, 𝑎′′,…, 𝑎ℎ if condition C1 is not satisfied; 

and 𝑎ℎ is determined by the relation: 

𝑇(𝑎ℎ) − 𝑇(𝑎′) < 𝐷𝑇 (13) 

IV. OPTIMIZATION OF POWER FLOW AT PCC 

Using NSGA-II or any other optimization algorithm 

requires to assemble the objective functions. These maximize 

the active power generation of single-phase DERs, with the 

purpose of making better use of their available energy 

resources, and minimize the power unbalance at PCC, aiming 

at increasing the power factor and reducing the voltage 

asymmetry among grid phases. 

To quantify the objective functions, the following factors 

are used: factor of generation (FG) that is a ratio between the 

total generated power and the total maximum available power 

at every PESs. It is calculated on the basis of (6) and 𝑃𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘). 

𝐹𝐺 =
∑ 𝑃𝐺𝑚𝑡

∗ (𝑘 + 1)3
𝑚=1

∑ 𝑃𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘)3

𝑚=1

 (14) 

And the factor of active unbalance (FNa) in the PCC, which is 

defined in the basis of (6) and Na (unbalance active power) 

[15]. 
 

𝐹𝑁𝑎  =
𝑁𝑎

√𝑃𝑃𝐶𝐶𝑡
∗ (𝑘 + 1)2 + 𝑁𝑎

2
 (15) 

To quantify the FNa it is necessary to determine the 

unbalance active power, 𝑁𝑎. Its deduction comes from the 

Conservative Power Theory (CPT) shown in [16]. 

𝑁𝑎 =  𝑽(𝑘)2√∑ 𝐺𝑚
2

3

𝑚=1

− (𝐺𝑏)2 (16) 

where 𝑽(𝑘) is the collective value of voltage, 𝐺𝑚 is the 

equivalent conductance per phase and 𝐺𝑏  is the equivalent 

three-phase conductance. The phase and three-phase 

conductance values are calculated as: 

𝐺𝑚 =
𝑃𝑃𝐶𝐶𝑚

∗ (𝑘 + 1)

𝑉𝑚(𝑘)2  (17) 

𝐺𝑏 =  
𝑃𝑃𝐶𝐶𝑡

∗ (𝑘 + 1)

𝑽(𝑘)2
=

∑ 𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1)3

𝑚=1

𝑽(𝑘)2
 (18) 

such that 𝑃𝑃𝐶𝐶𝑡
∗ (𝑘 + 1) is the total active power at PCC in the 

next control cycle, and 𝑉𝑚(𝑘) is the per phase voltage in the 

actual control cycle. In this way, a couple of objective 

functions are proposed: 

min. −𝐹𝐺(𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1)) (19) 

min. 𝐹𝑁𝑎(𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1))  (20) 

It is important to define the constraints, but in this 

optimization problem the constraints are incorporated in the 

bounds of the optimization variables, i.e., 𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1). 

These bounds are defined from the maximum and minimum 

generation power capacity per phase, i.e., 𝑃𝐺𝑚𝑡
𝑚𝑎𝑥(𝑘) and 

𝑃𝐺𝑚𝑡
𝑚𝑖𝑛(𝑘), and by the load consumptions in the actual control 

cycle, i.e., 𝑃𝐿𝑚𝑡(𝑘). Equations (21) and (22) are used to 

determine the bounds of the optimization variables. 

𝑃𝑃𝐶𝐶𝑚
∗ 𝑚𝑖𝑛(𝑘 + 1) = 𝑃𝐿𝑚𝑡(𝑘) − 𝑃𝐺𝑚𝑡

𝑚𝑎𝑥(𝑘) (21) 

𝑃𝑃𝐶𝐶𝑚
∗ 𝑚𝑎𝑥(𝑘 + 1) = 𝑃𝐿𝑚𝑡(𝑘) − 𝑃𝐺𝑚𝑡

𝑚𝑖𝑛(𝑘) (22) 

After determining the estimated Pareto-Optimal front, the 

VIKOR method was used to define the single operating point. 

Once the algorithm finds the PCC active power references for 

the next cycle of operation, the tertiary control level sends 

𝑃𝑃𝐶𝐶𝑚
∗ (𝑘 + 1) to the PBC (i.e., secondary level) that calculates 

the scalar coefficients (αPm and αQm), and then send them to 

every DERs (i.e, primary level). It is worth mentioning that 

the reactive power is fully compensated by the surplus power 

capacity of DERs. 

V. CASE STUDY 

To evaluate the proposed optimal method, a simplified low-

voltage network was devised as shown in Fig. 1. In this 

network, all distributed inverters have power rate capacity of 

12 kVA and 12 kW of PES. There are two single-phase loads: 

load1 placed at phase a that consumes 10 kW, and load2 

allocated at phase b that draws 5 kW. In the light of this 

scenario it is noticeable that there is a compromise between 

power generation and power balance. Besides, the PBC is 

executed once per control cycle (i.e., fundamental period of 

voltage) while the optimization algorithm executes under a 

period of 1 min.  

It is defined a factor of voltage asymmetry (FD) in order to 

assist on the method evaluation. It is calculated as [17]:  

𝐹𝐷(%) =
𝑉−

𝑉+

∙ 100 (23) 

where 𝑉− and 𝑉+ are, respectively, the negative and positive 

sequence voltage. The FD is not used in the optimization 

algorithm, it is just used for analysis purposes. 



 

All DERs were modeled as ideal current source considering 

their devised current control fast enough to track any 

sinusoidal reference signal. The network power line 

impedances are shown in Table III. 

A. Simulation Results 

It was simulated a daily period where the weights of the 

decision-making algorithm (i.e, VIKOR method) were varied 

according to Table IV. Where the greater the weight is, the 

greater its relevance during the decision is, and then more 

biased the result will be toward this weight. 

The selected points in the Pareto-optimal front for the 

weights used in decision-making method are shown in Fig. 2. 

The selected individual 1 corresponds to zero power 

unbalance at PCC, whereas selected individual 3 corresponds 

to maximum power generation from distributed units. Lastly, 

selected individual 2 represents a good compromise between 

these two factors. 

To evaluate the flexibility of control power generation and 

power unbalance, Fig. 3, Fig. 4 and Table V show the 

simulation results. In the basis of Table IV and Fig. 2, in the 

interval from 0 to 6h, the algorithm tracks the endpoint 

(selected individual 1) as the point closest to the ideal point, at 

which point the FG is FG = 0.57, and FNa is your best value 

FNa = 0.02. In interval from 6 to 9h, the algorithm finds the 

midpoint (selected individual 2) as the point closest to the 

ideal point, at which point the FG = 0.71 and the FNa is a 

medium value FNa = 0.32. In interval from 9 to 17 h, the 

algorithm reaches the bottom end (selected individual 3) as the 

point closest to the ideal point. At this point the FG has its 

maximum value FG = 1, and the FNa has its highest value 

FNa = 0.52. Finally, in the interval from 17 to 24h, the 

algorithm selects again the midpoint (selected individual 2).  

The negative value of FG in Fig 2 is because it is an 

inherent maximization function, and when it is converted to a 

minimization function it must be multiplied by “-1”. 

The result that provides the lower value of FNa is between 

0 to 6h, it is possible to see in Fig. 3 the small voltage 

asymmetry FD < 0.003%, and FNa < 0.02. On the other hand, 

FG = 0.57, because DERs had to reduce their generation. 

As expected, in the period from 9 to 17h, the FG remains at 

its maximum value, FG = 1, and FD increased due to the  

injection of unbalanced powers from single-phase DERs, 

FD = 0.38%. Note the effect of unbalance power generation 

(Fig. 4) at the PCC voltages (Fig. 3). 

TABLE III 

Parameters of the three-phase four-wire low-voltage network 

Line impedances 
Z[mΩ] 

From To 

N0 N1 460 + j1850 

N1 N2 32 + j11.72 

N2 N3 20.6 + j7.53 

TABLE IV 

Weights of the objective functions 

Weights 
Simulation Time (h) 

0 ~ 6h 6 ~ 9h 9 ~ 17h 17 ~ 24h 

W1 (FG) 0 0.5 1 0.5 

W2 (FNa) 1 0.5 0 0.5 

During interval from 6 to 9h and 17 to 24h the factors FG 

and FD have medium values when compared to the previous 

cases. Observing the behavior of the voltage at the PCC, the 

FD is about 0.11%, while the FG is equal to 0.71. Table V 

summaries the results of all intervals of operation.  

In Fig. 4 the PCC active power shown. The active power 

level corresponds directly to the FG of each simulation 

moment. It is important to emphasize that the small difference 

(about 2.8%, 3.83% and 4.4% in phases a, b and c) is related 

to the losses in the network, and the negative value of powers 

is related to the direction of PCC power flow (DERs to main 

grid). Oscillations in the power flow are observed during the 

periods from 6 to 9 and 17 to 24 h. These oscillations 

happened because VIKOR method selects the final point 

(Selected individual 1) in some cycles due to variations in the 

Pareto-Optimal front approach generated by NSGA-II, and a 

low sensibility in VIKOR method gains. 

VI. CONCLUSIONS 

The paper presented an optimal algorithm applied to 

hierarchical control of centralized networks. By means of the 

analyses based on quantifying factors FG, FD, FNa and power 

flow at PCC, it was possible to evaluate the relevance of the 

multiobjective optimization technique dealing with 

conflicting objective functions. 

The proposed approach is a flexible control method that 

enables maximize the power generation from single-phase 

distributed units, maintaining controllability over the power 

unbalance, and consequently voltage asymmetry, without any 

knowledge of the power line impedances of network. 

Future works will cope with the control of reactive power, 

and study other optimization methods that have reduced 

computational complexity. It may be interesting to apply the 

proposed method to distributed generators endowed with 

energy storage capability, as it may increase even more the 

flexibility in the operation of a microgrid. 

 
Fig. 2.  Framework of the estimate Pareto-Optimal front. 

TABLE V 

Simulation results 

Results 
Simulation Time (h) 

0 ~ 6h 6 ~ 9h 9 ~ 17h 17 ~ 24h 

FG 0.57 0.71 1 0.71 

FNa 0.02 0.32 0.52 0.32 

FD (%) 0.003 0.11 0.38 0.11 

VA (V) 127.6 127.6 127.6 127.6 

VB (V) 127.6 127.8 128.0 127.8 

VC (V) 127.6 127.8 128.3 127.8 



 

 

 
Fig. 3.  Power quality factors at the PCC. From top to bottom: phase voltage (V), factor of voltage asymmetry (FD), factor of generation (FG), 

and factor of active unbalance (FNa). 

 
Fig. 4.  Active power flow through the PCC. 
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