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Abstract 

The kinetics of CO2 reacting monoethanolamine (MEA) and 3-(methylamino)propylamine (MAPA) solutions are 
studied by conducting absorption rate experiments in two different apparatuses: a wetted wall column and a string of 
discs column. It is shown that the apparatuses give comparable results. 
The results are modeled using the direct kinetic mechanism with activity-based rate expressions, and good 
representation is obtained. 
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The kinetics of CO2 reacting in amine and caustic solutions have been widely studied by conducting 
absorption rate experiments. Versteeg et al. [1] and Aboudheir et al. [2] present comprehensive literature 
reviews concerning alkanolamines as solvents.  

 
Two reaction mechanism models are normally used to describe CO2 reactions with amines: the 

zwitterion formation and the direct (or termolecular) mechanism [3, 4]. Depending on the assumptions 
made, both mechanisms will lead to the same rate expression for CO2 absorption, and can be used 

 

* Corresponding author. Tel.: +4773594100; fax: +4795141784. 
E-mail address: svendsen@chemeng.ntnu.no. 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of GHGT



 J.G.M.S. Monteiro et al.  /  Energy Procedia   37  ( 2013 )  1888 – 1896 1889

indistinguishably. However, the results obtained by applying these models in their original concentration-
based form do not seem to be able to catch the variations of the kinetic constants with the concentration of 
the solution. 

 
Haubrock et al. [5] and Knuutila et al. [6] show that modifying the rate models so that activities of the 

species are taken into consideration (and not their concentrations) can lead to better representations 
respectively on caustic and carbonate solutions. This modification is made to take into account the strong 
non-ideality of the reaction mixtures. Also, Dugas and Rochelle [7] apply direct kinetics with activity-
based rate expressions to model mass transfer experiments of CO2 into monoethanolamine (MEA) and 
piperazine (PZ). 

 
In this work, CO2 reaction rates in monoethanolamine (MEA) and 3-(methylamino)propylamine 

(MAPA) are represented using the direct mechanism kinetics with activity-based rate expressions. 
Experimental data are generated using both a wetted wall column and a string of discs contactor. 

 
It is interesting to notice that activity-based rate models are being successfully applied for modeling 

reactions other than CO2 absorption, such as the esterification of 1-butanol with acetic acid [8] and the 
enzymatic production of decyl acetate [9]. 

 

2. Experimental Apparatus and Procedure 

The reactive absorption studies were conducted in two different apparatuses. MEA absorption 
experiments were conducted both in a wetted wall column (WWC) and in a string of discs contactor 
(SDC), while MAPA experiments were done only in the SDC. The WWC was described by Luo et al. 
[10] while the SDC was described by Ma’mun et al. [11] and Knuutila et al. [12] among others.  

 
In both apparatuses, a gas stream (mixture of N2 and CO2) and an aqueous amine solution flow in 

countercurrent mode. The apparatuses are instrumented so that it is possible to calculate a mass balance 
for CO2 over the apparatus and thereby determine the rate of absorption. The main difference between the 
apparatuses is the mass transfer area, which is 2.19*10-2 m2 in the SDC and 1.69*10-3 m2 in the WWC. 
The smaller contact area makes the WWC column unfeasible for studying the kinetics of slow systems. 
As both amines considered in this study are relatively fast (MEA is a primary amine, MAPA has one 
primary and one secondary group), it is possible to use both apparatuses to evaluate all solutions. 

 
MAPA unloaded solutions with concentrations of 1M, 2M, 3M, 4M and 5M were tested. MEA 

experiments were conducted with 5M solutions, with loading varying from 0 to 0.5. The reactions were 
performed within the temperature range of 25ºC to 60ºC. 

 
 

3. Mass transfer modeling 

The CO2 absorption flux (NCO2) is determined experimentally. Using a mass transfer model, as the two-
film theory or the penetration theory, the CO2 absorption flux can be correlated with the mass transfer 
parameters. The correlation obtained by using the two film theory is shown in equation 1. The 
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experiments are carried out in the pseudo-first order regime so that the enhancement factor is equal to the
Hatta number.

(1)

Here kobskk is the observed pseudo-first order kinetic constant. Since all other quantities on the right-hand
side of equation 1 can be assessed experimentally, this equation can be solved for kobskk . Under the reaction 
conditions prevailing in our experiments the concentration of OH- is very small, so the effect of hydroxyl 
ions within the observed pseudo-first order kinetic constant is negligible. The reaction rate of CO2 is 
commonly described by the simple expression in equation 2. This is called the concentration based model.
If the concentrations are replaced by the activities of the components, then we have the activity based
model. In equation 3, the activities are represented as the product of the concentration by the activity
coefficients. In this equation, kobskk and k2k are represented with a superscript , to indicate that they were
obtained by using the activity based model.

(2)

(3)

A direct mechanism scheme for carbamate formation is shown in Figure 1. According to this
mechanism the forward reaction rate model in its activity form can be described by equation 4.

Figure 1 – Direct mechanism scheme
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(4) 

 
For all the experiments addressed in this work, it is reasonable to consider that water and the amine 

itself are the only bases present in significant concentrations in the systems. Hence, the rate expression 
simplifies to the one presented in equation 5. 

 
(5) 

 
Comparing equation 5 to equation 3, the expressions for the observed pseudo-first order and the second 
order kinetic constants are obtained as:  

 

(5a) 
 

(5b) 

When the reaction rate and the system physical properties are known, and a thermodynamic model 
(extended UNIQUAC or electrolyte NRTL) is available to evaluate the concentrations and activity 
coefficients, the kinetic and mass transfer coefficients can be determined. 

 

4. Results and discussion 

The modeled second order kinetic constant for the MAPA system is in good agreement with the values 
experimentally determined, as can be seen in Figure 2. Data for 1M, 2M, 3M and 4M MAPA solutions are 
well represented by the proposed correlations. However, for 5M MAPA, either the representation is not 
very good or there are two outliers. 

 
When using a concentration based model, the obtained average absolute relative deviation (AARD) 

was 23%. However, by introducing the activity-based model, the AARD was reduced to 10%, which is 
within the experimental uncertainty. This gives an indication that treating the non-idealities of the system 
leads to improved results. 

 
It is important to stress that the activity coefficients were fitted using the e-NRTL model against 

available vapor-liquid equilibrium (VLE) and CO2 solubility data. While the VLE data are completely 
independent from the kinetic results, the CO2 solubility data are used (in the form of Henry’s law 
coefficient) when applying equation 1. As long as the modeling assumptions are correct and data used 
consistent, improved representation is expected because the modified model takes into account the non-
idealities of the systems. 

 
All the MAPA systems tested within this work were thermodynamically modeled as unloaded systems 

(regarding the systems properties models). It should be noted that while running the experiments, CO2 
reacts with the amine and thus some loading occurs. The effect of the loading on the system properties 
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was neglected, since the maximum loaded achieved during the experiments was of the order 0.01 mol 
CO2/mol MAPA for the experiment with 5M MAPA solution at 60ºC. 

 
Since MAPA is a diamine with one primary and one secondary group, it actually forms two distinct 

carbamates when reacting with CO2. Hence, the carbamate formation reaction measured in the 
experiments is actually the lumped sum of the two carbamate reactions taking place in the system. With 
the current set-up, it is not possible to distinguish between them. However, since there is one primary and 
one secondary amine group in MAPA, and as the final loadings achieved during the experiments always  
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Figure 2 – Model and experimental values for the second order kinetic constant of formation of MAPA carbamate, in m3mol-1s-1
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were lower than 0.01 mol CO2/mol MAPA, it is believed that the kinetic results are more representative of 
the primary amine group reaction. 
 

For the MEA system, the representation is generally good, as can be seen in Figure 3. The results for 
experiments conducted in the string of discs and in the wetted wall column are in good agreement with 
each other. Unlike for the MAPA system, the activity-based rate model was found not to have any clear 
advantage over the concentration-based model. The deviations were an AARD = 27% for the 
concentration based model and an AARD = 23% for the activity based model. Unfortunately, when using 
loaded solutions in the experiments, the higher experimental uncertainties lead to scatter in the data that is 
so significant that the corrections for the non-idealities only gives a marginal improvement. It is still 
believed that using an activity based model is an advantage. 

 
The concentrations and activity coefficients were obtained from the e-UNIQUAC model presented by 

[13].  

 

Figure 3 – Parity plot for the observed kinetic constant of formation of MEA carbamate 
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found when converting from concentration based to activity based kinetics. For the test with CO2-loaded 
MEA the data scatter hides any clear advantage of activity based kinetics.

5. Conclusions 

Kinetics of CO2 reacting with monoethanolamine (MEA) and 3-(methylamino)propylamine (MAPA) 
solutions were studied by conducting absorption rate experiments in two different apparatuses: a wetted 
wall column and a string of discs column. It is shown that the apparatuses give comparable results. 

 
The results were modeled using the direct kinetic mechanism with activity-based rate expressions, and 

good representation is obtained. For the reaction of CO2 into unloaded MAPA a clear improvement was 

Acknowledgements 

Financial support from the EC 7th Framework Programme through Grant Agreement No : iCap-
241391, is gratefully acknowledged.  

References 

[1] Versteeg GF, van Dijck LAJ, van Swaaij, WPM. On the kinetics between CO2 and Alkanolamines both in Aqueous and 

Nonaqueous Solutions. An Overview. Chem. Eng. Commun. 1996, 144: 113-158.  

[2] Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R. Kinetics of the reactive absorption of carbon dioxide in high CO2-

loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science 2003, 58: 5195-5210 

[3] Eirik Falck Da Silva and Hallvard F. Svendsen, Ab Initio study of the reaction of carbamate formation from CO2 and 

alkanolamines. Ind. Eng. Chem. Res, 2004, 43: 3413-3418 

[4] Caplow M. Kinetics of carbamate formation and breakdown. J.Am. Chem. Soc., 1968, 90: 6795-6803 

[5] Haubrock J, Hogendoorn JA, Versteeg GF. The applicability of activities in kinetic expressions: A more fundamental 

approach to represent the kinetics of the system CO2-OH-salt in terms of activities. Chemical Engineering Science 2007, 62: 5753-

69 



1896   J.G.M.S. Monteiro et al.  /  Energy Procedia   37  ( 2013 )  1888 – 1896 

[6] Knuutila H, Juliussen O, Svendsen HF. Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium 

carbonate solutions. Chemical Engineering Science, 2010, 65: 6077-88. 

[7] Dugas RE, Rochelle GT. Modeling CO2 absorption into concentrated aqueous monoethanolamine and piperazine. Chemical 

Engineering Science 2011, 66: 5212-8. 

[8] Grob S, Hasse H. Reaction Kinetics of the Homogeneously Catalyzed Esterification of 1-Butanol with Acetic Acid in a Wide 

Range of Initial Compositions. Ind. Eng. Chem. Res. 2006, 45: 1869-74. 

[9] Ribeiro AS, Oliveira MV, Rebocho SF et al. Enzymatic Production of Decyl Acetate: Kinetic Study in n-Hexane and 

Comparison with Supercritical CO2. Ind. Eng. Chem. Res. 2010, 49: 7168-75 

[10] Xiao L, Hartono A, Svendsen HF. Modeling the kinetics between CO2 and concentrated MEA under different loadings. To 

be submitted. 2012. 

[11] Ma’mun S, Dindore, VY, Svendsen HF. Kinetics of the Reaction of Carbon Dioxide with Aqueous Solutions of 2-((2-

Aminoethyl)amino)ethanol. Ind. Eng. Chem. Res. 2007, 46: 385-94. 

[12] Knuutila H, Svendsen HF, Juliussen, O. Kinetics of carbonate based CO2 capture systems. Energy Procedia 2009, 1: 1011-

8. 

[13] Aronu UE, Gondal S, Hessen ET, Haug-Warberg T, Hartono A, Hoff KA, Svendsen HF. Solubility of CO2 in 15, 30, 45 

and 60% mass MEA from 40 to 120ºC and model representation using the extended UNIQUAC framework. Chem. Eng. Sci, 2011, 

66: 6393-6406 


