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Preface

Fingerprints are one of the best investigated biometric characteristics with a
long history of person identification regarding law enforcement. A wide range
of automated fingerprint sensing and recognition solutions exist, reliable in
terms of identification of individuals.

However, the existing solutions still suffer from significant weaknesses re-
garding the problem of detecting artefact fingerprint representations, which
greatly limit their applicability for unsupervised identification scenarios such
as automated border control.

In this thesis, we investigated Optical Coherence Tomography as a novel
scanning technology for fingerprint sensing, with the aim of developing a fin-
gerprint sensor that is very difficult to deceive with artefact fingerprints and
as such would offer a solution to the problem.
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Chapter 1

Introduction

1.1 Motivation

In the recent years, biometrics are on the rise as a convenient alternative au-
thentication mechanism. Unlike passwords, which can be easily forgotten,
and access cards or keys, which can be easily lost, biometrics provide a means
of authentication that is always readily available.

Among the many existing biometric modes, such as iris, face, retina and
others, fingerprint stands among the best known and most widely applied.

However, despite the three-decade-long history, fingerprint sensing solu-
tions still struggle with a number of challenges, which limit their applicability
especially for unsupervised scenarios such as border control:

• Worn out fingers - For persons whose fingertip skin has been subjected
to a lot of stress, the fingerprint can be abraded or significantly damaged
(guitar players, construction workers, chemists etc.)

• Wet or greasy fingers - liquids on the surface of the fingerprint tend to
diffuse into the fingerprint valleys when the finger is pushed against the
sensor surface, which makes the acquisition difficult

• Dry fingers - If the fingerprint skin is too dry, it does not come into good
contact with the fingerprint sensor surface, which results in low quality

• Infant fingerprints - the fingerprint skin of infants is very soft and fine,
and if pressed against a sensor surface, the fingerprint pattern will not
be observable, unless specialized solutions are employed [53, 59] - this
limits the usage of fingerprinting in fight against child trafficking

Similarly to other biometric modes, a significant challenge comes also with
the susceptibility of fingerprinting to spoofing attacks [81, 102].

A large body of research exists addressing this challenge of Presentation
Attack Detection (PAD) for 2D fingerprint sensors. However, no single so-
lution as of yet provides for a good level of security, especially considering
resistance against novel materials and production techniques regarding the
artefact fingerprints [102]. The existing approaches in the industry typically
focus on combining a larger number of additional single-purpose sensors and
features extracted from the 2D image to take the PAD decision. Considering
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1. INTRODUCTION

the variability of properties of genuine human fingers, this requires machine
learning approaches, which inherently depend on the training data, and as
such are vulnerable against novel approaches not considered before [102].

1.1.1 OCT fingerprinting

Due to the above mentioned shortcomings of the existing fingerprint sensors,
the community has been looking for an alternative solution.

A promising path is offered by the Optical Coherence Tomography (OCT).
The OCT is a light-beam-based scanning technology that is capable of pene-
trating the fingerprint skin up to the depth of 2-3mm and acquiring a 3D vol-
umetric representation of the surface fingerprint along with the sub-surface
structure. Contact with a surface is not necessary, and as such many of the
challenges such as dry, wet, greasy or infant fingers can be easily overcome. In
addition, the OCT is able to spot a second representation of the fingerprint in
the subsurface data - the master template responsible for the stability of finger-
print during a person’s lifetime. In addition to the inner fingerprint, presence
of which could readily be used for the PAD purposes, the OCT is also able
to spot sweat glands - fine spiral structures which end as sweat pores on the
surface on the fingers. And last but not least, the volumetric measurements
from the OCT readily provide a general scattering profile of the underlying
material.

However, along with the significant promise, a rather significant challenge
comes also associated with the step up from 2D to 3D scanning. The amounts
of data generated by the OCT are very significant, and require novel scanning
and processing approaches in order to achieve the practical speeds of a few
seconds as required by many applications, such as border control.

1.2 Research goals

The main goal of this research was to progress towards an OCT-based fin-
gerprint sensor, capable of robustly distinguishing between fake and genuine
fingerprints - equipped with a reliable Presentation Attack Detection (PAD).
Such a capability would allow for the application of fingerprints in unsuper-
vised scenarios, allowing for convenient and secure usage of the OCT finger-
printing for automatic border control, considering that fingerprint scans are
among the mandatory information stored in the current standard electronic
passports. The main questions addressed in this research are focused on the
challenges of handling the transition from 2D fingerprint scans to 3D volu-
metric fingerprint imaging, along with the associated massive increase in the
amount of data to be processed:

• How can the fingerprints from the surface (outer fingerprint) and from
underneath the skin surface (inner fingerprint) be reliably extracted in
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a matter of a few seconds from a volumetric OCT scan of size that can
easily reach multiple GB ?

• Is the inner fingerprint from underneath the skin surface consistently
present in the capture subjects, considering the variations in the popu-
lation?

• Would the ability to scan the inner fingerprint allow to perform finger-
print identification in case of damaged/abraded outer fingerprints?

• Can the sweat glands, visible as spiral structures in high-resolution vol-
umetric OCT fingerprint scans, be detected in a matter of a few seconds
given the amounts of data to be analyzed?

• What are the differences between the amount of sweat glands, their size,
shape and other properties, considering the variations in the popula-
tion?

• Is the massively-parallel processing on GPUs suitable in order to ad-
dress the challenge of handling large amounts of volumetric fingerprint
OCT data?

1.3 Contributions

The main contributions of the thesis are the following:

• An innovative approximate technique for 1D narrow cluster detection
is proposed and utilized to detect the positions of the fingerprint on
the surface and the second fingerprint underneath the skin surface on
partial fingerprint OCT scans. Metrics for identification of unsuccessful
acquisition of a partial fingerprint OCT scan due to excessive shaking or
lifting the finger too early are proposed.

• A proof of concept of a specific-purpose OCT fingerprint sensor, devel-
oped in the BSI project OCT-Finger-II [12] in parallel with the research
described in this thesis, has been significantly improved in the frame-
work of this thesis. By exchanging multiple electronic and optical com-
ponents, the scanning quality has been significantly improved. In ad-
dition, the scanning quality and stability of the design has been further
improved by a full re-design and re-write of the control & visualization
software.

• A 6.6TB dataset of 3D OCT scans of size 1024x1408x1408 voxels from
720 fingers - 72 capture subjects, all ten fingers - has been collected. In
addition, from a sub-set of 50 capture subjects, 2D fingerprints acquired
by standard 2D fingerprint sensors have been collected, in order to al-
low for testing of compatibility between the OCT and the standard 2D
fingerprinting.
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• A novel technique for filter-size independent single-pass approximate
Gaussian filtering has been proposed. In addition, a technique for fast
filter-size-independent implementation of edge detection filters has been
proposed.

• Using the above mentioned fast filter-size-independent edge detection
filter as a building block, a GPU-based pipeline for extraction of the fin-
gerprints from the OCT volumetric scan has been proposed. The method
is able to extract the fingerprint from the skin surface (outer fingerprint)
as well as from underneath the skin surface (inner fingerprint) in less
than 1s on modern GPUs. The applicability of the extracted fingerprints,
as well as their compatibility with standard 2D fingerprint sensors, is
tested by cross-comparison between the OCT extracted fingerprints and
the standard 2D fingerprints.

• Utilizing the above mentioned approximate fast filter-size-independent
Gaussian filtering technique, an approach for fast filter-size-independent
filtering with the 3D Difference of Gaussians (DoG) operator on the vol-
umetric data is proposed, both for the CPU and the GPU scenario. The
proposed novel approach allows to calculate 3D DoG with a very small
memory footprint suitable for the processing on GPUs.

• The above mentioned GPU-based 3D DoG filtering pipeline together
with the above mentioned fingerprint extraction pipeline is used to pro-
pose a sweat glands candidate detector from underneath the fingerprint
surface.

1.4 Thesis structure

This thesis is structured as follows. Chapter 2 contains a survey of the exist-
ing methods for distinguishing between genuine and fake fingerprints (PAD),
both as based on additional analysis of standard 2D fingerprint scans as well
as based on addition of extra single-purpose sensors. Chapter 2 discusses
the weaknesses of these approaches, especially against novel, previously un-
known, artifact fingerprints, and suggests OCT fingerprinting as a possible
solution. In Chapter 3, methods for segmentation of the OCT scans taken
from a partial fingerprint area are proposed along with quality metrics for de-
tection of non-compliant capture subject behavior, such as lifting the fingers
too early, excessive shaking, etc. Chapter 4 describes the specific-purpose
OCT fingerprint sensor, significantly improved in terms of scanning quality
and stability in terms of this research by exchange of multiple electronic and
optical components and a full re-design and re-write of the control & visual-
ization software. Chapter 4 also describes the dataset collected with the im-
proved OCT fingerprint scanner. Chapter 5 proposes the fast approximate
filter-size-independent single-pass Gaussian filtering technique, utilized later
on for sweat-glands detection based on 3D Difference of Gaussians (DoG).
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Chapter 5 also proposes a fast filter-size-independent technique for edge de-
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Chapter 2

State of the Art

2.1 Summary

This chapter, based on an updated version of the paper by Sousedik & Busch
[102], discusses the state-of-the-art in fingerprint Presentation Attack Detec-
tion (PAD), with a special focus on PAD applications of Optical Coherence
Tomography (OCT). It discusses the strengths & weaknesses of the existing
approaches and suggests the OCT as a promising research direction regard-
ing fingerprint PAD.

2.2 Introduction

For over a century now, fingerprints have been widely used as a biometric
characteristic by forensic sciences. Nowadays, large national and interna-
tional databases contain millions of records, at disposal of forensic investiga-
tions and migration control. Fingerprints are also being used for access control
concerning security sensitive environments such as access to protected facil-
ities or sensitive data. Recently, fingerprint recognition systems have been
deployed as access control to rather common facilities like recreation areas,
fitness-centres, etc. Fingerprint capture devices are widely available on the
market, which provides for a variety of applications.

The fingerprint is a well-known biometric characteristic, which is valued
for its uniqueness even in cases of identical twins [46]. No other biometric
characteristic has probably been so well tested in real-world situations for
such a long time. State-of-the-art automatic fingerprint recognition algorithms
perform with high recognition accuracy on databases containing hundreds of
millions of records.

Nevertheless, the state-of-the-art fingerprint sensors can be a significant
security problem. Even though the current comparison algorithms are very
mature in terms of searching records for an appropriate match, the entire
system can be spoofed by an accurate imitation of the ridge/valley struc-
ture of the fingertip, which could have for instance been generated with low
cost resources from the signal that has been derived from a latent fingerprint
[36, 38, 41, 57, 73, 108, 111, 116].

Numerous approaches to solve the problem of liveness detection for fin-
gerprint sensors have been published. The hardware-based solutions suggest
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a new sensing technology, which would be difficult to deceive due to the na-
ture of the fingerprint capture process. The software-based methods on the
other hand try to use data that can be obtained from currently existing sen-
sors, and add a software liveness detection module. Although the software
methods do have limited possibilities due to the fixed hardware, they also
have the advantage of lower costs that are limited to the deployment costs of
a software update.

Another possible way of deceiving the fingerprint sensor is the fingerprint
alterations. The impostor alters or damages his fingerprint pattern in order to
avoid automatic identification based on his enrolled fingerprints. The Finger-
print Alteration Detection along with Liveness Detection belong to the group
of Presentation Attack Detection (PAD) methods (Fig. 2.3).

2.3 Fingerprint sensing technologies

Numerous principles have been utilized in order to develop a sensor capa-
ble of capturing the ridge/valley structure of a fingerprint. The fingerprint
sensing technologies can be divided into two groups as illustrated by Fig. 2.1.

The technologies that belong to the optical sensor group generally utilize
a system of light sources, lens, prisms or optical fibres along with a photosen-
sitive surface to capture the fingerprint pattern. The solid state sensors are
usually developed as a single chip solution, where the sensing mechanism is
integrated on the silicon chip. Typically, solid state sensors can be produced in
smaller sizes than optical sensors, yielding the possibility of integration into
portable devices. Alternatively, the fingerprint sensing technologies can be
classified into ”swipe”, ”touch”, and ”touchless” categories. The swipe sen-
sors require the biometric capture subjects to swipe their finger over the sensor
surface. The fingerprint is captured from the time-series acquired. Although
this approach can lead to higher failure-to-acquire (FTA) rates, it allows the
sensor area to be of much smaller size than that of the touch sensors, which
can reduce the production costs. The touch sensors provide a sensor surface
large enough to capture the fingerprint using a single static scan. The touch-
less sensors do not require the capture subject to press his finger against a flat
surface. The fingerprint is scanned in its original condition. These sensors do
not suffer from problems of touch-based sensors, such as skin deformation,
latent fingerprints on the surface or hygienic issues [60].

One of the first fingerprint sensing technologies has been the Frustrated
Total Internal Reflection (FTIR). The technology utilizes a prism, a LED light
source, and a CCD/CMOS camera as illustrated by Fig. 2.1(a). The finger is
put onto the prism surface and another side of the prism is illuminated by the
LED light source. Fingerprint ridges that are in contact with the prism surface
absorb the light, while the surface under the valleys reflects the light towards
the CCD/CMOS camera. This way of the fingerprint surface analysis makes it
difficult to deceive the sensor with a fake 2D representation of the fingerprint
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Figure 2.1: Fingerprint sensing technologies [78, 95, 96]

such as a photo [63, 78].
The FTIR technology suffers from disadvantages of larger size, particularly

due to the presence of the prism. In order to solve this problem, the sheet
prism FTIR technology replaces the single large prism with a large number of
small adjacent prisms as illustrated by Fig. 2.1(b). This approach reduces the
size of the sensors, however, it also somewhat reduces the final image quality
[63, 78].

Another way of dealing with the size constraints caused by the presence of
the prism is the Fiber Optic Plate (FOP) method. In this case, the single large
prism from the classical FTIR design is replaced with a grid of optical fibres
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as shown by Fig. 2.1(c). The fingerprint ridges are in contact with the optical
fibres, and scatter the light emitted by a LED light source. The optical fibres
under the valleys reflect the light to a CCD/CMOS photosensitive surface [63,
78].

A relatively new approach to fingerprint sensing is the multi-spectral tech-
nology (Fig. 2.1(d)). This technology enables capturing of multiple images
of the fingertip under various illumination conditions, as regards the wave-
length, orientation, and polarization of the light emitted. The captured im-
ages depict the fingertip at various depths and with variations depending on
the different absorption of the individual wavelengths in the fingertip [95].
The aggregative analysis of these images improves FTA rates of the sensor in
difficult conditions (dirty fingers, damaged surface fingerprint).

In contrast to the optical technologies, the solid state fingerprint sensors
(Fig. 2.1) can typically be integrated in a single chip, decreasing the resulting
size and costs.

The pressure based fingerprint sensors are based on the piezoelectric ef-
fect. Piezoelectric materials produce small amounts of voltage when pressure
is applied. The sensing technology makes use of a grid of piezoelectric cells
that yield different amount of voltage depending on whether or not they are
in contact with the ridges on the fingertip surface. From the differences, the
fingerprint pattern can be captured (Fig. 2.1(e)) [78].

The capacitive fingerprint sensing technology utilizes a grid of micro ca-
pacitor plates. The finger that is put onto the sensor acts as a second plate
for each of the micro capacitors. The ridges that are in closer contact with
the surface yield different resulting capacitance than the valleys. Using these
differences, the fingerprint pattern is captured (Fig. 2.1(f)) [63, 78].

The thermal technology utilizes a 2D array of thermo-sensitive cells made
of pyroelectric materials. When the finger is put onto the sensor, the finger-
print pattern is captured as it depends on the temperature differences between
the ridges and the air in the valleys (Fig. 2.1(g)) [63, 78].

Another approach that has been based on the pressure differences between
ridges and valleys of a fingerprint is the micro-electromechanical (MEMS)
technology. The sensor consists of a 2D sensor cell array as illustrated by
Fig. 2.1(h). If the fingerprint ridge is put on a sensor cell, the upper electrode
is pushed down causing capacitance change of the cell capacitor. The differ-
ences between capacitance of the cell capacitors under the ridges and valleys
are used to obtain the fingerprint pattern (Fig. 2.1(h)) [96].

The electro-optical technology makes use of a photosensitive layer and a
light emitting layer as shown by Fig. 2.1(i). The light emitting layer emits light
based on electric potential on its surface. Since the fingerprint ridges touch the
surface and the valleys do not, the electric potential varies across the surface,
generating a fingerprint representation that is captured by the photosensitive
layer [63].

In the ultrasonic fingerprint sensing technology, the differences of the acous-
tic impedance between the ridge skin and the air in the valleys are utilized in
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order to capture a fingerprint pattern. The acoustic signal is transmitted to-
wards the fingertip surface, and the reflected echo is captured to reproduce the
ridge/valley structure. This acoustic technology is also capable of analysing
sub-surface layers of the skin, enabling lower FTA rates (Fig. 2.1(j)) [78].

The radio frequency technology analyses changes of the electromagnetic
field of the radio frequencies due to the presence of the fingertip. Every cell of
the detector grid acts like a micro antenna and detects variations due to pres-
ence of the fingerprint pattern. The technology can analyse also sub-surface
information in the fingertip, yielding better functionality in difficult condi-
tions [78].

A summary of the design properties of the above discussed fingerprint
sensing technologies is provided by the Tab. 2.1.

2.4 Fingerprint sensor spoofing methods

In general, the fingerprint spoofing methods can be divided into two classes.
If the actual finger of the genuine enrolled individual is available during the
fake1 fabrication process, the fabrication methods are called ”cooperative”
[9, 41, 112] or ”direct casts” [36, 37, 38]. On the other hand, if the original finger
is not directly available, the methods are called ”non-cooperative” [9, 41, 112]
or ”indirect casts” [36, 37, 38]. It is worth noting that these terms can be some-
what misleading because the methods either do or do not require the original
finger to be present during the fake finger fabrication process. It is not impor-
tant in what manner the original finger was available - it could be possible to
get physical control of the original finger by means of violence, drugs, black-
mailing, etc. Fig. 2.2 summarizes various fingerprint faking approaches.

The ”direct casting” methods make use of the availability of the original
finger to create a fake fingerprint. The fake fingerprint is created by means of
a mould made of materials like thermoplastic [36, 38], silicone [36, 38], plas-
ticine [111], candle wax [111], etc. The mould material needs to be sufficiently
soft so that the original finger can be pressed against it to create a negative
of the original fingerprint. The finger needs to be pressed against the mould
in a very careful fashion so that all of the fingerprint details are being pre-
served and lifted back; and the mould needs to be able to harden, providing
the negative for the fake fingerprint fabrication. Afterwards, the actual fake
finger is created using the mould. Various materials like latex [36, 38], silicone
[41, 57, 108, 111], gelatin [57, 73], etc. are possible to use, but it is necessary to
take the mould material into consideration as well. The mould and fake fin-
gerprint material must not join together during the fake fingerprint hardening
process, neither must they chemically react so that the quality of the resulting
finger would be impaired. It must also be possible to remove the hardened

1In the International Standardisation project ISO/IEC 30107, instead of the term fake, the term
artefact is defined as follows: artificial object or representation presenting a copy of biometric
characteristics or synthetic biometric patterns.
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Table 2.1: Fingerprint sensing technologies [78, 95, 96]

type sensing method

optical

miniaturization
limitations

FTIR larger size due to the prism and
optics

FTIR with a sheet prism more compact, reduced prism
size

Fiber Optic Plate compact design, prism and op-
tics replaced by optical fibers

multi-spectral multi-spectral scanning, better
functionality in difficult condi-
tions

electro-optical measurement of difference in
electric potential caused by the
fingerprint pattern

solid
state

single-
chip

design

radio frequency measures changes in electro-
magnetic field in the fingertip,
better functionality in difficult
conditions

capacitive capacitance measurement,
susceptible to electrostatic
discharge

ultrasonic measures acoustic impedance of
the ridges and the air in the val-
leys

pressure measurement of pressure
caused by the ridges using the
piezoelectric effect

micro-electromechanical measurement of pressure
caused by the ridges by the
capacitance change in cell
capacitors

thermal measures temperature of ridges
and valleys air, environment-
dependent

fake fingerprint from the mould without having bits of the mould stuck in the
resulting 3D fingerprint pattern [111].

The ”indirect casting” methods take advantage of other ways how to ob-
tain the fingerprint pattern indirectly. Latent fingerprints left by the genuine
enrolled individual on various surfaces can be exploited. Initially, it is neces-
sary to visualize the latent fingerprint, since it is not directly visible in most
cases. Various methods to perform this visualization step are known from
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Figure 2.2: Fingerprint sensor spoofing methods [36, 38, 41, 57, 73, 108, 111]

forensics. One of the methods is application of very fine-grained powders on
the latent fingerprint. The powder sticks to the latent fingerprint and the rest
of the powder that did not get stuck can be gently removed. In such way, the
latent fingerprint becomes clearly visible and can even be lifted off the surface
by using special tape that glues the visualized fingerprint on its surface. The
visualized latent fingerprint is then digitized by means of photographing or
scanning and digitally enhanced in order to compensate for the loss of quality
that is present due to the usage of latent fingerprints. The digitized fingerprint
is also converted to black and white mask that is used in further steps. After-
wards, the mask is printed on a thin transparent film. It is possible to use this
film directly as a mould because the toner deposit creates elevations on the
surface of the film [36, 38, 111]. Alternatively, the mould can be created using
printed circuit board (PCB) technology. The film with the fingerprint on-print
is put on the PCB and illuminated with UV light. The parts of the PCB ex-
posed to the UV light can be then etched away in order to create a mould with
the fingerprint pattern [41, 73, 108, 111]. Finally, the fake fingerprint is created
using the film or the etched PCB as a mould. Various materials are possible
to use, such as latex [36, 38], silicone [41, 108, 111] gelatin [73, 111], plasticine
[111], wood cement [111], glue [36, 38], etc. The material is put in the mould
and after hardening, the fake fingerprint is removed from it and ready to use.

In addition to the above mentioned group of methods, the mould for the
fake fingerprint or the fake fingerprint itself can be produced by any other
means that can provide for sufficient detail (ordered rubber stamp, 3D print-
ers, etc). The range of possible fake fabrication materials is rather large and
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difficult to predict, which poses a great challenge on finding an effective coun-
termeasure.

2.5 Presentation Attack Detection for fingerprint sensors

In order to satisfy security requirements for a biometric fingerprint recogni-
tion system, it should not be possible to deceive a fingerprint sensor. The
sensor should reject any fake fingers created from any material as well as a
dead cut-off finger. In addition to usage of fake or cut-off fingers, the impos-
tors can change their fingerprint patterns so that they would be able to escape
their identification in terms of the fingerprint identification pipeline. Ideally,
the sensor should be equipped with a Presentation Attack Detection (PAD) ca-
pability in order to correctly handle the above mentioned impostor scenarios.
As illustrated by Fig. 2.3, the PAD methods for fingerprints include Liveness
Detection and Fingerprint Alteration Detection. The term PAD is defined by
the standardization project, ISO/IEC 30107 [50], and, in addition to detec-
tion of fake or altered biometric characteristics, it includes also detection of
coercion, non-conformity, and obscuration. The Liveness Detection methods
can be further divided into hardware and a software-based groups [24]. The
hardware-based methods try to add Liveness Detection to existing fingerprint
sensor designs by addition of new hardware components, or even try to create
a new sensing technology that would be difficult to deceive due to the scien-
tific principles used in the fingerprint acquisition process. The software-based
methods, on the other hand, process the image signal provided by the existing
fingerprint sensors, and add Liveness Detection capability by augmenting the
software architecture with a dedicated attack detection algorithm that is ca-
pable of distinguishing the patterns between genuine living fingers and fake
or even cut-off fingers. Thus the software-based methods enable limited costs
but at the same time they imply less universal applicability. The main chal-
lenge of a liveness detection method is to cope with widely varying properties
of a living finger. Due to the large variations of properties of living fingers, it
is typically possible to create a fake representation with the correct attributes,
as long as the number of the properties verified is rather small. It is diffi-
cult to predict and consider all possible fake fingerprint fabrication methods
and artefact materials and thus many of the fake detection approaches can
be circumvented, as soon as the right novel artefact material and fabrication
method have been identified.

2.5.1 Software based Liveness Detection

The software based methods of Liveness Detection try to make use of the exist-
ing hardware designs, and add the Liveness Detection capability by updating
the software part of the fingerprint sensor design. Software based methods
have the potential to differentiate a captured genuine living finger from the
signal stemming from a fake finger when the captured sample was generated
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Figure 2.3: Presentation Attack Detection (PAD) methods

at high resolution. Some categorization of the methods has been proposed in
the literature [24, 63]. The methods can be divided into two categories based
on whether they work with a single static 2D scan, or need multiple 2D scans
at different time points during the acquisition process that support the obser-
vation of dynamic properties.

2.5.1.1 Static Methods

The static software-based liveness detection methods make use of a single 2D
scan available from the classical 2D sensors. The methods analyse various
differences between scans of genuine and fake fingers that are caused by dif-
ferences in elastic properties, inaccurate reproduction of the genuine fingers,
absence of skin perspiration, etc.

sweat pores - One of the ideas applied is the detection and analysis of sweat
pores. The sweat pores are very small circular structures present in the finger-
print ridges of living fingers that are endings of internal skin structures called
sweat glands (Fig. 2.4).

The sweat glands are responsible for production of sweating fluid. The
Liveness Detection methods based on analysis of sweat pores usually expect
that such small structures would be very difficult to reproduce with sufficient
quality when the fake finger is produced. Espinoza and Champod [37] claim
that even though it is possible to replicate sweat pores using the fake finger-
print fabrication methods, the quantities of pores differ in fingerprints gener-
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Figure 2.4: (a) sweat pores [67], (b) OCT scan of the sweat glands [101], (c)
fingertip skin structure (courtesy of the FBI)

ated by real living fingers compared to fingerprints generated by fake fingers
and the difference can be used as a measure of Liveness Detection. Mani-
vanan et al. [65] suggest a method for static detection of active sweat pores
in fingerprint scans that have been captured by sensors of higher resolutions
than typically available (> 800 dpi). They suggest integration of this method
into fingerprint sensors in order to perform Liveness Detection. Choi et al.
[20] suggest a method that analyses sweat pores and uses a statistic based on
their distances from one another (individual pore spacing) as one of the fea-
tures to distinguish between genuine and fake fingers. The method has been
presented on a dataset of 500 dpi images.

ridge and valley texture - Another possibility is to analyse the highly de-
tailed textures of the fingerprint scans and look for differences due to inac-
curate reproduction of the original finger or differences in elastic properties
of genuine and fake fingers. Tan and Schuckers [105] use an approach based
on extraction of the signal in the valleys of the scanned fingerprint. The val-
leys are thinned to obtain a skeleton that determines the valley signal and the
signal is then analysed in a multi-resolution fashion using wavelets in order
to perform Liveness Detection. Tan and Schuckers [105] claim that the valley
signal has a distinct noise distribution in fake fingerprints as compared to fin-
gerprints obtained from genuine living fingers. Jin et al. [56] suggest that mid-
dle ridge and middle valley signals are interesting features that can be used to
distinguish living and fake fingers. They skeletonise the fingerprint and its in-
verted version in order to obtain skeletons of the ridge and valley structures.
Afterwards, they analyse the 1D signals extracted from underneath the skele-
tons - the middle ridge signal and the middle valley signals. They claim that
due to problems with achieving high-quality replication of the sweat pores
in the fake fingerprints, a middle ridge signal generated from a fake finger-
print scan is generally less periodic than a middle ridge signal generated by
a genuine living finger. They also observed living fingers usually yield scans
with less noisy middle valley signals than the fake fingers. In addition, their
method uses the overall clarity of the ridge/valley structure examined in the
spectral domain as one of the classification features. Marasco and Sansone
[66] also analyse the ridge signal determined by the ridge skeleton as one of
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the features for their Liveness Detection method.
perspiration - When a living finger is put on the surface of a fingerprint sen-

sor, the sweat fluids start to spread along the ridge/valley structure and the
changes are observable in matter of seconds. Even though this phenomenon
of perspiration can be used in dynamic methods by observing changes in the
scan over time, there are also suggestions that this phenomenon is important
even in case of a single 2D scan of a fingerprint. Jin et al. [56] observed that
even in a single 2D scan, the pores obtained by using a living finger look dif-
ferent than pores obtained by using a fake finger due to the perspiration phe-
nomenon. The perspiration phenomenon is utilized by Tan and Schuckers in
[104]. The authors obtain a skeleton of the ridge structure and afterwards ex-
tract the ridge signal determined by this skeleton. The signal is later analysed
using wavelets and classified in order to distinguish between fake and living
fingers. In their other work, Tan and Schuckers [106] also analyse the middle
ridge signal obtained from centres of the ridges by means of the ridge struc-
ture skeleton. Due to the perspiration phenomenon, the middle ridge signal
obtained from a living finger is of periodic nature determined by the periodic
occurrence of the active sweat pores. Due to absence of the sweating process,
middle ridge signals obtained from fake and cut-off fingers do not exhibit this
significantly periodic nature. In addition to middle ridge signal analysis, the
method analyses the middle valley signal that has also been observed to differ
between living and fake fingerprint scans. Marasco and Sansone [67] propose
an approach that combines multiple static features based both on perspiration
and differences between morphology of living and fake fingers. They extract
features based on multiple first-order image statistics, spacing between the
sweat pores, gray-level intensity ratios and the noise residue that is acquired
by subtraction of the original and denoised fingerprint scan. In addition to
ridge signal analysis as discussed above, Marasco and Sansone [66] use sev-
eral first-order statistics as features for the classification process. They also
use multiple features based on pixel gray-level intensities. Their approach
is based on the assumption that living fingers have less uniform gray-levels
along ridges compared to fake fingers and also the contrast between ridges
and valleys is higher in case of genuine living fingers. They also calculate ra-
tios between brighter and darker pixels of the acquired fingerprint scan and
analyse the noise residue obtained by application of wavelet based approach.

surface coarseness - Moon et al. [80] suggest an approach based on another
difference between fingerprint scans obtained from living fingers in compari-
son to fake fingerprint scans. They claim that the large molecules of materials
used to produce fake fingerprints tend to agglomerate causing the surface of
the resulting fake to be somewhat coarser compared to the original living fin-
ger. They apply wavelet-based denoising procedure on the fingerprint scan,
and calculate the noise residue by subtracting the original and the denoised
image from each other. Properties of this noise residue are analysed for Live-
ness Detection purposes. A similar approach was taken by Pereira et al. [91].
The authors tried to apply the surface coarseness analysis for the classical fin-
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gerprint scanner resolution of 500 dpi.
general texture analysis and feature fusion - Nikam and Agarwal have pub-

lished several methods based on statistical analysis of the fingerprint scans.
They have experimented with features based on combination of gray level
co-occurrence matrices (GLCM) and the Wavelet Transform [86], the Ridgelet
Transform [13, 87], Gabor filters [84] and the Curvelet Transform [83]. In ad-
dition, they tried to obtain features by application of local binary patterns
along with the Wavelet Transform [85]. By using the above mentioned ap-
proaches, they obtained a large number of features that could be used to dis-
tinguish between live and fake fingers. They reduce the number of features
by means of the Principal Component Analysis or Sequential Forward Float-
ing Selection (SFFS) and classify the fingerprint scans into live and fake by
using a hybrid classifier based on Neural networks, Support Vector Machines
or the AdaBoost technique. Pereira et al. [92] have combined a number of
features that have been suggested by the previous research. They use individ-
ual pore spacing, residual noise, multiple features based on first-order image
statistics, features based on ratios between darker and brighter pixels and fea-
tures based on strength and clarity of the ridge structure. The initial variety
of features is reduced by application of the SFFS technique and the classifica-
tion is performed using a MLP neural network and a support vector machine.
Coli et al. [23] also analyse fingerprints in the spectral domain. They report
that energies of high frequency bands are useful to distinguish between fake
and genuine living fingers, because the fake fingers do not preserve high fre-
quency details of the living fingers. Galbally et al. [40] propose a detection
method based on analysis of multiple quality oriented features in fingerprint
scans. They extract features based on continuity and smoothness of the ridge
flow in good quality fingerprints along with features describing overall and
local clarity of the ridge structure. The classification is done using Linear Dis-
criminant Analysis method.

2.5.1.2 Dynamic methods

Another group of software-based Liveness Detection methods try to distin-
guish between living and fake fingers by analysing time-series of the finger-
print images acquired during the scanning phase, rather than analysing a sin-
gle 2D scan only. These methods can make use of any of the above discussed
static features, but they also utilize differences between the frames in the time-
series.

skin distortion - Antonelli et al. [4] have proposed a dynamic Liveness
Detection approach based on skin distortion. During the fingerprint acquisi-
tion, the biometric capture subject is required to slightly rotate the finger in
counter-clockwise direction. Series of images are obtained during the rotation
process. Optical flows are calculated in the acquired sequence and distortion
maps are obtained. They compare distortion codes acquired in the enrollment
phase with distortion codes obtained in the identification phase in order to
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Figure 2.5: Time-series of fingerprint scans [55]

identify whether a finger of the enrolled individual was used. Jia et al. [55]
use an approach that does not require any special behaviour from the capture
subject. A series of images is acquired when the subject puts his finger onto
the sensor as illustrated by Fig. 2.5. The authors extract features based on
area of the fingerprint that is in contact with the sensor. The features describe
how the scan of the contact area changes in size and brightness when the fin-
ger is being put on the sensor. They use a classifier based on Fisher Linear
Discriminant analysis. Zhang et al. [115] have published a dynamic soft-
ware Liveness Detection method based on fingerprint deformation analysis
by using the thin-plate spline (TPS) model. The method requires the capture
subject to put the finger on the sensor surface, and then apply some pressure
in four different directions. The method uses a minutia based algorithm to
detect corresponding minutiae between the distorted fingerprint images and
the undistorted fingerprint. Distortions of the minutia positions are used to
calculate TPS models of the distortions and bending energy vectors are ex-
tracted. The bending energy vectors are compared to pre-trained fuzzy sets
of bending energies in order to distinguish genuine living fingers from fake
ones.

perspiration - A relatively widely researched approach to dynamic software-
based Liveness Detection is the analysis of the perspiration phenomenon that
was already mentioned above for the static approaches. When a living fin-
ger is put on the surface of a fingerprint sensor, the fingerprint scan slightly
changes in time due to moisture produced by the sweat glands. This moisture
pattern is analysed across scans obtained in multiple time-points in order to
verify that a genuine living finger is put on the sensor. This phenomenon is a
possible means of separation, because fake and even cut-off fingers do not pro-
duce similar patterns when scanned by the sensor. One of the early research
works on the perspiration phenomenon for Liveness Detection was done by
Derakhshani et al. [30] with emphasis on the capacitive fingerprint sensors.
They capture two fingerprint images at time-points 0s and 5s and compare
the middle ridge signals extracted from them. They observed that the middle
ridge signal of the first scan is of much more wavy nature due to spreading
of the moisture. They extract features based on these differences along with
a feature that describes the amount of energy of the expected frequency of
pore occurrence. Finally, they use a classifier based on back-propagation neu-
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ral network in order to distinguish between genuine living fingers and cut-off
and fake ones. The method is further improved by Parthasaradhi et al. [90]
by addition of features that deal with the situation when a fingerprint signal
gets out of the dynamic range of the sensor due to extreme dryness/moisture.
They tested the method with electro-optical and optical sensing technologies
in addition to capacitive sensing technology only. They have carried out fur-
ther experiments with classifiers based on neural networks, discriminant anal-
ysis and OneR method.

Figure 2.6: Fingerprint images acquired (a) immediately (b) after 2 seconds [2]

Abhyankar and Schuckers [2] have also utilized wavelet analysis for per-
spiration based Liveness Detection. They capture two consecutive images at
0s and 2s and analyse the differences between them (Fig. 2.6). They decom-
pose the low-frequency content of the image using the multiresolution analy-
sis (MRA) and the high-frequency content using the wavelet packet analysis.
From all the resulting sub-bands, they filter out the low-energy coefficients
to keep only the most significant information. Afterwards, they compute the
difference between the transformation of the first fingerprint image and the
transformation of the last fingerprint image in order to get a representation
of the changes due to the perspiration phenomenon. From this representa-
tion of the difference between the two images, only significant coefficients
representing larger changes are kept. The classification is done based on the
total energy of the remaining coefficients. Jia and Cai [54] have combined
features based on skin elasticity with features determined by the perspiration
phenomenon. The method operates with a series of multiple fingerprint im-
ages taken in a time period of few seconds. They extract one feature analysing
the energies of the spatial frequencies of the pore occurrences in the middle
ridge signal in a way similar to [30]. The second static feature is based on gray-
level distributions. The first two dynamic features are based on change of the
fingerprint area in contact with the sensor surface during the time-sequence,
and the third dynamic feature is based on the comparison of ”bumpiness”
between middle ridge signal of two consecutive fingerprint scans as in [30].
Decann et al. [29] have published a fingerprint Liveness Detection algorithm
that utilizes an adaptation of the standard computer vision region labeling
technique. In the first step, they obtain skeletons of the fingerprint ridge struc-
ture and the fingerprint valley structure. Afterwards, the difference image
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between the scans that have been acquired at subsequent points in time, is
computed. Using the mask, the region labeling algorithm is run starting from
the points along the fingerprint skeletons. The result of this step is a set of
small regions along the ridges and valleys in the difference image as based on
image intensities. The region labeling approach can be applied also to a sin-
gle binarised fingerprint image rather than a difference image. The extracted
features used for classification are based on numbers of such small regions,
their size distribution, etc. Nikam and Agarwal [88] have published a method
of distinguishing between live and fake fingers as based on wavelet analysis
of the middle ridge signal. They compute the middle ridge signals of the two
consecutive fingerprint images as determined by skeleton of the ridge struc-
ture, and then apply the wavelet analysis on the two obtained signals. Various
classification features are extracted as based on differences between the coeffi-
cients in the obtained sub-bands. Marcialis et al. [70] have proposed a method
based on detection of sweat pores in two consecutive fingerprint scans cap-
tured at 0s and 5s. They extract a skeleton of the ridge structure and along
this skeleton they search for sweat pores by using the template comparison
method. The pore extraction is done both for the first and the second finger-
print scan. The classification features are based on differences of pore quan-
tities between the two scans and on distances of the pores from each other.
Standard fingerprint quality measures are also added to the classification fea-
ture set. Memon et al. [77] suggest a method for detection of active sweat
pores in high-resolution fingerprint sensors (> 800 dpi). They filter the fin-
gerprint image using a high-pass filter to obtain high frequency information
associated with the small patterns expressed by the active sweat pores. The re-
sulting image is then correlated with a correlation filter that represents a usual
response of an active sweat pore. The obtained local maxima that are higher
than a given threshold are considered to represent the active sweat pores. Ab-
hyankar and Schuckers [3] have proposed a Liveness detection method based
on analysis of signal changes between the so called singular points that can
be detected in a fingerprint scan. The singular points are points in a finger-
print scan that have specific properties in the spatial domain and in different
scales when analysed by wavelet analysis. The singular points are detected in
two consecutive fingerprint scans taken at 0s and 2s. Afterwards, the singu-
lar points are linked across the two images. The linking is mapped into time
domain using B-spline interpolation and further analysed using the Empirical
Mode Decomposition (EMD) method. The classification is based on energies
of the decomposed signals.

2.5.2 Hardware based Liveness Detection

Various ideas have been behind introduction of an improved fingerprint sens-
ing technology or an update to existing hardware designs in order to make the
sensors difficult to deceive.

challenge/response - Yau et al. [113] have proposed a challenge/response
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based Liveness detection method for fingerprint sensing technologies. The
sensor is equipped with an electrode array that is capable of generating elec-
tric pulses that are transferred into the fingertip of the biometric capture sub-
ject. Depending on what electrodes are activated, the array can make the sub-
ject feel an impression of a tactile pattern underneath his finger. In order to
successfully accept the finger, the capture subject must verify the pattern by
choice of an offered visual pattern on a screen. The idea is that using fake
fingers, the electro-tactile pattern will not be perceivable making the authen-
tication impossible.

odour - Baldisserra et al. [7] have suggested usage of an electronic noise to
distinguish between live and fake fingers. Living fingers are expected to ex-
press different odour than fake fingers, rendering the odour analysis a suitable
means of separation. The authors have experimented with electronic noses in
order to distinguish between genuine fingers and fake fingers made of latex,
gelatin and silicone.

pulse oximetry - Another idea about how to perform Liveness Detection
using special hardware is to use the pulse oximetry approach. For the liv-
ing fingers, blood circulates through the tissues. The oxygenated hemoglobin
in the blood carries oxygen to the cells, and becomes deoxygenated after-
wards. New oxygenated hemoglobin is periodically brought to the tissues
with every heartbeat. The research has shown that oxygenated hemoglobin
strongly absorbs light of wavelengths around 940nm, while the deoxygenated
hemoglobin has strongest light absorption around 660nm [94]. Pulse oxime-
try is based on an analysis of the periodic changes in absorption of light of
the two wavelengths, that take place in the tissue due to blood circulation as
illustrated by Fig. 2.7. The principle of absorption of the two wavelengths by
hemoglobin is also utilized in biometric vein imaging.

Reddy et al. [94] have proposed a pulse oximetry based method of fin-
gerprint Liveness Detection. In their design, the finger is illuminated by two
LEDs of wavelengths of 660nm and 940nm. The light is captured by a single
sensor. In order to distinguish between the responses as determined by the
two light sources, the activity of the LEDs is modulated in time. Periodical
changes in the absorption of light from the two sources are analysed in or-
der to identify whether a genuine living finger is being scanned. Hengfoss
et al. [48] have analysed absorption of light of various wavelengths in living
and fake/cadaver fingers using a spectrometer. They have also analysed pe-
riodic changes of light absorption in time, due to blood circulation. The have
observed that fake/cadaver fingers do not express this periodic pattern.

multispectral properties - Analysis of fingertips under multi-spectral circum-
stances is another way of dealing with the problem of fingerprint Liveness
Detection. The genuine living finger is made of tissues that generally do not
have the same properties as fake/cut-off fingers when illuminated by various
wavelengths of light. Analysis of fingerprint scans obtained by using multiple
wavelengths of light is a possible classification approach. The multi-spectral
design described by Rowe et al. [95] is utilized in the LUMIDIGM technol-
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Figure 2.7: Changes of light absorption due to blood circulation [48]

ogy [62]. The sensor acquires multiple images of the fingertip under various
illumination conditions, as regards the wavelength, orientation, and polariza-
tion of the light emitted. The captured images depict the fingertip at various
depths and with variations depending on the different absorption of the indi-
vidual wavelengths in the fingertip [95]. The Liveness Detection is performed
by analysis of these scans. Another possibility is to illuminate the finger by
multi-spectral light source, and analyse the whole transmission/reflectance
signature in the range of the spectrum. Hengfoss et al. [48] have published
an extensive analysis of multi-spectral signatures of living vs. fake/cadaver
fingers. They emphasize another interesting phenomenon that is a possible
means of classification. When a living finger is put on the surface of the sen-
sor and some pressure is applied, the blood is pressed away from the tissues.
This process is observable on the change of the multi-spectral signature in
time. The authors report that this phenomenon appears only for genuine liv-
ing fingers and not for fake or cadaver ones. The multi-spectral signature also
changes in time due to blood circulation in the tissues. These two dynamic
features are possible means of separation along with static features extracted
from a single multi-spectral signature. Chang et al. [15] acquire multiple fin-
gerprint images using light of wavelengths in 400− 850nm. Edge detection is
performed on each of these images. Energies of the fingerprint scans obtained
using various wavelengths and the edges detected in the images are used as
features for classification.

heartbeat movements - Some research has been done on detection of fine
movements of the living fingers due to heartbeat. These approaches utilize
the fact that the heartbeat causes periodic slight volumetric changes of the
tissues [34]. Drahansky et al. [34] suggest usage of a high-resolution camera
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to detect distances between specific points on the fingerprint as they change
in time, and use the resulting signal as a Liveness Detection measure. As
another possibility of making use of the same principle of periodic volumetric
changes, they propose distance measurements by using a laser.

electrical properties - Another idea is to use the difference in electrical prop-
erties of the living skin compared to the fake materials. Martinsen et al. [72]
have used an electrode array to measure impedance of the fingerprint tissue.
The system performs Liveness Detection by means of multiple measurements
using different electrodes on the array. Additionally, the frequency properties
of the signal to which the tissue is exposed vary during the measurement pro-
cess. The authors claim that electrodes that are farther apart from each other
on the array cause the internal tissues to have larger influence on the resulting
impedance. In this way, by comparison of results from different electrodes
with different distances from each other, they can indicate the presence of
a living fingertip with multi-layer structure of the living skin. Shimamura
et al. [98] suggest a way how to integrate a fake fingerprint detection module
into a capacitive fingerprint sensor. Their fraud detection method is based on
impedance measurements.

OCT - Some research has been done on the application of the Optical Co-
herence Tomography (OCT) for the fingerprint sensing scenario. The OCT is
a medical imaging method widely used for retina scanning. The technology
utilizes interference of beams of light of low coherence length in order to mea-
sure reflectance of the scanned material at different positions and depths. In
this way, a volumetric scan of the material can be acquired. Due to general
scattering of the light as it travels deeper into the tissue, this method can pen-
etrate the surface to the maximum depth of around 3mm. Cheng and Larin
[19] have applied the OCT for fingerprint Liveness Detection by using the au-
tocorrelation analysis. They obtained 2D scans of a part of the fingertip in a
lateral (2.4mm) and the depth (2.2mm) directions. Afterwards, they computed
autocorrelation function in the depth direction. They have demonstrated that
the obtained autocorrelation function is very different for the case of living
and fake fingers. Cheng and Larin [18] were also among the first to obtain
3D density representations of real and fake fingerprints obtained by the OCT
technology, and to experiment with these scans. In their work, they also pub-
lish a 3D OCT scan of a fake fingerprint surface on a real living finger. The di-
mensions of the scanned volume is 1.6× 2.4× 10mm. Peterson and Larin [93]
have experimented with various neural network based approaches in order to
perform classification of the fingertip OCT scans into living and fake samples.
They use features based on various first-order image statistics and Gabor filter
responses. Dimensionality of the vector of Gabor filter responses is reduced
using the self-organizing maps (SOM) approach. Application for of the OCT
technology for the fingerprint Liveness Detection scenario is summarized in
[15]. Cimalla et al. [22] have developed a high-resolution Fourier Domain
OCT (FD-OCT) setup capable of capturing a volumetric representation from
small area of the fingerprint. They have clearly visualized the helix structure
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of the sweat-glands, observable with their high-resolution OCT. Bossen et al.
[11] have demonstrated that the inner and outer fingerprint extracted from an
OCT scan can be used for classification using the standard fingerprint compar-
ison methods. Liu and Buma [61] have experimented with a FD-OCT setup
capable of capturing a 3D OCT volume from a partial fingerprint area, and
suggested the positions of sweat glands as a possible biometric characteristic.
Nasiri-Avanaki et al. [82] have published a work that demonstrates usability
of OCT scanning for distinguishing between genuine living fingers and the
fake ones. In the framework of the OCT-I project organized by German Fed-
eral Office for Information Security, Meissner et al. [74] have used an FD-OCT
setup to collect a large scale dataset of genuine and fake volumetric fingerprint
OCT scans from a small area of 4x4mm and carried out a manual classifica-
tion study to assess the PAD potential of the OCT for various fake materials &
production techniques. On the collected dataset, Menrath [79] experimented
with automatic methods for detection of sweat glands, as well as an approach
for extraction of the outer and inner fingerprint from an OCT scan. Khutlang
et al. [58] have used a commercially available FD-OCT scanner to capture a
partial fingerprint area and experimented with internal fingerprint detection
and subsequent feature extraction. Promising recent studies by Darlow et al.
[26, 27, 28] focus on the fast extraction of the 2D inner and outer fingerprints
from 3D volumetric fingerprint scans. Their studies are carried out using a
commercially available FD-OCT setup capable of scanning in a 15x15mm fin-
gerprint area. In the framework of the INGRESS project [1], Auksorius & Boc-
cara [5, 6] have developed a fingerprint sensor prototype based on Full-Field
OCT (FF-OCT). Their approach requires the fingerprint to be pressed against
a glass surface.

2.6 Liveness Detection performance

A benchmark of the previously mentioned methods is difficult. While met-
rics needed for such a benchmark are now introduced by the international
standardization project ISO/IEC 30107 [50], there is not yet a ground truth
database. Most of the authors have produced their own databases of fake and
living fingers as a part of their research work. The databases vary in size of
the sets, in the methods used to create fake fingers, and in usage of cadaver
fingers. Some authors evaluate their methods using fake fingers created by
using the ”direct casting” methods, some add also fakes produced by means
of the ”indirect casting” methods. Usage of materials for fabrication of the
fake fingerprints and mould materials also vary between authors and publi-
cations. Since the quality of a fake fingerprint strongly influences performance
of a Liveness Detection method, it is challenging to conduct a fair assessment
based on results obtained on such widely varying data. The sensor that has
been used for data acquisition is another variable in the evaluation datasets.
Only some of the software-based methods have been tested with multiple sen-
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sor technologies. Different detection rates on different sensing technologies
suggest that the sensor technology that has been used for data acquisition is
of significant importance. It is difficult to say whether the features would per-
form well on another sensing technology.

In addition, the static and dynamic software approaches require different
inputs - the static approaches make use of a single fingerprint scan, while the
dynamic approaches need a time-series of images. Various static software-
based methods have different requirements on the image resolution, and can
relate to a specific sensor technology that produces patterns detected by the
method. The dynamic approaches have to deal with different resolution re-
quirements, and also with varying requirements on the time-sequence anal-
ysed. While some methods make use of two consecutive images (obtained at
various intervals), other methods use a series of multiple images obtained at
a given frame-rate.

These varying requirements on the input fingerprint data analysed make
developing of a standard evaluation database rather difficult, even for the
software-based approaches. The development of a database that would be
applicable to testing of hardware-based approaches would be even more dif-
ficult.

Nevertheless, there have been attempts to create such standardized dataset
for evaluation of the software-based Liveness Detection approaches. In 2009,
Marcialis et al. [69] organized the first international fingerprint Liveness De-
tection competition, LivDet 2009. The competition makes it possible for re-
searchers and companies to submit their algorithms for evaluation on a large-
scale standardized dataset of fingerprints obtained both from living and fake
fingers. The dataset consists of large number of scans from three different op-
tical fingerprint scanners. A subset of 25% of the data was made available as
a training set before final submission and evaluation using the remaining 75%
of the data. Detailed information about datasets used in LivDet 2009 is listed
in Tab. 2.2. The single-scan nature of the dataset used in LivDet 2009 makes
the competition relevant only for static software-based Liveness Detection ap-
proaches.

Table 2.2: Datasets used in LivDet 2009 [69]

Datatset Scanner model Res. Image Live Fake
(dpi) size Samples Samples

1 Crossmatch
Verifier 300 LC 500 480x640 2000 2000

2 Identix
DFR2100 686 720x720 1500 1500

3 Biometrika
FX2000 569 312x372 2000 2000
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Four different algorithm solutions were evaluated by LivDet 2009. The
best performing algorithm was submitted by Dermalog Identification Systems
GmbH. The second was an academic solution from Galbally et al. [40]; and the
two last algorithms were from two anonymous sources. In this chapter, the re-
sults are presented in terms of ISO/IEC 30107 metrics, namely False Non-Live
Detection Rate (FNLDR) and False Live Detection Rate (FLDR). The FNLDR
metric represents the proportion of live presentation characteristics incorrectly
classified as being non-live, while the FLDR metric represents the proportion
of non-live presentation characteristics incorrectly classified as being live. The
paper published by LivDet 2009 [69] mentioned unusually high FNLDR of the
evaluated algorithms on the set of genuine living fingers from the Biometrika
sensor (Tab. 2.3). The lower number of distinct live subjects in the training
set for the Biometrika dataset, was mentioned as a possible explanation (Tab.
2.4). Tab. 2.3 also demonstrates the large impact of the sensor on the classifi-
cation accuracy. Even though all of the sensors were optical, large differences
in Liveness Detection performance of the same methods were recorded.

Table 2.3: Classification results of algorithms submitted to LivDet 2009 [69]
reported with FNLDR and FLDR

Submitted algorithms Identix Crossmatch
FNLDR FLDR FNLDR FLDR

Dermalog 2.7% 2.8% 7.4% 11.4%
ATVS 9.8% 3.1% 8.8% 20.8%

Anonymous 15.2% 11.5% 27.1% 18.9%
Anonymous2 9.8% 11.3% 14.4% 15.9%

Biometrika Average
FNLDR FLDR FNLDR FLDR

Dermalog 74.1% 1.9% 20.1% 5.4%
ATVS 71.7% 3.1% 30.1% 9.0%

Anonymous 56.0% 17.6% 32.8% 16.0%
Anonymous2 15.6% 20.7% 13.2% 16.0%

Another run of the Liveness Detection competition was organized by Yam-
bay et al. [112] in 2011. This time, the competition consisted of two parts -
algorithms and systems. Similarly to LivDet 2009, the algorithm part allowed
academics and companies to submit their static Liveness Detection solution
for fingerprints. The new system part of the competition provided a frame-
work for evaluation of hardware-based solutions. Competitors could submit
their hardware solution to the competition, and the performance of the system
was evaluated using a unified protocol that allowed for a fair benchmark of
the systems’ performance.

The software-based part of the competition was evaluated using a large-
scale dataset obtained by using four different fingerprint sensing devices -
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Table 2.4: Number of unique subjects in LivDet 2009 (Indentix and Cross-
match samples acquired in multiple sessions, Biometrika samples acquired in
a single session) [69]

Scanners # of Training # of Testing Aver Images
Subjects Subjects / subject

Identix 35 125 18.75
Crossmatch 63 191 15.75
Biometrika 13 37 40.0

Biometrika, Digital Persona, Italdata and Morpho (formerly Sagem). More
detailed description of the dataset is given in Tab. 2.5.

4000 fingerprint images per fingerprint device were acquired (2000 spoof
samples and 2000 live samples). The fake fingerprints used for collecting of
the dataset were made of gelatin, latex, PlayDoh, silicone, and wood glue for
the Digital Persona sensor and the Morpho sensor. The fake fingerprints used
with Biometrika and ItalData sensors were made of gelatine, latex, ecoflex
(platinum-catalysed silicone), silicone, and wood glue. Details about numbers
of samples obtained using genuine living fingers per sensing device are given
in Tab. 2.6.

Table 2.5: Datasets used in LivDet 2011 [112]

Dataset Sensor Sensor Model Resolution Image Size(dpi)
#1 Biometrika FX2000 500 315× 372
#2 Digital Persona 4000B 500 355× 391
#3 ItalData ET10 500 640× 480
#4 Morpho MSO300 500 352× 384

Table 2.6: Datasets used in LivDet 2011 [112]

Dataset Sensor Live Training Live Testing Number of
Samples Samples Fingers

#1 Biometrika 1000 1000 200
#2 Digital Persona 1000 1000 200
#3 ItalData 1000 1000 200
#4 Morpho 1000 1000 112

Three software-based Liveness Detection solutions were submitted to the
algorithm part of the LivDet 2011 competition. The solutions were provided
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by the Chinese Academy of Sciences, Institute of Automation (CASIA); Fed-
erico II University (Federico); and Dermalog Identification Systems GmbH
(Dermalog). Detailed information about performance of these algorithms on
the large-scale datasets collected for the LivDet 2011 is listed in Tab. 2.7. The
results again demonstrate strong variation in classification accuracy depend-
ing on the sensor that was used for data acquisition. The benchmarks from
LivDet 2009 and 2011 do not demonstrate improvement of the Liveness De-
tection capabilities. The results suggest that the quality of the fake finger and
its fabrication technique has a very significant influence on the performance
of the methods, rendering the methods vulnerable to novel fake fabrication
techniques and approaches.

Table 2.7: Classification results of algorithms submitted to LivDet 2011 [112]
reported with FNLDR and FLDR

FNLDR FLDR
Dermalog Federico CASIA Dermalog Federico CASIA

Biometrika 11% 38% 29.7% 29% 42% 38.1%
ItalData 15.10% 39.90% 50.6% 28.50% 40.10% 2.8%
Morpho 15.10% 13.80% 22.1% 12.50% 13.10% 23.6%
Digital

Persona 66% 6.20% 16.1% 6.20% 11.60% 34.7%

Average 35.30% 26.60% 29.625% 17.60% 24.50% 24.8%

Performance evaluation of Liveness Detection capabilities of the finger-
print recognition systems submitted to LivDet 2011 is shown by Tab. 2.8. The
FLDR Known represents False Live Detection Rate for fake fingerprints pro-
duced by using recipes published in the competition description. The FLDR
Unknown represents False Live Detection Rate for fake fingerprints produced
by using recipes that were not published in the competition description. The
error rates in Tab. 2.8 suggest that the performance of the methods is strongly
affected by the particular fake fingers used for the spoofing attempt. The fake
finger fabrication techniques that were unknown prior to the development of
the methods or variations of the known techniques could pose a significant
security risk.

Table 2.8: Classification results of systems submitted to LivDet 2011 [112] re-
ported with FNLDR and FLDR

Submitted FLDR FNLDR FLDR FLDR
Systems Known Unknown

Dermalog 0.8% 42.5% 0.4% 1.3%
Greenbit 39.5% 38.8% 19.1% 70%
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Ghiani et al. [43] have used the large-scale database produced in scope
of the LivDet 2011 competition to evaluate performance of several existing
Liveness Detection algorithms on a single dataset. They have benchmarked
performance of the methods based on local local binary patterns, detection
of pores [70], power spectrum [23], wavelet energy signature [85], wavelet
analysis of the ridge signal [104], valley noise analysis [105], curvelet energies
[83], and GLCMs [83]. The benchmark results for the analysed methods are
shown by Tab. 2.9 and Tab. 2.10.

Table 2.9: FLDR of the methods as evaluated by Ghiani et al. [43]

Biometrika Italdata Digital Persona Morpho
LBP 16.40% 15.10% 8.70% 4.34%

Pores Detection [70] 27.80% 22.00% 30.50% 49.90%
Power Spectrum [23] 23.90% 29.40% 23.50% 21.81%
Wavelet Energy [85] 73.00% 51.80% 15.10% 16.22%
Ridges Wavelet [104] 47.10% 63.10% 37.00% 18.15%
Valleys Wavelet [105] 48.60% 39.10% 12.40% 55.12%
Curvelet Energy [83] 55.10% 40.70% 27.40% 39.58%
Curvelet GLCM [83] 16.40% 25.20% 22.00% 25.00%

Table 2.10: FNLDR of the methods as evaluated by Ghiani et al. [43]

Biometrika Italdata Digital Persona Morpho
LBP 5.90% 22.00% 12.60% 12.70%

Pores Detection [70] 26.90% 35.30% 41.70% 30.40%
Power Spectrum [23] 37.40% 56.20% 30.80% 41.20%
Wavelet Energy [85] 27.40% 41.80% 13.00% 27.90%
Ridges Wavelet [104] 30.50% 50.80% 18.10% 22.90%
Valleys Wavelet [105] 9.40% 8.20% 13.70% 9.00%
Curvelet Energy [83] 35.30% 55.10% 16.40% 17.50%
Curvelet GLCM [83] 29.40% 36.30% 14.70% 31.10%

Marcialis et al. [68] have done additional testing of the above mentioned
Liveness Detection approaches with various regions of interest (ROI) and un-
der various data acquisition conditions. Coli et al. [25] have experimented
with various Liveness Detection features and evaluated their classification
performance.

For the cases when the self-declared performance scores could be inter-
preted in terms of the ISO/IEC 30107 FNLDR and FLDR metrics, the self-
declared scores of the above discussed methods are included in Tab. 2.11.
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Table 2.11: Scores obtained from the results as declared by the authors re-
ported as FNLDR and FLDR

Method FNLDR FLDR
Nikam and Agarwal [83] 1.62% 2.08%
Nikam and Agarwal [86] 2.16% 2.5%
Nikam and Agarwal [84] 2.16% 2.5%

Espinoza and Champod [37] 8.3% 21.2%
Galbally et al. [40] Biometrika 1.54% 2.12%

CrossMatch 11.94% 10.3%
Identix 7.07% 6.4%

Pereira et al. [92] DB 1 7.35% 2.42%
DB 2 13.68% 4.52%

Marasco and Sansone [66] Biometrika 12.2% 13.0%
CrossMatch 17.4% 12.9%

Identix 8.3% 11.0%
Nikam and Agarwal [87] 1.62% 3.33%
Nikam and Agarwal [85] 1.62% 3.33%
Tan and Schuckers [105] Precise 0% 1.6%

Secugen 0% 9%
Ethentica 0% 7.4%

Biometrika 9.1% 0%
Marasco and Sansone [67] Biometrika 12.2% 13.0%

CrossMatch 17.4% 12.9%
Identix 8.3% 11.0%

Decann et al. [29] 1.2% 1.2%
Tan and Schuckers [106] 0.9% 0.9%
Nikam and Agarwal [88] 2.08% 0.9%

Jia and Cai [54] 4.49% 4.49%
Antonelli et al. [4] 11.24% 11.24%
Zhang et al. [115] 4.5% 4.5%

Jia et al. [55] 4.78% 4.78%

A relatively large performance gap can be observed if the performance
scores reported by the authors are compared to the results that were reported
by independent evaluations as carried out by Ghiani et al. [43], LivDet 2009
[69], and LivDet 2011 [112]. The results of LivDet 2013 [44] confirm that the
Liveness Detection methods are vulnerable against high-quality fake finger-
prints that were created using the ”direct casting” fake fabrication methods.

An overview of the results of the most most recent study in terms LivDet
2015 [81] competition is listed in Tab. 2.13. The study involved 4 different
optical fingerprint sensors - Green Bit, Biometrika, Digital Persona and Cross-
match - Tab. 2.12. For the Green Bit, Biometrika and Digital Persona sen-
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sors, the fingerprint artifacts were made of Ecoflex, gelatine, latex, woodglue,
liquid Ecoflex and RTV (a two-component silicone rubber). For the Cross-
match sensor, the artifacts were composed of Playdoh, Body Double, Ecoflex,
OOMOO (a silicone rubber) and a form of Gelatin [81]. Prior to the competi-
tion evaluation phase, the authors of the competing algorithms were provided
with a training set that allowed them to adapt and train their PAD solutions.
The testing set, used during the evaluation phase, contained scans of artifacts
made of two ’unknown’ materials - artifact materials not included in the train-
ing set [81]. For the Green Bit, Biometrika and Digital Persona sensors, the
’unknown’ materials were liquid Ecoflex and RTV. For the Crossmatch sensor,
the ’unknown’ materials were OOMOO and Gelatin [81].

Table 2.12: Properties of the sensors used in LivDet 2015 [81]

Scanner Model Resolution Image Size Format
[dpi] [px] Format

Green Bit DactyScan26 500 500x500 PNG
Biometrika HiScan-PRO 1000 1000x1000 BMP

Digital Persona U.are.U 5160 500 252x324 PNG
Crossmatch L Scan Guardian 500 640x480 BMP

Both the authors and the independent evaluators report on the Liveness
Detection performance concerning all the fake fabrication techniques, mate-
rials and individual fake fingerprints. The authors do not specify whether
some individual fake fingerprints produced by specific techniques are gen-
erally more successful than others. Since the attacker typically needs only
a single fake fingerprint to be able to deceive a specific Liveness Detection
method successfully, such information is of crucial importance. Performance
of the methods has been evaluated in terms of resistance against well-known,
low-cost fake fingerprint fabrication techniques, rather than against a targeted
effort to spoof a specific fingerprint recognition system.

The performance of the state-of-the-art software fingerprint Liveness De-
tection methods suggests that additional hardware is necessary to develop
a fingerprint Liveness Detection solution that would be resistant against tar-
geted attacks. Due to large variety of possible artefact material and fabrication
techniques, a single aspect dedicated liveness detection sensor can usually be
deceived if an appropriate new combination of materials and techniques has
been used [97]. In order to increase the difficulty of producing an artefact,
some manufacturers try to include a larger number of supplementary sensors
that would capture information on multiple aspects of the scanned charac-
teristic. Even though this greatly increases difficulty of the artefact fabrica-
tion process, the large variety of properties of genuine fingers, as well as their
artefact counterparts, requires application of machine learning approaches to
process information from all of the sensors and take the final decision whether
a genuine characteristic has been presented. Since performance of machine
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Table 2.13: Scores of different algorithm submitted to LivDet 2015 [81], re-
ported as FNLDR and FLDR

sensor Green Bit Biometrika
FNLDR FLDR FLDR FNLDR FLDR FLDR

algorithm % known unknown % known unknown
% % % %

COPILHA 36.7 19.2 24.4 22.5 17.0 42.8
CSI 16.6 16.1 24.0 15.0 17.4 19.2

CSI MM 10.9 13.8 17.8 11.0 13.7 11.4
hbirkholz 3.6 8.8 18.4 8.0 5.4 6.2
hectorn 11.2 7.4 12.8 13.1 8.0 16.8
anonym 9.1 3.5 13.6 6.9 3.5 14.6
jinglian 7.5 2.5 7.8 3.8 7.6 6.8
UFPE I 18.9 6.2 37.0 41.8 26.7 41.4
UFPE II 20.8 1.8 16.4 37.3 20.6 28.0
nogueira 3.5 4.3 7.4 8.5 2.7 5.8

titanzhang 8.6 5.8 12.4 10.2 6.4 5.0
unina 6.5 2.0 4.0 10.9 0.4 1.4
sensor Digital Persona Crossmatch

FNLDR FLDR FLDR FNLDR FLDR FLDR
algorithm % known unknown % known unknown

% % % %
COPILHA 17.7 17.1 30.6 60.0 0.5 1.7

CSI 28.2 19.2 24.2 3.1 13.6 30.3
CSI MM 25.9 21.8 26.8 2.5 9.4 29.8
hbirkholz 12.6 10.0 14.8 6.3 10.7 18.6
hectorn 9.3 15.6 29.2 6.9 16.6 23.5
anonym 7.7 8.8 29.2 2.6 4.5 4.0
jinglian 10.7 9.2 19.4 1.9 8.1 11.6
UFPE I 32.8 14.0 14.6 29.2 53.8 47.6
UFPE II 21.8 25.8 27.6 22.6 56.8 54.1
nogueira 8.1 4.6 6.0 0.9 2.1 4.0

titanzhang 9.6 10.0 15.6 3.6 9.2 19.3
unina 35.7 0.4 0.6 1.1 2.2 13.9

learning based classifiers depends on the training data, the sensor can still be
vulnerable if an entirely new material and fabrication technique has been used
to produce the artefact characteristic.

A 3D scanning technology, such as OCT, can provide for a large amount of
high-resolution data that would capture both outer and inner structure of the
scanned finger. A reliable method that could verify the genuine structure of
the fingertip scan could render the fake fabrication process extremely difficult
or even practically impossible. Initial research on the potential of the OCT
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technology suggests that an OCT scan contains highly detailed representation
of the structure of the scanned fingertip that is sufficient to clearly distinguish
genuine and fake fingers [75].

2.7 Conclusion

Even though the authors often claim very high performance scores allowing
for possibilities of direct practical application of their specific Liveness De-
tection method, the results of testing on large-scale datasets in scope of the
LivDet 2009 [69], 2011 [112], 2013 [44] and 2015 [81] suggest that fingerprint
Liveness Detection cannot be considered a solved problem yet. The results
suggest that the performance of the methods strongly depends on the knowl-
edge of the fake fabrication techniques and materials during development of
the method. So far, the methods have been tested rather in terms of resistance
against low-cost, well-known faking techniques than in terms of resistance
against targeted spoofing attacks.

The security of a system is given by the amount of effort needed to circum-
vent it. So far, most authors have reported liveness detection performance of
their methods as universal rates for all the fakes, their method has been tested
with. However, the detection performance can vary greatly as it depends on
the specific fake type, and the mere quantities do not yield accurate informa-
tion on the case.

The LivDet 2009 [69], 2011 [112], 2013 [44] and 2015 [81] provide for pub-
licly available, large-scale standard datasets, which are nevertheless applica-
ble only for static software-based Liveness Detection methods. Apart from
that, the methods tested on these datasets must be capable of working with the
scan resolutions of the samples as those yielded by the sensors of the LivDet
projects.

What more, the methods tested on this dataset must be able to work with
the scan resolutions of the samples yielded by the sensors used in the LivDet
projects. Further initiative is necessary to create datasets of high-resolution
images obtained in time-series, to provide for a standardized dataset for test-
ing of the dynamic software-based Liveness Detection methods. The results
are very sensitive to the quality and fabrication method of the fake finger-
prints used to spoof the sensor. Therefore, the standard dataset should contain
a large number of scans captured by using high-quality fake fingerprints.

The development of a database for hardware-based Liveness Detection
methods is difficult due to very large variations in the sensing methods. Possi-
bly, a fake fingerprint toolbox could be developed and shared by the research
community in order to be able to perform a more reliable benchmarking of the
hardware-based methods.

The performance of the liveness detection methods might be improved if
some liveness related information were stored in the biometric template itself.
In this way, the variations of the finger properties would be reduced and it
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might also be more difficult to acquire the additional information for the fake
fabrication.

The metrics used by the Presentation Attack Detection (PAD) research com-
munity are rather arbitrary and in need of standardization. Attempts have
been made to introduce standards to the field of the Presentation Attack De-
tection (PAD) in scope of the international standardization project, ISO/IEC
30107. The development of a standardized framework for the evaluation of
the Liveness Detection capabilities of biometric systems constitutes a part of
the projects, BEAT - Biometrics Evaluation and Testing [10], and TABULA
RASA - Trusted Biometrics under Spoofing Attacks [107].

In conclusion, in spite of the significant research effort so far, the state-of-
the-art methods cannot be considered reliable in the environments that require
high security levels. A 3D scanning technology, such as the OCT, can provide
for highly detailed representations of the structure of a scanned fingertip and
thus significantly increase the amount of information available for liveness
detection purposes. A reliable method, which were able to verify the genuine
structure of the scan, would render the fake fabrication process extremely dif-
ficult. The development of such method has the potential to provide for a very
secure fingerprint recognition solution.
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Chapter 3

Partial OCT Fingerprint Analysis

3.1 Summary

The current chapter, based on the papers by Sousedik et al. [101] and Sousedik
& Busch [103], describes the analysis of OCT scans taken from a partial finger-
print area. Techniques for efficient detection of the fingerprint’s layered struc-
ture in the simpler scenario, when only a partial fingerprint is considered, are
proposed and evaluated. Essentials of the extraction of a partial-area finger-
print into a 2D representation are introduced. In addition, a technique for
detection of low quality fingerprint OCT scans, occurring due to involuntary
muscle shaking of the capture subjects, is proposed.

3.2 Optical Coherence Tomography for Fingerprints

The Optical Coherence Tomography (OCT) is a 3D scanning technology that
has originally been developed for medical purposes. It is capable of capturing
volumetric representations of the scanned object up to depth of 2-3mm under
the surface and the captured signal is a function of the scattering properties
of the material. In the classical Time-Domain OCT (TD-OCT) design, a beam
of light of low coherence length and wavelength of about 830nm is split into
two separate beams. The first beam is targeted at the object and reflects back.
The second beam is targeted by means of a reference arm in such manner that
it interferes with the beam reflected from the object. Due to low coherence
length of the light source, the interference takes place only with the light re-
flected from a certain depth under the object surface and the amount of the
light reflected can be measured [16].

The classical TD-OCT design requires the reference arm to be positioned in
all three axes x, y, z, in order to capture a single voxel, which makes it rather
slow, if a full volumetric representation is to be acquired. The OCT based scan-
ning devices exist in multiple adaptations of the original design, in order to
achieve higher scanning speeds. Full-Field OCT (FF-OCT) makes use of a 2D
array of detectors that can capture the entire (x, y) slice in a single measure-
ment. The Fourier-Domain OCT (FD-OCT) and Swept-Source OCT (SS-OCT)
utilize the properties of Fourier Transform to acquire full depth scans without
movement of the reference arm along the axis, z [16].
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The potential of the OCT technology for the fingerprint presentation attack
detection scenario was researched by the project OCT-Finger [89]. The test
group individuals were able to achieve almost 100% manual recognition rate
on a large-scale database of OCT scans of genuine and artefact fingerprints.
The study has demonstrated that, apart of the outer fingerprint pattern, the
OCT technology has also the potential to capture the structure of the inner
fingerprint tissues that are responsible for stability and regeneration of the
outer fingerprint, as well as small internal skin structures such as sweat glands
(Fig. 3.1).

The project has demonstrated that the OCT technology allows for analy-
sis of multiple aspects that differentiate genuine and artefact fingers. The 3D
representation of the outer fingerprint provides for more information than a
classical 2D fingerprint scan. The sweat glands underneath could be detected
and their helix-like structure, as well as other properties, verified. In genuine
scans, the inner fingerprint pattern copies the pattern of the outer fingerprint
and therefore successful comparison of the two patterns could provide for a
strong evidence of a genuine finger scan. Other possibilities include verifi-
cation of the scattering properties of the fingertip skin that potentially differs
from the scattering properties of an artefact material. It can be assumed that
replication of the internal structure and the scattering properties represented
in an OCT scan by means of an artefact would be extremely difficult.

Nevertheless, an efficient liveness detection method based on volumetric
scans of fingertips has to cope with a number of challenges. A volumetric OCT
scan represents a significant amount of data that increases very quickly with
its resolution. A scan of resolution 200 × 200 × 512 voxels (width × height ×
depth) represents 19,5 MB of data and a scan of 1024×1024×512 voxels 512 MB
of data if a voxel is represented by a single byte. The acquisition time typically
increases with the scanning resolution, which limits practically achievable res-
olutions. For practical applicability, all the data need to be captured and pro-
cessed in a matter of a few seconds. As depends on the quality of the OCT
scanner and the scattering properties of the fingertip skin, the resulting scan
is subject to some amount of speckle noise along with a number of faulty mea-
surements. The structure of the noise can vary slightly among the scanning
devices, and the method should deal with the noise in device-independent
fashion. The intra-class variability of properties of genuine human fingers is
relatively large and an efficient classification method has to be able to reliably
distinguish between the genuine structures and the structures achievable in
artefact fingers. In order to reliably classify previously unknown artefacts, the
method should validate properties of genuine fingers rather than try to detect
anomalies caused by artefact fingers.

Based on the data collected in the framework of the OCT-Finger project,
Menrath and Breithaupt [79] have proposed an automatic method for analy-
sis and classification of the OCT scans into genuine and artefact ones. They
preprocess the OCT volumetric scans by using 3D median filters to suppress
the influence of the speckle noise and faulty measurements in the analysed

38



3.3 FINGERPRINT SKIN LAYER SEPARATION

data. The filtered volume is then searched for the inner and outer fingerprint
and sweat glands are attempted to be extracted. Due to 3D filtering of a large
amount of data, the approach turned out to be an order of magnitude slower
than required for practical application. Even though an attempt to perform
massive parallelization of their method successfully resulted in a speed-up of
an order of a magnitude, the method remains very computationally intensive,
which limits its applicability to scans of larger resolutions.

3.3 Fingerprint Skin Layer Separation

3.3.1 Database

The OCT scan database used in this chapter has been composed within the
framework of the OCT-Finger [89]. The OCT scanning device was based on the
Fourier-Domain OCT (FD-OCT) technology with an acquisition time of 2.24s
per scan and operating on a wavelength of 1300 ± 55nm. A scan represents
4 × 4 × 2.5mm-large volume (width × height × depth) of the fingertip at a
resolution of 200× 200× 512 voxels.

The scans of genuine living fingers represent fingers of 226 subjects of
which 96 (42%) were males and 130 (58%) females. The age structure has
been as follows: 18 subjects (8%), 5-20 years; 172 subjects (76%), 20-60 years;
36 subjects (16%), 60-80 years. For each subject, at least the right thumb, the
right index finger and the right little finger was scanned. Each finger instance
was scanned 11 times, which provided for the minimum total amount of 7458
samples of genuine living finger scans.

The fake fingerprint scans represent 30 different classes of artefact finger-
prints. The variation artefacts is caused by the mold material composition
(gelatin, silicone, latex, window paint, wood glue etc.) and the artefact ma-
terial composition (glycerol, graphite, window paint etc.). For each class, at
least 9 artefact fingerprints were produced. Each of the artefact fingerprints
was used to acquire at least 11 scans, yielding for minimum number of 2970
artefact fingerprint scans.

In addition to that, fingers of 5 male and 5 female dead bodies were scanned.
For each body, 3 fingers were scanned, 11 times each, providing for 330 dead
finger samples.

3.3.2 Scan Structure

As illustrated by Fig. 3.1, the OCT technology is able to capture the layered
structure of the skin of human fingers. The scan captures a strong reflection
from the boundary between the air and the outer fingerprint (Fig. 3.1b). The
outer fingerprint layer is followed by a layer containing the sweat glands.
Thickness of this layer as well as its scattering properties vary in the skin of
different subjects. The amount of sweat glands also varies strongly among
subjects. Some subjects can provide ten times more sweat glands than other
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subjects and for some individuals the OCT scan is completely lacking any
sweat glands. The layer containing sweat glands is followed by a layer that
contains the inner fingerprint. The inner fingerprint (i.e. dermis boundary)
is a cell structure responsible for stability and regeneration of the outer fin-
gerprint. Unless the inner fingerprint is damaged, the outer fingerprint can
fully regenerate to the original pattern. The structure of the outer fingerprint
is typically a copy of the inner fingerprint (however, the thickness, clarity and
strength of its reflection widely varies among subjects).

Figure 3.1: (a) OCT scan of a genuine finger (b) OCT scan of a genuine finger,
thresholded 200+, heat-map scale change allows for clearer visualization of
fine structures such as sweat glands

A typical structure of a scan of an artefact fingerprint differs in various
aspects (Fig. 3.2) from the genuine counter piece. A thin layered artefact typi-
cally yields a strong reflection layer from its outer surface. The structure of the
next layer depends on scattering properties and inner structure of the artefact
fingerprint (Fig. 3.2a). Unless the artefact fingerprint is too thick or impenetra-
ble for the OCT scanner, a second strong reflection of the boundary between
the artefact and the genuine fingerprint appears. The following structure then
copies the genuine fingerprint structure. If the artefact fingerprint is too thick
or its material too difficult to penetrate for the OCT scanner, only an outer fin-
gerprint reflection appears (Fig. 3.2b). The following layer of data represents
scattering properties and inner structure of the artefact material (bubbles etc.).
A second layer of the inner fingerprint does not appear, nor does it copy the
pattern of the outer fingerprint.
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Figure 3.2: (a) OCT scan of a thin-layered artefact on a genuine finger (b) OCT
scan of a thick artefact fingerprint

3.3.3 Automatic Method

In order to cope with the large amount of volumetric data in an OCT scan, the
initial detection of positions of the specific layers in an OCT fingerprint scan
should ideally avoid computationally expensive preprocessing of the data by
3D filtering. We propose a layer detection method robust to a certain degree
of speckle noise and faulty measurements that can perform the initial layer
detection directly. The volumetric scan, V (x, y, z), of size, w × h × d, is ana-
lyzed as follows. A grid of size wg and hg is positioned over the (x, y) plane
of the volume V (x, y, z) (Fig. 3.3). Each grid cell yields a column volume,
Cm,n(x, y, z). From each of the columns, Cm,n(x, y, z), a column accumulation
function, fm,n(z), is computed as follows (Fig. 3.3):

fm,n(z) =

bw/wgc−1∑
x=0

bh/hgc−1∑
y=0

Cm,n(x, y, z) (3.1)

For genuine living fingers, the shape of the column accumulation function
fm,n(z) typically contains two intuitively observable peaks, one for the outer
fingerprint and one for the inner fingerprint layer (Fig. 3.3). However, the
two peaks are not always associated with the two main global maxima of the
function. Due to noise in the volumetric data, one peak typically consists of
multiple smaller peaks, while the actual center of the layer lies in the center of
mass of the smaller peaks, rather than on one of them. A particular peak width
range should be taken into consideration while searching for the peaks. In ad-
dition, the peaks themselves do not often form a maximum even in a smaller
window of the function. They rather represent a sudden change on the shape
of a function with an otherwise constantly growing or decreasing trend, typ-
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Figure 3.3: Extraction of the accumulation functions by means of a grid

ically a peak-like fluctuation that does not represent a maximum. Therefore,
the peak localization method should look for the fluctuations taking the width
range of the peaks into consideration and it should not be affected by the gen-
eral slope of the function fm,n(z).

For an otherwise constant discrete function, f(n), defined on interval, [0, l−
1], where l is a peak width parameter, a position p and an energy e of a single
peak on its shape can be detected as the phase and amplitude of function fp
as follows (Fig. 3.4):

sn(n) = sin(
1

2

2π

l
+ n

2π

l
) (3.2)

cs(n) = cos(
1

2

2π

l
+ n

2π

l
) (3.3)

a = −
l−1∑
n=0

f(n)sn(n) (3.4)

b = −
l−1∑
n=0

f(n)cs(n) (3.5)

fp = a· sn(n) + b· cs(n) (3.6)

e =
√
a2 + b2 (3.7)

p =

{
atan2(a,b)

pi
1
2 l atan2(a, b) ≥ 0

l + atan2(a,b)
pi

1
2 l atan2(a, b) < 0

(3.8)
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Figure 3.4: Peak detection for an otherwise constant function

However, if the discrete function, apart from the peak range, exhibits a
constantly increasing or decreasing trend, the above mentioned method fails.
Instead of pointing to the peak position, the method rather analyzes the strength
of the global slope of the function f(n). For an otherwise constantly increas-
ing or decreasing function g(n) defined on interval [0, N − 1] and N = 3

2 l, the
following method can be used to detect a peak of energy e and position, p, as
the phase and amplitude of function fp (Fig. 3.5):

sn(n) = sin(
1

2

2π

l
+ n

2π

l
) (3.9)

cs(n) = cos(
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2π

l
+ n

2π

l
) (3.10)

a =

l−1∑
n=0

g(n)sn(n) (3.11)

b =

l−1∑
n=0

g(n)cs(n) (3.12)

c =

l−1∑
n=0

g(n+
1

3
N)sn(n) (3.13)

d =

l−1∑
n=0

g(n+
1

3
N)cs(n) (3.14)

fp = (c− a)sn(n− 1

3
N) + (d− b)cs(n− 1

3
N) (3.15)

e =
√

(c− a)2 + (d− b)2 (3.16)

p =

{
atan2(c−a,d−b)

pi
1
2 l + 1

2 l atan2(c− a, d− b) ≥ 0

l + atan2(c−a,d−b)
pi

1
2 l + 1

2 l atan2(c− a, d− b) < 0
(3.17)
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Figure 3.5: Peak detection an otherwise constantly increasing or decreasing
function

The actual detection of positive fluctuations on the shape of a column ac-
cumulation function f(n) defined on interval [0, Nf − 1] is done by means of
the following approach. The interval [0, Nf − 1] is divided into overlapping
windows Wm = [m 1

4 l,m
1
4 l+

3
2 l−1], where m ≥ 0 (Fig. 3.6). For each window

Wm the peak position pm and energy em is computed using equations (3.9)-
(3.17). Since sin(α+ π

2 ) = cos(α) and cos(α+ π
2 ) = − sin(α), the following set of

equations can be used to efficiently compute am, bm, cm, dm (eq. (3.11)-(3.14))
for a window Wm:

sns(o) =

o·l/4+l/4−1∑
n=o·l/4

f(n) sin(
1

2

2π

l
+ n

2π

l
) (3.18)

css(o) =

o·l/4+l/4−1∑
n=o·l/4

f(n) cos(
1

2

2π

l
+ n

2π

l
) (3.19)

if m is even:

am =

3∑
n=0

sns(m+ n) (3.20)

bm =

3∑
n=0

css(m+ n) (3.21)

cm =

3∑
n=0

sns(m+ n+ 2) (3.22)

dm =

3∑
n=0

css(m+ n+ 2) (3.23)
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if m is odd:

am =

3∑
n=0

−css(m+ n) (3.24)

bm =

3∑
n=0

sns(m+ n) (3.25)

cm =

3∑
n=0

−css(m+ n+ 2) (3.26)

dm =

3∑
n=0

sns(m+ n+ 2) (3.27)

Figure 3.6: Overlapping windows for peak detection

Values of functions sns(o) and css(o) can be precomputed by a single mul-
tiplication of the analyzed function f(n) with the function sn(n) (eq. (3.9)),
and the function, cs(n) (eq. (3.10)), while storing the intermediate results.
Each of the weights, am, bm, cm, dm, can then be computed by adding 4 of
these precomputed values. The method does not perform any convolution
of any core function with the original function f(n), which greatly reduces
computational complexity as compared to a convolution based method. In
addition the values of functions sns(n) and css(n) can be computed in paral-
lel with no data overlap.

The windows Wm of length 3
2 l are overlapping each other with an interval

of 1
4 l. Consequently each of the windows Wm provides a reliable peak posi-

tion pm and peak energy em around its center in an interval of length, 1
4 l. If

the detected peak position p falls outside of the central interval, it is discarded.
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The peaks that are detected inside of the central interval of their detection win-
dow Wm are considered in the further processing. Depending on the settings,
P peaks (P = 2 for detection of two layers) with highest energy e are stored.

By means of the above described method P peaks are detected for each
column accumulation function fm,n(z) yielding for a sparse approximation of
the position of the P most apparent layers in the scan volume V (x, y, z).

3.4 Layer candidate points detection performance

Manual inspection of the genuine fingerprint scans has identified about 11%
of the scans as being of insufficient quality due to non-compliant behavior of
the capture subjects. Clearly visible anomalies such as sudden missing parts
of the scans and discontinuities in the structure of the scans are related to the
fact that the finger was not held still during the scanning period, it was put
too close to the scanning surface or removed before the scanning was finished,
etc.

An example of the results of the method applied to genuine fingerprint
scans (P = 2) is shown in Fig. 3.7. For the genuine fingerprint scans with-
out the anomalies related to the non-compliant subject behavior, the method
successfully detected the outer and inner fingerprint layer in 90% of the scans
(less than 5% outliers, sparsely distributed) with an average processing time
of 0.02s in a single thread on a 3.6GHz 64bit CPU, as opposed to 56s in a
single thread on a 2.5GHz CPU as reported by Menrath and Breithaupt [79].
The unsuccessful cases were caused by a very weak or completely missing
representation of an inner fingerprint in the OCT scan. If the inner finger-
print was present to some extent, the method still did succeed to represent
its position in most of the columns, generating more than 5% of outliers. In
the scan, the inner fingerprint is represented as a scattered point cloud, rather
than a continuous surface. The clarity and density of the point cloud varies
among different subjects, from a very clear almost continuous representation
to a complete lack of observable inner fingerprint, which causes the method
to generate the largest number of outliers for the inner fingerprint layer.

Fig. 3.8 illustrates detection of 3 layers (P = 3) in a fake fingerprint scan.

3.4.1 Robust estimation of fingerprint layer positions

Using the above discussed approach, two sets of candidate points, Sinner and
Souter, are extracted from the original OCT scan, representing a densely as-
sembled cloud of points that are - in a vertical perspective - centered around
outer and inner fingerprint layers (Fig. 3.9a).

The resolution of 3 × 3 × 512-voxel columns allows for obtaining the de-
tails of the fingerprint pattern captured by the OCT scan, both in terms of the
outer and the inner fingerprint layers. However, the method by Sousedik et
al. [101] generates a number of outliers. Especially for the inner fingerprint
pattern, a large number of outliers is being generated, as some of the layer
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Figure 3.7: (a) OCT scan of a genuine finger, thresholded (b) Segmentation
into 2 layers (P = 2, l = 36)

Figure 3.8: (a) OCT scan of an artefact finger, thresholded (b) Segmentation
into 3 layers (P = 3, l = 36)

detection columns go through the fingerprint valleys, which, for the inner fin-
gerprint, often do not generate significantly stronger responses as compared
to the surrounding tissue (Fig. 3.9b). Nevertheless, a clearly sufficient number
of correctly placed layer candidate points are found for both of the fingerprint
layers, as long as the quality of the OCT scan is acceptable.

This fact suggests a statistical approach capable of fitting a smooth surface,
z = f (l)(x, y), to the main cluster of the detected points, x(l) = (x(l), y(l), z(l)) ∈
S(l) ∧ l ∈ {inner, outer}.

However, there are number of challenges to cope with; Even though the
strong and clear reflection from the outer fingerprint surface typically pro-
vides for a clearly identifiable layer, both of the candidate point sets, Souter
and Sinner, still contain a significant number of outliers whose influence on
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(a) (b) (c)

Figure 3.9: Pipeline of the estimation of the fingerprint layer positions (a) OCT
scan of a genuine fingerprint (b) Initial candidate point sets; yellow→ Souter,
azure→ Sinner (c) Smooth surfaces fitted to the main cluster of points in the
candidate point sets; red→ z = fouter(x, y), blue→ z = f inner(x, y)

the final smooth surface has to be eliminated (Fig. 3.9b). In addition, the non-
outlier candidate points do not lie precisely on a smooth surface. For the outer
fingerprint, the non-outlier candidate points, xouteri ∈ Souter, follow the 3D
structure of the fingerprint, and hence these points vary around the desired
smooth surface (Fig. 3.9c). For the inner fingerprint, the tissues are captured
as a point cloud of stronger responses, providing for a somewhat randomly
varying positions of the detected candidate points, xinneri ∈ Sinner, after the
initial layer estimation method has been applied at the higher resolution of
3 × 3 voxels wide columns (Fig. 3.9b). Given the strong time constraints re-
quired by practical applications, the resulting approach needs to provide for
high accuracy of the fitting procedure at very limited computational costs.

The direct application of surface fitting methods, such as Levenberg-Mar-
quardt [71], is sub-optimal, as this would yield inaccurate results due to the
significant number of outliers present in the candidate points sets. The typi-
cally applied RANSAC-based approaches [21] are well-suited for dealing with
outliers, however their efficiency and accuracy is sub-optimal if the non-outlier
points do not lie very closely to the fitted surface. In addition, the RANSAC-
based approaches require a clearly defined mathematical model of the fitted
surface, with a limited number of degrees of freedom, if an efficient compu-
tation is expected. These properties do not support the application of the
RANSAC-based approaches for this scenario, due to the number of degrees
of freedom necessary to model the fingerprint surface, and the fact that the
candidate points lie very rarely exactly on the fitted surface.

Followingly, we have developed a method for smooth surface estimation
by means of an innovative procedure for neural network training. We have

48



3.4 LAYER CANDIDATE POINTS DETECTION PERFORMANCE

modeled the smooth surface, z = f (l)(x, y) ∧ l ∈ {inner, outer}, using a back-
propagation neural network [39] with a single hidden layer containing 4 neu-
rons, as illustrated by Fig. 3.10. The network consists of 2 input neurons, 4

Figure 3.10: Structure of the fingerprint layer estimation neural network

hidden neurons, and one output neuron. Both the input layer and the hidden
layer have each an associated bias neuron. This network is trained to effec-
tively represent the smooth fingerprint surface as a function z = f (l)(x, y)∧l ∈
{inner, outer}, where z represents the depth of the fitted surface at the point
(x, y). All the hidden neurons consist of a Gaussian transfer function defined
as z = e−x

2s2 , where s is the steepness value. The neural network’s structure
expresses the function z = s(w12e

−(w0x+w1y+w2)
2s2 + w13e

−(w3x+w4y+w5)
2s2 +

w14e
−(w6x+w7y+w8)

2s2 +w15e
−(w9x+w10y+w11)

2s2 +w16), and allows to represent
the variations of the shape of the human finger surface, while disregarding the
influences of the fingerprint pattern present in the outer fingerprint candidate
point set, Souter, or influences of the somewhat random variations present in
the inner fingerprint candidate point set, Sinner. The limited number of neu-
rons allow for a computationally inexpensive training procedure.

In order to successfully deal with the negative influences of the outlier can-
didate points, the neural network would have to converge to the main cluster
of the candidate points, fitting an approximation surface to these points, while
disregarding the influences of the outliers. This cannot be achieved by stan-
dard procedures for neural network training, as these standard procedures
consider influences of all of the data points on the resulting surface.

We addressed the problem by developing the following training proce-
dure:

1. Initialize the weights of the neural network such that it represents an
average expected surface of the fingerprint

2. Perform k steps of the backpropagation training procedure in order to
converge to a surface that represents all the candidate points, x(l)i ∈ S(l)

, in a particular set, l ∈ {inner, outer}, including the outlier points (k =
50)

3. Perform one step of the backpropagation training procedure using the
candidate point set S(l), with x and y normalized to (0, 1)
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4. Evaluate the z-distance of the candidate points from the currently esti-
mated surface, d(l)i = |z(l)i −f (l)(x

(l)
i , y

(l)
i )| , and remove the points whose

distance is larger than dmax from the set S(l)

5. Decrease the dmax by an amount ∆d (∆d = 0.075/n)

6. Repeat the steps 3, 4 and 5, n times (n = 50)

The resulting functions denormalized into [0, depth − 1], z = f (l)(x, y) ∧ l ∈
{inner, outer}, represent the smooth surfaces fitted to the inner and outer fin-
gerprint candidate points.

The above formulated algorithm represents a training procedure that causes
the neural network gradually to disregard the influence of certain training
data points as the training progresses. Thus the algorithm ensures that the
surface, represented by the network, is converging to an approximation of the
most significant cluster of the training data points. For the scenario analyzed
in this paper, the network’s surface converges to the main cluster of correctly
identified candidate points, gradually disregarding the influence of the out-
liers in the course of the training (Fig. 3.9c). The detected outer and inner
fingerprint of a good quality scan is shown in Fig. 3.11.

The above proposed approach for extraction of the layered structure of an
OCT fingerprint scan provides a basis for automated assessment of its quality.

3.4.2 OCT scan quality estimation method

The agency that has kindly provided the BSI-OCT-1-FINGER database has
indicated that OCT fingerprint scan quality problems were noted during the
data collection [75]. Although high quality scans had typically been captured,
a number of effects that are specific to the OCT fingerprint scanning procedure
degraded the quality severely. A considerable subset of the capture subjects
showed a tendency to lift their fingers too early from the sensor, or change
their finger positions during the capture process. Especially, a pattern caused
by irregular shaking of the fingers is commonly found in low-quality scans.
For the current capture devices and their scanning durations, it is a challenge
for the capture subject to hold the finger still during the scanning period,
which can result in incomplete scans or strong distortions of the detected sur-
faces (see Fig. 3.12, 3.13). In addition, pressing the finger too hard against the
scanner surface resulted in incomplete capturing of the layer surfaces in the
acquired OCT fingerprint scans.

We have assigned the OCT-specific scan quality issues into two classes,
namely Cstrong−defect and Cmedium−defect . The first class takes into account
large distortions, caused by lifting the fingers too early, strongly shaking the
fingers and pressing them too hard against the surface of the OCT sensor.
In such instances of non-compliant capture subject behavior, the OCT scans
provide for sets of candidate points, Sinner and Souter, where the distances,
d
(l)
outlier, of the outlier points from the approximation surfaces, f (l)(x, y) ∧ l ∈
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Figure 3.11: Visualization of the OCT quality estimation method for a a scan
of excellent quality - outliers are caused almost solely by the OCT scan noise
and the inherent unclarity of the inner fingerprint

Figure 3.12: Visualization of the OCT quality estimation method for a scan,
for which the scanned finger was lifted off too early from the sensor

{inner, outer}, will be much larger than the distances, d(l)inlier, caused by the
presence of the fingerprint pattern in the outer fingerprint layer, or much
larger than the random variations present due to the point-cloud nature of
the inner fingerprint layer:

d(l) = |z − f (l)(x, y)| ∧ d(l)outlier > d
(l)
inlier (3.28)

The second class of the scan quality problems, Cmedium−defect, is related to
slight shaking of the finger during the acquisition process (see an example in
Fig. 3.14). In this case, the distances of candidate points, d(l), are within the
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Figure 3.13: Visualization of the OCT quality estimation method for a scan
that resulted from strong shaking the scanned finger

expected distance range:

d(l) = |z − f (l)(x, y)| ∧ d(l) ≤ d(l)inlier (3.29)

Nevertheless, the variations can still be spotted due to the nature of the move-

Figure 3.14: Visualization of the OCT quality estimation method for a scan
that resulted from slight shaking the scanned finger

ment of the OCT scanning head. The scanning head moves very fast along
one axis, but much slower along the opposite axis, as the latter’s coordinate is
adjusted upon completion of every single line scan. These variations can be
approximated by the following equation that describes the z coordinate of the
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layer candidate points, (x, y, z) ∈ S(l):

zLowQuality = zreal + g(y) (3.30)

where y is the coordinate that represents movement along the axis in which
the scanning head moves slower, always upon completion of the scanning
along the x axis. Due to the high speed of the head along the x axis, the result-
ing changes in positions of the layer candidate points can be approximated as
being constant for every x coordinate. This provides for a shaking approxi-
mation function, g(y), that describes the shaking pattern along the changes of
the y coordinate.

For further analysis, we extract a 2D fingerprint estimation image for both
the outer and the inner fingerprint, I(l)(x, y), as follows (Fig. 3.11(g) and (h)):

I(l)(x, y) = z(l) − f (l)(x(l), y(l)) (3.31)

where (x(l), y(l), z(l)) ∈ S(l) ∧ l ∈ {inner, outer}.
Because the Fourier-Domain OCT (FD-OCT) scanning head captures the

entire line-scan along the z axis at one point in time, the inner fingerprint esti-
mation image, Iinner(x, y), is subject to the same OCT-specific effects, caused
by the non-compliant capture subject behavior, as the outer fingerprint esti-
mation image, Iouter(x, y). Due to the point-cloud nature of the inner finger-
print layer, the clearer, boundary-like outer fingerprint layer provides for a
more reliable basis for the resulting OCT-specific quality estimation, while the
inner fingerprint estimation image, Iinner(x, y), can be used for further pro-
cessing as regards fingerprint analysis and 2D-based quality detection meth-
ods.

The high-quality OCT scans can often be distinguished from the low-quality
scans based on the number of outliers in Iouter(x, y). However, these outliers
typically represent various random depth values, which fact is not ideal in
terms of considering the influences of the outliers equally. In order to unify
the influences of the outliers, the image with uniform outlier influences, Iuoiouter,
is computed as follows:

Iuoiouter( x) =

{
Iouter( x) if |Iouter( x)| ≤ 1

2
Fdmax

250 if |Iouter( x)| > 1
2
Fdmax

(3.32)

where Fdmax = 30 is the maximum depth of a human fingerprint, defined as
slightly larger (600µm) than the inter-ridge distance for the Caucasian popu-
lation (500µm) [64].

We define the first OCT-scan quality score, qs1, that describes the class of
more severe quality problems, related to lifting the fingers too early, pressing
them too hard against the sensor surface or shaking them excessively. As our
intention is to formulate a quality metric according [51], the qs1 is defined as
the amount of variations in y-axis frequencies lower than the frequency of the
fingerprint, as follows:

qs1 = 100−min(100,
1

2
std(Gy(

1

width

width∑
x=1

Iuoiouter(x, y)))) (3.33)
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where Gy is a Gaussian filter, varying in y-axis only, (σ = 7) of size 1 × 11
pixels and std is the standard deviation.

The second quality score, qs2, deals with the mild shaking of the fingers
during the scanning period. Due to the model that has been described by
the equation (3.30), a pattern is observable in the outer fingerprint image
Iouter(x, y) that resembles stripes of changing brightness added to the image
(Fig. 3.14 (c) and (g)).

In order to minimize the influences of the outliers, the cleared image, Iclearedouter ,
is defined as follows:

Iclaredouter ( x) =

{
Iouter( x) if |Iouter( x)| ≤ 1

2
Fdmax

M3×3(Iouter( x)) if |Iouter( x)| > 1
2
Fdmax

(3.34)

where M3×3 is a median filter of size 3× 3.
Using the statistical properties of an image regarding the model (3.30), we

describe the quality score qs2 by means of ratios between means and standard

deviations of y-lines in the derivation image Idy(x, y) ≈ ∂Iclearedouter (x,y)
∂y , defined

as follows:
Idx(x, y) = Iclearedouter (x, y)− Iclearedouter (x, y + 1) (3.35)

The quality score qs2 is the sum of energies of ratios between means and stan-
dard deviations of y-lines in the derivation image Idx(x, y), as follows:

qs2 = 100−min(100, 10(

height−1∑
y=1

|mean(Idx(x, y), x ∈ (1, w))

std(Idx(x, y), x ∈ (1, w))
|3)

1
3 ) (3.36)

This metric makes use of the rather constant changes of the pixel values in the
cleared fingerprint image, providing for low standard deviations compared
to the mean in the y-lines in Idx(x, y), as long as the shaking occurred during
the acquisition procedure. In case of high-quality scans, no-stripes are present
in the Idx(x, y) and the changes are rather random, generating high standard
deviations in comparison to the changes of the mean.

3.5 Results

In order to test the relevance of the proposed quality metrics, the following
protocol was applied.

3.5.1 Ground truth for OCT quality estimation

400 samples of OCT scans of genuine fingerprints were randomly chosen from
the database, and manually classified by an expert into two groups,Gacceptable
and Gbad, adhering to strict criteria as follows: (i) If some of the points on the
outer fingerprint surface in the scan were closer than 30 voxels along the z-
axis to the bottom of the volume, the scan was assigned to the group Gbad, as
the scanner is unreliable in the part of the volume where z ∈ (0, 30), and the
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situation results from the scenario when the finger was pressed too close to
the surface of the sensor. (ii) If the surface of the outer fingerprint, as repre-
sented by the OCT scan, is suddenly discontinued after a specific value of the
y-coordinate, the scan is assigned to the Gbad group (Fig. 3.12). Such a dis-
continuity pattern in the scan corresponds to lifting of the finger during the
capture process. (iii) In order to describe the situation, where the strong shak-
ing of the fingers occurred during scanning process, the scans are assigned to
theGbad group according to the following criteria; 1. The fingerprint surface is
obviously disturbed by a function determined by a y-coordinate only. 2. The
amplitude of the disturbances is clearly larger than than the amplitude of the
ridge/valley pattern

All of the scans that do not satisfy any criteria required for the Gbad group,
are considered to be of acceptable quality and assigned to the groupGacceptable.

3.5.2 Synthetically controlled OCT quality degradation

In order to perform synthetic degradation of the OCT scan quality, the pipeline
of the layer estimation method is altered as follows. The outer fingerprint
candidate-point set, Souter, is extracted, representing the original high-reso-
lution details of the surface of the outer fingerprint (Fig. 3.9b). A controlled
quality degradation method is applied to the set, defined by the following
equation (Fdmax = 30):

z = z + a(FdmaxSUR(by/10c) + 0.25FdmaxSUR(byc)) (3.37)

The function SUR(x), generates random numbers from a uniform distribu-
tion, SUR(x) ∈ (−0.5, 0.5), and cubically interpolates between SUR(bxc)
and SUR(bx + 1c), if a non-integer value, x 6= bxc is requested. The term,
FdmaxSUR(by/10c), models the strong shaking pattern, while the second term,
FdmaxSUR(byc), models the weak shaking pattern, whose variations are lower
than the variations caused by the fingerprint pattern. The coefficient a repre-
sents amount of the degradation applied, where a = 0 represents no degra-
dation and the original pattern is kept. After the degradation of Souter is per-
formed, the method normally proceeds with estimating the smooth surface
fouter.

3.5.3 OCT scan quality estimation

In order to assess relevance of the qs1 quality score, one evaluation on syn-
thetically degraded scans was carried out, along with one evaluation on the
real low-quality scans. For the first scenario, the degradation model from the
equation (3.37) was adopted.

If measured as the average distance between the estimated layer posi-
tions and the candidate point positions, douter = mean(|z − fouter(x, y)|) ∧
(x, y, z) ∈ Souter, the layer estimation method, run on the scans in Gacceptable,
has achieved average douter of 3.06 with the standard deviation of 1.20.
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The Fig. 3.15 illustrates the correlation, c = −0.96. between the level of the
quality degradation, a, and the value of the quality score qs1.

The real data evaluation was performed by assessing the ability of the
quality score qs1 to distinguish between the scans in the group Gacceptable and
the scans in the group Gbad, reported as false detection rates, as shown by Fig.
3.16.

qs1
a
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Figure 3.15: Quality score results on synthetically degraded data, a - quality
degradation level, qs1 - severe quality issues score
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Figure 3.16: Detection results for the expert labeled ground truth data in terms
of distinguishing between Gacceptable and Gbad using the metric qs1

A rigorous assessment of the relevance of the quality score qs2 is challeng-
ing, as this score describes the fine variations caused by the slight shaking
of the finger during the scanning, which variations are smaller than the vari-
ations caused by the presence of the fingerprint ridges and valleys. Never-
theless, the scans in the group Gacceptable were further manually classified,
which classification was based on whether they contain a pattern caused by
addition of a function depending solely on the y-coordinate. Such a pattern is
observable by a closer examination of the scan, as the fingerprint pattern still
appears disturbed by the weak shaking pattern in the y-coordinate only (Fig.
3.14). The classification results for the metric qs2 are illustrated by Fig. 3.17.
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Figure 3.17: Results of detection of slight shaking of the scanned finger using
the metric qs2

3.6 Conclusions and future work

A reliable method for statistical approximation of the layer surfaces in an OCT
fingerprint scan has been developed, allowing for extraction of the outer and
inner fingerprint patterns. The method functions with a mean estimation error
of 3.06 voxels and a standard deviation of the estimation of 1.2 voxels, which
provides for a solid basis for extraction of the fingerprints into 2D represen-
tations. Two OCT-specific quality scores have been developed that enables
discarding the low-quality scans that have resulted from a non-compliant cap-
ture subject behavior. For the more severe cases, the qs1 allowed for detection
of 98% of low-quality scans with a false detection rate of 3%.

The future work should focus on the application of the layer surface ap-
proximation method as a basis for the sweat gland identification and the sub-
sequent verification of their genuine structure, providing for a reliable PAD
method. The combination of the OCT-scan quality method proposed by this
paper and a reliable PAD method would provide for a solid foundation for
secure and reliable OCT-based fingerprint identification. A large-scale data
collection performed by means of a high-quality OCT device of a larger scan-
ning area is planned in the framework the project OCT-Finger-II. The full-area
fingerprints that can be extracted from the resulting database will enable val-
idation of the proposed quality scores in terms of the correlation with finger-
print recognition accuracy as defined in [51].
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Chapter 4

Full Fingerprint OCT sensor

4.1 Summary

This chapter, based on the papers by Breithaupt et al. [12] and Sousedik &
Breithaupt [99], describes an OCT sensor prototype designed specifically for
fingerprint sensing. The original proof of concept was developed in terms
of the project OCT-Finger-II [12]. Afterwards, the design underwent major
improvements in terms of the OCT-Finger-II project and the following OCT-
DATA project [99] organized by the German Federal Office for Information
Security (BSI). The contribution in terms of OCT-Finger-II consists of devel-
oping the original proof of concept, and a follow-up full re-design of the scan-
ning head. The contribution in terms of OCT-DATA involved full re-write of
the scanner-control & visualization software, such that the level of long term
stability required for successful data collection could be achieved. It also in-
volved a major improvement of the sensor in terms of hardware components.
With the significantly improved and stable design, a high-resolution dataset
of OCT scans has been collected from a 2x2 cm area along with 2D fingerprints
from identical capture subjects, in order to allow for further developments in
terms of extraction of full fingerprints that could be handled by the existing
commercial 2D fingerprint matchers.

4.2 Related work

With a few exceptions, the existing research regarding OCT fingerprinting
focuses on using existing OCT setups and addressing the signal processing
challenges (see Chapter 2, Section 2.5.2, OCT), rather than development of
a specific-purpose OCT fingerprint sensor. Regarding an effort to develop a
specific-purpose fingerprint OCT sensor with a scanning area sufficient for
reliable fingerprint identification, Auksorius & Boccara [5, 6] have taken an
approach using Full-Field (FF) OCT in the framework of the INGRESS project
[1]. Unlike the FD-OCT OCT setups, which separately capture in-depth scan-
lines at high speed, the FF-OCT captures a 2D image at once, from a single
specific depth using a 2D camera. This approach requires pressing the fin-
gerprint against a glass surface, so that the curvature of the outer and inner
fingerprint is flattened. According to earlier studies [74, 76], this comes with
disadvantages regarding fingerprint scanning under difficult conditions (dry,
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wet, greasy fingers etc.) similar to those faced by the existing 2D sensors. In
addition, the readily 2D information extracted from the finger does not con-
tain as many PAD-related cues as a full 3D volumetric scan, even though it
leads to smaller data amounts and as such carries the potential for faster op-
eration.

4.3 OCT Fingerprint Scanner Setup

Our fingerprint scanner setup is based on the Fourier-Domain OCT (FD-OCT)
imaging technique as illustrated by Fig. 4.1.

4.3.1 FD-OCT scanning

As designed in original proof of concept [12], the illumination is generated by
a super-luminescent diode (SLD), operating in an infra-red spectral band of
800-900 nm, coupled into a fiber optic arm of a fiber-optic coupler with a split-
ting ratio of 50:50. The light travels via the fiber-optic coupler into the scan-
ning head, where it is collimated into a light beam with diameter of 3.9mm
(2.6mm in the original design from [12]). The light travels from the fiber-
optic collimator into a 50:50 beam splitter, such that 50% of the light travels
through with unchanged trajectory as the sample beam and 50% of the light
is deflected at a 90◦ angle into the reference arm as the reference beam.

The sample beam is deflected by a setup of 2 mirror galvanometers, which
enable deflection of the beam in two orthogonal axes. The deflected sample
beam is then focused by an objective lens system, so that for any deflection
setting of the mirror galvanometers in a certain range, the beam leaves the
lens in a vertical direction and is point-focused at a distance from the objective,
which equals to its focal length.

In a limited distance range from the point of focus, the sample beam is
sufficiently narrow to allow for the high-resolution imaging purposes. The
narrowed sample beam travels into the scanned finger and is scattered both
on its surface and in the skin underneath the fingerprint surface. A certain
portion of the scattered light is reflected back as rays taking exactly the same
range of trajectories that have been taken by the rays of the sample beam itself,
which re-couples the light back into the optical setup, deflecting the light rays,
reflected back from the finger, into the same optical elements in reverse order.

In the reference arm, the reference beam leaves the beam splitter and is
reflected back into the system, after having its intensity significantly reduced
by an adjustable setup. This intensity reduction setup allows matching the
strongly reduced intensity range of the sample light that has been scattered in
the finger, and as such only partially reflected back into the optical setup.

The sample beam, back-reflected from the finger, and the reference beam -
after their re-coupling in the beam splitter - optically interfere. The interfered
re-combined light travels back into the fiber-optic coupler and is measured by
a spectrometer operating in the proper range of 800-900 nm.
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Figure 4.1: Schematic depiction of our FD-OCT fingerprint scanner: (a) SLD
800-900 nm light source, (b) fiber coupler, (c) beam splitter, (d) mirror gal-
vanometers, (e) objective lens, (f) reference arm back-reflector, (g) 800-900 nm
spectrometer

A single measurement taken by the spectrometer allows obtaining a 1D
depth profile, d(z), of the scattering properties of the scanned finger, at the
current position of the sample beam, in the following manner. The spectrom-
eter records a spectral profile p(λ), where λ is the wavelength in the range of
800-900 nm. If no finger is present, no sample light is back-reflected into the
system, and the profile p(λ) equals the spectral profile of the back-reflected
reference light pr(λ). If a scanned finger is present, the specific measured in-
tensities in the interference profile, p(λ), are equal to the reference spectral
profile altered by the interference pattern, pi(λ), due to interference of the ref-
erence light with the back-reflected sample light:

p(λ) = pr(λ) + pi(λ) (4.1)

By subtraction of the reference spectral profile, pr(λ), from the measured
spectral profile p(λ), it is possible to obtain the interference pattern pi(λ) -
which depends primarily on the scattering properties of the scanned finger in
the currently measured depth profile, d(z).

In order to obtain the depth profile, d(z), the wavelength-dependent inten-
sities, p(λ), must be transformed into frequency-dependent intensities, pi(f).
The depth profile, d(z), equals the modulus of Fourier transform of the inter-
ference pattern, pi(f).

d(z) = |F (pi(f))| (4.2)

Intuitively, for all sample illumination waves of wavelength λ, the reflected
wave is a superposition of the waves as reflected from the entire depth pro-
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file of the scanned sample - the reflected wave represents a complex number
determined by the integral of the illumination wave and the entire depth pro-
file of the finger. During the interference with the reference beam, the mea-
sured intensity, p(λ), is increased or decreased by interference with the re-
flected wave by pi(λ) - the real part of the complex integral. As such, a set
of measured intensity changes for different wavelengths λ represents the real
numbers resulting from a Fourier Transform of the scanned depth profile.

The measured interference profile, pi(f), represents only the real valued
part of the Fourier Transform, F (d), of the depth profile, d(z). This does not
allow for unambiguous reconstruction of the depth profile, d(z). In practice,
the scanned sample is positioned above the focal plane only, which is equiva-
lent to a depth profile with the first half equal to 0. Such a depth profile can be
reconstructed unambiguously at 1/2 of the spectrometer’s resolution (using
the modulus of the Fourier Transform in Eq. 4.2).

4.3.2 3D volumetric data acquisition

In order to obtain a 3D volumetric representation of the entire fingerprint,
a depth profile d(z) has to be acquired for each x and y coordinate of the
scanning area.

An analog waveform, Vx(t) resp. Vy(t), is generated by an analog signal
generator for each of the axes xy. For each axis xy, the momentary voltages
in the waveform represent a specific rotation of the mirror galvanometer at a
specific point in time t - which allows for sequential adjusting of the specific
xy coordinates of the scanning beam.

A shared synchronization clock is used to activate the camera shutter of the
spectrometer as well as the generation of the next sample, (Vx(t), Vy(t)), which
adjusts the position of the mirror galvanometers into the new xy coordinate
by means of a controller circuit.

The programmable analog waveform generator allows for the xy coordi-
nates of the sample beam to be chosen in software, which fact enables software-
controlled adjustments of both the lateral resolution and the scanning area of
our setup.

4.3.3 Scanning head

In our setup, the fingerprint is scanned in free air, in contrast to pressing the
finger against a surface, such as glass [5]. This design feature results from the
findings of earlier studies, which have shown that scanning the finger pressed
against a glass surface mitigates the ability of the OCT scanner to capture the
surface fingerprint under difficult conditions (wet, greasy, etc. fingers) in a
very similar fashion to existing 2D sensing technologies [74, 76].

Our scanning head allows resting the finger, while simultaneously leaving
the fingerprint area in free-air. This design allows the OCT scanner to capture
a 3D volumetric representation of the finger, without having to deal with loss
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4.3 OCT FINGERPRINT SCANNER SETUP

of the fine fingerprint structure due to the pressing the finger against a flat
surface.

In the oiginal proof of concept of our FD-OCT fingerprint scanner [12],
illustrated by Fig. 4.2, the scanning head contained the optical elements ar-
ranged in a highly flexible and easily adjustable setup. However, the OCT
requires highly precise positioning of the optical elements, and as such the
flexible setup limited the portability and long-term stability of the scanner,
which was required for reliable data collection.

(a) measurement head -
size: 250×150×304mm (b) OCT base device and a process-

ing PC unit (replaceable by a PC) -
unit size: 356×150×304mm

Figure 4.2: First version of our OCT fingerprint scanner prototype [12]

In the current design [99] of the scanning head, illustrated by Fig. 4.3,
the module contains the beam collimator, beam splitter, the reference arm, the
galvanometers and the lens objective. The optical elements are fixed in precise
positions in an aluminum block, which has been CNC-machined/drilled1 in
order to contain the correct cavities necessary for the optics path as well as the
precise fixed positioning of the optical elements. This allows for a much more
robust solution that greatly reduces the risk of the loss of calibration during
transport as well as greatly supports the long term stability of the setup.

In terms of the OCT-DATA project, we exchanged the mirror galvanome-
ters, the galvanometer controllers as well as the associated electrical coupling
in order to greatly simplify the process of calibration of the scanning area and
improve the long-term stability of the design. We also replaced the original
beam collimator by a different model with a wider 3.9mm beam radius.

1Computer numerical control (CNC) is a computer controlled approach to material machining
and drilling
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4. FULL FINGERPRINT OCT SENSOR

Figure 4.3: Second version scanning head of the FD-OCT fingerprint scanner
[99]

4.3.4 Main & processing module

Currently [99], the main module contains the SLD light source, the spectrom-
eter and the FPGA-based control circuitry necessary for real-time synchro-
nization of the movement of the mirror galvanometers and the shutter of the
spectrometer. The main module is connected to a PC unit with a GPU for
processing & visualization purposes.

During the scanning, the spectrometer transfers 2048 pixels measurements
at a 12-bit precision with a line-rate of 100 kHz over a CameraLink interface
to the RAM of the processing PC - this gives a throughput of about 293 MB/s.
This allows, together with the waveform generators operating at 100 kS/s2,
capturing a volumetric scan of the fingerprint at a lateral resolution of 512
DPI in our 2x2 cm scanning area in 1.63 s.

In terms of the OCT-DATA project, we updated the electrical coupling in-
side the main module and added additional EM-shielding features. We also
replaced the fiber-optics coupling between the spectrometer, the SLD light
source and the beam collimator in the scanning head.

4.4 Testing & Results

A significant challenge associated with 3D volumetric scanning of the finger-
print lies in the generated data amounts. During the operation, the spectrom-
eter of 100 kHz line-rate and 2048 pixels per lines rate generates - 100K x 2048
x 12bit - about 293 MB/s of data, where each scan-line needs to be processed

2kilo-Samples/s (kS/s) - the amount of distinct outputs generated by the waveform generator per
second
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by Fourier Transform in order to obtain the depth profile d(z). In our cur-
rent setup, a single core i7 processor in the PC module processes the data in a
multi-threaded pipeline during the scanning process itself, and is able to per-
form the FFT inversion slightly faster than the spectrometer generates the raw
data. As such, the pipelined FFT inversion provides a readily processed spa-
tial volumetric representation of the fingerprint practically immediately after
the end of the scanning process.

In comparison with related attempts for OCT-based subsurface fingerprint
scanning using FF-OCT [5], our FD-OCT setup allows for software adjust-
ments of the scanning resolution. This enables performing a lower-resolution
scan of the entire fingerprint (1.63 s at 512 DPI, current standard fingerprint
resolution), extracting the outer fingerprint and inner fingerprint, allowing for
superior reliability under difficult conditions (dry, wet, greasy fingers etc.).
Immediately afterwards, a higher-resolution scan of a partial area can be ac-
quired, for the purposes of reliable detection of fake fingerprints - PAD.

4.4.1 Scanner software

In the original proof of concept [12], the scanner software was equipped with
a 2D preview mode, that was able to scan and visualize a single 2D slice of the
scanned finger several times per second. This feature posed significant lim-
itations regarding the data collection, since it did not allow to conveniently
control the correct positioning of the scanned finger. In addition, visualiza-
tion of the actual high-resolution scans required extra steps of running the
FFT inversion of the spectral data into the spatial data and viewing using an
external tool, which was not was not suitable regarding the time constraints
in our data collection. The level of long-term stability of the original software
was also insufficient for our data collection.

In terms of the OCT-DATA project, the software has been fully re-developed.
The software has been equipped with a 3D preview mode, in which the the
scanner repeatedly scans a low-resolution volume of 128 x 128 x 1024 voxels
with an area of 2x2 cm and the volume is readily FFT-processed in a pipeline
and visualized using a GPU at semi-realtime speed of 5 scans per second. The
software also visualizes the high-resolution 3D fingerprint scan directly upon
the end of the scanning process - using a FFT-inversion pipeline operating in
parallel with the scanning process and GPU-based volume rendering. Both
the preview mode and the high-resolution visualizations allow to view the
3D volume freely from any angle, which allows controlling the positioning of
the finger as well as examining the scanned result. In addition, it is possible
to visualize the spectral data and the 2D spatial slices of the scanned volume
both in the preview and the high-resolution scanning mode.
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4.4.2 Collected dataset

To evaluate our fingerprint scanner setup and make future research of the
behavior and properties of the OCT scans of human fingerprints possible, we
have collected the following dataset:

• fingerprint volume of 1408 x 1408 x 1024 voxels

• 2 x 2 cm scanning area

• 14.2 µm lateral resolution

• 720 fingers

• 72 participants

• all 10 fingers per participant

A single volumetric scan of a finger in this dataset (so that the offline research
of the FFT processing pipeline is possible as well) requires the storage of 2048
pixels x 1408 x 1408 x 12bit (stored as 16bit) - 7,6 GB of raw spectral data.
In addition, the processed spatial data, readily available upon the end of the
scanning, are stored - 1024 x 1408 x 1408 x 8bit - 1.9 GB. This results in a total
dataset size of - 720 fingers x 9.5 GB - 6.6 TB.

From an identical set of participants, 2D fingerprints of 52 participants
inclusive 10 fingers have been collected using a standard optical 2D sensor,
in order to allow for studies of compatibility of the OCT fingerprints and the
standard 2D fingerprints.

In addition, the following high-resolution dataset of partial fingerprints
has been collected, to enable a study of human skin behavior under high-
resolution OCT, primarily for the purpose of fake fingerprint detection (PAD):

• fingerprint volume of 512 x 512 x 1024 voxels

• 3.58 x 3.58 mm scanning area

• 7 µm lateral resolution

• 156 fingers

• 52 participants

• right-hand thumb, index and ring finger per participant

Despite the relatively large data sizes, our experiments indicate the speed of
the computer RAM, the Cameralink interface and further processing on GPUs
(320 GB/s raw data throughput for standard gaming GTX 1080) would allow
for scanning & processing speeds necessary for acquisition and processing in
a matter of seconds at medium resolutions.
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4.4.3 Visualizations

The OCT scans as captured by our first version scanner design 1.0 [12] are
visualized by Fig. 4.4. Fig. 4.4a-c illustrates the imaging quality at which the
sweat glands and the inner fingerprint were possible to capture by the first
version scanner design.

The imaging quality achieved by our improved second version setup 2.0
is illustrated by Fig. 4.5-4.10.

Fig. 4.5-4.6 and Fig. 4.7-4.8 represent a 3D transparent visualization of an
index finger resp. thumb. The sweat glands are visible under the transparent-
rendered outer fingerprint. Visualization of the outer fingerprint, sweat glands
along with the inner fingerprint layer are shown by Fig. 4.9-4.10. A vertical
cut through a fingerprint scanned from a 2x2cm area is illustrated by Fig. 4.9,
while Fig. 4.10a represents an identical fingerprint, visualized from the side as
a highly-transparent 3D volume. Fig. 4.10b represents a vertical cut through
a partial fingerprint from a 3.58x3.58mm area.
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(a)

(b)

(c)

(d)

Figure 4.4: For comparison; OCT scan visualizations from the original proof
of concept - OCT fingerprint scanner 1.0 [12]; (a)-(b) sweat glands, (c) inner
fingerprint, (d) outer fingerprint
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Figure 4.5: OCT scanner 2.0; index finger scan: 2x2cm area, 1408x1408x1024,
14.2µm - sweat glands overview - transparent 3D visualization
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Figure 4.6: OCT scanner 2.0; index finger scan: 2x2cm area, 1408x1408x1024,
14.2µm - outer fingerprint - transparent 3D visualization
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Figure 4.7: OCT scanner 2.0; thumb scan: 2x2cm area, 1408x1408x1024,
14.2µm - sweat glands overview - transparent 3D visualization
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Figure 4.8: OCT scanner 2.0; thumb scan: 2x2cm area, 1408x1408x1024,
14.2µm - outer fingerprint - transparent 3D visualization
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Figure 4.9: OCT scanner 2.0; thumb scan: (a) 2x2cm area, 1408x1408, 14.2µm,
5 averaged slices orthogonal to the finger axis
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(a)(a)

(b)

Figure 4.10: OCT scanner 2.0; thumb scan: (a) 2x2cm area, 1408x1408, 14.2µm
transparent 3D visualization, finger visualized from the side; (b) 3.58x3.58
area, 512x512, 7µm, 10 averaged slices
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4.5 Conclusion and Future Work

We have developed a novel specific-purpose FD-OCT fingerprint sensor setup.
Unlike the existing designs, our setup is capable of imaging a full fingerprint
from a 2x2 cm area, as a complete volumetric representation at speeds that
demonstrate the usability of 3D OCT in real-world applications.

Our setup allows for software adjustments of the scanning area & reso-
lution, which makes a 2-stage scanning pipeline possible - first stage being
fingerprint extraction at lower resolutions and the second the high-resolution
limited-area scanning for PAD purposes.

The future work would involve optimizations of the setup regarding the
scanning range & resolution through the air as well as imaging depth into the
fingertip skin, by an improved light management by means of non-evenly-
splitting beam splitters and fiber couplers and related possible changes of the
beam diameter.

The scanning head of the setup should be further improved to better ad-
dress the issues associated with involuntary muscle shakes, that pose a chal-
lenge for high-quality imaging.

The future efforts will also focus on miniaturization, replacing the rel-
atively large general-purpose electronics controlling the galvanometer and
camera synchronization by a much smaller specialized solution. The scan-
ning head could be significantly miniaturized using a MEMS mirror system
replacing the large mirror galvanometer pair.
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Chapter 5

Fast Edge & Blob Detection

5.1 Summary

This chapter describes two innovative techniques for performing low level fil-
tering operations necessary for edges & blob detection in the OCT fingerprint
data. The first proposed technique allows performing very efficient filtering
by a smooth Gaussian and it’s derivatives, with the intention to address the
detection of blobs and soft edges in the noisy OCT data. The second approach
allows for design of a range of high-performance filters suited somewhat bet-
ter for detection of sharp edges. In terms of the second approach, a specific
filter is proposed for efficient detection of the fingerprint layers along the in-
depth scan-lines of the OCT scans. The work is planned for submission to
EURASIP Journal on Advances in Signal Processing.

5.2 Motivation

Scanning using 3D high-resolution full-fingerprint OCT scanning generates
very large amounts of volumetric data (' 1.9 GB of spatial data at 8-bit per
voxel for a single finger in our dataset). A robust solution for processing such
amounts of data in a matter of seconds, as required by the applications of fin-
gerprint biometrics, poses a significant challenge. Many standard computer
vision techniques and approaches are designed for processing of 2D images,
while in our case, the processing requires fast handling of data containing an
entire extra dimension.

Naive convolution-based filtering approaches are completely computation-
ally prohibitive for high-resolution 3D data, since unlike 2D images where the
computational complexity depends on O(width × height × filter size2), the
3D data lead to a computational complexity depending onO(width×height×
depth× filter size3). The extra factor of depth× filtersize can easily lead to
increase in computational complexity by 3-5 orders of magnitude, especially
for larger filter sizes and resolutions.

Consequently, robust processing of the OCT fingerprint data requires very
efficient filtering techniques, ideally with a computational complexity inde-
pendent of the filter size, such that not only the smallest and insufficient filter
sizes are computationally feasible.
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In addition, the 3D volumetric data ask for significant memory capac-
ity, as they grow cubically with resolution, unlike the 2D images, where the
growth is quadratic. The problem is not so much about storing the 3D OCT
data (e.g as 8-bit voxels) in the memory, but rather about their processing
where many standard 2D-image-suited approaches would generate a com-
pletely prohibitive amount of memory overhead during the processing.

A 3D OCT fingerprint processing approach that is robust, reliable and flex-
ible enough for future improvements and adjustments calls for non-standard
filtering techniques that exhibit excellent properties both in terms of compu-
tational and spatial complexity, such that the 3D data can be handled fast with
reasonable amounts of memory.

5.3 Filter-size independent Gaussian filtering

Current industrial applications of computer vision for real-time video process-
ing and real-time medical image analysis face similarly significant demands
on computational performance, and several techniques and approaches have
been invented that do satisfy the requirement that the performance of the fil-
tering must be independent of the size of the filtering kernel, either in a more
general setting or for specific, widely used filters.

One of the most widely used filters, well-known for its interesting prop-
erties in terms of noise reduction and the ability to process the image at a
specific scale of interest is the Gaussian filter. The scale-specific suppression
of the noise and of certain rather small and uninteresting features is strongly
related to scale-specific edge & blob detection and serves in different forms as
the groundwork for a large number of computer vision algorithms.

Automated analysis of the 3D OCT fingerprint data, in contrast to prob-
lems faced by generic 3D volumetric medical data segmentation, poses a prob-
lem of detecting the structure of outer and inner fingerprint layers along with
sweat glands in between, which is somewhat simpler than problems such as
generic organ segmentation or 3D volumetric vein segmentation. However,
the amounts of data are potentially even larger than for a full-body CT (due
to the necessary microscopic resolutions) and the requirements on reliability,
speed and fully automatic operation pose a significant additional challenge.

As such, filtering techniques are needed that can perform rather generic
but robust and noise-resilient edge & blob detection for a 3D volume with
excellent computational as well as spatial complexities.

The Gaussian filter is a core component of a number of such generic edge
& blob detection approaches, such as Laplacian of Gaussian (LoG) and its
commonly used approximation, Difference of Gaussians (DoG).

A significant advantage of the Gaussian-filtering-based edge & blob detec-
tion techniques for processing 3D OCT fingerprint data is the separability of
the Gaussian core. It is possible to calculate a convolution of n-dimensional
data and n-dimensional Gaussian core by n separate computing passes along
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each of the n dimensions, reducing the computational complexity vastly from
O(dn) to O(dn) (introducing, however, spatial complexity issues).

A number of approaches exist to compute a Gaussian filtered version of
a signal in 1D, apart from the computationally expensive basic convolution
[42]. A widely-known approach is the filtering in the frequency domain, for
which the signal is transformed by Fast Fourier Transform (FFT) or Fast Co-
sine Transform (FCT) (O(n log n)), the filter is applied by multiplication of
two signals (O(n)), and the result is transformed back into the spatial domain
by inverse FFT/FCT (O(n log n)). The computational expense of computing
FFT/FCT twice has motivated a number of other approaches that aim to fur-
ther minimize the computational cost. A Gaussian filtered signal can be ef-
ficiently approximated by K repeated filtering passes by box filters [45, 110]
thanks to the possibility of performing 1D box filtering in O(n) by sequen-
tial subtraction/addition (running sums) or by employing integral images
[8, 35, 47, 49].

Another group of techniques for the Gaussian filtering is based on an
application of recursive filtering techniques [31], requiring causal and anti-
causal filter pairs. The approach by Deriche [32] requires parallel computation
of the response of the causal and anti-causal filters and combination of the re-
sults, while the approaches by Young and Vliet [114] and Vliet et al. [109]
require the causal and anti-causal filters to be applied in a cascade.

As the 1D LoG filter is the result of a second-order Gaussian filter deriva-
tive of the corresponding size, it is possible to perform the LoG filtering by
Gaussian filtering followed by the computation of the second-order signal
derivative by using neighboring sample differences [109]. An approximation
of a LoG filtered image can also be obtained by Gaussian filtering with a core
of variance σ, followed by a LoG filtering by a smaller and potentially less
expensive core (σ2 < σ) [17] (DoG).

However, all of these standard approaches require an additional memory
buffer of signal length or in-situ overwriting of the original signal before the
results can be obtained:

• frequency domain 1D LoG or Gaussian filtering - due to the necessity to
calculate the frequency domain representation

• recursive 1D LoG and Gaussian filtering - due to application of the causal
and anti-causal filter pairs

• Application of the integral signal - the integral signal has to be pre-
computed and stored

• The multi-pass running-sum based approach - the pass k + 1 requires
results from pass k
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5.4 Read-only filter-size-independent Gaussian filtering

The requirement for additional signal-length buffers of the above mentioned
filter-size-independent methods for Gaussian filtering strongly limits their us-
ability when processing 3D volumetric data under strong memory constraints.

Especially in a massively parallel computing environment, such as GPUs,
the need for additional buffer of the size of the processed signal adds a sig-
nificant extra memory requirement. The problem is even more severe when
using the above mentioned fast Gaussian filtering methods to accomplish 3-D
Gaussian filtering by 3 separate parallel Gaussian filtering passes.

The following proposed Gaussian filtering approximation technique has
no need for additional intermediary memory buffers, and can deliver the
Gaussian filtered results readily on-the-fly, allowing for nearly the same flexi-
bility in filtering design as the basic convolution.

5.4.1 Laplacian of Gaussian approximation

We approximate the Laplacian of Gaussian by adding two overlapping sinu-
soidal waves (Fig. 5.1a):

aLoG1(x) =

{
−sin(x) if x ∈ (0, 2π)

0 else
(5.1)

aLoG2(x) =

{
−sin(x) if x ∈ (π, 3π)

0 else
(5.2)

aLoG(x) = aLoG1(x) + aLoG2(x) (5.3)

5.4.2 Filtering in discrete domain

In the discrete domain (x ∈ Z), the filtering cores, aLoG1 and aLoG2, can be
defined as follows:

aLoG1(x) =

{
−sin( 3π

sf
x) if x ∈ (0, 23sf − 1)

0 else
(5.4)

aLoG2(x) =

{
−sin( 3π

sf
x) if x ∈ ( 1

3sf , sf )

0 else
(5.5)

The convolution ∗ of the signal, s(x), and the filtering cores, aLoG1 and aLoG2,
can be expressed using the imaginary component of complex exponential
functions as follows:

(s ∗ aLoG1)(x) = =(

2/3sf−1∑
n=0

−ei
3π
sf
n
s(x+ n)) (5.6)
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Figure 5.1: Approximated Gaussian and its derivatives

(s ∗ aLoG2)(x) = =(

2/3sf−1∑
n=0

e
i 3πsf

n
s(x+

1

3
sf + n)) (5.7)
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Let z1(b) be an intermediary result defined at z1(0) as equivalent to the com-
plex version of the convolution (s ∗ aLoG1)(0).

z1(0) =

2/3sf−1∑
n=0

−ei
3π
sf
n
s(n) (5.8)

=(z1(0)) = (s ∗ aLoG1)(0) (5.9)

z1(b) can be recursively defined as follows, requiring only two samples of
signal, s(x), upon every step:

z1(b) =

2/3sf−1+b∑
n=b

−ei(
3π
sf
n)
s(n) = z1(b− 1)−

− (−ei(
3π
sf

(b−1))
)s(b− 1) + (−ei(2π+

3π
sf

(b−1))
)s(

2

3
sf − 1 + b) (5.10)

By performing a simple phase shift of the intermediary result, z1(b), it is pos-
sible to compute the complex version of the term (s ∗ aLoG1)(b). This allows
to calculate the convolution of the signal, s(x), with the core, aLoG1(x), in a
very efficient manner.

z1(b)e
i(− 3π

sf
b)

=

2/3sf−1+b∑
n=b

−ei(
3π
sf
n)
e
i(− 3π

sf
b)
s(n) =

=

2/3sf−1+b∑
n=b

−ei(
3π
sf

(n−b))
s(n) =

2/3sf−1∑
n=0

−ei(
3π
sf
n)
s(b+ n) (5.11)

=(z1(b)e
i(− 3π

sf
b)

) = (s ∗ aLoG1)(b) (5.12)

A similar definition is possible for the other core, aLoG2(x). Let z2(b) be an
intermediary result defined at z2(0) as equivalent to the complex version of
the convolution (s ∗ aLoG2)(0).

z2(0) =

2/3sf−1∑
n=0

e
i 3πsf

n
s(

1

3
sf + n) (5.13)

=(z2(0)) = (s ∗ aLoG2)(0) (5.14)
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z2(b) can be recursively defined as follows, requiring only two samples of
signal, s(x), upon every step:

z2(b) =

2/3sf−1+b∑
n=b

e
i( 3π
sf
n)
s(

1

3
sf + n) = z2(b− 1)−

− (e
i( 3π
sf

(b−1))
)s(

1

3
sf + b− 1) + (e

i(2π+ 3π
sf

(b−1))
)s(

1

3
sf +

2

3
sf − 1 + b) (5.15)

By performing a simple phase shift of the intermediary result, z2(b), it is pos-
sible to compute the complex version of the term (s ∗ aLoG2)(b). This allows
to calculate the convolution of the signal, s(x), with the core, aLoG2(x), in a
very efficient manner.

z2(b)e
i(− 3π

sf
b)

=

2/3sf−1+b∑
n=b

e
i( 3π
sf
n)
e
i(− 3π

sf
b)
s(

1

3
sf + n) =

=

2/3sf−1+b∑
n=b

e
i( 3π
sf

(n−b))
s(

1

3
sf + n) =

2/3sf−1∑
n=0

e
i( 3π
sf
n)
s(b+

1

3
sf + n) (5.16)

=(z2(b)e
i(− 3π

sf
b)

) = (s ∗ aLoG2)(b) (5.17)

Considering the main convolution, (s ∗ aLoG)(x), with the core, aLoG(x) =
aLoG1(x) + aLoG2(x), it is possible to define a joint intermediary result:

z(b) = z1(b) + z2(b) (5.18)

The joint intermediary result, z, can be recursively updated by a phase-shifted
sum of signal reads as follows:

z(b) = z(b− 1)− (−ei(
3π
sf

(b−1))
)s(b− 1) + (−ei(2π+

3π
sf

(b−1))
)s(

2

3
sf − 1 + b)−

− (e
i( 3π
sf

(b−1))
)s(

1

3
sf + b− 1) + (e

i(2π+ 3π
sf

(b−1))
)s(

1

3
sf +

2

3
sf − 1 + b) =

= z(b− 1)−

− ei(
3π
sf

(b−1))
(−s(b− 1) + s(

1

3
sf + b− 1) + s(

2

3
sf + b− 1)− s(sf + b− 1))

(5.19)

The final result of the main convolution, (s∗aLoG)(b), with the core, aLoG(x) =
aLoG1(x) + aLoG2(x), can be obtained by a simple phase shifting of the joint
intermediary result, z:

83



5. FAST EDGE & BLOB DETECTION

(s ∗ aLoG)(b) = (s ∗ aLoG1)(b) + (s ∗ aLoG2)(b) =

= =(z1(b)e
i(− 3π

sf
b)

+ z2(b)e
i(− 3π

sf
b)

) =

= =(e
i(− 3π

sf
b)
z) (5.20)

Eq. 5.19 and 5.20 provide a framework for computing a result that is equiva-
lent to 1D convolution with the proposed LoG approximation. The interme-
diary result, z(x), can be re-used to calculate an intermediary result, z(x+ 1),
and the final filtering result can be obtained by a simple phase shift. Apart
from an initialization step, the computational complexity is independent of
the filter size, and does not require an intermediary memory buffer.

5.4.3 Gaussian-like filtering

A convolution with a Gaussian core G(x) =
∫ ∫

g(x)dxdx can be seen as a
convolution with its second derivative, Laplacian of Gaussian, g(x), followed
by integrating twice as follows:

∫ ∞
−∞

f(τ)

∫ ∫
g(t− τ)dtdtdτ =

∫ ∫ ∫ ∞
−∞

f(τ)g(t− τ)dτdtdt (5.21)

This is equivalent to convolution with the Gaussian-like core illustrated by
Fig. 5.1c.

For practical implementation of the above analyzed approach to compu-
tation of a LoG approximation, 2 independent accumulators are required, in
order to hold the real and imaginary part of the intermediary result, z (Eq.
5.19).

The following functions, fcos(n) and fsin(n), can be pre-computed and
used in a cyclical fashion (n ∈ (0, sf − 1)):

fcos(n) = <(e
i( 3π
sf
n)

) = cos(
3π

sf
n), fsin(n) = =(e

i( 3π
sf
n)

) = sin(
3π

sf
n)

(5.22)

The accumulators Acc1, Acc2(Int0, Int1) can be initialized simply using
zeros, which is their proper value for a zero signal, following by a filtering as if
the signal was padded by sf zeros. Since some of the signal reads performed
during this initial phase are zero by definition, the algorithm can be simpli-
fied accordingly for the initialization phase, yielding 2 actual signal reads per
pixel.

For every step from (s ∗ aLoG)(x) to (s ∗ aLoG)(x + 1), 4 signal reads are
necessary to obtain the values necessary further on.
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Algorithm 5.1: Signal reads

1 s0 ← s(x);
2 s1 ← s(x+ 1

3sf );
3 s2 ← s(x+ 2

3sf );
4 s3 ← s(x+ sf );

The accumulators are updated as follows:

Algorithm 5.2: Accumulator update

5 vc ← −fcos(x);
6 vs ← −fsin(x);
7 sa ← −s0 + s1 + s2 − s3;
8 Acc1 ← Acc1 + vcsa;
9 Acc2 ← Acc2 + vssa;

Since only the imaginary part of the result is needed, the phase shift from Eq.
5.20 can be implemented as follows, prividing the final filtering result with
the proposed approximate 1D Laplacian of Gaussian aLoG:

Algorithm 5.3: Phase shift

10 aLoG = Acc1vs −Acc2vc;

Convolution with the Gaussian-like core illustrated by Fig. 5.1c can be achieved
by two integration accumulators:

Algorithm 5.4: Gaussian-like filtering

11 Int0 = Int0 + aLoG;
12 Int1 = Int1 + Int0;
13 aGauss = Int1;

5.4.4 Performance

In order to provide for a fair performance benchmark of our approach, we
adopted the following protocol. We processed 1GB of 1024x1024x1024 8-bit
voxels with our method 10x along one dimension, averaging the computation
time. The methods that have been benchmarked, apart from our proposed
method, are recursive filtering [114], 4-pass averaging filtering [35] and sym-
metrically implemented convolution.

For the CPU demonstration, a single-thread non-parallel C++ implementa-
tion was used, executed on 64-bit Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz,
in order to illustrate the relative performance in sequential processing1 - Fig.

1It is worth noting that acceleration by using vector instructions and multiple threads would
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5.2a. The CPU calculations are performed in 64-bit floating point or 64-bit
integer as necessary.

The GPU demonstration is done using CUDA implementation on NVidia
GeForce GTX 660 Ti and GTX 980 SC - Fig. 5.2b. The GPU computation is
performed in 32-bit floating point, native to the employed GPUs.

5.4.5 Discussion

Our approach allows for scan-line filtering by a smooth approximation of
Laplacian of Gaussian with 2 accumulators, 4 reads, 4 multiplications and
6 additions. With 2 extra additions and 2 extra accumulators, smooth ap-
proximate Gaussian filtering is possible. Our method operates in a read-only
fashion without any intermediate signal representations yielding the filtered
results in a single pass.

In our experiments, both in the GPU and the CPU setting, our approach
outperforms state-of-the-art alternative approaches for Gaussian-like filtering
with computational complexity independent of the filter size. In the CPU
setting, the approach was speed-wise equivalent to a 12-pixel symmetrically
implemented convolution and in the GPU setting to a 5-6 pixel convolution.
The commonly-employed running sums approach ranks second best on the
CPU, while performing poorly on the GPU. This is probably due to the slow
global memory access compared to the speed of computation and a small
cache, which properties are characteristic for GPUs. We hypothesize that the
slight variations in computational complexity with the filter size for some of
the methods are caused by interference of the differences in memory access
pattern for different filter sizes.

5.5 Fast scan-line edge detection

Detection of the outer and inner fingerprint surfaces from the 3D volumetric
data can be seen as a problem of detecting major edges along the in-depth
scan-lines in the OCT scan - Fig. 5.3.

Taking into account the size of the volumetric 3D OCT data and the sig-
nificant amounts of noise typical for OCT scanning, usage of a fast edge de-
tector, capable of considering a wide neighborhood of the edge candidates, is
probably advisable so that reliable detection of the inner and outer fingerprint
surfaces can be achieved.

5.5.1 Differential filter design

A closer examination of the previously mentioned eq. 5.21 offers interesting
options for creating a custom-designed fast edge detection filter. Eq. 5.21 can
be generalized as follows:

probably lead to a speed-up by an order of magnitude, however, we wanted to demonstrate the
relative performance in a non-parallel setting
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Figure 5.2: Fast Gaussian filtering performance benchmark

∫ ∞
−∞

f(τ)

∫
· · ·

∫
g(t− τ)dt· · · dtdτ =

∫
· · ·

∫ ∫ ∞
−∞

f(τ)g(t− τ)dτdt· · · dt

(5.23)

Intuitively, it is possible to calculate n-th derivative, g, of the convolution
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depth scan-line depth scan-line

(a) (b)

Figure 5.3: OCT finger 2D slices - inner and outer fingerprint edges visualiza-
tion

core, G =
∫
· · ·

∫
g, perform the convolution with the source signal and inte-

grate n-times, in order to obtain a result equivalent to convolution with the
core, G.

The idea is that it could be possible to design a relatively complex and wide
filter, which would normally lead to excessive computational demands, but
with a sparse and simple representation of the n-th derivative, which allows
for performing of the convolution much more efficiently.

5.5.2 OCT-specific scan-line edge detection filter

The design of a filter suitable for scan-line edge detection in the OCT finger-
print data, as depicted by Fig.5.3, should meet several criteria for maximum
robustness and computational efficiency:

• zero response for a continuous signal with no slope - total integral of the
filter equals zero - this ensures that the filter measures the strength of the
edge only, ignoring other not-edge-related effects such as overall slope
or strength of the signal

• The edges for both the outer and inner fingerprint are always positive
(Fig. 5.3) - For the outer fingerprint, the signal changes from the dark re-
flection of the empty air to the strong reflection of the fingerprint tissue;
For the inner fingerprint, the reflection changes from a weaker reflec-
tion of the middle layer to a stronger reflection of the inner layer - This
suggests the filter shape should be suited for detecting positive edges
only

• The filter should be capable of precise localization of strong thin edges
(Fig. 5.3b), as well as wider edge boundaries (Fig. 5.3a). This suggests
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a filter with a slope in the positive and the negative half, which design
will ensure maximum response at the correct position when detecting
strong thin edges

• The slopes of the filter should copy the diminishing reflections of the
boundaries with the depth (Fig. 5.3a)

• 1st, 2nd or 3rd derivation should lead to a very sparse representation
of the filter (further derivation quickly leads to precision issues), which
would allow for efficient convolution with the scan-lines of the OCT
data

Bearing in mind the above mentioned criteria, we propose the following
approximate filter suited for detection of positive edges at the fingerprint layer
boundaries in the OCT data (Fig. 5.4):

G(n) =


−height2 + (n+ 1) · slope if n ∈ [− size2 ,−1]

height2 − n · slope if n ∈ [0, size2 − 1]

0 otherwise
(5.24)

The parameters size, height1 and height2 can be chosen freely and the
slope parameter is defined as:

slope =
height2 − height1

size/2− 1
(5.25)

height1
height2

Figure 5.4: Shape of the proposed approximate positive edge detection filter

The first derivative of the filtering core,G′, is defined as follows (Fig. 5.5b):

G′(n) =



−height1 if n = − size2
−slope if n ∈ [− size2 + 1,−1]

2 · height2 if n = 0

−slope if n ∈ [1, size2 − 1]

−height1 if n = size
2

0 otherwise

(5.26)
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(a) (b) (c)

Figure 5.5: Fast approximate edge detection filter and its derivatives for
height1 = 15, height2 = 29, size = 30: (a) filter core G(x); (b) first deriva-
tive G′(x); (c) second derivative G′′(x)

Finally, the second derivative of G leads to a following sparse representa-
tion (Fig. 5.5c):

G′′(n) =



−height1 if n = − size2
height1 − slope if n = − size2 + 1

2 · height2 + slope if n = 0

−(2 · height2 + slope) if n = 1

−height1 + slope if n = size
2

height1 if n = size
2 + 1

0 otherwise

(5.27)

Independently of the filter size, size, and the shape parameters, height1
and height2, the second derivative G′′ is always represented using 6 non-zero
filter weights only. In addition, every two non-zero weights are adjacent at
a position n and n + 1, which allows for a filter implementation where only
3 actual signal reads per pixel are necessary, and the other 3 signal reads are
performed using 3 extra variables serving as delay lines, reusing the signal
reads from the computation of a previous pixel.

If one considers a zero-padded version of the signal, the accumulators and
delay lines can be initialized simply using zeros:
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Algorithm 5.5: Edge detection filter - initialization

1 s0 = 0;
2 s2 = 0;
3 s4 = 0;
4 Acc0 = 0;
5 Acc1 = 0;
6 c0 = height1;
7 c1 = height1 − slope;
8 c2 = 2 · height1 + slope;

A step of the filtering is performed as:

Algorithm 5.6: Edge detection filter - a filtering step

1 s1 = s(x− size/2 + 1) ;
2 s3 = s(x+ 1);
3 s5 = s(x+ size/2 + 1);
4 Acc0 = Acc0 − c0s0 + c1s1 + c2s2 − c2s3 − c1s4 + c0s5;
5 Acc1 = Acc1 +Acc0;
6 s0 = s1;
7 s2 = s3;
8 s4 = s5;
9 result = Acc1

5.6 Conclusion

A framework has been presented that enables designing of fast, filter-size in-
dependent implementations of some of the essential filters necessary for edge
& blob detection in the context of processing of OCT fingerprint scans. So-
lutions have been demonstrated for fast approximate filtering by a Gaussian
core, its first derivative and the LoG core. The presented Gaussian filtering
solution also supports separable filtering, which allows for usage of the al-
gorithm as a building block in calculating Difference of Gaussians (DoG). In
addition, an alternative approach has been suggested that allows implemen-
tations of fast custom filtering. In particular, a specific design of a parametriz-
able filter for detection of positive edges in the scan-lines of the OCT data has
been described in detail.
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Chapter 6

Fingerprint Extraction

6.1 Summary

This chapter is based on the paper by Sousedik & Breithaupt [100]. Utilizing
the data collected using our sensor (see Chapter 4) and our fast edge detection
filtering approach (see Chapter 5), we developed a technique for extraction of
the outer and inner fingerprints from the OCT scan. Our GPU-accelerated
technique can extract both fingerprints from a 2GB OCT scan in less than 1.25
seconds. The OCT-extracted fingerprints have been evaluated by comparisons
to fingerprints captured by a standard 2D sensor. Our results show that the
sub-surface inner fingerprints extracted from underneath the fingertip skin
perform better than the fingerprints extracted from the surface, which shows
great promise of the OCT for the fingerprint sensing scenario. At the same
time, despite the potential of the OCT fingerprint sensor for improvements,
the subsurface inner fingerprints do perform at near-practical error rates al-
ready.

6.2 Related Work

Despite the fact that a number of initial studies exists regarding the appli-
cation of the OCT for fingerprint sensing and genuine/fake finger detection
(see Chapter 2, Section 2.5.2, OCT), very few studies take the speed of the pro-
cessing into account. OCT fingerprint scans represent volumetric data of very
significant sizes if one aims for standard resolutions of 500dpi or 1000dpi in
2D, which easily exceeds 1 GB per finger (1024x1024x1024 at 8bit). This fact
calls for an approach where the speed of the processing techniques is taken se-
riously into account as an actual research challenge, rather than disregarded
as simply a matter of faster processing hardware.

In addition, majority of the studies assume a finger pressed against a flat
surface (e.g. glass) during the scanning, which greatly simplifies the pro-
cessing challenges (since the fingerprint surface is flattened) but introduces
a number of disadvantages shared with standard 2D fingerprint sensors, such
as difficulty to scan wet, greasy, dry or soft-skinned fingers, which could oth-
erwise be easily overcome by the OCT [28, 74].

Last but not least, the free-air scanning approach taken in our work has the
potential for touch-less fingerprint sensing applications, where the subjects
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do not have to come into contact with any potentially unclean surface of the
fingerprint sensor, increasing acceptability and convenience.

Regarding the work that satisfies the challenging constraints mentioned
above, we are aware only of the promising works by Darlow et al. [26, 27, 28].

6.3 Fingerprint Surface Extraction in 3D

Our approach is to scan the fingerprint free-air, such that it is undistorted by
pressing against a flat surface (such as glass). This comes with the challenge
of precise 3D segmentation of the volumetric fingerprint OCT scan, so that
further analysis is possible. A well segmented OCT fingerprint scan could be
further used for extracting the fingerprints both from the surface and from
underneath the skin and it could also serve well for further analysis of the
skin regarding PAD (Fig. 6.3).

6.3.1 Database

We utilized the OCT fingerprint scan dataset collected with our OCT finger-
print sensor: [99] (see Chapter 4, Section 4.4.2):

• 1408x1408x1024 voxels

• 8bit per voxel

• 72 participants

• all 10 fingers

• 720 OCT fingerprint scans in total

• 2x2cm scanning area

Along with the OCT fingerprints, the dataset also contains standard 2D fin-
gerprints collected from an identical set of participants, in order to enable
testing of compatibility of the OCT fingerprints and the standard 2D finger-
prints. This dataset contains 520 2D fingerprints, of all 10 fingers from 52
participants.

6.3.2 Efficient edge detection

In order to address the challenge of processing 2GB OCT fingerprint scans in
a matter of a few seconds, as required by numerous applications including
border control, we took a combined approach of cuda GPU acceleration and
our specifically developed fast filter-size-independent filtering technique, dis-
cussed in detail in Chapter 5, Section 5.5.2. Our technique allows to perform
the convolution with the core illustrated by Fig. 6.1a, by computing a convo-
lution with the core’s second derivative - Fig. 6.1c - and double integration on
the fly.
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(a) (b) (c)

Figure 6.1: Our fast approximate edge detection filter and its derivatives (a)
filter core G(x); (b) first derivative G′(x); (c) second derivative G′′(x)

Notably, the core illustrated by Fig. 6.1c has always only 6 non-zero coef-
ficients, which come in 3 pairs of 2 coefficients positioned immediately next
to each other - Fig. 5.5. This allows for a very efficient implementation of
the convolution on the GPU, since only 3 memory reads per voxel are nec-
essary to perform the filtering along the scan-lines, as the other 3 reads can
be implemented using 3 delay variables reusing the results from a previous
voxel. Integrating the results twice along the way allows to obtain the convo-
lution of the scan-lines with the core, G(n), in very efficient manner in a single
cuda GPU thread per scan-line. In addition, the technique can calculate the re-
sults for each of the scan-lines without using any extra intermediary memory
buffer, which supports both the speed and the flexibility of the approach.

The actual edge detection is performed by identifying the position of a
maximum during the process of convolution of the OCT scan-lines and the
above discussed convolution core.

6.3.3 Outer Fingerprint Surface

However, it is highly sub-optimal to simply perform the above discussed edge
detection for each of the (x, y) in-depth scan lines and treat the result as the
detected surface. The OCT scan inherently contains large amounts of noise,
and such an approach would result in a highly noisy surface (point-cloud),
full of holes, where the detection failed due to the presence of the noise - Fig.
6.2a.

In addition, the strength of the finger’s response diminishes with depth,
which poses further challenges - Fig. 6.3.

In order to address the challenges, we took inspiration from the approach
by Darlow et al. [27], where the fingerprint surface detection is performed us-
ing a pyramid of down-sampled versions of the original 3D OCT fingerprint
data. Unlike Darlow et al. [27], who suggest building the pyramid by down-
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(a) (b)

Figure 6.2: Index finger; (a) noisy 3D point-cloud obtained by direct edge-
detection filtering along the scan-lines at full resolution only; (b) continuous
3D fingerprint surface (for comparison)

depth scan-line depth scan-line

(a) (b)

Figure 6.3: OCT finger 2D slices - inner and outer fingerprint edges visualiza-
tion

sampling the OCT scan in all three dimensions, we have taken an approach
where the pyramid is built by downsampling the scan always to 1/2 in width
and height, leaving the depth dimension unaltered as illustrated by Fig. 6.4.
The detection of the full-resolution outer fingerprint surface, outer0(x, y), is
then performed iteratively using the Alg. 6.1.

The rationale is that it is far more likely to correctly detect the position of
the fingerprint surface in a more downsampled scan, since the down-sampling
heavily reduces the noise levels. If the higher-resolution surface that is being
extracted in iteration n, outern(x, y), is then searched for only in the proxim-
ity of the lower-resolution surface, outern+1(x, y), detected in a more down-
sampled version of the scan, the likelihood of a correct detection is greatly
increased. This creates an iterative chain where the lower-resolution surfaces

96



6.3 FINGERPRINT SURFACE EXTRACTION IN 3D
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Figure 6.4: Downsampling of the OCT scan along the width and height di-
mensions

obtained from the more-downsampled lower-resolution and as such less-noisy
versions of the scan serve as a prediction of where the surface should be in the
next higher-resolution iteration.

In addition, detecting the surface, outern(x, y), only in a distance, dn, from
a lower resolution surface outern+1(x, y), allows for a significant speed-up
since the entire scan does not need to be processed on any but the most down-
sampled level.

Algorithm 6.1: Outer fingerprint detection

1 Copy data from RAM to the GPU;
2 From the original OCT fingerprint scan, V0(x, y, z), generate N

additional versions of the OCT scan, V1(x, y, z)...VN (x, y, z), each
downsampled to 1/2 of the previous one along width and height
dimensions;

3 While filtering the scan-lines using the edge detection filter, detect the
maximum position in each VN (x, y) scan-line and store it to
outerN (x, y);

4 for each n in N − 1 to 0 do
5 Up-sample outern+1(x, y) by a factor of two into regionn(x, y)
6 While filtering the scan-lines using the edge detection filter, detect

the maximum position in each Vn(x, y) scan-line and store it to
outern(x, y) IF at a distance dn from regionn(x, y);

6.3.4 Fingerprint Flattening

After the outer fingerprint surface, outer0(x, y), has been identified at full res-
olution, the detection of the inner fingerprint surface constitutes the natural

97



6. FINGERPRINT EXTRACTION

next step. The inner fingerprint is more difficult to detect, compared to the
outer fingerprint, since the contrast between the inner fingerprint and and
surrounding tissue is much lower than the contrast between the outer finger-
print and the empty air - Fig. 6.3.

In addition, the depth at which the inner fingerprint appears in various
people varies widely. (The maximum inner fingerprint depths in the dataset
are commonly 5x greater than the minimum depths.) If one attempts to de-
tect the inner fingerprint simply as a second surface around the outer surface,
outern(x, y), the outer fingerprint easily interferes with the inner fingerprint
on the more downsampled versions of the scan and the detection is highly un-
reliable, especially for fingers where the distance between the inner and outer
layer is rather small.

In order to address this issue, we perform full flattening of the original
OCT scan according to the identified outer fingerprint surface. By flattening
we mean re-arranging of the data along the z-axis using the following equa-
tion (Fig. 6.5):

V0(x, y, z)← V0(x, y, z − outer0(x, y)) (6.1)

Figure 6.5: fingerprint flattening - a cut through the fingerprint scan before
and after the flattening procedure (5 averaged slices)

6.3.5 Inner Fingerprint Surface

The re-arranged data naturally put any remnants of the outer fingerprint close
to the bottom of the scan. This prevents interference of the outer fingerprint
during the inner fingerprint detection.

Even though the algorithm, used for extracting the inner fingerprint sur-
face, is similar to the algorithm for extracting the outer fingerprint surface,
there are two important differences.
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The inner fingerprint surface is not searched using a constant filter size,
but rather an adaptive filter size. This is necessary to handle the cases of very
thin inner layers, where the inner fingerprint is very close to the outer one. It
also improves performance for the fingerprint where the the distance between
the outer and inner fingerprint surface is large, and as such a larger filter size
can perform much more reliably.

The inner fingerprint surfaces, detected even in the most down-sampled
versions of the flattened OCT scan, can still contain significant number of er-
rors. This appears to be caused by interference of the inner fingerprint with
itself, if a significant amount of down-sampling is considered. The problem
is mitigated by a guessing procedure, where any detected points that devi-
ate too much from the average depth range are replaced by a position that
gained maximum response in a histogram of the detected positions - by the
most likely depth encountered. Although this could seem to damage the inner
fingerprint surface, in practice, it provides a precise-enough estimate for the
higher-resolution detection steps, and the technique can recover even from
severe failures encountered at the most down-sampled level.

The concept is described by Alg. 6.2.

6.3.6 Surface Conversion to 2D Fingerprint

We extract the fingerprint into 2D representation by utilizing the identified 3D
surface, masking out the random noise that appears where the finger was not
present - Fig. 6.8, 6.11. The concept is described by Alg. 6.3.
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Algorithm 6.2: Inner fingerprint detection

1 Flatten the fingerprint according to Eq. 6.1;
2 From the flattened OCT fingerprint scan, V0(x, y, z), generate N

additional versions of the OCT scan, V1(x, y, z)...VN (x, y, z), each
downsampled to 1/2 of the previous one along width and height
dimensions (re-calculate the pyramid for the flattened scan);

3 optimal filter size = DetermineOptimalF ilterSize() (Alg. 6.4);
4 set optimal filter size as the edge detection filtering size for all

further operations;
5 While filtering the scan-lines using the edge detection filter, detect the

maximum position in each VN (x, y) scan-line and store the maxima
positions to innerN (x, y) and the value of the maxima (the response
of the filter at the maxima positions) to confidenceN (x, y);

6 for each n in N − 1 to 0 do
7 if n > ec depth limit then
8 Calculate a weighted histogram h(d) of innern+1(x, y) using

confidencen(x, y) as weights;
9 Gaussian blur the h(d) as a 1D function;

10 Detect the maxima, m, and its position, p, in h(d);
11 From the position, p, search to the right and to the left in h(d)

until a number smaller than m · ratio is encountered
(intuitively, measure the width of the peak in the histogram);

12 Utilize the identified positions to calculate the acceptable level
of deviation, inner layer deviation ;

13 Process innern+1(x, y) such that any value further than
inner layer deviation/2 · d ratio from m is replaced by m
(Replace values too far from the average by the average value)

14 Up-sample innern+1(x, y) by a factor of two into regionn(x, y);
15 While filtering the scan-lines using the edge detection filter, detect

the maximum position in each Vn(x, y) scan-line and store the
maxima positions to innern(x, y) and the value of the maxima
(the response of the filter at the maxima positions) to
confidencen(x, y) IF at a distance dn from regionn(x, y);
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Algorithm 6.3: 2D fingerprint extraction

1 Process the 3D fingerprint surface, inner or outer, s(x, y), by a 2D
Gaussian core and store to sblurred(x, y);

2 ssubtracted ← (s− sblurred) · fingerprint height ratio;
3 sfingerprint(x, y)← s(x, y) IF s(x, y) ∈ [0, 1];
4 sfingerprint(x, y)← 1 IF s(x, y) > 1;
5 sfingerprint(x, y)← 0 IF s(x, y) < 0;
6 Threshold the confidence map confidence(x, y) into fingerprint and

empty area, median filter to remove holes, and utilize to mask out
the noisy areas;

Algorithm 6.4: Determining optimal filter size

1 Function DetermineOptimalFilterSize ()
2 current maxima = −INF ;
3 for each tested filter size in l to h with step s do
4 While filtering the scan-lines using the edge detection filter,

detect the maximum position in each VN (x, y) scan-line and
store the maxima positions to innerN (x, y) and the values of
the maxima (the response of the filter at the maxima positions)
to confidenceN (x, y);

5 Calculate a weighted histogram h(d) of innerN (x, y) using
confidenceN (x, y) as weights;

6 Gaussian blur the h(d) as a 1D function;
7 Detect maxima m in h(d);
8 if m > current maxima then
9 set current maxima← m;

10 set optimal filter size← tested filter size;
11 return optimal filter size;

6.4 Results

As discussed above, the fingerprint surfaces are first extracted by our method
as depth maps that describe the 3D structure of the particular fingerprint sur-
face (Alg. 6.1, 6.2). The extracted fingerprint surfaces are then used to extract
2D fingerprint images (Alg. 6.3).

Fig. 6.6 visualizes an index finger OCT scan. The corresponding extracted
surfaces, both for the outer fingerprint and the inner fingerprint, are illus-
trated by Fig. 6.7. The associated 2D fingerprints are illustrated by Fig. 6.8.
Fig. 6.9 visualizes an OCT fingerprint scan of a thumb. The fingerprint sur-
faces extracted from the scan are illustrated by Fig. 6.10 and the corresponding
2D fingerprints by Fig. 6.11.
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Figure 6.6: Index finger; 3D scan visualization
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Figure 6.7: Index finger; Top: outer fingerprint surface; Bottom: inner finger-
print surface
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Figure 6.8: Index finger; Top: 2D outer fingerprint; Bottom: 2D inner finger-
print
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Figure 6.9: Thumb; 3D scan visualization
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Figure 6.10: Thumb; Top: outer fingerprint surface; Bottom: inner fingerprint
surface
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Figure 6.11: Thumb; Top: 2D outer fingerprint; Bottom: 2D inner fingerprint
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Direct comparison with the method of Darlow et al. [28] is difficult, since
we were not able to obtain the codes/executables from the authors and we do
not have any opportunity to share the data either due to their sensitive nature.
However, we believe our method clearly outperforms the method of Darlow
et al. [28] for the following reasons:

• Our approach using adaptive filter size allows processing of the cases
where the inner fingerprint is at very small depth - something that is not
possible using a simple 3-point edge detector on a scan down-sampled
in all 3 dimensions as in [28]

• Our approach uses a filter with a wide support, which allows obtaining
a much higher quality surface than in [28]

• Darlow et al. [28] did not follow the path of extracting the 2D finger-
prints directly from the 3D surface, and instead utilized the surface sim-
ply as an estimate of the fingerprint positions. The fingerprint is read
off from the original scan by averaging the data above and below the
estimated surface. Our method does not require this, in fact, we were
able to obtain complete fingerprints using the layer information alone.

Nevertheless, we utilized the fingerprint surfaces as detected by our method
to replicate the fingerprint extraction technique proposed in [28] - by averag-
ing around the surface in the original scan. The results are illustrated by Fig.
6.12.
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Figure 6.12: 2D fingerprints extracted by averaging around the detected sur-
face similarly to Darlow et al. [28]; Top: index finger - outer (left) and inner
(right) fingerprint; Bottom: thumb - outer (left) and inner (right) fingerprint;

6.4.1 Compatibility with 2D Fingerprints

To further prove the robustness of our approach as well as test the compatibil-
ity of 3D-OCT-based and standard 2D fingerprinting, we performed a cross-
comparison of the fingerprints extracted from the OCT fingerprint scans using
our method and the 2D fingerprints acquired using a standard 2D fingerprint
sensor from the above mentioned dataset.

Fig. 6.13 illustrates the results of comparing each OCT-extracted outer
fingerprint to each 2D standard-sensor fingerprint. Fig. 6.14 illustrates the
results of comparing each OCT-extracted inner fingerprint to each standard-
sensor 2D fingerprint.

The metrics considered are the propotion of miss-classified comparisons
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Figure 6.13: DET curve for the outer fingerprints and the 2D fingerprints com-
parisons
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Figure 6.14: DET curve for the inner fingerprints and the 2D fingerprints com-
parisons

of identical fingerprints, false non-match rate (FNMR), and the proportion
of miss-classified comparisons of non-identical fingerprints, false match rate
(FMR). The failure to extract (FTX) metric expresses the proportion of finger-
prints the comparison software failed to extract fingerprint features from [52].
The outer fingerprints compared to the 2D fingerprints with an equal-error-
rate (EER) of 0.7% and a FTX rate of 11%. The inner fingerprints compared to
the 2D fingerprints with EER of 1% and a FTX rate of 3.5%. For comparison,
the 2D fingerprints from a commercial sensor resulted in FTX of 3.4%. The
fingerprints were compared using the commercial fingerprint identification
software Verifinger 9.0.

6.4.2 Speed & Memory

The durations of the different stages of the fingerprint extraction pipeline, av-
eraged over all scans in the dataset, are listed in Tab. 6.1. The measurements
were taken either using the cuda GPU time measurement API or using the
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standard C CPU time measurement API. For the CPU measurements, syn-
chronization with the GPU was always performed prior to the measurement,
such that all previously issued GPU computations are guaranteed to be fin-
ished.

The pipeline requires 3GB of GPU RAM, where 2GB are taken by the scan
data and less than 1GB is used for storing the generated image pyramid, the
results of the fingerprint surface detection and other intermediary variables.

6.5 Conclusion and Future Work

Based on the fact that the inner fingerprint seems to perform better than the
outer fingerprint, considering the FTX, we believe it is indeed very promising
to expect significant improvements from the OCT regarding enrollment of in-
dividuals with outer fingerprints of insufficient quality that cannot be handled
by current 2D sensors. At the same time, the fingerprints already do perform
close to practical error rates - in spite of the significant potential of our custom-
built OCT scanner for improvements. Our technique can process a 2GB scan
in less than 1.25 s on an older GTX 660 Ti GPU with 3GB RAM, which shows
promise both regarding the speed and memory associated challenges.

The future work would involve further improvements of the underlying
scanner design. In addition, the method for the detection of the outer finger-
print could probably benefit from further improvements.
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6. FINGERPRINT EXTRACTION

Table 6.1: Duration of different stages of the processing pipeline on different
NVIDIA GeForce GPU models (average over all scans in the dataset); (CPU -
measurement on CPU, GPU - measurement on GPU)

GTX 980
4GB (ms)

GTX 780
3GB (ms)

GTX 660 Ti
3GB (ms)

CPU-GPU scan copy (CPU) 438.42 643.20 428.70
image pyramid allocation (GPU) 3.48 4.46 4.34
V0 to V1 downsampling (GPU) 15.44 16.12 23.64
V1 to V2 downsampling (GPU) 3.97 3.49 6.57
V2 to V3 downsampling (GPU) 1.14 0.97 1.79
V3 to V4 downsampling (GPU) 0.28 0.28 0.46
V4 to V5 downsampling (GPU) 0.10 0.20 0.17
V5 outer layer detection (GPU) 0.49 0.94 0.86
V4 outer layer detection (GPU) 0.62 1.15 1.13
V3 outer layer detection (GPU) 1.61 2.54 3.50
V2 outer layer detection (GPU) 3.76 6.95 10.88
V1 outer layer detection (GPU) 10.10 21.77 34.12
V0 outer layer detection (GPU) 18.25 24.10 39.50

2D outer fingerprint
from 3D surface (CPU) 41.42 41.14 41.68

total outer print
(including extra glue code,

after data copy to GPU) (CPU)
133.98 162.12 207.40

fingerprint flattening (GPU) 146.63 64.63 281.17
V0 to V1 downsampling

of the flattened scan (GPU) 24.20 22.13 29.41

V1 to V2 downsampling (GPU) 3.97 3.48 6.59
V2 to V3 downsampling (GPU) 1.13 0.96 1.79
V3 to V4 downsampling (GPU) 0.27 0.27 0.46
V4 to V5 downsampling (GPU) 0.10 0.19 0.16
determining filter size (CPU) 89.69 104.84 101.17
V5 inner layer detection (GPU) 0.47 0.92 0.81
V4 inner layer detection (GPU) 0.28 0.46 0.41
V3 inner layer detection (GPU) 0.68 0.86 1.09
V2 inner layer detection (GPU) 2.16 2.84 4.20
V1 inner layer detection (GPU) 7.77 12.78 17.97
V0 inner layer detection (GPU) 28.64 46.88 65.85

2D inner fingerprint
from 3D surface (CPU) 48.29 47.73 48.46

total inner print
(including extra glue code) (CPU) 375.58 330.23 582.12
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Chapter 7

Sweat Glands Detection

7.1 Summary

This chapter proposes a novel fast memory-efficient filter-size-independent
scheme for calculating 3D Difference of Gaussians (DoG) both on CPUs and
GPUs. The DoG-filtering scheme is used to emphasize the sweat glands in vol-
umetric OCT fingerprint scans and a multiple-source multiple-target graph-
based shortest path searching algorithm is proposed for detection of the paths
taken by the sweat glands inside the fingerprint scans. The work is planned
for submission to the IET Biometrics journal.

7.2 Introduction

Regarding the problem of robust detection whether a genuine human finger
was scanned - the problem of Presentation Attack Detection (PAD) - the OCT
fingerprint scans contain multiple useful features.

One of the most apparent features, apart from the inner fingerprint scanned
from underneath the skin surface, are the sweat glands. The sweat glands are
spiral structures, which can be observed between the fingerprint surface and
the inner fingerprint layer in the OCT scan. A sweat gland ends on the sur-
face of the fingerprint ridge as a sweat pore, which releases the sweat fluid
generated by the sweat gland in the process of perspiration.

Due to their microscopic size and irregular biological spiral shape, the
sweat glands can be expected to be extremely hard to replicate in artifact fin-
gerprints. A method for their reliable detection (and the subsequent analysis
of their shape) could therefore provide for a very strong fingerprint PAD so-
lution.

7.3 Challenges

The sweat glands are captured by the OCT as spiral structures starting at the
pores on the fingerprint ridges and ending at the boundary of the sub-surface
inner fingerprint - Fig. 7.1.

In the previous chapter, a method has been developed that can provide
for the 3D surfaces, outer0 and inner0, that describe the positions of the outer

113



7. SWEAT GLANDS DETECTION

and inner fingerprints in the OCT scan (see Algorithms 6.1, 6.2). Additionally,
an OCT scan flattening procedure according to the outer fingerprint surface
outer0 has been implemented as follows (Fig. 7.1):

Vf (x, y, z)← V0(x, y, z − outer0(x, y)) (7.1)

If the OCT scan has been flattened according to Eq. 7.1, the problem of
searching for the sweat glands is simplified to detecting them as spiraling
structures starting at the bottom of the flattened scan and ending close to the
inner fingerprint boundary.

However, the directions of the sweat glands can deviate significantly from
the strictly vertical direction in both of the lateral coordinates.In some cases,
their direction also cannot be well approximated by a strictly linear path, but
rather by a slightly curved shape. These properties suggest a need for a rather
generic approach that could handle the search for each sweat gland as a search
for a rather generic path from the bottom to the top of the flattened fingerprint
volume (Fig. 7.1).

Figure 7.1: fingerprint flattening - a cut through the fingerprint scan before
and after the flattening procedure (5 averaged slices)

In addition, the volume between outer fingerprint surface, outer0, and the
inner fingerprint surface, inner0, represents a significant amount of volumet-
ric data to analyse. This poses a challenge regarding the speed of the pro-
cessing considering the total processing times of a few seconds necessary for
typical applications of fingerprint biometrics such as border control. Since we
ultimately aim for a version of our OCT fingerprint scanner as an embedded
system with a limited size and cost, the memory requirements of the process-
ing algorithm are also of significant interest. The combination of the strong
requirements on the low memory usage and the high processing speed sug-
gests the need for a novel domain-specific approach rather than the usage of
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existing medical imaging methods - many of which are well suited only for
systems offering only a limited level of parallelism, such as the CPU, and not
for massively-parallel systems as as the GPUs.

7.4 Memory Efficient 3-D Difference of Gaussians

Difference of Gaussians (DoG) operator is a well-known and commonly used
initial step in various edge and blob detection approaches, and as such, rep-
resents an important building-block of many modern computer vision algo-
rithms.

The DoG-based blob detection algorithms are typically based on the abil-
ity of the DoG operator to smoothen the image (handling the image noise in
robust fashion) and, at the same time, point out the centers of the blobs in the
original image as maxima in the DoG-filtered image. As such, by searching
the DoG-filtered image for local maxima, it is possible to identify blobs in the
original image.

Since the sweat glands can be seen as prolonged 3D blobs taking a rather
linear path from the bottom of the flattened OCT fingerprint scan to the in-
ner fingerprint layer, filtering with a 3D DoG operator appears to be a natural
processing step in the detection of the paths the sweat glands are taking. The
3D DoG simultaneously operates in all 3 dimensions, offering much better
potential for noise resilience than any approach that would attempt to divide
the volumetric data into 2D slices that would be processed separately. Even
though division into (and separate processing of) 2D slices is a common ap-
proach for analyzing 3D volumetric data, it involves some level of disregard-
ing the full 3D neighborhood of every voxel during the analysis. Given the
noise levels typical for the OCT data, this would be a suboptimal approach.

7.4.1 2-D Difference of Gaussians

For 2D-images, the DoG-filtered result can be computed by filtering the image
by two 2D Gaussian cores of different, σ1 and σ2, parameters. The resulting
filtered images are subtracted from one another, emphasizing the edges and
blobs as local extrema. Intuitively, the two resulting images, Gaussian-blurred
to a different extent, will differ exactly at the edge boundaries. In addition,
assuming that the two Gaussian cores are larger in size than the blobs in the
original image, local extrema will be generated at the centers of weight of the
blobs.

The computational efficiency of filtering with the DoG-operator depends
directly on the ability to efficiently compute the convolution of the original
image with the Gaussian core. Fortunately, the Gaussian core is separable,
which allows, in the case of the 2D images, for filtering in two separate filter-
ing passes in the horizontal and vertical direction.
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7.4.2 3-D Difference of Gaussians

This property of separability extends to filtering of the volumetric data with
a 3D Gaussian core - 3 separate filtering passes in the vertical, horizontal and
depth directions are necessary. In case of the volumetric data, the separability
of the Gaussian core is a crucial property for computation of the 3D Gaussian-
blurred version of the original volumetric data, since the direct convolution of
3D data with a 3D convolution core would generate extremely large and very
likely impractical computational demands.

In order to perform a separable 3D Gaussian filtering of volumetric data,
3 separate 1D filtering passes are necessary - all the data have to be processed
along the x, y and z axes. However, the existing fast methods for performing
the elementary step of 1D Gaussian filtering, which is necessary for computa-
tion of a full 3D Gaussian blurred version of 3D volumetric data, do require
additional memory buffers as discussed in detail in Chapter 5. This need for
additional memory buffers for the 1D filtering passes results in the require-
ment for an extra memory buffer of the full size of the 3D Gaussian-filtered
3D volumetric data.

The amount of extra memory needed becomes even more severe for the
3D DoG computation. Computation of the 3D DoG requires two extra mem-
ory buffers of the size of the original volumetric data, very likely at higher
precision than the original data in order to achieve high sensitivity of the DoG
operator. For example, a 1GB of 8-bit volumetric data could easily require ex-
tra 4 + 4 = 8 GB of memory buffers at the 32-bit floating point precision in
order to compute the 3D DoG.

Naturally, it is possible to try to divide the volume into sub-volumes and
process those separately, but this will lead to issues with overlaps between
the 3D sub-volumes (due to boundary issues) and will become inefficient for
larger filter sizes.

Based on the novel single-pass filter-size-independent 1D Gaussian filter-
ing technique introduced in Chapter 5, we propose a following novel scheme
for fast filter-size independent and memory-efficient computation of the DoG
operator. Our scheme is possible due to the fact that our proposed 1D Gaus-
sian filtering approach, which serves as the essential building-block in the
separable 3D DoG filtering, operates in a single pass without the need for ad-
ditional memory buffers.

Our fast memory-efficient 3D DoG filtering scheme is shown in Fig. 7.2
and described by Algorithm 7.1.

The proposed scheme offers a very low intermediary memory footprint,
requiring only a limited number of 2D slices as intermediary buffers - com-
pletely independently of the DoG filter size. 4 2D slices are needed in or-
der to store the content of the 4 accumulators (necessary for our single-pass
1D Gaussian filtering technique (see Chapter 5)) for each each of the two σ1
and σ2 filterings. In addition, a 2D slice for storage the partial filtered data
is needed for each of the σ1 and σ2 filterings, before the final slice of 3D DoG

116



7.4 MEMORY EFFICIENT 3-D DIFFERENCE OF GAUSSIANS

1.

2.

3.

1.

2.

3.

−
4.

σ1

σ1
σ1

σ2

σ2
σ2

(a) (b)

(c)

x

z

y

Figure 7.2: The proposed memory-efficient 3D DoG filtering scheme; (a) a step
of filtering of the 3D volume by a Gaussian core of σ1; (b) a step of filtering of
the 3D volume by a Gaussian core of σ2; (c) a step of 3D DoG filtered results;
1. filtering of the volume producing a 2D slice filtered by a 1D Gaussian core
along the z axis; 2. filtering of the 2D slice from step 1. along the x axis by a
1D Gaussian core; 3. filtering of the 2D slice from step 2. along the y axis by
a 1D Gaussian core; 4. subtraction of the two 2D slices filtered (σ1 and σ2) in
order to compute the resulting 3D DoG filtered slice

filtered results can be computed.

7.4.3 GPU Implementation

The GPUs are massively-parallel systems and require a significant amount
of tasks possible to perform in parallel in order to have their computational
potential fully utilized. Even though the proposed 3D DoG filtering scheme
as described by Algorithm 7.1 does readily allow for a certain level of parallel
computation of the 1D filtering passes, the amount of parallelism is rather
insufficient for modern GPUs. The bottleneck of the scheme described by
Alg. 7.1 comes in the steps of the filtering of the 2D slices. 1D filtering of
a 2D slice along a particular axis, all scan-lines in parallel, does not typically
offer enough parallel tasks for a modern GPU.

Another challenge is associated with the typical speed-critical requirement
for memory-coalesced access to the data on single instruction multiple data
(SIMD) systems such as GPUs. For a coalesced data access, a single SIMD
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Algorithm 7.1: The proposed memory-efficient 3D DoG filtering
scheme
1 foreach 2D slice, S(x, y), in the 3D volume Vf (x, y, z) do
2 using the single-pass filter-size-independent Gaussian filtering

technique described in Chapter 5, calculate two 2D slices, Gz1(x, y)
and Gz2(x, y), of the original volume Gaussian filtered along the z
axis with parameter σ1 and σ2;

3 Gaussian filter the 2D slices, Gz1(x, y) and Gz2(x, y), along the x axis
with parameters σ1 and σ2, producing slices Gzx1 (x, y) and
Gzx2 (x, y);

4 Gaussian filter the 2D slices, Gzx1 (x, y) and Gzx2 (x, y), along the y
axis with parameters σ1 and σ2, producing 3D Gaussian filtered
slices Gzxy1 (x, y) and Gzxy2 (x, y);

5 Subtract the 2D slice, Gzxy2 (x, y), from the 2D slice, Gzxy1 (x, y),
obtaining the resulting DoG(x, y), which is a 2D slice of a fully 3D
DoG filtered version of the original volume;

instruction accessing the data, representing a step of the computation of mul-
tiple parallel tasks at once, needs to request a continuous block of memory,
rather than pieces of data scattered randomly across the address space.

When processing 2D images, all scan-lines in parallel along both the x and
y axes, it is not possible to directly access the data in coalesced fashion when
filtering along both axes. Depending on organization of the data in the mem-
ory (row-major vs. column major), one of the axes will not allow for direct
coalesced access.

When processing a 3D volume in parallel along the scan-lines along all the
x, y and z axes, it is not possible to find a combination of data storage and
SIMD processing scheme that would lead to coalesced access for all the three
axes. Depending on the organization of the 3D data in memory, one of the 3
axes will not allow for coalesced access.

An extra technical challenge regarding our GPU implementation is associ-
ated with the design choice of storing the volumetric OCT data as a 3D texture
rather than raw data in the GPU memory. The 3D texture allows to utilize the
hardware texture caches, and somewhat relaxes the hard requirements for the
coalesced memory access for scenarios where data with narrow spatial locality
are accessed. This design choice was made primarily to support more specific
analysis of individual sweat glands in the future work, but could serve well
also in order to support the speed of other processing approaches in the fu-
ture, which do not fully meet the hard requirements for memory coalescing.
For our 3D DoG implementation the usage of the texture memory means that,
unlike for the raw data storage, the high speed access to the volumetric data
is not possible along 2 out of 3 axes, but only along one of the axes. The other
axis that would provide for high speed access in case of raw data storage,
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does provide for a reduced access speed. This effect is caused by the special
organization of the textures in memory of the GPU - supporting the speed of
spatially localized access at the cost of the speed of the usual coalesced data
access.
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Figure 7.3: The proposed 3D DoG filtering scheme in our GPU implementa-
tion; (a) a step of filtering of the 3D volume by a Gaussian core of σ1; (b) a step
of filtering of the 3D volume by a Gaussian core of σ2; (c) a step of 3D DoG
filtered results; 1. filtering of the volume producing a small 3D sub-volume fil-
tered by a 1D Gaussian core along the z axis; 2. filtering of the 3D sub-volume
from step 1. along the x axis by a 1D Gaussian core; 3. filtering of the 3D sub-
volume from step 2. along the y axis by a 1D Gaussian core; 4. subtraction of
the two filtered 3D sub-volumes (σ1 and σ2) in order to compute the resulting
3D DoG filtered sub-volume

A GPU implementation that addresses the above mentioned GPU-specific
challenges is described by Algorithm 7.2 and Fig. 7.3.

In order to provide for a sufficient level of parallelism while filtering along
all 3 axes, as necessary for a high-speed GPU implementation, we iteratively
filter 3D sub-volumes (Alg. 7.2, Fig. 7.3), S(x, y, z), of the original volume V
rather than 2D slices only as in the original version of proposed scheme (Alg.
7.1, Fig. 7.2). Even though this leads to increased memory requirements, it al-
lows to fully utilize the parallel processing capabilities of the GPUs necessary
for optimal performance regarding the speed of the DoG computation.

The single-pass nature of our Gaussian filtering scheme allows to seam-
lessly continue with filtering of the next sub-volume, without any additional
computation due to boundary overlaps dependent on the filter size - the state
of the filtering along the x-axis can be stored at the end of each iteration and
re-loaded at the beginning of the next. As a consequence, the computational
complexity of our GPU-specific DoG filtering scheme remains completely in-
dependent of the chosen filter size.
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Algorithm 7.2: The proposed memory-efficient 3D DoG filtering
scheme, GPU-specific implementation

1 foreach 3D sub-volume (non-overlapping), S(x, y, z), in the 3D volume Vf
(x-length of the sub-volume S(x, y, z) is a multiple of thread count (32))
do

2 using the single-pass filter-size-independent Gaussian filtering
technique described in Chapter 5, calculate two 3D sub-volumes,
Gz1(x, y, z) and Gz2(x, y, z), representing the sub-volume S(x, y, z)
as Gaussian filtered along the z axis with parameter σ1 and σ2;

3 Gaussian filter the 3D sub-volumes, Gz1(x, y, z) and Gz2(x, y, z),
along the x axis with parameters σ1 and σ2, producing
sub-volumes Gzx1 (x, y, z) and Gzx2 (x, y, z), reusing the filtering
state information from previous iteration. During the filtering,
transpose each thread count x thread count (32 x 32) patch along
the dimensions (x, y), before storing to the buffer;

4 Gaussian filter the 3D sub-volumes, Gzx1 (x, y, z) and Gzx2 (x, y, z),
along the y axis with parameters σ1 and σ2, producing 3D
Gaussian filtered sub-volumes Gzxy1 (x, y, z) and Gzxy2 (x, y, z). The
transposed data can be read full-speed in coalesced fashion;

5 Subtract the 3D sub-volume, Gzxy2 (x, y, z), from the 3D
sub-volume, Gzxy1 (x, y, z), obtaining the resulting DoG(x, y, z),
which is a 3D sub-volume of a fully 3D DoG filtered version of
the original volume Vf ;

In order to provide for optimal performance of the fingerprint layers de-
tection described in Chapter 6, the volumetric OCT fingerprint data are stored
in the GPU memory in such way that the fastest coalesced access to the data
is provided while filtering along the z-axis, where z-axis represents the in-
depth direction into the scanned finger. Naturally, the depth range between
the outer and inner fingerprint layers in a flattened OCT fingerprint scan is
much smaller than the size of the fingerprint. As such, storing the yz 2D slices
that represent the filtering state along the x-axis lead to least amount of ex-
tra memory requirements (Fig. 7.3). In order to keep the state when filtering
along the x-axis and simultaneously allow for the data to be read in the first
filtering pass along the fast coalesced z-axis, we maintain the filtering state in
the second pass instead of the first pass as in the original scheme. This leads to
increase of the intermediary memory buffer that must hold also the filtering
results from the previous iteration regarding the overlap of the filtering core.
However, this introduces dependence on the filter size only regarding the
memory complexity - the computational complexity of the scheme remains
filter size independent.

Regarding the above mentioned challenge of maintaining high-speed co-
alesced access to the volumetric data along all three axes, we perform trans-
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position of every xy patch of size thread count x thread count (32 x 32 in the
current GPUs) upon finishing the second x-axis filtering pass using the ap-
proach described in [14]. The transposed organization of the patches allows
also the third y-axis filtering pass to read the data in full-speed coalesced fash-
ion rather than in the significantly slower un-coalesced fashion.

7.5 Graph-based Sweat Glands Detection

Filtering by the 3D DoG operator allows to emphasize centroids of the sweat
glands as maxima in the DoG-filtered version of the flattened OCT fingerprint
scan. However, it is still necessary to detect clusters of these centroids in order
to detect the position and path of an actual sweat gland.

We took an approach based on searching for multiple-source multiple-
destination shortest paths in a graph. The DoG filtered flattened OCT fin-
gerprint volume can be seen as a graph, where each voxel is connected to the
voxels in its vicinity and the graph-distance is based on a function of the DoG
amplitude at the two connected points, their mutual position (e.g. distance)
and possibly other factors. We consider all the points at the bottom of the flat-
tened volume - on the external fingerprint layer - the source points and try to
find n shortest paths leading to the destination points on the inner fingerprint
layer, since these paths are very likely to follow the paths of the sweat gland
centroids.

7.5.1 Sparse Representation of the DoG Filtered Volume

Performing such a calculation on the full DoG filtered flattened fingerprint
volume would very likely be prohibitive both spatially and computationally,
since we need a careful approach even to store the OCT volumetric data and
as such it is prohibitive, both spatially and computationally, to treat each voxel
as a node in a graph. However, since the DoG operator emphasizes the cen-
troids of the sweat gland paths as maxima in the DoG-filtered volume, it is
possible to proceed with a sparse representation of the DoG filtered flattened
fingerprint scan.

During the process of the GPU-based DoG filtering, our algorithm analy-
ses tiny sub-volumes (8x8x4 voxels, adjustable setting) and identifies a voxel
with maximum response of the DoG operator. Only the response of the identi-
fied voxel along with its original precise position is stored for further analysis
- the identified maximum response voxel provides for a node for the graph
analysis. The above described step allows to obtain a sparse representation
with acceptable spatial and computational complexity of the shortest path de-
tection.
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7.5.2 Graph-processing for Sweat Glands Path Detection

The paths of the sweat glands in the sparse representation of the DoG-filtered
flattened volumetric OCT fingerprint are searched as multiple-source multiple-
target shortest paths from the bottom to the top of the sparse volume in a
fashion similar to Dijkstra’s shortest path algorithm [33].

The algorithm requires one upward pass and one downward pass through
the sparse volume before the path of the sweat glands can be read off. The
upward pass creates a map of shortest paths from the nodes at the bottom of
the scan to each node inside the scan - Algorithm 7.3, Fig. 7.4. The distance
function between two nodes, N1 andN2, has been experimentally determined
as:

D(N1, N2) = (1.25− a2
256

)((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2)0.75, (7.2)

where x1, y1, z1 are the spatial coordinates of N1; x2, y2, z2 are the spatial
coordinates of N2; and a2 is the amplitude (response of the DoG operator) of
N2.

Considering the data from the upward pass only, it is not easy to identify
the most prominent paths yet, since many of the detected paths share sub-
paths. In order identify a set of unique prominent paths from the bottom to the
top of the sparse volume - the sweat glands paths - another downward pass
through the data that resulted from the upward pass is performed - Algorithm
7.4, Fig. 7.5. The downward pass through the data ensures that no sub-paths
of the identified prominent paths are being shared.

Intuitively, the method identifies the most prominent paths from the bot-
tom to the top of the sparse flattened OCT fingerprint scan after processing
with the blob-emphasizing DoG operator. The upward pass, Alg. 7.3, identi-
fies the optimal paths from each node at the bottom of the scan to each node
inside the scan, especially at the top of the scan. However, many of these paths
share a sub-path, which fact would lead to multiple overlapping sub-optimal
detections of the glands. The situation can be mitigated by another down-
ward pass - Alg. 7.4. Alg. 7.4 ensures that only the optimal path from each
group of paths that share a sub-path is selected. The weight of the optimal
path is propagated as weight of the node, M(N), to the bottom of the sparse
DoG-processed flattened fingerprint volume. If a node, N , is not part of the
optimal path in any of the sub-path-sharing groups, it’sM(N) is set to infinity
and the node, N , is effectively discarded. Consequently, by simple analysis of
the sparse volume at the bottom, it is possible to pick n nodes with smallest
M(N) and readily read-off the calculated sweat glands paths.

7.6 Results

Fig. 7.6 and 7.7 illustrates the flattened volume between the outer and inner
fingerprint of a thumb and an index finger. Fig. 7.6a and 7.7a represents a
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7.6 RESULTS

Algorithm 7.3: Upward pass of the multiple-source multiple-target
shortest path graph algorithm for glands detection on the GPU

1 foreach slice, S(x, y), of the sparse representation of the DoG-filtered
flattened OCT fingerprint volume, DoG(Vf )(x, y, z), from the bottom to
the top do

2 if slice at the bottom then
3 Initialize the weight W (N) of all nodes in the slice S to 0;
4 else
5 Initialize the weight W (N) of all nodes in the slice S to infinity;
6 Divide the slice, S(x, y), into a grid, G, of rectangular GPU blocks,

B (32x32);
7 foreach rectangular GPU block, B, in the grid, G do
8 Underneath the GPU block, B, define a sub-volume,

VB(x, y, z), of size (size(B) + 2spanL) x (size(B) + 2spanL) x
spanD, centered at the center of the block, B (Fig. 7.4);

9 foreach sub-slice, SB(x, y), of the defined sub-volume VB(x, y, z)
do

10 pre-load the sub-slice SB(x, y) into the fast on-chip GPU
shared memory;

11 foreach node, NB , in the processed GPU block, B do
12 Define a sub-volume, VN , of size (2spanL) x (2spanL) x

spanD, centered underneath the node, NB ;
13 Search the nodes in the sub-slice, SB , inside the volume

VN , and a find a node, NU , with minimum
graph-distance, W (NU ) +D(NU , NB);

14 if W (NU ) +D(NU , NB) < W (NB) then
15 Set W (NB) to W (NU ) +D(NU , NB);
16 Store the position of the minimum distance node,

NU , along with the GPU-block-node, NB ;

visualization the flattened OCT scanned data, Vf . Fig. 7.6b and Fig. 7.7b
represents the sparse DoG processed data, DoG(Vf ), (see Alg. 7.2) that serve
as an input to the graph-based glands detector (see Alg. 7.3, 7.4).

Visualizations of the results of the sweat glands detection (see Alg. 7.3, 7.4)
in the the thumb and index finger are illustrated by Fig. 7.8 and 7.9. Results
of detecting the first 100, 200 and 300 sweat glands are visualized.

7.6.1 Contrast and Other Issues

Correct functioning of the glands detection method depends on the assump-
tion that the sweat glands are the most prominent features in the volume be-
tween the outer and inner fingerprint with highest contrast to the surrounding
tissue compared to other features. However, in our dataset collected by the
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7. SWEAT GLANDS DETECTION

Algorithm 7.4: Downward pass of the multiple-source multiple-
target shortest path graph algorithm for glands detection on the GPU

1 foreach slice, S(x, y), of the sparse representation of the DoG-filtered
flattened OCT fingerprint volume, DoG(Vf )(x, y, z), from the top to the
bottom do

2 if slice at the top then
3 Initialize the weight M(N) of all nodes in the slice S to W (N);
4 else
5 Initialize the weight M(N) of all nodes in the slice S to infinity;
6 Divide the slice, S(x, y), into a grid, G, of rectangular GPU blocks,

B (32x32);
7 foreach rectangular GPU block, B, in the grid, G do
8 Over the GPU block, B, define a sub-volume, VB(x, y, z), of size

(size(B) + 2spanL) x (size(B) + 2spanL) x spanD, centered at
the center of the block, B (Fig. 7.4);

9 foreach sub-slice SB(x, y) of the defined sub-volume VB(x, y, z) do
10 pre-load the sub-slice SB(x, y) into the fast on-chip GPU

shared memory;
11 foreach node, NB , in the processed GPU block, B do
12 Define a sub-volume, VN , of size (2spanL) x (2spanL) x

spanD, centered over the node, NB ;
13 Search the nodes in the sub-slice, SB , inside the volume

VN , and a find a node, NU , with minimum weight
M(NU ) among the nodes that share a path with NB ;

14 if M(NU ) < M(NB) then
15 Set M(NB) to M(NU );
16 Store the position of the minimum weight node, NU ,

along with the GPU-block-node, NB ;

current version of the proposed OCT scanner this assumption is not fully met.
The current version of the OCT scanner lacks adaptive contrast management
that would adapt to the differences of reflective properties in fingers from dif-
ferent capture subjects. In addition, the contrast in the OCT scan currently
depends significantly on the distance of the skin from the surface of the sen-
sor - Fig. 7.6a, 7.7a. This dependency is non-linear in nature, possibly related
to widening/weakening of the sample light beam with distance from the fo-
cal plane (sensor surface) and cannot be corrected for in software in a simple
manner. In a significant percentage of cases, this issue causes the fingerprint
pattern to be of higher contrast compared to the sweat glands in the parts of
the fingerprint scanned closest to the scanner surface. The significance of the
issue increases with decreasing distance to the sensor surface, as illustrated by
Fig. 7.6a, 7.7a (We are limited regarding showing the effect on multiple cases
by the sensitive nature of the biometric fingerprint data).
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Figure 7.4: An iteration of the upward pass of the multiple-source multiple-
target shortest path graph algorithm for glands detection on the GPU; Blue -
the sparse representation of the DoG-filtered volume containing the flattened
fingerprint - DoG(Vf )(x, y, z); Green - a xy grid, G, (divided into GPU blocks
32x32) representing one iteration of the search for the nodes with minimum
graph-distances from the nodes underneath; Orange - sub-volume, VN , under
a single node, NB , that is being searched for the nodes, NU , with minimum
graph-distance from the node, D(NU , NB); Red - a sub-volume, VB , under a
single GPU block, B, that is being buffered into the fast GPU shared memory
for acceleration; Violet - a single GPU block, B
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Figure 7.5: An iteration of the downward pass of the multiple-source multiple-
target shortest path graph algorithm for glands detection; Blue - the sparse
representation of the DoG-filtered volume containing the flattened fingerprint
- DoG(Vf )(x, y, z); Green - a xy grid, G, (divided into GPU blocks 32x32) rep-
resenting one iteration of the search for the nodes that form an optimal path
with the processed nodes on the plane; Orange - a sub-volume, VN , over a sin-
gle node, NB , that is being searched for the nodes, NU , that form an optimal
path with the node, NB ; Red - a sub-volume, VB , over a single GPU block,
B, that is being buffered into the fast GPU shared memory for acceleration;
Violet - a single GPU block, B
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7. SWEAT GLANDS DETECTION

(a)

(b)

Figure 7.6: Top: Flattened middle layer of an OCT scanned thumb; Bottom:
Processed by our sparse DoG approach (sweat glands emphasized)
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(a)

(b)

Figure 7.7: Top: Flattened middle layer of an OCT scanned index finger; Bot-
tom: Processed by our sparse DoG approach (sweat glands emphasized)
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(a)

(b)

(c)

Figure 7.8: OCT scanned thumb; (a) First 100 sweat glands detections; (b) First
200 sweat glands detections; (c) First 300 sweat glands detections
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(a)

(b)

(c)

Figure 7.9: OCT scanned index finger; (a) First 100 sweat glands detections;
(b) First 200 sweat glands detections; (c) First 300 sweat glands detections
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7. SWEAT GLANDS DETECTION

A database-wide performance on the collected OCT fingerprint dataset de-
scribed in previous chapters is shown by Tab. 7.1. The table shows the per-
centages of fingers where, among the first 100 sweat glands detections in a
particular finger (correspondence of the automatic detections with real sweat
glands has been checked manually):

• 80% or more sweat glands were correctly identified

• 50-80% of the sweat glands were correctly identified

• Sweat glands were the highest contrast, detectable, features in surround-
ing parts of the scan, but the method failed due to the above described
contrast issue in the part closest to the sensor surface

• The sweat glands were not the highest contrast features anywhere in the
scan or were not visible at all (dry, damaged tissue etc.)

The results are reported on a per finger as well as overall basis. The thumbs
and index fingers clearly stand out as having the most clearly visible glands,
while the little fingers were among the hardest to consistently find sweat
glands in. Adaptive contrast management in the scanner, capable of mitigat-
ing the contrast issue, would clearly lead to significant improvement of the
sweat glands detection performance.

Table 7.1: Sweat glands detection performance (by finger type and overall)

finger type
among 100 first
gland detections

80%+ correct

among 100 first
gland detections
50-80% correct

adaptive
contrast

issue

other
issues

thumb 85 % 6 % 3 % 6 %
index 78 % 10 % 6 % 6 %

middle 69 % 10 % 12 % 9 %
ring 48 % 21 % 15 % 16 %
little 51 % 21 % 16 % 12 %

all fingers 66.4 % 13.8 % 10.1 % 9.7 %

7.6.2 Speed & Memory

The method runs on a GPU with 3GB of RAM, where 2GB are required for
the OCT fingerprint scan and less than 700 MB for the processing buffers. The
durations of the different stages of the sweat glands detection in a flattened
OCT fingerprint scan are shown in Tab. 7.2.
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Table 7.2: Duration of different stages of the glands detection pipeline on dif-
ferent NVIDIA GeForce GPU models (average over all scans in the dataset)

GTX 980
4GB (ms)

GTX 780
3GB (ms)

3D DoG filtering 483.8 733.3
glands detection upward pass 40.7 54.5

glands detection downward pass 6.7 9.7

7.7 Conclusion and Future Work

Utilizing the single-pass approximate Gaussian filtering technique, proposed
in Chapter 5, a novel, fast and memory efficient scheme for computation of 3D
Difference of Gaussians (DoG) on CPUs as well as GPUs has been proposed
that could find applications in medical imaging pipelines outside the narrow
problem of detection of sweat glands in volumetric OCT fingerprint scans.
The method allows for fast filter-size-independent calculation of 3D DoG with
extra memory requirements representing only a small fraction of the size of
the processed 3D volumetric data.

The 3D DoG technique has been used together with graph-based multiple-
source multiple-target shortest path algorithm to identify sweat glands candi-
dates as the most prominent paths between the outer fingerprint on the sur-
face and the subsurface inner fingerprint. This can serve as a pre-processing
step that greatly reduces the search space of possible positions and paths that
the sweat glands can take in the significant amount of volumetric data rep-
resenting the middle layer an OCT fingerprint scan. In the future work, the
identified candidate sweat gland paths could be used for analysis of the struc-
ture along them in order to verify it as a genuine sweat gland or a false detec-
tion for the purposes of PAD.

The performance of the proposed sweat gland candidate detection pipeline
currently suffers significantly from contrast issues caused by the lack of proper
contrast management in the current version of the employed OCT fingerprint
sensor prototype. The future work should focus on further examinations of
the nature of the non-linear contrast issue and it’s mitigation by the improve-
ment of the OCT fingerprint sensor.

The sweat glands detection method itself could be probably improved by
further adjustments of the distance function used as a measure in the graph-
based sweat glands detector. In addition, the performance of the method
could benefit from masking out the low quality areas and searching for the
sweat glands only in selected areas of the OCT fingerprint scans, as opposed
to the current entire-fingerprint operation.
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Chapter 8

Conclusions and Future Work

In this research we focused on Optical Coherence Tomography (OCT) as a
novel 3D scanning technology for fingerprint sensing. The OCT offers many
advantages compared to standard 2D fingerprint sensing. The fingerprints
can be scanned free-air, not pressed against a glass surface, which mitigates
issues with dry, wet, greasy or too soft fingerprints. The OCT can also scan
underneath the surface of the fingertip, offering great promise regarding ro-
bust detection of artefact fingerprints, due to its ability to spot the sub-surface
inner fingerprint, sweat glands and other features.

Motivated by the many advantages of the OCT compared to standard 2D
fingerprint sensors, we had to face significant challenges associated with pro-
cessing of the large amounts of 3D volumetric data, as opposed to 2D scans,
in a matter of seconds as required by many unsupervised scenarios such as
border control.

The results in this thesis strongly suggest the following general conclu-
sions regarding the main questions to be answered by this research:

• By utilizing massively-parallel GPU acceleration in combination with
our novel fast filtering techniques, a reliable extraction of the outer fin-
gerprints, as well as sub-surface inner fingerprints, from the volumetric
OCT scans is possible in a matter of seconds, despite the very large data
amounts.

• The sub-surface inner fingerprints are very consistently present in the
population. The inner fingerprint is more likely to be of sufficient quality
for fingerprint identification than the outer fingerprint, which fact offers
a great promise of the OCT compared to standard 2D sensors that can
acquire the surface outer fingerprint only.

• The sweat glands exhibit significant variations in the population regard-
ing their amount, length, overall visibility in the scan and other proper-
ties, which fact poses extra challenges in their detection.

• Detection of the sweat glands in a matter of seconds is possible, by com-
bination of our novel fast filtering techniques and GPU acceleration, but
a reliable functionality of the pipeline, given the large variations of the
sweat glands in the population, would require scans of higher quality.
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• Novel fast approaches for filtering, edge and blob detection have been
proposed, with a very limited memory footprint. The approaches are
well-suited for GPUs and could find applications also outside the nar-
row scope of volumetric OCT fingerprinting.

8.1 Future work

The future work should focus both on improvements of the OCT fingerprint
sensor prototype as well as the associated processing techniques.

The OCT sensor could be improved in terms of the scanning depth, allow-
ing to scan more reliably even in the cases where the surface of the fingerprint
has a strong curvature or the fingerprint is positioned sub-optimally. The con-
trast issues could be addressed by combination of improved adaptive man-
agement of the light beam and additional pre-processing. The scanning head
should be further improved to better address the fingerprint shaking. The
further efforts should also focus on miniaturization of the whole setup, by
designing a specific-purpose electronics and replacing the large mirror gal-
vanometer pair using a MEMS mirror solution.

Regarding the fingerprint extraction method, the detection of outer fin-
gerprint could probably be somewhat improved using an approach based on
multiple filter sizes.

Significant improvements of the sweat gland detection would probably
require adaptive contrast adjustment to be implemented into the OCT finger-
print sensor, nevertheless, masking out the low quality areas or adjusting the
distance function used in the sweat glands detection pipeline would probably
lead to an improvement.
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