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Abstract

In this thesis was a room with direct heating in the floor and room mod-
elled. The aim has been to minimize the energy cost of the room, assuming
that the future energy price and weather forecast is known.

The constrained optimization problem turned out to be linear, and the
solution of the problem will always be on the upper or lower bounds of the
inputs or states. The idea is to store heat when the energy price is low, and
use it when the energy price is high. A switching time that ensures that the
model starts the heating of the system at an optimal time in order to save
energy costs is thus of importance to find.

The problem was solved by using the matlab function fminsearch, and by
assuming constant outdoor temperature. Two scenarios were analysed; 1)
where only the floor heat is used to storage of heat, and 2) where both
heaters are used to heat the system. In each scenario the length and start-
ing point of the interval where the energy price is high was varied. This
thesis show that storage of heat in the floor is preferred, apart from in the
case where there is no time to heat before the peak interval begins, where
both heaters in the floor and room should be used.

For comparison, the optimization problem was also solved by using PI con-
trollers, where the two inputs control the temperature in the floor and room
respectively. It turned out that the result of the control problem when us-
ing PI will resemble the solution of the optimal control problem when using
fminsearch.

A couple of switching rules was derived in order to find the optimal switch-
ing time. This thesis show that the switching rules gives a good estimate of
the switching time, apart from in the case where there is no time to heat.
The switching rules was used in both methods (when using PI and fmin-
search) and it was found that the obtained switching time is not far from
the optimal solution in any of the methods.

The optimization problem when using fminsearch was tested with vary-
ing outdoor temperature. It was seen that the solution from the optimal
control problem will take the disturbance into consideration if it is varied
before the peak period. On the other hand, the model do not allow for a
variation in the outdoor temperature after the peak period.
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At last, the thesis show that the switching rule handle a variation in the
disturbance before the peak period as good as the optimal control problem,
but when the outdoor temperature becomes too cold will the result be poor.
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Sammendrag

I denne oppgaven har et rom med varmeelement i rom og gulv blitt mod-
ellert. Formålet med oppgaven har vært og minimere energikostnadene til
rommet, ved å anta at fremtidig energipris og værprognoser er kjent.

Det begrensede optimaliseringsproblemet viste seg å være lineært, og løsnin-
gen av problemet vil alltid være på den øvre eller nedre grensen til pådragene
eller systemtilstandene. Ideen er å lagre varme når energiprisen er lav, og
bruke den når energiprisen er høy. En optimal "switche" tid hvor varmen
skal slås på er derfor viktig å finne. Denne tiden må ikke være for tidlig
eller for sent for å kunne minimere energikostnadene.

Problemet ble løst ved å bruke matlabfunksjonen fminsearch, og ved å anta
konstant utetemperatur. To senarioer ble analysert; 1) bare gulvvarmen
brukes til lagring av varme, og 2) begge varmeapparatene i gulv og rom
brukes til å varme opp rommet. I begge senarioene vil startpunktet og
lengden av intervallet med høy energipris endres. Denne oppgaven viser at
varmen bør lagres i gulvet, bortsett fra i tilfellet hvor systemet ikke har tid
til å varme før energiprisen stiger, da bør begge varmeapparatene i gulv og
rom benyttes.

For å kunne sammenligne ble optimaliseringsproblemet også løst ved bruk
av PI-kontrollere, hvor de to pådragene kontrollerer temperaturen i hen-
holdsvis rom og gulv. Det viste seg at løsningen av kontrollproblemet når
man bruker PI og fminsearch ligner hverandre.

To switcheregler ble utledet for å finne den optimale switche tiden. Denne
oppgaven viser at switchreglene gir et bra estimat av switchetiden, bortsett
fra i tilfellet hvor systemet ikke har tid til å varme før energiprisen øker.
Switcheregene ble brukt i begge metodene (ved bruk av PI og fminsearch),
og det ble vist at den beregnede switchetiden ikke ligger langt fra den opti-
male løsningen for noen av metodene.

Optimaliseringsproblemet, løst ved fmisearch, ble også testet mot varierende
utetemperatur. Det ble vist at den optimale løsningen tar en variasjon i
utetemperatur i betraktning dersom variasjonen skjer før energiprisen øker.
En variasjon av utetemperaturen etter perioden hvor energprisen øker vil
ikke bli tatt hensyn til.
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Til sist, denne oppgaven viser at switchereglene håndterer en variasjon i
forstyrrelsen før energi prisen øker like godt som det optimale kontrollprob-
lemet, men hvis utetemperaturen blir for lav blir resultatet dårlig.
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1 Introduction

The focus of this work will be to minimize the energy cost of a room by
storing energy in the floor when the energy price is low. This stored energy
should then be used when the energy price is high.

1.1 Motivation

Due to increasing energy prices and greater concerns about the greenhouse
effects more efficient electricity production and usage is desirable. Elec-
tricity production based on renewable sources, like for example large wind
turbines and solar-power, are preferred [Molderink et al., 2009]. These al-
ternative energy technologies already improve the efficiency, but a major
drawback is that they are strongly dependent on the weather conditions.
This limitation is of importance since the energy production is expected to
cover the energy demand at any given time [Oliveira]. Because of the in-
creasing energy consumption and the growing amount of renewable energy
sources is managing the gap between production and consumption, and thus
the growing demand for electricity storage, becoming an important research
topic [Molderink et al., 2009].

One possible solution to this problem would be to reduce the energy con-
sumption by shifting the consumption from peak periods to more beneficial
periods [Oliveira]. Field tests in the USA have showed that optimization of
domestic energy consumption can significantly reduce peak periods [Ham-
merstrom et al., 2007]. Manipulating the energy price according to demand
information and weather forecast is one way to achieve this. Electricity con-
sumers are encouraged to use electricity more carefully in order to minimize
their electricity bill [Oliveira].

1.2 Project scope

Assuming that future energy price and weather forecast is known, this
project will focus on optimizing the energy cost of a room. The idea is
to buy and store energy in the floor when the energy price is low, and use
it during peak periods. The goal of the project is to find a simple switching
strategy, that minimize the energy costs without breaking the constraints.

The dynamic optimization problem will be solved by using fminsearch,
which is a gradient free method, and by using PI controllers. A comparison
of the two methods will be given in the end. It will be shown that the
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result of the control problem when using PI will resemble the solution of
the optimal control problem when using the gradient free method.

Some switching rules will be developed in order to find an optimal switch-
ing time. These rules will be tried in both methods described above.It will
be shown that the switching rules give a good estimation of the switching
time, but in the case where the system does not have time to heat will the
switching rule give an infeasible solution.

The optimal control problem when using fminsearch will be tested against
constant and varying outdoor temperature. This thesis will show that the
solution from the optimal control problem will take the disturbance into
consideration if it is varied before the peak period. On the other hand, the
model do not allow for a variation in the outdoor temperature after the
peak period.
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2 Background

This chapter will give an introduction to the theory behind the calculations
and methods that are used in this project.

2.1 Heat transfer

Heat transfer occur by one, or a combination of three basic mechanisms;
conduction, convection or radiation [Geankoplis, 2003]. In this project will
heat be transferred by a combination of the first two mechanisms.

Conduction is defined as heat that is transferred through solids, liquids and
gas because of the energy of motion between adjacent molecules [Geanko-
plis, 2003]. Convection means transfer of energy between an object and its
environment [Geankoplis, 2003]. Heat transfer by convection can also be
divided into forced and natural/free convection. Forced convection transfer
heat from one place to another because of a pump, fan or other mechanical
devices, while the latter one is transfer of heat due to temperature differ-
ences in the fluid [Geankoplis, 2003]. The heat will in general be transferred
from the gas or liquid with the highest temperature to the gas/liquid with
the lower temperature [Geankoplis, 2003].

Heat transfer is described by Fourier’s law [Geankoplis, 2003]:

qx
A

= −kdTdx (2.1.1)

where qx represent the heat, A the cross-sectional area and k the ther-
mal conductivity. The thermal conductivity is replaced by the convective
coefficient, hi, when the heat is transferred by convection. The thermal
conductivity and the convective coefficient differs from one another in the
units, [ WmK ] and [ W

m2K ] respectively [Geankoplis, 2003].

Heat transfer through a wall, or floor, where the area and thermal con-
ductivity are constant is given in equation (2.1.2) [Geankoplis, 2003].

q

A
= k

∆x(T1 − T2) (2.1.2)

If the wall consist of more than one solid, for example three layers as given
Figure 2.1.1 [Geankoplis, 2003] ,are the calculations as described in equation
(2.1.3).
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Figure 2.1.1: Heat flow through a plane wall with three layers

q = ka
∆xa

(T1 − T2) = kb
∆xb

(T2 − T3) = kc
∆xc

(T3 − T4) (2.1.3)

The heat flow is the same in each layer [Geankoplis, 2003], and T1 and T4
are the temperatures at the inside and outside layer respectively as shown
in Figure 2.1.1. Rearranging with respect to temperature and adding the
equations for the different solids give the following expression for the heat
flow through the wall [Geankoplis, 2003].

q = T1 − T4

(∆xa
kaA

) + (∆xb
kbA

) + (∆xc
kcA

)
(2.1.4)

Consider a wall with fluid on both sides of the solid surfaces as given in
Figure 2.1.2 [Geankoplis, 2003]. The figure show a hot fluid with tempera-
ture T1 on the inside of the surface and a colder fluid on the outside surface
with temperature T4 [Geankoplis, 2003]. The convective coefficients for the
inside and outside are hi and ho respectively. As explained before the heat
flow can be written as

q = hiA(T1 − T2) = kaA

∆xa
(T2 − T3) = hoA(T3 − T4) (2.1.5)

A rearrangement of the expression above gives the overall heat transfer for
combined convection and conduction [Geankoplis, 2003].

q = T1 − T4
1
hiA

+ ∆xa
kaA

+ 1
hoA

(2.1.6)
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Figure 2.1.2: Heat flow through a plane wall with convective boundaries

The overall heat transfer is usually expressed in the following way

q = UA∆T (2.1.7)

where U represents the overall heat transfer coefficient. The overall heat
transfer coefficient for the above example is

U = 1
1
hiA

+ ∆xa
kaA

+ 1
hoA

(2.1.8)

2.2 Linear state space model

A state space model gives a simple representation of a system of ordinary
differential equations, ODEs. A general expression for the linear state space
model is given in equation (2.2.1) and (2.2.2) below [Seborg, Dale E. , Edgar
et al., 2011]

ẋ = Ax + Bu + Ed (2.2.1)
y = Cx (2.2.2)

In the above equations do x represent the state vector,u the input vector, y
the vector with the output variables, and d the disturbances. The matrices
A, B, C and D are matrices with constant values [Seborg, Dale E. , Edgar
et al., 2011].

A linear system which vary with time are called a linear time varying, LTV,
problem. LTV problems can be represented by the following state space
model:

ẋ(t) = Ax(t) + Bu(t) (2.2.3)
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y(t) = Cx(t) (2.2.4)

2.3 Hamilton’s principle

The Hamilton principle describes the motion of a mechanical system from
time t1 to t2 [Thornton, Stephen T., Marion, 2004]. Of all the possible paths
from t1 to t2, is the actual path the one that minimizes the time integral of
the difference between the kinetic (T) and potential (V) energy [Thornton,
Stephen T., Marion, 2004]:

H =
∫ t2

t1
L(x, ẋ, t)dt (2.3.1)

The parameter L represent the Lagrangian, which is given by L=T-V [Bachen,
Jens G., Fjeld, Magnus, Solheim, 1978]. If the system contains any con-
straints, must the path be consistent with these [Thornton, Stephen T.,
Marion, 2004].

Considering a singe particle moving in a conservative force filed. The ki-
netic energy for such a particle will be a function of velocity, while the
potential energy will be a function of the position of the particle [Thornton,
Stephen T., Marion, 2004]. The Lagrangian is thus a function of position,
x, and velocity, ẋ, of the particle. The Hamilton’s Theorem sates that the
Lagrangian must be minimized, which means that:∫ t2

t1
L(xi, ẋi)dt = 0 (2.3.2)

To be able to solve these kind of problems must the Lagrangian satisfy the
Lagrange equations of motion [Thornton, Stephen T., Marion, 2004]:

∂L

∂xi
− d

dt
∂L

∂ẋi
= 0 (2.3.3)

2.4 Lagrange Multipliers

The Lagrange multiplier, λ, helps to find the local minimum (or maximum)
of a function with constraints [Weir, Maurice D., Hass, Joel, Giordano,
2008]. In order to find the minimum of the function f(x,y,z) subject to the
constraint g(x,y,z) = C, must the following system of equations be solved
simultaneously [Weir, Maurice D., Hass, Joel, Giordano, 2008]:

5f(x, y, z) = λ5 g(x, y, z) (2.4.1)
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g(x, y, z) = C (2.4.2)
It is assumed that f(x,y,z) and g(x,y,z) are differentiable and 5g 6= 0 when
g(x, y, z) = 0 [Weir, Maurice D., Hass, Joel, Giordano, 2008]. Equation
(2.4.1) can be written as

fx(x, y, z) = λgx(x, y, z) (2.4.3)

fy(x, y, z) = λgy(x, y, z) (2.4.4)
fz(x, y, z) = λgz(x, y, z) (2.4.5)

when remembering that 5f(x, y, z) and 5g(x, y, z) are vectors [Weir, Mau-
rice D., Hass, Joel, Giordano, 2008]. Once the critical points are found, can
these be implemented in f. The minimum is found at the point where f is
at the smallest [Weir, Maurice D., Hass, Joel, Giordano, 2008].

If the system has more than one set of constraints will multiple Lagrange
multipliers be introduced [Weir, Maurice D., Hass, Joel, Giordano, 2008].

5f(x, y) = λ5 g(x, y)1 + µ5 g(x, y)2 (2.4.6)

2.5 Pontryagin’s minimum principle

The Pontryagin’s minimum principle is used to find the minimum of a dy-
namic optimization problem that has constraints on the states and/or inputs
[Bachen, Jens G., Fjeld, Magnus, Solheim, 1978]. This section will give an
introduction to the minimum principle.

Given a process on the form

ẋ = f(x, u, t) (2.5.1)

with an optimization criteria defined as [Bachen, Jens G., Fjeld, Magnus,
Solheim, 1978]

J =
∫ t2

t1
L(x, u, t)dt (2.5.2)

where the parameter L represent the objective function. In equation (2.5.2)
is t1 known while t2 will be given or free [Bachen, Jens G., Fjeld, Magnus,
Solheim, 1978].

A new function, the Hamilton function is introduced [Bachen, Jens G.,
Fjeld, Magnus, Solheim, 1978]:

H(x, p, u, t) = L(x, u, t) + λT f(x, u, t) (2.5.3)
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where λ(t) represent the Lagrange multiplier. The derivative of the La-
grangian multiplier is given as [Bachen, Jens G., Fjeld, Magnus, Solheim,
1978]

λ̇ = −
[(∂f
∂x

)T
λ+ ∂L

∂x

]
= −∂H

∂x
(2.5.4)

Similar, the derivative of x can be written as [Bachen, Jens G., Fjeld, Mag-
nus, Solheim, 1978]:

ẋ = ∂H

∂λ
= f(x, u, t) (2.5.5)

Taking the Hamilton function in equation (2.5.3) and deriving it with re-
spect to u, will the following expression be obtained [Bachen, Jens G., Fjeld,
Magnus, Solheim, 1978]:

∂H

∂u
= ∂L

∂u
+
(∂f
∂u

)T
λ = 0 (2.5.6)

According to the minimum principle is the optimal manipulated variable
determined by

min
u∈U

H(t1 ≤ t ≤ t2) (2.5.7)

where U is the area where the manipulated variable is. This means that for
every t1 ≤ t ≤ t2 should u(t) ∈ U be chosen such that the Hamilton func-
tion, H, get a minimum value [Bachen, Jens G., Fjeld, Magnus, Solheim,
1978].

The minimum of H can either take place in the inner area of U where
∂H
∂u = 0, or it can be defined at the boarder of U, where ∂H

∂u 6= 0 [Bachen,
Jens G., Fjeld, Magnus, Solheim, 1978].

In some cases will one in addition to the constraints on the inputs, have
constraint on the states [Bachen, Jens G., Fjeld, Magnus, Solheim, 1978].
A subspace, X, of the n-dimensional state space, En, will then be intro-
duced. In case the system is inside X will the normal minimum principle
be considered, while if the system is on the border of X will a special form
of the minimum principle be used. The transition between the boarder and
inner area of X will be subjected to special conditions [Bachen, Jens G.,
Fjeld, Magnus, Solheim, 1978].

2.6 Linear programming

The solution of a constrained optimization problem that has a linear objec-
tive function and linear constraints are obtained via linear programming,
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LP [Seborg, Dale E. , Edgar, 2004]. The constraints can be both equalities
and inequalities in such problems.

Consider a multivariable process with two inputs, (u1,u2) and two outputs
(y1,y2), and where the linear model is defined as [Seborg, Dale E. , Edgar,
2004]

y = Ku (2.6.1)

The upper and lower bounds of the constraints u and y define the operating
window for the process, as shown in Figure 2.6.1 [Seborg, Dale E. , Edgar,
2004]. A linear cost function will have an optimal operating condition where

Figure 2.6.1: Operating window for a 2× 2 linear optimization problem

constraints intersects, in one of point A to G in Figure 2.6.1 [Seborg, Dale
E. , Edgar, 2004]

A standard LP problem where the objective function is minimized can be
stated as follows:

minf =
NV∑
i=1

cixi (2.6.2)

subject to
xi ≥ 0 i = 1, 2, ..., NV (2.6.3)

NV∑
j=1

aijxj ≥ bi i = 1, 2, ..., NI (2.6.4)

NV∑
j=1

ãijxj = di i = 1, 2, ..., NE (2.6.5)
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In the above expression does NI represent the number of inequality con-
straints [Seborg, Dale E. , Edgar, 2004].

The number of independent variables are found by a degree of freedom anal-
ysis. Assuming no constraints, will the number of independent variables,
NF , be [Seborg, Dale E. , Edgar, 2004]

NF = NV −NE (2.6.6)

where NV and NE is the number of process variables and independent equa-
tions respectively. One have three possible solutions to a DOF problem
[Seborg, Dale E. , Edgar, 2004]:

1. NF = 0: the process is exactly specified, the set of equation has a
solution

2. NF > 0: the process is underspecified, there are more process variables
than equations. The equation has an infinite number of solutions since
the process variables can be specified arbitrarily.

3. NF < 0: the process model is overspecified. The set of equation has
no solution. One or more additional independent equations must be
developed for the model to have an exact solution.

The above solution show that NF can be specified independently to maxi-
mize/minimize the objective function. Adding inequality constraints to the
problem gives a different solution. The number of process variables can-
not be chosen arbitrarily any more, they must satisfy all of equality and
inequality constraints [Seborg, Dale E. , Edgar, 2004].
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2.7 Tuning

The expression for a proportional-integral-derivative, PID, controller is given
in equation (2.7.1) below [Seborg, Dale E. , Edgar et al., 2011].

Gc = Kc(1 + 1
τIs

+ τDs) (2.7.1)

In the above equation does Kc represent the controller gain while τI and
τD is the integral and derivative time respectively. The expression for a
proportional-integral, PI, controller is the same as for a PID controller ex-
cept that the derivative time is omitted.

It is not easy to find good values for the parameters in equation (2.7.1)
without using systematic procedures [Skogestad, 2003]. The SIMC rules,
Skogestad’s IMC rules, [Skogestad, 2003] is such a procedure. In contrast
to the IMC rules, will the SIMC rules propose only one tuning rule for
tuning of PI controllers. The tuning rule for a first-order-plus-time-delay,
FOPTD, model

G(s) = Ke−θs

τs+ 1 (2.7.2)

are given in equation (2.7.3) and (2.7.4) [Skogestad, 2003]. The term θ in
equation (2.7.2) represent the effective delay.

Kc = 1
k′

1
θ + τc

where k′ = K

τI
and τ = τI (2.7.3)

τI = min(τI , 4(τc + θ)) (2.7.4)

The tuning parameter, τc, must be in the range -θ < τc < ∞ to get a
positive and non-zero controller gain [Skogestad, 2003]. There are two main
possibilities for the optimal value of τc [Skogestad, 2003]:

1. Tight control

• Fast response with good robustness
• τc = θ

2. Smooth control

• Slow control with acceptable disturbance rejection
• τc > θ



12 2. Background

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RESULTING OUTPUT y

∆y(∞)

θ τI

y(t)

STEP INPUT uu(t)

∆u

0.63

θ: Delay: - Time where output does not change
τI : Time constant - Additional time to reach

63% of final change
k = ∆y(∞)

∆u : Steady-state gain

Figure 2.7.1: Open-loop step response experiment to obtain parameters k,τI
and θ in a FOPTD model

It depends on the system if tight or smooth control is the best choice.

In practise, the tuning parameters for a first-order model are often obtained
from a step response experiment. Figure 2.7.1 represent such an open-loop
experiment [Skogestad and Grimholt]. A rule of thumb is that the exper-
iment does not need to run for longer than about 10 times the effective
delay in order to find the tuning parameters [Skogestad and Grimholt]. The
system can then be approximated as an integrating model:

Ke−θs

τIs+ 1 ≈
k′e−θs

s
(2.7.5)

where k′ = k
τI

is the slope [Skogestad and Grimholt]. Figure 2.7.2 gives a
representation of such an integrating model. Equation (2.7.6) describe how
the slope of the process is calculated [Skogestad and Grimholt].

k′ = ∆y
∆t∆u (2.7.6)
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Figure 2.7.2: Open-loop step response experiment to obtain the tuning pa-
rameters k’ and θ in an integrating model
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3 Modelling

A description of the system will be given in this chapter together with the
development of the dynamic energy and mass balance. Matlab was used to
solve the problem, the Matlab script are given in Appendix E.

3.1 Description of system

The system consists of a single room without any windows, and a schematic
overview is given in Figure 3.1.1. The room is simulated with a floor area

Figure 3.1.1: Schematic
overview of the system

Figure 3.1.2: Dimension of
the room

of 25 m2 with a floor heating device, a radiator and a ventilation system.
The dimensions of the room are given in Figure 3.1.2. Table 3.1.1 lists the
wall and floor compositions.

Table 3.1.1: Building specifics
Parameter Value

Walls 1.5 cm oak on both sides of a 25 cm rock wool layer
Floor 10 cm concrete with 1.5 cm of oak on the top

3.2 Mass and energy balance

It is assumed that all the heat lost by the floor is transferred to the air in
the room. The heat in the air can be lost through the walls or through the
ventilation system. Figure 3.2.1 visualizes the energy and mass flow in the
system.
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Figure 3.2.1: The topology of the system

The energy balance for the floor is

(mCp)F ṪF = qH/F − qF/R (3.2.1)

where the transfer of energy from the floor to the air, qF/R, is given by

qF/R = (UA)F (TF − TR) (3.2.2)

A combination of equation (3.2.1) and (3.2.2) give an expression for the
temperature in the floor:

ṪF =
−(UA)F/R
(mCp)F

(TF − TR) +
qH/F

(mCp)F
(3.2.3)

Similarly, the energy balance for the room can be written as

d
dt(mCpT )R = qH/R + qF/R − qR/O +minCpTO −moutCpTR (3.2.4)

where the transfer of energy from the room is given by

qR/O = (UA)R(TR − TO) (3.2.5)
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The mass of air is defined as
dm
dt = min −mout (3.2.6)

From the assumption that the mass of air in equals the mass of air out,
min = mout, is the following expression for the temperature in the room
obtained

ṪR =
qH/R

(mCp)R
−

(UA)R/O
(mCp)R

(TR − TO) +
(UA)F/R
(mCp)R

(TF − TR) + min

mR
(TO − TR)

(3.2.7)

The values necessary to find TF and TR are given in Table 3.2.1, the calcu-
lations of the parameters are given in Appendix A.

Table 3.2.1: Constant parameters used in the simulation
Parameter Unit Value
UAR/O [kWK ] 0.007
UAF/R [kWK ] 0.350
mCpR [kJK ] 70
mCpF [kJK ] 4000
mR [kg] 70

3.3 Abstraction

The system of equations derived in the above section can be written on a
general form as given below

ẋ1 = u1
θ1
− θ2
θ1

(x1 − x2) (3.3.1)

ẋ2 = u2
θ3

+ θ2
θ3

(x1 − x2) +
(
−γ2(t)
θ3

− θ4
θ3

)
(x2 − γ1(t)) (3.3.2)

where

x =
[
TF

TR

]
(3.3.3)

u =
[
qH/F

qH/R

]
(3.3.4)
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θ =


(mCp)F
(UA)F/R
(mCp)R
(UA)R/O

 (3.3.5)

γ(t) =
[

To(t)
minCp(t)

]
(3.3.6)

are the state variables, manipulated variables, parameters and disturbances
respectively. The system can be further simplified by rearranging it into
state space

ẋ = A(t)x(t) +Bu(t) +K(t) = f(x, u, t) (3.3.7)

y = Cx(t) (3.3.8)

where C is an identity matrix and A(t),B and K(t) are defined as

A(t) =

− θ2
θ1

θ2
θ1

θ2
θ3

−θ2−θ4−γ2(t)
θ3

 (3.3.9)

B =
[ 1
θ1

0
0 1

θ3

]
(3.3.10)

K(t) =

 0
(θ4+γ2(t))γ1(t)

θ3

 (3.3.11)

Equation (3.3.7) illustrates that the system is a linear time varying, LTV,
problem.
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4 Optimal control problem

This chapter presents the formulation of the dynamic optimization problem
and the approach to solve it. The section starts with a formulation of the
optimization problem, while a description of the main disturbances will be
given in the end.

4.1 Formulation of problem

The objective of the optimization is to minimize the energy costs over a
finite horizon. Assuming that the future energy price, P, and weather fore-
cast is known, is the idea to store the energy when the energy price is low,
and use it when the price is high.

Both the temperature and heat in the floor and room are limited by upper
and lower bounds, as given in Table 4.1.1.

Table 4.1.1: Upper and lower boundaries for the temperature and heat
Parameter Upper bound Lower bound Unit

TF 25 20 [ ◦C]
TR 25 19 [ ◦C]
qH/F 2.5 0 [kW ]
qH/R 2 0 [kW ]

The constrained dynamic optimization problem can be formulated as:

min
u

∫ tf

0
L(u, t)dt =

∫ tf

0
pTudt (4.1.1)

subject to

ẋ = A(t)x(t) +Bu(t) + E(t) = f(x, u, t); x(0) = xo (4.1.2)

xlb ≤ x ≤ xub (4.1.3)

ulb ≤ u ≤ uub (4.1.4)

From equation (4.1.2) it can be seen that the cost function is linear on the
form J = pT × u. The constraints and equation (4.1.2) are also linear, and
the system can thus be solved by a linear programming method.
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Equation (4.1.2) can be expressed in multivariable form as given below:(
ẋ1
ẋ2

)
=
(
a1,1 a1,2
a2,1 a2,2

)(
x1
x2

)
+
(
b1,1 b1,2
b2,1 b2,2

)(
u1
u2

)
+
(
k1,1
k2,2

)
(4.1.5)

where the elements in ai,j ,bi,j and ki,j correspond to the parameters in ma-
trix A(t), B and K(t) in equation (3.3.9), (3.3.10) and (3.3.11) respectively.

By rearranging equation (4.1.4) and (4.1.3) it can be seen that the con-
trol and state bounds can be written as

Ci(ui, t) =
(
ui − uub,i
ulb,i − ui

)
≤ 0 (4.1.6)

Si(xi, t) =
(
xi − xub,i
xlb,i − xi

)
≤ 0 (4.1.7)

respectively, where u and x are vectors. To get the state constraint as a
function of the inputs one derive the state bounds once.

dSi(xi, t)
dt = S

(1)
i (xi, ui, t) =

(
ẋi
−ẋi

)
=
(
fi(xi, ui, t)
−fi(xi, ui, t)

)
≤ 0 (4.1.8)

The minimum of the Hamiltonian with respect to the inputs is given in
equation (4.1.9). According to [Bryson, Arthur E., Ho, 1975] should the
state constraints be included in the Hamiltonian.

min
ui∈U

Hi = piui + λifi + µiS
(1)
i (4.1.9)

The multiplier µ will be different from zero when the inputs are at the
constraints, and zero when the inputs do not have any active constraints,
as summarized in Table 4.1.2. To find the solution of the Hamiltonian one

Table 4.1.2: Value of the constraint and multiplier when one are at the
constraints and not

Constraint multiplier
Si(xi, t) = 0 µi 6= 0
Si(xi, t) 6= 0 µi = 0

need to look at the case where one are at the state constraint and where
one are not.
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Case I: No state constraint

In the case where one does not have any active state constraints will µi = 0
and ulb,i and uub,i ≥ 0. This means that the Hamiltonian can be simplified
to

min
ui∈U

Hi = piui + λifi (4.1.10)

In order to find the minimum of the Hamiltonian one have two possible
solutions. If

pi + λi(b1,i + b2,i) > 0 (4.1.11)

will the optimal input be at the lower bound, ui = ulb,i, because the Hamil-
tonian is to be minimized with respect to ui. Similar, if

pi + λi(b1,i + b2,i) < 0 (4.1.12)

will the optimal input be at the upper bound, ui = uub,i. This result
demonstrate that the input will be either at the lower or upper bound if
one does not have any active state constraints. It should be pointed out
that one input can be at the upper bound while the other one can be at
the lower bound. The result conclude that the same input cannot be at the
upper and lower constraint at the same time.

Case II: Active state constraints

If the state, x1, are at the upper constraint will S1,1 = 0 and

S
(1)
1,1 = a1,1x1 + a1,2x2 + b1,1u1 = 0 (4.1.13)

This implies that the Hamiltonian can be written as

min
u1∈U

H1 = p1u1 (4.1.14)

Looking closer to the case where the states are at the upper bounds it can
be seen that

S1,1 = x1 − xub,1 = 0 =⇒ x1 = xub,1 (4.1.15)

Implementing this result in f(x,y,t) will the following result for the inputs
be obtained

a1,1xub,1 + a1,2x2 + b1,1u1 = 0⇒ u1 = − 1
b1,1

(a1,1xub,1 + a1,2x2) (4.1.16)
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A similar expression is obtained for u2. The state bounds and the first
derivative of S is

S2,1 = x2 − xub,2 = 0⇒ x2 = xub,2 (4.1.17)

S
(1)
2,1 = a2,1x1 + a2,2x2 + b2,2u2 + k2 = 0 (4.1.18)

respectively. By implementing equation (4.1.17) in (4.1.18), and rearrang-
ing, the following expression for u2 is obtained

u2 = − 1
b2,2

(a2,1x1 + a2,2xub,2 + k2) (4.1.19)

A similar expression for u will be obtained at the lower bounds:

S
(1)
3,1 = −(a1,1x1 + a1,2x2 + b1,1u1) = 0 (4.1.20)

S3,1 = x1 − xlb,1 = 0 (4.1.21)

The expression for u will thus be

u1 = − 1
b1,1

(a1,1xlb,1 + a1,2x2) (4.1.22)

In the same was as already explained, will the expression for u2 at the lower
bound be

u2 = − 1
b2,2

(a2,1x1 + a2,2xub,2 + k2) (4.1.23)

From the above result one can conclude that when the states are at the
constraint will the input be equal to the expression in equation (4.1.16),
(4.1.19), (4.1.22) and (4.1.23) respectively, depending on if one are at the
upper or lower bound.

Case III: Unconstrained input

This section will give an expression for the unconstrained input when the
other one have active state constraints. Assuming that x1 are at the lower
bound, the expression for u1 will thus be as given in equation (4.1.22). The
Hamiltonian can be written as

H = pTu+ λ

(
0
ẋ2

)
= pTu+ λ2ẋ2 (4.1.24)

By implementing the expression for ẋ2, will the Hamiltonian be given as

H = pu1 + pu2 + λ2(a2,1xlb,1 + a2,2x2 + b2,2u2 + k2) (4.1.25)
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The Hamiltonian is to be minimized with respect to u2, and since u1 is
given, this implies that one has to consider the sign of

p2 + λ2b2,2 (4.1.26)

If
p2 + λ2b2,2 > 0 (4.1.27)

then u2 = ulb,2, and similar, if

p2 + λ2b2,2 < 0 (4.1.28)

is the optimal input, u2 = uub,2. This result correspond to the obtained
solution in section 4.1 (no state constraint). The input that are uncon-
strained will thus be at the upper or lower bound. A similar expression will
be obtained if u1 is unconstrained.

p1 + λ1b1,1 (4.1.29)

4.2 Disturbance modelling

The main disturbances are the outdoor temperature, the mass of air in to
the room and the energy price.

The value of the air change rate depends on the house and on wind and tem-
perature changes [Murphy]. If anything else is not specified is the amount
of air through the ventilation system and the outdoor temperature assumed
a constant value of 0.06kgs and 0 ◦C respectively.

The power consumption varies throughout the day, and as a result so will the
energy price [U.S. Energy Information Administration, 2011]. The energy
price will be lower when the demand is low, and higher when the demand
increases. The demand is normally higher in the morning before people go
to work and in the afternoon when one come home from work. This implies
that the energy price will be higher in these peak periods compared to the
rest of the day. For simplicity, the energy price is in this project assumed
to vary between a high and low value as given in Figure 4.2.1 [Huseiernes
Landsforbund, 2013]. The Norwegian currency, NOK, will be used through-
out this project.
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Figure 4.2.1: Energy price as a function of time
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5 Shape of optimal solution

A description and illustration of how the solution of the linear optimization
problem looks like will be proposed in this chapter.

From the analysis in chapter 4.1 it can be seen that the system has two
operational modes:

1. Minimum energy consumption (u = ulb or x = xlb)

2. Store energy (u = uub or x = xub)

By implementing this simple structure, can one reformulate the optimization
problem such that the decision variables becomes when to be in operational
mode 1 or in operational mode 2. The optimal solution is thought to have
a behaviour as illustrated in Figure 5.0.2.

Figure 5.0.2: Shape of temperature and heat in the optimal solution

The state is assumed to be at the lower bound in the beginning of the
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simulation, as shown in Figure 5.0.2. During this period will the input be
at the value that maintain a constant temperature. The input will switch to
the upper bound when the system is to be heated up, labelled ts on Figure
5.0.2, and the state will increase as a result of that. However, the heat will
be turned off when the energy price increases. The temperature will thus
decrease, and when it reaches the lower bound will the input return to the
value that keep the state at the constant temperature.

In the above solution it is important to know the time where the input
is switched between the upper and lower bound. Since the future energy
price is assumed known will the time where the input is switched off be
known (which is when the energy price increases). When the state reaches
its minimum constraint and during the periods when it is kept at that lower
bound, will the heat be at a value that maintain a constant temperature
(given in equation (4.1.16), (4.1.19), (4.1.22) or (4.1.23)). This means that
the only parameter left to specify is the switching time, ts. At this time will
the input be switched to the upper bound.
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6 Reformulation of optimal control problem

This section reformulate the approach to solve the optimization problem.

Assuming that one know where the inputs switch from the lower to the
upper bound, as described in chapter 5, will the optimization problem be
reformulated to when one needs to switch from operational mode 1 to op-
erational mode 2. This time, the switching time, will thus be the only DOF
left to specify.

The new optimization problem can be stated as

min
tswitch

J

∫ t

0
P (t)× u dt (6.0.1)

subject to
ẋ = A(t)x(t) +Bu(t) +K(t) (6.0.2)

x(to) = xo (6.0.3)

u = f(tswitch) (6.0.4)

The problem was initially solved by single shooting optimization with the
matlab function fmincon, but it turned out to be difficult to solve with
this method. A reason for this may be that the initial guess was not good.
However, a lot of different initial guess were tried, so the main reason why
fmincon could not solve the problem was that the function most likely had
problems handling the large variation in the inputs. It should be pointed
out that it was the optimization problem described in chapter 4.1 that was
tried solved with this method. The matlab script is given in Appendix F.

The optimization problem described in this chapter was solved by using
the function fminsearch in Matlab, which finds the minimum of a scalar
function of several variables [MathWorks]. One only need to specify an ini-
tial estimate to be able to solve the problem. The Matlab code was written
by Chriss Grimholt, and it is found in Appendix E.1.

The Nelder-Mead simplex algorithm is used by fminsearch to solve the prob-
lem [MathWorks]. This is a gradient free method that makes a simplex (a
n-dimensional version of a triangle) around the initial guess. At each step in
the simplex will a solution be calculated. At a certain point in the simplex,
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called the reflected point, will a solution, f(r), be calculated. This solution,
f(r), will be compared to the other solutions obtained in the simplex, and
according to the value of f(r), will one of the sides in the simplex be reduced,
expanded or reflected [MathWorks]. The same procedure will continue for
the new simplex, and so on until a stopping criterion is met [MathWorks].
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7 Optimal control

In this chapter will the result of the dynamic optimization problem be pre-
sented. Two possible ways to store the heat will be analysed; 1) using only
one heating device and 2) using both heaters in the floor and room. The
disturbances, min and To, will be kept constant during simulations.

7.1 Where to store the heat

To find the solution of the dynamic optimization problem it is of value to
know where it is most optimal to store the heat. The two possible solutions
to store the heat are in the floor and in the room. The maximum heat
stored is calculated by the following formula:

q = mCp(Tmax − Tmin) (7.1.1)

The calculated values for the room and floor are 560kJ and 32000kJ re-
spectively. Considering that (Tmax − Tmin) is almost the same for both the
floor and room, and that mCp is much larger for the floor than the room,
it can be shown that the heat should be stored in the floor. This result is
verified by the calculated values. This implies that storage of heat in the
room can thus be neglected since the amount of heat stored in the floor is
much bigger than the amount that can be stored in the room.

This report will consider two scenarios where 1) the heat is stored in the
floor and 2) where both heaters in the floor and room are used to heat up
the room. In each scenario will the length and starting point of the peak
period, ∆tpeak, be varied. The three different cases that are analysed are
given in Table 7.1.1.

Table 7.1.1: High price intervals for the optimal case, case with broader
peak and the scenario where the system does not have time to heat up

Scenario High price interval ∆tpeak Unit
Optimal case 6− 8 2 [h]
Broad case 5− 12 7 [h]

Not enough time to heat 3− 10 7 [h]

7.2 Storing of heat in the floor

The system was simulated over a finite horizon, and the value of the initial
guess and disturbances used throughout this chapter are given in Table
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7.2.1. The results from simulations are given below. The headline on each

Table 7.2.1: Value of the initial guess and disturbances used during simula-
tion

Parameter Value Unit
Disturbances

min 0.06 [kg]
To 273 [K]

Initial values
TF,initial 293 [K]
TR,initial 292 [K]

chapter refer to the scenarios described in Table 7.1.1.

Optimal case

The optimal solution of the problem is to keep the temperature in the floor
and room at the lower bound for as long as possible. However, one should
store enough heat to avoid using energy when the energy price is high. Fig-
ure 7.2.1 gives the results from the optimization. The red and blue line
represents the result for the room and floor respectively.

The heating in the floor starts after 2 hours and 48 minutes. The opti-
mal solution is, according to Figure 7.2.1, that TF should not reach the
maximum constraint before the energy price increases. The temperature in
the floor decreases slowly, and will reach the lower bound at 11.33 a.m.

Similar, it can be seen that the room temperature is kept constant at the
minimum constraint throughout the simulation time, apart from between
5 and 7. The temperature in the room increase due to an increases in TF .
The room heat will decrease before the specified interval and be turned off
in it in order to keep TR constant. On the same time will the floor heat be
at the maximum limit. Since the floor heat is transferred to the room, will
this cause an increase in TR. At 6 o’clock will the floor heat be turned off
and thus cause a decrease in the room temperature.

Figure 7.2.1 prove that the solution of the optimization problem always are
on one of the constraints, i.e. the constraints are never broken. The floor
temperature is at the minimum constraint in the beginning. At 3 o’clock,
when TF increases, will the floor heat be switched to the upper bound, and
during the peak period will the heat be at the minimum constraint. At the
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Figure 7.2.1: Results from optimization: optimal case. Temperature and
heat versus time for the heat and floor, in addition to the cost function and
energy price as a function of time
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time when TF reach its minimum constraint will the floor heat increase to
the value that maintain a constant TF . The room temperature and heat
will have the same behaviour. At the time when TR is not on the lower
bound, will qH/R be turned off.

From Figure 7.2.1 it can be seen that the cost increases monotonically, but
is constant in most of the the interval with high energy price. This means
that no heat is purchased when the energy price is at the highest. The total
cost after 20 hours are 15.4 kr.

Figure 7.2.1 shows that the cost function increases at 7.42 a.m even if none
of the temperatures increases. The heat in the floor is turned off, but the
heat in the room start to increase around 7/8 o’clock. The reason for this
behaviour is that the room heat must be turned on in order to keep TR at
19 ◦C.

Broad case

The peak period will begin one hour earlier and be five hours longer in this
scenario compared to in the above case. The optimal solution with these
conditions are given in Figure 7.2.2. The red and blue line represents the
result for the room and floor respectively.

Figure 7.2.2 show that the heating of the system will start after just under
one hour (54 minutes), and the temperature in the floor will reach the max-
imum constraint just before 5 o’clock. The temperature in the floor will
then decrease and reach the lower bound around 11 o’clock. A loss of one
hour is thus obtained, i.e. one uses heat in one hour when the energy price
is at the highest. This is illustrated in Figure 7.2.2, where the heat in the
floor increases at 11 a.m.

For the same reasons as described in the above section, the temperature
in the room will be constant during most of the simulation time, apart from
between 3 and 7.

From Figure 7.2.2 it can be seen that no heat is purchased between 5 and 8,
which is proved by a constant cost function in that time interval. The total
cost after 20 hours is 16.8 kr. In addition, the same figure proves that the
temperature and heat in the floor and room will never break its constraints.



7. Optimal control 33

0 2 4 6 8 10 12 14 16 18 200
1
2
3
4

Floor Room

Time [h]

Po
w
er

[k
W

]

0 2 4 6 8 10 12 14 16 18 2018
20
22
24

FloorRoom

Time [h]

Te
m
p.

[C
]

0 2 4 6 8 10 12 14 16 18 200
5

10
15
20

Time [h]

C
os
t
[k
r]

0 2 4 6 8 10 12 14 16 18 20
0.6

0.8

1

Time [h]

Pr
ic
e
[k
r]

Figure 7.2.2: Results from optimization: broad case. Temperature and
heat versus time for the heat and floor, in addition to the cost function and
energy price as a function of time
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Not enough time to heat

The third scenario considers the case where the heating device does not
have time to heat the system before the peak period begins. The interval
where the energy price is high will be seven hours long, the same as in the
broad case, but it will begin earlier. Figure 7.2.3 gives the optimal solution
from simulations. As in the previous cases, the red and blue line represents
the result for the room and floor respectively.

Figure 7.2.3 shows that the optimal scenario is to start the heating of the
system immediately in order to store as much heat as possible before the
peak period. It can be seen that the floor temperature does not reach the
upper bound before the energy price increases. At 3 o’clock will TF decrease
and 13 minutes past 8 will the temperature in the floor have reached the
lower constraint. This means that the system will have a loss of approxi-
mately 2 hours, since the energy price is high until 10 o’clock. Figure 7.2.3
illustrates this, where the floor heat is turned on just after 8 o’clock.

As in the previous cases, the room temperature is kept constant throughout
the simulation time, except from between 2 and 4 o’clock.

The total cost after 20 hours is 17.2 kr. Figure 7.2.3 show that the cost
function is constant between 3 and 4, when no heat is used in the system,
while it increases the rest of the simulation time.
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Figure 7.2.3: Results from optimization: case where one does not have
time to heat. Temperature and heat versus time for the heat and floor, in
addition to the cost function and energy price as a function of time
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7.3 Storing of heat in the floor and room

This section will analyse the scenario when both heaters in the floor and
room are used to heat the system. The value of the initial guess and dis-
turbances used during simulation are given in Table 7.2.1. The system was
simulated over a finite horizon, and the results are given below.

Optimal case

The optimal solution with a peak period that starts at 6 o’clock and is 2
hours long, are given in Figure 7.3.1. As before, the red and blue line rep-
resents the result for the room and floor respectively. The headline of each
chapter refer to the scenarios described in Table 7.1.1.

Figure 7.3.1 shows that the optimal solution is to keep TR constant dur-
ing most of the simulation time. This means that storage of heat in the
room will not be necessary in this case. Similar to the optimal case in sec-
tion 7.2, will the room temperature increases between 5 and 7, due to an
increase in TF when the room heat is off.

The heating of the floor starts 3 hours before the peak period. The temper-
ature in the floor does not reach the maximum constraint before the peak
period, it will then decrease and reach the minimum at 11.16 a.m. This will
give a loss of approximately 1 hour.

The cost function is constant between 6 and 8, and the total cost after
20 hours is 15.4 kr.
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Figure 7.3.1: Results from optimization: optimal case. Both room and floor
heat are implemented in the initial guess to find the solution. Temperature
and heat versus time for the heat and floor, in addition to the cost function
and energy price as a function of time
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Broad case

The optimal solution of the optimization problem with a peak interval that
starts at 5 a.m and is 7 hours long are given in Figure 7.3.2. The red and
blue lines represent the result for the room and floor respectively.

Figure 7.3.2 illustrates that the optimal solution is to use only the heat
in the floor for storage, since the room temperature is to be kept constant
at the minimum constraint. The floor should be heated up after 54 minutes.

The floor temperature reaches the upper bound just before 5 o’clock and
decreases when the peak period begins. At 11 a.m will TF be at the mini-
mum constraint, which gives a loss of 1 hour.

The temperature in the room is kept constant during the simulations, apart
from between 3 and 7. The heat in the room will be at the minimum limit
in this interval, but the floor heat is turned on from 1 to 5 a.m.

The cost function is constant between 5 and 7, when no heat is used. The
total cost of the optimal solution is 16.8 kr.
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Figure 7.3.2: Results from optimization: broad case. Both room and floor
heat are implemented in the initial guess to find the solution. Temperature
and heat versus time for the heat and floor, in addition to the cost function
and energy price as a function of time
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Not enough time to heat

The results from simulations where ∆tpeak begins at 3 a.m and are seven
hours long are given in Figure 7.3.3. The red and blue lines in the figure
represent the result for the room and floor respectively.

As in the same case but with storing of heat in only the floor, is the optimal
solution to start the heating of the floor immediately. In contrast to the
optimal and broad case described above, should the room heat not be kept
constant, but be turned to the maximum value 12 minutes past 2.

The floor heat will be kept at the upper bound during storing, and be
switched off when the peak period begins. At 9 a.m, when TF reaches the
lower bound, will the floor heat increase again. Figure 7.3.3 shows that the
system will have a loss of one hour. From Figure 7.3.3 it can be seen that
TR decreases more rapidly than TF .

From Figure 7.3.3 it can be seen that the room heat will decrease in the
beginning. The reason for this behaviour is that the aim of the system is to
keep TR constant while TF increases, at least until the heating of the room
begins. The room heat is switched to the maximum value during the period
of storage. The room temperature will reach the maximum constraint before
it decreases and at approximately 5 a.m will TR reach the lower constraint
again.

The cost function is constant between 3 and 5, and the total cost of the
optimal solution is 16.9 kr.
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Figure 7.3.3: Results from optimization where the there is no time to heat.
Both room and floor heat are implemented in the initial guess to find the so-
lution. Temperature and heat versus time for the heat and floor, in addition
to the cost function and energy price as a function of time
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7.4 Summary of the results when storing heat in the floor
and when using both heaters for storage

A summary of the obtained values for the switching time, loss and total
cost for the scenarios described in this chapter are given in Table 7.4.1. The
first column give the results from optimization when only the floor heat is
used for storage, while the second scenario contain the results from when
both heaters are used to heat the system.

Table 7.4.1: Summary of the obtained values of the switching time, the floor
and room, the loss and total cost for the scenarios with heating i the floor
and where both heaters are used for storage

Storage: floor Storage: floor and room

Optimal case
tsF 2.48 a.m. tsF 2.57 ≈ 3 a.m.
tsR – tsR –
Jtotal 15.4 kr Jtotal 15.4 kr

Broad case

tsF 54 minutes tsF 53.24 ≈ 54 minutes
tsR – tsR –
Loss 1 hour Loss 1 hour
Jtotal 16.8 kr Jtotal 16.8 kr

No time to heat

tsF 0 hours tsF 0 hours
tsR – tsR 2.12 a.m.
Loss 2 hour Loss 1 hour
Jtotal 17.2 kr Jtotal 16.9 kr

The floor heat will be the only heating device necessary for storage in the
optimal case. The room heat is to be kept constant in order to save energy
costs. From the two columns in Table 7.4.1 it can be shown that the system
is heated up around the same time in both scenarios. The difference be-
tween the time to start heating the system is 12 minutes. The same scenario
(where only the floor heat is used for storage) is analysed in both cases, and
the switching time should thus be the same. The reason for the difference
in ts is that the optimum is flat, and it is thus difficult to obtain the same
values. However, this difference is not of significance for the total cost since
it is the same for both scenarios.

The result for the broad case is similar to the optimal case, only the floor
heat is needed when storing energy. The system is heated up at the same
time in both scenarios, and the total cost and loss are the same.
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In the third case, when the peak period starts too early for the temper-
ature to have time to reach the upper bound, will the result differ from each
other in the two scenarios. In both scenarios will the floor heat be turned
on immediately in order to save energy cost. But the temperature in the
floor will not reach the upper constraint when using only the floor heat for
storage. When using both the floor and room heat will TF and TR reach the
upper constraint. More energy will be stored in this case, which means that
less heat will be used when the energy price is high. Table 7.4.1 illustrates
this; the system will have a loss of 2 hours when using only the floor heat,
while a loss of 1 hour is obtained when using both heaters. The total cost
will be higher for the first scenario compared to the scenario where both
heaters are used for storage.

From Table 7.4.1 it can be seen that the longer the peak period, the more
energy needs to be stored which results in a higher total cost. The broad
and third case have the same length of ∆tpeak, but the energy price starts
to increase earlier in the latter case. Naturally, if the peak period starts
too early will the temperature in the system not have time to reach the
maximum value, even if the system starts to heat immediately. Using both
heaters for storage may prevent this, as shown in Table 7.4.1. The system
will have time to heat up when using both heaters and the total cost will
be reduced. The total cost in the third case, when both heaters are used
for storage is similar to the total cost in the broad case.

From this results one can conclude that it is better to use both heaters
to heat the system in the case where one does not have time to heat. On
the other hand, if the length and starting point of ∆tpeak is the same as in
the optimal and broad case should only the floor heat be used.



44 7. Optimal control



8. Development of switching rules 45

8 Development of switching rules

The objective of the optimization is to minimize the energy costs. Assuming
that the future energy cost is known. The optimal scenario is to store heat
just before the peak period, when the energy price is low, and the idea is to
use this stored energy in the peak period. On the other hand, the storing
of heat should not begin too early because excess heat will be transferred
from the floor to the room, and from the air to the outside.

This chapter will derive rules to find the optimal time to start heating
the system. A switching rule for the optimal and broad case described in
section 7.1 will be given together with the result from simulations. The
headline of each section represents the scenarios described in Table 7.1.1 in
section 7.1

8.1 Switching rule for optimal case

The time to start heating the room should not be too early nor too late in
order to save energy costs. The following formula, that finds the length of
the interval where one should heat, ∆ts, was derived:

∆tqs = ∆tpeak
qmax

qo
− 1 (8.1.1)

The different terms in equation (8.1.1) are explained in Figure 8.1.1. The
amount of heat stored should be equal to the amount of heat used in the
peak period:

∆ts × (qmax − qo) = ∆tpeak × qo (8.1.2)

Rearranging this equation gives

∆ts = ∆tpeakqo
qmax − qo

(8.1.3)

which is the expression given in equation (8.1.1).

Results from simulation when using only the floor for storage of
heat

The switching time was found from the calculated value of ∆tsq and used
as the optimal value in the simulations. The calculations of ∆ts and the
appurtenant ts are given in Appendix B. The same constant disturbances
as given in section 7.2 was used, and the result are given in Figure 8.1.2.
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Figure 8.1.1: Heat, temperature and energy price as a function of time.
Illustration of what the parameters given in the switching rule represent

According to the calculations from the switching rule, will the floor heat
be turned on after 3 hours and 41 minutes. From Figure 8.1.2 it can be seen
that the floor temperature does not reach the upper bound before the energy
price increases. The minimum constraint will be reached 37 minutes past 10.

The room temperature is kept constant, but it will increase by 0.5◦C be-
tween 5.30 and 6. When the floor temperature increases will the room heat
start to decrease in order to maintain a constant room temperature. In the
specified interval will the room heat has reached the minimum constraint,
but the floor heat will still be at the maximum. Since heat is transferred
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Figure 8.1.2: Results from optimization when using the switching rule for
the optimal case. Temperature and heat versus time for the heat and floor,
in addition to the cost function and energy price as a function of time
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from the floor to the room will this cause an increase in TR. The floor heat
will be turned off when the energy price increases, and this will result in a
decrease in the room temperature. Similar to when TF increases, will qH/R
increase when TF decreases, and when the floor temperature reaches the
minimum constraint will the room heat be kept constant.

No heat will be used between 6 and 6.30, which result in a constant cost
function in the specified interval. The total cost after 20 hours are 15.4 kr.

8.2 Switching rule for broad case

The interval with high energy price will, in contrast to the optimal case,
begin earlier and be longer in this scenario. The floor temperature will
reach the upper constraint before the peak period begins. Taking this into
account a different switching rule was derived. By starting with equation
(3.2.3)

ṪF =
−(UA)F/R
(mCp)F

(TF − TR) +
qH/F

(mCp)F
and assuming that the transfer of energy from the floor to the room, (UA)F (TF−
TR), is small compared the heat in the floor and therefore neglected, the
following expression of TF is obtained

dTF
dt =

qH/F
(mCp)F

(8.2.1)

Rearranging this equation gives the time to start heating the system from
the starting value, To, to Tmax. It is assumed that To always equals Tmin.
The heat in the floor, qH/F , is replaced by ∆q = (qmax − qo), which is the
amount of heat necessary to heat the floor from To to Tmax.∫ Tmax

Tmin

dT = qmax − qo
mCp

∫ t2

t1
dt (8.2.2)

Integrating and rearranging gives the new switching rule:

∆tTs = Tmax − Tmin
qmax − qo

mCp (8.2.3)

Results from simulation when using only the floor for storage of
heat

The switching time was found from the calculated value of ∆tsT and used
as the optimal value in the simulations. The calculations of ∆ts and ts are
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Figure 8.2.1: Results from optimization when using the switching rule for
the broad case. Temperature and heat versus time for the heat and floor,
in addition to the cost function and energy price as a function of time
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given in Appendix B. The same constant disturbances as given in section
7.2 was used, and the result are given in Figure 8.2.1.

The length of the interval where one should heat was calculated to 4.48
h. This means that the heat in the floor will be switched to the maximum
value after 12 minutes, since the peak period begins at 5 a.m. The floor
heat will increase and reach the upper bound around 4, and be kept there
until the peak period begins. The floor temperature will decrease when the
floor heat is turned off, and it will reach the minimum constraint 7 minutes
after 11. This will give a loss of approximately 1 hour.

The room temperature will be constant most of the time, apart from be-
tween 2 and 7 where it will increase. As described in the previous chapter,
the temperature will increase because the floor heat is turned on, and the
room heat is turned off.

From Figure 8.2.1 it can be seen that the cost function is monotonically
increasing, and the total cost after 20 hours is 16.8 kr.

8.3 Switching rule for the case where there is no time to
heat

The same switching rule as obtained in section 8.1 was used in this case. A
detailed description of the calculations of ∆ts is given in Appendix B.

The calculated value of ∆ts is 8.09 h. This means that the switching time
is 5 hours before the simulation time, and the solution is thus infeasible.

8.4 Summary

Table 8.4.1 gives a summary of the calculated values of ∆ts, ts, the total
cost and loss obtained in the cases described above.

The switching rules give a good estimate for the optimal and broad case,
while the result is poor in the third case.

From Table 8.4.1 it can be seen that the longer the peak period, the higher
energy costs, since more energy needs to be stored in advance. In addition,
it can be seen that the constraints will never be broken in any of the cases.
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Table 8.4.1: Summary of the obtained values of the switching time, ∆ts,
loss and total cost for the scenario with heating i the floor. The values of
∆ts was calculated from the switching rules

Storage of heat: floor

Optimal case
∆tsq 2.31 h
ts 10 h and 37 min

Jtotal 15.4 kr

Broad case

∆tsT 4.8 h
ts 1h and 7 min

Loss 5 h and 30 min
Jtotal 16.8 kr

No time to heat ∆tsq 8.09 h
ts Infeasible

8.5 Comparison of optimal solution with the switching rules

Table 8.5.1 compares the obtained values of the loss, total cost and ts from
the optimal control problem and switching rules. For sake of comparison,
only the scenario where the system use the floor heat for storage is analysed.

Table 8.5.1: Comparison of the switching time, loss and total cost obtained
from the optimal solution and switching rules

Switching rule Optimal control

Optimal case ts 3h and 41 min ts 2h and 48 min
Jtotal 15.4 kr Jtotal 15.4 kr

Broad case
ts 12 min ts 54 min

Loss 1 hour Loss 1 hour
Jtotal 16.8 kr Jtotal 16.8 kr

No time to heat
ts Infeasible ts 0 hours

Loss – Loss 2 hours
Jtotal – Jtotal 17.2 kr

The switching rule gives a good estimate of the switching time in the opti-
mal and broad case. Even if the system is heated up for a longer period of
time (56 min before the optimal solution) in the case where the switching
rule is used, will the total cost be the same in both scenarios. The same
result is obtained for the broad case. The switching time is estimated to
begin 42 minutes before when using the switching rule. In spite of this will
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the total cost for the optimal solution and switching rule be the same. The
reason for the difference in switching time may be due to the flat optimum.

One ought to think that if the system is heated up for a longer period
of time, should the total cost also be higher. Especially in the broad case,
when TF is kept at the maximum for about an hour when using the switch-
ing rule, compared to just a few minutes in the solution of the optimal
control problem. The total cost will be the same in both scenarios because
the room heat will start to decrease and eventually be turned off when the
TF increases. This means that if the system is heated up earlier, will the
room heat be off for a longer period of time, compared to the case where
the heating starts later.

From Table 8.5.1 it can bee seen that the loss obtained from the optimal
control problem and switching rule is the same in the broad case. The floor
temperature will decrease at the same rate in both scenarios, and it will
start to drop when the energy price increases. The floor temperature will
reach the maximum constraint before the peak period in both scenarios.
This means that TF will be at the same value in both scenarios when it
start to decrease, and TF will thus reach the minimum constraint at the
same. The loss is found by subtracting the time where the peak period
ends with the time TF reach the minimum constraint, and since the peak
period is equal in both cases will the loss be similar to one another in the
two scenarios.

The same switching rule as in the optimal case is used in the scenario where
the system does not have time to heat up. The estimation of ts will in this
case be no good, since a value before the starting point of the simulation is
estimated.

This comparison demonstrates that the switching rule give good results
for the optimal and broad case, while the estimate is poor for the last case.
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9 Optimal control with varying disturbances

This chapter gives the result of the optimal control problem when varying
the outdoor temperature. The first part will give the result from the optimal
control problem described in chapter 6 and 7, while the last part illustrates
how the switching rules respond to disturbances.

In the previous chapters has the outdoor temperature been kept constant
at 0 ◦C. This chapter will analyse the behaviour of the system when the
outdoor temperature is changed to another constant value or when a step
is implemented. The optimal case, where the peak period is 2 hours long
and starts at 6 o’clock, will be used as reference case. An illustration of the
energy price in the optimal case is shown in Figure 9.0.1. In addition, only
the floor heat is used for storage of heat in this chapter.
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Figure 9.0.1: Illustration of the peak period in the base case

A variation in the outdoor temperature before and after the peak period
will be implemented.

9.1 Variation in the outdoor temperature before the peak
period

In this case will the outdoor temperature still be constant, but it will vary
between +\- 5 and +\- 9 degrees from the base case. Figure 9.1.1 and 9.1.2
gives the result from simulation. The first figure compares the temperature
and power in the floor and room for the various changes in To, while the
latter figure shows the cost function and outdoor temperature as a function
of time. The blue line represents the reference case, where the outdoor tem-
perature is 0 ◦C. The red, green, yellow and purple line represent a outdoor
temperature of 9, 5, -5 and −9 ◦C, as illustrated in Figure 9.1.1.
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Figure 9.1.1: Variation in the outdoor temperature before the peak period.
Cost function and outdoor temperature as a function of time

According to Figure 9.1.2 it can be seen that the switching time for the
floor changes when the outdoor temperature varies. The optimal time to
start heating the system for the case where the outdoor temperature is 9,
5, 0, -5 and −9 ◦C are 4 h 56 min, 4 h and 10 min, 2 h and 48 min, 1 h and
26 min and lastly 50 min respectively.

The floor temperature will reach the maximum constraint when the out-
door temperature is -5 and −9 ◦C. For higher outdoor temperature will the
maximum constraint not be attained. Similar, the temperature will reach
its lower bound after 11 hours and 50 minutes when the outdoor tempera-
ture is -5 and −9 ◦C. For an outdoor temperature of 0, 5 and 9 ◦C will the
minimum limit be reached at 11.28, 10.28 and 9.30 a.m respectively.

The room temperature will be constant most of the time, but it will have
a peak around 6 in all the cases. The warmer it is outside, the later does
the system need to be heated up. The room heat is starting to decrease
at the switching time, when qH/F is turned to max. At the same time, the
floor heat will be turned off at 6 a.m in all the cases. At this time will TF
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Figure 9.1.2: Variation in the outdoor temperature before the peak period.
Input and states as a function of time



56 9. Optimal control with varying disturbances

decrease, and the room heat will start to increase. From Figure 9.1.2 it can
bee seen that the earlier the switching time, the earlier will qH/R be turned
off. This means that TR will increase for a longer period of time the colder
the outdoor temperature is. However, at an outdoor temperature of −9 ◦C
will the room temperature increases least of all. At such a low outdoor
temperature will the room heat need to use a lot of power to keep the room
temperature at the minimum constraint. It will thus take a while for the
room heat to decrease to the minimum constraint, and from Figure 9.1.2
it can be seen that the interval where qH/F is off is smaller than the same
interval when the outdoor temperature is −5 ◦C.

The total cost increases with decreasing outdoor temperature. The total
cost after 20 hours when the outdoor temperature is 9, 5, 0, -5 and −9 ◦C
is 8.1, 11.3, 15.4, 19.5 and 22.8 kr.

From Figure 9.1.2 it can be seen that the temperature and heat will al-
ways be on the constraints or between, they are never broken.

9.2 Variation in the outdoor temperature after the peak pe-
riod

A step at 9 o’clock, where To will change from 0 ◦C to +\- 5 and +\- 9
degrees, will be implemented in this case. Figure 9.2.1 and 9.2.2 give the
results from simulation. The first figure shows the input and states as a
function of time for the different outdoor temperatures, while the latter fig-
ure compares the cost function and outdoor temperature in each case. The
red, green, yellow and purple line represent a outdoor temperature of 9, 5,
-5 and −9 ◦C. The blue line gives the result from the reference case.

Figure 9.2.1 shows that the switching time will be approximately the same
in all the cases (around 3 o’clock) when a change in the outdoor tempera-
ture happens after the peak period. The room and floor heat will therefore
have similar behaviour in all the cases until 9 o’clock. At 9 a.m when a step
in the outdoor temperature is implemented, as illustrated in Figure 9.2.2,
will the amount room heat used vary in each case. Naturally, the colder
the outdoor the outdoor temperature the more heat needs to be used in
order to keep the room temperature at the minimum constraint. Similar,
the warmer the weather is outside, less heat will be needed to maintain a
constant temperature.
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Figure 9.2.1: Step in the outdoor temperature after the peak period. Input
and states as a function of time
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Figure 9.2.2: Step in the outdoor temperature after the peak period. Cost
function and outdoor temperature as a function of time

According to Figure 9.2.2 it can be seen that the cost function is more
or less the same until 9 a.m for all the different outdoor temperatures. Af-
ter 9 a.m will the increase in the cost function be higher the colder it is
outside. The total cost after 20 hours when To changes till 9, 5 , 0 , -5 and
−9 ◦C is 11.4, 13.2, 15.4, 17.6 and 19.4 kr.
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9.3 Switching rules and how they respond to changes in the
outdoor temperature

As in section 9.1 will the outdoor temperature be constant during the sim-
ulation time, but it will vary with +\-5 and +\-9 degree from the reference
case. The switching rule derived in chapter 8.1 will be used to find the
switching time. Table 9.3.1 gives the obtained switching times, while the
calculations are given in Appendix C. The calculation of the switching
time for the reference case is found in Appendix B.

Table 9.3.1: Calculated values of the switching time from the switching rule
for the optimal case

Outdoor temperature Switching time
9 ◦C 5 h and 16 min
5 ◦C 4 h and 48 min
0 ◦C 3 h and 41 min
−5 ◦C 2 h and 24 min
−9 ◦C Infeasible

An infeasible switching time is obtained when the outdoor temperature is
−9 ◦C, and this case will therefore be omitted in the simulations. Figure
9.3.1 and 9.3.2 give the result from simulation. The first figure shows the in-
put and states as a function of time for the different outdoor temperatures,
while the latter figure compares the cost function an outdoor temperature
in each case. As previous, The red, green and yellow line represent an out-
door temperature of 9, 5, and −5 ◦C, while the blue line gives the base case.

Table 9.3.1 proves that the colder the outdoor temperature, the earlier will
the switching time be. From Figure 9.1.2 it can be seen that the floor tem-
perature never reaches the upper constraint in any of the cases, but the
minimum constraint is reached at 11.15, 10.37, 9.30 and 8.48 a.m with an
outdoor temperature of -5, 0, 5 and 9 ◦C respectively.

The room temperature will barely increase in any of the cases. The in-
terval where the room heat increase the most is at a outdoor temperature
of −5 ◦C, and opposite, TR do barely increase when To equals 5 and 9 ◦C.

From Figure 9.3.2 it can be seen that the total cost after 20 hours when
the outdoor temperature is -5, 0 ,5 and 9 ◦C is 9.5, 15.4, 11.4 and 8.1 kr
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Figure 9.3.1: Step in the outdoor temperature before the peak period. Input
and states as a function of time. The switching rule is used to find the
optimal time to start heating the system
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Figure 9.3.2: Step in the outdoor temperature before the peak period. Cost
function and outdoor temperature as a function of time. The switching rule
is used to find the optimal time to start heating the system

respectively.

9.4 Comparison

Table 9.4.1 gives a summary of the obtained switching time and total cost
for the cases where the outdoor temperature is varied before and after the
peak period. In addition, the results from the switching rules will also be
included.

Before peak period

Table 9.4.1 shows that the obtained switching time from the switching rule
and optimal case are similar. The difference between the optimal case and
switching rule is 20, 38 and 58 minutes for an outdoor temperature of 9,
5 and −5 ◦C respectively. Although the optimal case starts to heat a bit
earlier will the total cost be approximately the same for all the cases. For
an outdoor temperature of 5 ◦C will the total cost after 20 hours be 0.1 kr
higher when using the switching rule.
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Table 9.4.1: Summary of the obtained switching time and total cost for the
cases where the outdoor temperature is changed before and after the peak
period, in addition to the results from the switching rules

Before peak period After peak period
Optimal control Switching rule Optimal control

To [ ◦C] ts [h] Jtot [kr] ts [h] Jtot ts [h] Jtot [kr]
9 4.56 8.1 5.16 8.1 2.57 11.4
5 4.10 11.3 4.48 11.4 2.48 13.2
0 2.48 15.4 3.41 15.4 2.48 15.4
−5 1.26 19.5 2.24 19.5 2.58 17.6
−9 0.50 22.8 – – 2.58 19.4

From Table 9.4.1 it can be seen that the switching time begins closer to
the peak period when the outdoor temperature is warmer than the refer-
ence case, outdoor temperature of 0 ◦C. Similar, the system will be heated
up earlier when the outdoor temperatures go below the base case. The cost
function shows the same behaviour; the colder the outdoor temperature,
the more heat is needed to keep the temperature at the desired value, and
the higher the total cost.

Implementing a change in the outdoor temperature before the peak pe-
riod result in a change in switching time. It can be seen that the colder
the outdoor temperature, the earlier should the switching time be. Similar,
when the outdoor temperature increases will the switching time be closer
to the peak period. This prove that the system will take a change in distur-
bance before the peak period into consideration, and a new switching time
that allow for the new outdoor temperature will be calculated.

After peak period

A variation in disturbance after the peak period will not give a change in
switching time that are of any significance. The last but one column in
Table 9.3.1 show that the switching time will be just before 3 o’clock in all
the cases. This result indicates that the model does not allow for a variation
in the outdoor temperature after the peak period. The switching time will
barely vary from the reference case if the outdoor temperature increases or
decreases.
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Same as for a disturbance before the peak period, the cost function will
be higher the colder the outdoor temperature is. However, comparing the
cost function for the optimal case with a disturbance before and after the
peak period it can be seen that:

1. Jtotal, disturbance after peak < Jtotal, disturbance before peak when the outdoor
temperature is below 0 ◦C

2. Jtotal, disturbance after peak > Jtotal, disturbance before peak when the outdoor
temperature is higher than the reference case

For temperatures above the reference case will less floor heat be used in the
optimal case since the switch time is just before the peak period. This means
that the energy consumption in the optimal case will be lower than for the
switching rule, where the switching time will be around the same time as
the base case. Similar, the interval where the heating of the system take
place is longer than the base case when the outdoor temperature is below
0 ◦C in the optimal case. The energy consumption will thus increase, and
it will be higher than the energy consumption when using the switching rule.

The above results conclude that the model, both the solution from the
optimal control problem and switching rules, will take the disturbance into
consideration if it is varied before the peak period. However, the model
does not allow for a variation in the outdoor temperature after the peak
period. The reason for is that the model cannot know what will happen in
the future, and the solution obtained may not be the optimal one.

The switching rule handles a variation in the disturbance well, but when
the outdoor temperature becomes too cold will the result be poor.
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10 Optimal control using PI

This chapter presents the results of the dynamic optimization problem when
using Simulink and PI controllers to solve the system. The chapter starts
with a description on how the system was implemented in Simulink. How
the optimization problem was solved and the results are given in the end.

10.1 Description of the Simulink model

The system described in chapter 3.2 was this time implemented in Matlab
and Simulink, in addition to a simple feedback control structure. The con-
trol structure includes two PI controllers, where the two heat inputs are
used to control the floor and room temperature respectively. The control
structure is illustrated in Figure 10.1.1, the Matlab code and an illustration
of the Simulink model are given in Appendix E, section E.2.

Figure 10.1.1: Overview of the control structure of the system

The parameters for the PI controllers were found using the tuning rules
explained in chapter 2.7. The tuning parameters are given in Table 10.1.1,
a more detailed description on how they were calculated are given in Ap-
pendix D.

Anti-windup is included in the PI controllers in Simulink. This means that
the integral part in the PI controller is turned off when when the upper or
lower limits of the saturation are reached.
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Table 10.1.1: Tuning parameters for the two PI controllers
PI controller Kc τI
TF − qH/F 127.7 0.04
TR − qH/R 249.7 0.04

10.2 Storing of heat in the floor

This chapter will use the result from chapter 7 to find the optimal solution
of the problem. The obtained value of the switching time will be imple-
mented as an initial guess in the Simulink model, and by the method trial
and error will the optimal solution be obtained. Table 10.2.1 gives a sum-
mary of the obtained values of ts from the switching rule found in chapter 7.

Table 10.2.1: Obtained value of ts from the switching rules for the optimal
case, broad case and the case where one do not have time to heat

Case ts
Optimal case 3 h 41 min
Broad case 12 min

No time to heat Infeasible

This section will analyse the case with storing of heat in only the floor.
The temperature in the room is set to the minimum constraint, while the
temperature in the floor will be kept at the minimum for as long as storage
of heat is not necessary. During the period of storage, will the heater in the
floor be kept at the maximum output.

For sake of comparison, the value of the inputs and disturbances during
simulation are the same as in section 7.2. The same scenarios as explained
in section 7.1 was analysed, and the headline of the below sections refer to
the different cases with varying length and starting point of the peak period
as described in Table 7.1.1.

Optimal solution

The optimization problem is solved by choosing an energy price somewhere
between the high and low value, Phigh/low. If the energy price is above this
level will the temperature be kept at the minimum constraint, and if the
price is below Phigh/low can the temperature be at the minimum or maxi-
mum depending on if storage is necessary or not. This means that if the
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time is within the interval ∆ts will the temperature be kept at the upper
bound. Similar, the temperature should be at the lower bound if one is out-
side ∆ts. Appendix E, section E.3 gives a picture of the Simulink model.

The system was simulated over a finite horizon and the results are given
below. Figure 10.2.1 compares the temperatures and the heat in the floor
and room respectively for the optimal case and the solution from the switch-
ing rule, while Figure 10.2.2 compares the cost functions. The result from
the switching rule given in equation (8.1.1) was used, while the optimal
solution was found by the method trial and error. The red and blue line
represent the solution from the switching rule and optimal case respectively.

With a ∆tpeak of one hour it can be seen that the optimal solution is to
start the heating at 2.45 a.m. The temperature in the floor will not reach
the maximum value before the energy price increases. At 6 o’clock will TF
decrease and at 11.25 a.m will the temperature reach the lower constraint.

The room temperature is kept constant to minimize energy costs, but be-
tween 5 and 7 will it increase. When TF increases will the heating in the
room decrease in order to keep TR constant. In the specified interval will
the room heat has reached minimum constraint, while the floor heat is at
the maximum. The floor heat is transferred to the room and thus cause the
room temperature to increase. At 6 o’clock will the floor heat be turned off
and TR will start to decrease, as shown in Figure 10.2.1.

The time to start heating the system is estimated to a value too late by
the switching rule, it will be heated up 53 minutes later than in the opti-
mal case. This result is illustrated in Figure 10.2.1, where the floor heat is
switched to the maximum value later than in the optimal case. The floor
heat will be tuned on 35 minutes past 10 when TF reach its minimum con-
straint.

As explained before, TR will increase when qH/R is turned off and qH/F is
still on. The interval where TR increases is bigger in the optimal case than
for the case where the switching rule is used, as shown in Figure 10.2.1. The
room heat will start to fall when TF increases. Similar, qH/R increases again
when the TF decreases. When TF attains its minimum constraint again, will
the room heat stabilize at a constant value that continue to maintain the
constant room temperature. In the optimal case will the heat in the room
start to fall earlier since the floor is heated up prior to the switching rule.
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Figure 10.2.1: Temperature and heat in the floor and room versus time for
the optimal case and the solution from the switching rule. The results are
obtained by using PI controllers. The heat is stored in the floor
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Figure 10.2.2: Cost function as a function of time for the optimal case and
the case when using the switching rule. The results are obtained by using
PI controllers. The heat is stored in the floor

In addition, TF will reach its minimum constraint a 54 minutes later in the
optimal case, and qH/R will thus be turned off for a greater amount of time
in the optimal case.

Since the floor heat is turned to the maximum value for a longer period
of time in the optimal case, will more heat be used in this case. Figure
10.2.2 proves this; the cost function for the optimal case will be higher than
the cost function for the switching rule around 3 and 10. However, the room
heat will be turned off for a longer period of time in the optimal case. The
interval where no energy is purchased will therefore be longer in this case,
as illustrated with a constant cost function in Figure 10.2.2.

Around 10.30 will the cost function for the switching rule overtake the cost
for the optimal case. As already explained, more room heat will be used in
the case with the switching rule. In addition, the floor heat will be turned
on earlier (around 10.30) in this case. By taking these facts into consid-
eration, can one explain why the cost function for the switching rule will
exceed the cost function for the optimal case.

The difference between the two cost functions are barely noticeable after
10.30, but Figure 10.2.2 proves that the cost function for the switching rule
will be a bit higher. The total cost after 20 hours for the optimal case and
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the broad case is 15.4 and 15.5 kr respectively.

Broad case

The system was simulated over a finite horizon and the results are given
below. Figure 10.2.3 compares the temperature and the heat in the floor
and room respectively for the optimal case and the case using the switching
rule given in equation (8.2.3). An example on how ∆ts was calculated are
given in Appendix B. The optimal solution was found by the method trial
and error. Figure 10.2.4 compares the cost function for both cases. The
result from the switching rule is represented by a red line, while the optimal
solution is illustrated with a blue line in both figures.

The optimal time to start the heating of the system is after 54 minutes,
while the same value calculated from the switching rule is 12 minutes. In
the optimal case will the temperature reach the upper bound a few minutes
before the peak period, compared to the switching case, where TF will be at
the maximum constraint in 40 minutes before it decreases. This means that
a greater amount of floor heat will be used in the case with the switching
rule. Figure 10.2.3 illustrates this. It can be seen that the floor heat in the
optimal case is switched to the lower bound later than in the case where
the switching rule is used.

In both scenarios will the floor temperature reach the maximum constraint
before the peak period. This means that TF will decrease and reach its lower
bound at the same time (4 minutes past 11) for the optimal case and when
using the switching rule. A loss of approximately 1 hour is thus obtained
for both cases.

From Figure 10.2.3 it can be seen that the room heat is turned off for a
longer period of time when using the switching rule. The temperature in
the room will start to fall 42 minutes later in the optimal case. However,
the room heat will be turned on at the same time in both cases. As a result
of this, will the room temperature when using the switching rule start to
increase 42 minutes before the optimal solution, but TR will attain its min-
imum limit at the same time in both cases.

The cost function for the switching rule is higher in the beginning. The
reason for this is that more floor heat is used in this case. Although more
room heat will be spend in the optimal case, will the total amount of heat
(floor and room) be higher for the switching rule than in the optimal case.
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Figure 10.2.3: Temperature and heat in the floor and room versus time for
the broad case and the solution from the switching rule. The results are
obtained by using PI controllers. The heat is stored in the floor
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Figure 10.2.4: Cost function as a function of time for the broad case and
the case when using the switching rule. The results are obtained by using
PI controllers. The heat is stored in the floor

Around 7 a.m will the the energy consumption be similar to one another in
both cases. The total cost after 20 hours i 16.9 and 17 kr for the optimal
case and the case where using the switching rule.

No time to heat

In this case will the floor temperature not be able to reach the maximum
constraint before the peak period begins, even if the floor heating is turned
to max immediately. The reason for this is that the peak period begins too
early.

From chapter 8 it was seen that the switching rule did not give any fea-
sible solution, and it will therefore be omitted in this section. Figure 10.2.5
and 10.2.6 give the results from simulation. The method trial and error was
used to obtain the optimal solution.

The optimal solution, according to Figure 10.2.5, is to start heating the
system immediately. When starting to heat as early as possible will the
amount of energy that needs to be used when the energy price is high be
reduced. The floor temperature will start to decrease at 3 a.m and reach
the lower bound at 8 o’clock. This will give a loss of 2 hours. The room
temperature is kept constant during the simulations, apart from between 2
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Figure 10.2.5: Temperature and heat in the floor and room versus time for
the case where one does have time to heat. The results are obtained by
using PI controllers. The heat is stored in the floor
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Figure 10.2.6: Cost function as a function of time for the case where there
is no time to heat. The results are obtained by using PI controllers. The
heat is stored in the floor

and 4 a.m.

From Figure 10.2.6 that the total cost after 20 hours is 17.2 kr.

10.3 Storing of heat in the floor and room

In this section are both heating elements in the floor and room used for
storage of heat. Similar to the above case, the temperature in the floor and
room will be kept at the lower bound as long as no heating take place, while
the heaters will be kept at the maximum value during the period of storage.

From the results in section 7.3 it was shown that heating in the room will
not be necessary in the optimal and broad case. Heating in the room will
just be required if the system do not have time to heat up before the peak
period.

No time to heat

Both the heaters in the floor and room will be used for storage. Figure
10.3.1 and 10.3.2 give the optimal result from simulations. The first figure
compares the temperature and heat in the floor and room respectively, while
the latter figure gives the cost function. The optimal solution was found by
the method trial and error.
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Figure 10.3.1: Temperature and heat in the floor and room versus time for
the case where the system does not have time to heat up. The results are
obtained by using PI controllers. Storage of heat in the floor and room
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Figure 10.3.2: Cost function as a function of time for the time where the
system does not have time to heat up. The results are obtained by using
PI controllers. Storage of heat in the floor and room

The optimal time for the floor and room to start heating are immediately
and at 2.12 a.m respectively. Both the floor and room temperature will
reach the upper bound before they decrease again. From Figure 10.3.1 it
can be seen that TR decreases more rapidly than TF . The floor temperature
will reach it minimum constraint 7 minutes past 9, while the temperature
in the room will reach its minimum 9 minutes past 5. This will give a loss
of approximately 1 hour for the floor.

The floor and room heat will both be at the lower bound before the period
of storage. After the switching time and until the peak period begins will
the heaters be at the maximum value, before they are turned off at 3 o’clock.

Figure 10.3.2 shows that the total cot after 20 hours is 17 kr.

10.4 Summary of the obtained results when storing heat in
the floor and when using both heaters for storage

The first part of this section will give a summary of the switching time,
loss and total cost for the optimal solution, while the same results for the
switching rule will be given in the end. A comparison of the optimal solution
and switching rules will be given in the next section.
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Summary of the optimal results

A summary of the obtained values for the switching time, loss and total
cost for each case described in this chapter are given in Tale 10.4.1. The
first column in the table gives the results from optimization when only the
floor heat is used for storage, while the second scenario contains the results
from when both heaters are used to heat the system.

Table 10.4.1: Summary of the optimal values of ts, the loss and total cost
for the scenarios with heating in the floor and where both heaters are used
for storage. The results are obtained by using PI controllers

Storage: floor Storage: floor and room

Optimal case
tsF 2h 45 min
tsR – – —
Jtotal 15.4 kr

Broad case

tsF 54 minutes
tsR –
Loss 1 hour — —
Jtotal 16.9 kr

No time to heat

tsF Immediately tsF Immediately
tsR – tsR 2.12 a.m.
LossF 2 hours LossF 1 hours
Jtotal 17.2 kr Jtotal 17 kr

As mentioned in section 7.4, will the floor heat be the only heating de-
vice necessary for storage in the optimal and broad case. The room heat is
to be kept constant for as long as possible in both scenarios.

In the third case will floor start the heating of the system immediately
in order to store as much heat as possible before the peak period. Because
the energy price starts to increase already at 3 a.m will TF not be able to
reach the upper constraint, and the system will have a loss of 2 hours. This
result is valid if only the floor is used for storage of energy. In the scenario
where both heaters are used for storage should the floor start the heating
immediately, but in addition, the room will be heated up at 2.12 a.m. Both
the floor and room temperature will reach the upper constraint.

More energy will be stored in the case where both heaters are used, and
less amount of heat will thus be used when the energy price is high. The
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cost function for the case where both heaters are used for storage will be
lower than the total cost for the case where the the floor heat is used for
storage. The room heat will be on the maximum value for one hour when
using both heaters for storage. The room heat will be turned off in the
same interval when only the floor heat is used to heat the system. However,
in the case where only the floor heat is used for storage will the floor heat
be on the maximum constraint for a longer period of time (one hour) com-
pared to the first case and the loss will also be bigger (one hour). The energy
consumption in total will therefore be higher when using only the floor heat.

From the above result one can conclude that both heaters should be used
for storage when one does not have time to heat. In addition, from Table
10.4.1 it can be seen that the total cost increases the longer the peak period
is.

The heat and temperature for the floor and room will always be on or
somewhere between the constraints, they are never broken. This result is
valid for all the cases.

Summary of the results obtained from the switching rules

Table 10.4.2 gives a summary of the obtained values of the loss, total cost
and ts from the switching rules for the scenarios with storing in the floor
and when using both heaters for storage.

Table 10.4.2: Summary of the calculated values of ts obtained from the
switching rules, in addition to the loss and total cost for the scenarios with
heating in the floor. The results are obtained by using PI controllers

Storage of heat: floor

Optimal case tsqF 3 h 41 min.
Jtotal 15.5 kr

Broad case
tsTF 12 min
Loss 1 hour
Jtotal 17 kr

The switching rule is able to calculate a switching time for the optimal
and broad case. In the third case, where there is no time to heat, will the
switching time obtained from the switching rule be infeasible.
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10.5 Comparison of the optimal solution with the switching
rules

From the results in Table 10.4.1 and 10.4.2 it can be seen that the switching
rule gives a good estimate of the switching time in the optimal case. Even
if the system is heated up for a longer period of time (around one hour) in
the case where the switching rule is used, will the total cost be 0.1 kr higher
than in the optimal case. The reason for the difference in switching time
may be because of the flat optimum.

Similar to the optimal case, the switching rule derived for the broad case
gives a good estimate of the switching time. It misses the optimal ts by 42
minutes, but the loss will be the same in both scenarios, and the total cost
will be 0.1 kr higher when using the switching rule compared to the optimal
solution.

The floor and room heat should be used for storage in the case where one
does not have time to heat the system. The result from the switching rule
is poor in this case, it estimates a switching time that is not feasible.

From this comparison one can conclude that the switching rule gives a good
estimate of the switching time in the optimal and broad case, while the rules
are no good in the last case.
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11 Comparison of the solution from optimal con-
trol with the optimal control problem when
using PI

This chapter compares the results from optimization when using the gradi-
ent free method (chapter 7) to solve the problem with the solutions obtained
when using PI controllers (chapter 10).

Storing of heat in the floor

Table 11.0.1 compares the obtained values of the total cost, loss and switch-
ing time for the optimal control problem when using the gradient free
method and PI controllers. The system will store the heat in the floor
and the three different scenarios with varying length and starting point of
the peak interval will be given.

Table 11.0.1: Comparison of the obtained values of the switching time, loss
and total cost for the optimal control problem and the control problem when
using PI, and where the heat will be stored in the floor

Storage of heat: floor
Optimal control Optimal control PI

Optimal case ts 2 h and 48 min 2 h and 45 min
Jtotal 15.4 kr 15.4 kr

Broad case
ts 54 minutes 54 minutes

Loss 1 hour 1 hour
Jtotal 16.8 kr 16.9 kr

No time to heat
ts Immediately Immediately

Loss 2 hours 2 hours
Jtotal 17.2 kr 17.2 kr

The solution of the optimal control problem when using a PI controller
and the gradient free method are similar to one another in the optimal case.
The cost function will be the same in both cases, but the switching time is
different. From Table 11.0.1 it can be seen that the system will be heated up
3 minutes earlier when using PI. However, the system has a flat optimum,
which makes it difficult to find the exact minimum. This may be the reason
for the difference in switching time for the two models.

The broad case have identical switching times and loss, but the total cost
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for the optimal control problem when using PI will be 0.1 kr higher than
the solution of the optimal control problem. The reason for the higher total
cost when using PI are illustrated in Figure 11.0.1. In the optimal case will

Figure 11.0.1: Behaviour of the heat as a function of time for the optimal
control problem and the control problem when using PI

the heat be turned off immediately, but when using the PI controllers will
the response be a bit slower. The heat will use a few minutes to be turned
off and the energy consumption will increase as a result of that. If one zoom
in on the figures for the broad case, this result will be verified. Nevertheless,
the difference in the cost function is not significant, since the total cost after
one year will be just 36 kr higher when using PI to solve the optimization
problem.

In the third case, where there is no time to heat, the solution of the optimal
control problem will be the same in both cases. The switching time, loss
and total cost are identical to one another when using PI and when using
fminsearch to solve the problem.

From the above result it can be concluded that the result from the optimal
control problem when using PI will resemble the solution of the optimal
control problem when using the gradient free method.

Storing of heat in the floor and room

From the result in chapter 7 it was found that storing of heat in the room
and floor were only necessary in the case where there is no time to heat.
Table 11.0.2 gives the result from the optimal control problem when both
heaters are used for storage. The result from the optimal control problem
from chapter 7 and 10 will be compared.

From the second last and last column in Table 11.0.2 it can be seen that the
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Table 11.0.2: Comparison of the obtained values of the switching time,
loss and total cost for the optimal control problem and the optimal control
problem when using PI, and where the heat will be stored in the floor and
room

Storage of heat: floor and room
Optimal control Optimal control PI

No time to heat

tsF Immediately Immediately
tsR 2.12 a.m. 2.12 a.m
Loss 1 hour 1 hour
Jtotal 16.9 kr 17 kr

switching time for the floor and room, in addition to the loss will be similar
to one another. However, the total cost for the control problem when using
PI will be 0.1 kr higher than the optimal control problem. The reason for
this behaviour might be because of a slower response time for the PI con-
troller, as explained above.

One can conclude that the optimal control problem where one uses PI con-
trollers to solve the problem will give similar results as the optimal control
problem.

Comparison of the switching rules

The following Table compares the result from the switching rules for the
optimal control problem and the control problem where PI controllers are
used.

The two last columns in Table 11.0.3 shows that the switching time will
be the same in the optimal case, but the total cost will be 0.1 kr higher
when using PI controllers to solve the problem. Similar, the total cost for
the broad case when using PI will be 0.2 kr higher than when solving the
problem by fminsearch, but the switching time and loss will be identical in
both cases. However, the difference in total cost between the two cases is
not big. The energy costs for one year will be 36 kr and 73 kr higher for
the optimal and broad case respectively when PI is used.

In the case where one does not have time to heat will the switching rule
not give any feasible result. The obtained switching time will be before the
simulation starts.
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Table 11.0.3: Comparison of the obtained values of the switching time,
loss and total cost obtained from the switching rule for the optimal control
problem and the control problem when using PI

Storage of heat: floor
Optimal control Optimal control PI

Optimal case ts 3 h and 41 min 3 h and 41 min
Jtotal 15.4 kr 15.5 kr

Broad case
ts 12 min 12 min

Loss 1 hour 1 hour
Jtotal 16.8 kr 17 kr

No time to heat ts Infeasible Infeasible
Loss – –
Jtotal – –

From the above result one can conclude that the result from the switch-
ing rules are good for the optimal and broad case, but not if the peak
period starts too early. In addition, the switching rules give similar results
for the optimal control problem when using the gradient free method and
when using PI controllers.
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12 Conclusion

12.1 Optimal control

For a system with constant outdoor temperature of 0 ◦C, it was found that
the heat should be stored in the floor when the energy price has a peak
interval of two and seven hours and where it start at 6 a.m, and 5 a.m
respectively. On the other hand, if the system have no time to heat before
the peak interval begins should both heaters in the floor and room be used
for storage in order to minimize the energy costs.

As shown previously, the derived switching rules gives a good estimate of
the switching time, apart from in the case where there is not time to heat.
The obtained switching time are not far from the optimal solution, and the
reason for the difference may be due to a flat optimum. Nevertheless, the
total cost after 20 hours will be the same for the optimal solution as well as
when using the switching rule.

Varying the outdoor temperature it was seen that both the solution from
the optimal control problem and switching rules, will take the disturbance
into consideration if it is varied before the peak period. On the other hand,
the model do not allow for a variation in the outdoor temperature after
the peak period. The reason for this is that model cannot know what will
happen in the future, and the solution obtained may not be the optimal one.

It was found that the switching rule handle a variation in the disturbance
before the peak period as good as the optimal control problem, but when
the outdoor temperature becomes too cold will the result be poor.

12.2 Optimal control using PI

Similar to the above section, it was found that the heat should be stored in
the floor when the energy price has a peak interval of two and seven hours
when using PI to solve the optimization problem. If the there is no time to
heat before the peak interval should both heaters in the floor and room be
used for storage in order to minimize the energy costs. This result is valid
if the outdoor temperature is constant at 0 ◦C.

It was found that the switching rules give a good estimation of the switch-
ing time. Similar to the optimal control problem will the switching rule
give an infeasible switching time in the case where there is no time to heat.
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However, It was found that the obtained switching time when using the
switching rule will be similar to the optimal solution found when using PI.

12.3 Comparison of the two methods

As shown in the previous chapter, the result of the control problem when
using PI will resemble the solution of the optimal control problem. This
statement is correct both in the case when storage of heat are in the floor
and in the floor and room. It was shown that the total cost and switching
time will be similar for both methods and the input and states will always
be on or somewhere between the constraints, they are never broken.

In addition, the solution when using the switching rules are similar for
both methods. In some cases will the switching time differ from one an-
other in the two methods, or the total cost when solving the problem using
PI will be a bit higher. The reason for this difference may be due to the
flat optimum and the slower response time for the PI controller respectively.

In general it can be seen that the longer the peak period the more energy
needs to be stored, which in turn result in a higher total cost.

12.4 Further work

Further work in this thesis could include a further analysis on the effect the
disturbances has on the system. The model where PI controllers is used
to solve the problem could be tested with varying outdoor temperature as
well, and the result from the two methods could be compared.

In addition, a variation in all the disturbances, not just the outdoor tem-
perature, should be analysed.



Nomenclature

Parameter Unit Description
States

x State
TF

◦C Temperature in the floor
TR

◦C Temperature in the room
Inputs

u Input
qH/F kW Floor heat
qH/R kW Room heat

Disturbances
To

◦C Outdoor temperature
min/out kg Mass of air in/out of the room

P NOK Energy price
Parameters

qF/R kW Heat flow from floor to the air in the room
qR/O kW Heat flow from the room to the outside
U J

sm2K Overall heat transfer coefficient
A m2 Heat transfer area
m kg Mass
V m3 Volume
Cp J

kgK Heat capacity
ρ kg

m3 Density
Simulation parameters

xlb
◦C Lower bound for the states

xub
◦C Upper bound for the states

ulb kW Lower bound for the inputs
uub kW Upper bound for the inputs
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Parameter Unit Description
Simulation parameters continued

t h Time
ts h Switching time / time to start heating

∆ts h Interval where the heating take place
∆tpeak h Length of interval with high energy price

J NOK Cost function
Parameters from background

ki [ J
smK ] Thermal conductivity

hi [ J
sm2K ] Convective coefficient

τI Integral time
τD Derivative time
τc Tuning parameter
θ Effective delay
Kc Controller gain
k Steady-state gain
NF Number of degrees of freedom
NV Number of process variables
NE Number of independent equations
H Hamilton function
λ Lagrange multiplier
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A Calculation of process variables

Table A.0.1 and 3.1.1 give the values of the parameters necessary to calcu-
late UARO/F , mCPF/R and mR

Table A.0.1: Values of the parameters used in the system
Parameter Unit Value
ρconcrete [ kg

m3 ] 2400[ToolBox, c]

ρair [ kg
m3 ] 1.17[ToolBox, b]

Cpconcrete [ J
kgK ] 630[Geankoplis, 2003]

Cpair [ J
kgK ] 1005[ToolBox, b]

kwood [ J
hmK ] 748.80[Geankoplis, 2003]

krock wooll [ J
hmK ] 140.76[Geankoplis, 2003]

hair [ J
hm2K ] 54000[ToolBox, a]

Heat is transferred from the air in the room to the outside and from the
floor to the air in the room, and the overall heat transfer coefficients are
denoted UR/O and UF/R respectively. The heat from the room is descried
with a combination of conductive and convective heat transfer, while UF/R
is found by using the rues for conductive heat transfer. Equation ( A.0.1)
and ( A.0.2) give the expression for UR/O and UF/R respectively.

UR/O = 1
1

hair
+ ∆xwood

kwood
+ ∆xrock wool

krock wool
+ ∆xwood

kwood
+ 1

hair

(A.0.1)

UF/R = 1
∆xwood
kwood

(A.0.2)

The general formula to calculate the mass is a follows

m = ρV (A.0.3)

The room contains air, and the mass is calculated as described in equation
( A.0.4).

mroom = ρair(Afloorhwall) (A.0.4)

The mass of the floor is found by using the density of concrete and volume
of the floor.

mfloor = ρconcrete(Afloor∆xconcrete) (A.0.5)



4 A. Calculation of process variables

In equation ( A.0.4) and ( A.0.5) are the height of the wall and the thickness
of the concrete layer denoted hwall and ∆xconcrete respectively.

The calculated values for UAR/O,UAF/R, mCpR,mCpF and mR are given
in Table A.0.2. To ease the calculations the values of the parameters are

Table A.0.2: Calculated value of the parameters
Parameter Dimension Value
UAR/O [kWK ] 0.0072
UAF/R [kWK ] 0.3467
mCpR [kJK ] 70.3098
mCpF [kJK ] 3780
mR [kg] 69.9600

round up/down to the values found in Table 3.2.1.
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B Calculation of ∆ts

This appendix gives the calculations of ∆ts in the three cases with different
length of the interval with high energy price. Table B.0.3 gives the value
of the parameters necessary to calculated ∆ts, while the length of the peak
periods in each case are illustrated in Table B.0.4.

Table B.0.3: Values of the parameters used to calculate ∆ts
Parameter Unit Value
qmax,F 2.5 [kW ]
qmax,R 2.5 [kW ]
qo,F 0.34 [kW ]
qo,R 1 [kW ]

Tmax,F 298 [K]
Tmax,R 298 [K]
Tmin,F 293 [K]
Tmin,R 292 [K]
mCpF 4 000 [kJK ]

Table B.0.4: Length of the peak period for the optimal case, broad case
and the case where one does not have time to heat

Case Peak period Unit
Optimal case 6− 8 [h]
Broad case 5− 12 [h]

No time to heat 3− 10 [h]

Different combinations of qmax and qo was tried to find the value of ∆ts
closest to the optimal solution. The combination that gave the best result
was when using qmax,F , qo,R and qo,F . The calculated values of ∆ts for
the optimal scenario, the broad case and the case where the system does
not have enough time to heat are given in equation ( B.0.6), ( B.0.7) and
( B.0.8) respectively.

∆tqs = ∆tpeak
qmax

qo
− 1 = 2

2.5
1+0.34 − 1

= 2.31 h (B.0.6)

∆tTs = Tmax − Tmin
qmax − qo

mCp = 298− 293
2.5− (1 + 0.34) × 4000 = 17241.37s = 4.8 h

(B.0.7)
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∆tqs = ∆tpeak
qmax

qo
− 1 = 7

2.5
1+0.34 − 1

= 8.09 h (B.0.8)

The switching time is found by subtracting the time where the peak pe-
riod begin with ∆ts. Table B.0.4 gives the peak period in each case, and
equation ( B.0.9) and ( B.0.10) gives the switching time for the optimal and
broad case respectively.

tsoptimal case = 6− 2.31 = 3.69 h (B.0.9)

tsbroad case = 5− 4.8 = 0.2 = 12 min (B.0.10)

The calculated value of ∆ts in the third case, where one do not have time to
heat, are 8.09. On the same time will the peak period start at 3 a.m. This
means that the switching time will be 5 hours before the starting point for
the simulations, and the solution is therefore infeasible.

Table B.0.5 gives a summary of the obtained switching time and appur-
tenant ∆ts for the optimal case, broad case and the case where one do not
have time to heat.

Table B.0.5: Obtained value of ∆ts and ts from the switching rules for the
optimal case, broad case and the case where one do not have time to heat

Case ∆ts Unit ts
Optimal case 2.31 [h] 3 h 41 min
Broad case 4.8 [h] 12 min

No time to heat 8.09 [h] Infeasible
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C Calculation of ∆ts for different outdoor tem-
peratures

The system will be implemented with a outdoor temperature of of 5, 9, -5
and −9 ◦C. The switching rule derived in chapter 8.1

∆tqs = ∆tpeak
qmax

qo
− 1

will be used to find the switching time when the outdoor temperature varies
as described above. The value of the parameters qo,F and qo,R in each case
are obtained from Figure 9.1.2 in chapter 9.1, and the values are given in
Table C.0.6 below. The value of qmax is, as described in Appendix B,
equal to 2.5 kW. The calculations of the ∆ts obtained when the outdoor

Table C.0.6: Value of qo,F and qo,R when the outdoor temperature are -5
,-9, 5 and 9 ◦C

To qo,F qo,R Unit
9 ◦C 0.32 0.35 [kW ]
5 ◦C 0.59 0.35 [kW ]
−5 ◦C 1.26 0.35 [kW ]
−9 ◦C 1.53 0.35 [kW ]

temperature is 9, 5, -5 and −9 ◦C is given in equation ( C.0.11), ( C.0.12),
( C.0.13) and ( C.0.14).

∆ts,plus 9 = 2
2.5

0.32+0.35 − 1
= 0.73h (C.0.11)

∆ts,plus 5 = 2
2.5

0.59+0.35 − 1
= 1.21h (C.0.12)

∆ts,minus 5 = 2
2.5

1.26+0.35 − 1
= 3.61h (C.0.13)

∆ts,minus 9 = 2
2.5

1.53+0.35 − 1
= 6.01h (C.0.14)

The switching time, ts, is found be subtracting the time the peak period
begins with ∆ts. The calculated values of ts are:

tsplus 9 = 6− 0.73 = 5.628 = 5 h and 16 min (C.0.15)
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tsplus 5 = 6− 1.21 = 4.8 = 4 h and 48 min (C.0.16)

tsminuss 5 = 6− 3.61 = 2.4 = 2 h and 24 min (C.0.17)

According to equation ( C.0.14) will the length of the interval where the
heating take place be 6 h and 6 minutes long when the temperature is
−9 ◦C. However, the peak period start at 6 a.m and the solution is there-
fore infeasible.

Table C.0.7 gives a summary of the obtained values of the switching time.

Table C.0.7: Calculated values of the switching time from the switching
rule for the optimal case

Outdoor temperature Switching time
9 ◦C 5 h and 16 min
5 ◦C 4 h and 48 min
−5 ◦C 2 h and 24 min
−9 ◦C Infeasible
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D Calculation of tuning parameters

The system was simulated with varying energy price and inputs (as illus-
trated in Figure D.0.1), but with constant outdoor temperature and min.
The outdoor temperature and min equals 0 ◦C and 0.06kg respectively.
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Figure D.0.1: Floor and room heat versus time

D.1 Tuning of TF

To find the tuning parameters a step change that doubles the heat input was
made. The plot of the open loop response can be seen in Figure D.1.1. The
Figure D.1.1 it can be seen that this is an integrating process without any
delay, θ = 0. Assuming a small value for the tuning parameter, τc = 0.01,
the following tuning parameter was calculated.

k′ = ∆y
∆t∆u = 37.44− 17.98

(16.41− 10)5(5− 0) = 0.783 (D.1.1)

This gives a controller gain and integral time equal to:

Kc = 1
k′

1
(τc + θ) = 1

0.783
1

0.01 + 0 = 127.7 (D.1.2)

τI = 4× (τc + θ) = 4× (0.01) = 0.04 (D.1.3)

D.2 Tuning of TR

Figure D.2.1 gives the open loop response of TR with a 100% step change in
qH/R. This is a integrating process without any delay. Assuming τc = 0.01,
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Figure D.1.1: Open loop response of TF with a step change in qH/F
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Figure D.2.1: Open loop response of TR with a step change in qH/R
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the following tuning parameters was calculated:

k′ = 34.45− 24.69
(14.41− 10.19)(4− 0) = 0.400 (D.2.1)

Kc = 1
0.400

1
0.01 + 0 = 249.7 (D.2.2)

τI = 4× (τc + θ) = 4× (0.01) = 0.04 (D.2.3)
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E Matlab code

E.1 Optimal control

1 %Optimal Temperature Control o f rooms f o r Minimum
Energy Cost

2

3 %Master t h e s i s 2013
4 %S i r i Hofstad Trapnes
5

6 c l o s e a l l
7 c l e a r a l l
8 c l c
9

10 % So lut i on o f optimal c on t r o l problem
11

12 % Function f o r f i nd i n g the s o l u t i o n o f the dynmaic
opt imiza t i on problem

13 % where the Matlab func t i on fminsearch i s used to f i nd
the s o l u t i o n

14 % Written by Chr i s s Grimholt , 2013
15

16

17 %% Parameters
18 par . UA_fr = 0 . 3 5 0 ; %[ kJ/sK = kW/K]
19 par .UA_ro = 0 . 0 0 7 ; %[ kJ/sK = kW/K]
20

21 par .mCp_f = 4000 ; %[ kJ/K]
22 par .mCp_r = 70 ; %[ kJ/K]
23 par .m_r = 70 ; %[ kg ]
24

25 % Simulat ion parameters
26 opt . sim_time = 20 ; %[ h ]
27

28 % Input Bounds
29 opt . lb . u . q_f = 0 ; %[kW]
30 opt . ub . u . q_f = 2 . 5 ; %[kW]
31

32 opt . lb . u . q_r = 0 ; %[kW]
33 opt . ub . u . q_r = 2 ; %[kW]
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34

35 % State Bounds
36 opt . lb . x .T_r = 19 ; %[C]
37 opt . ub . x .T_r = 25 ; %[C]
38

39 opt . lb . x . T_f = 20 ; %[C]
40 opt . ub . x . T_f = 25 ; %[C]
41

42 % I n i t i a l S ta t e s
43 i n i t . T_f = 20 ; %[C]
44 i n i t .T_r = 19 ; %[C]
45 i n i t . J = 0 ; %[ kr ]
46 i n i t . vec to r = [ i n i t . T_f i n i t .T_r i n i t . J 0 0 ] ’ ;
47

48 % Disturbances
49 d i s t . p r i c e . va lue = [ 0 . 6 1 0 . 6 ] ; %[ kr /kWh]
50 d i s t . p r i c e . time = [0 5 1 2 ] ; %[ h ]
51

52 d i s t .m_in . va lue = [ 0 . 0 6 ] ; %[ kg ]
53 d i s t .m_in . time = [ 0 ] ; %[ h ]
54

55 %Constant outdoor temperture
56 d i s t .T_o. va lue = 0 ; %[C]
57 d i s t .T_o. time = 0 ; %[ h ]
58 %Varying outdoor temperature
59 % 1) step be f o r e the peak per iod :
60 d i s t .T_o. va lue = [0 −9]; %[C]
61 d i s t .T_o. time = [0 0 ] ; %[ h ]
62 % 2) step a f t e r the peak per iod
63 d i s t .T_o. va lue = [0 −9]; %[C]
64 d i s t .T_o. time = [0 9 ] ; %[ h ]
65

66 %% Optimizat ion
67

68 %Stor ing in room and f l o o r
69 % I n i t i a l guess :
70 % qhf qhr
71 u = [2 2 ] ;
72 u = fminsearch (@(u) co s t fun (u , d i s t , par , i n i t , opt ) , u )
73
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74 % %Stor ing in f l o o r
75 % I n i t i a l guess :
76 u = 2 . 9 1 ; %Time
77 u = fminsearch (@(u) co s t fun ( [ u 10 ] , d i s t , par , i n i t , opt ) ,

u )
78 % %where 10 i s a number a f t e r t ( p_high )
79

80 %% Simulat ion
81 u = [ u 10 ] %Optimal va lue
82 %u = [(6 −2 .31) 10 ] % Optimal va lue sw i t ch ing ru l e
83 opt ion=odeset ( ’ AbsTol ’ ,1 e−10, ’ RelTol ’ ,1 e−3) ;
84 [ t , x ] = ode23 (@( t , x ) model ( t , x , u , d i s t , par , opt ) , [ 0 opt

. sim_time ] , i n i t . vec to r ( 1 : 3 ) , opt ion ) ;
85 co s t = x( end , end ) %The co s t
86

87

88 %% Plo t t i ng
89

90 % Back c a l c u l a t i n g u in order to be ab le to p l o t the
r e s u l t s

91 T_o = ze ro s ( l ength ( t ) ,1 ) ;
92 m_in = ze ro s ( l ength ( t ) , 1 ) ;
93 f o r i = 1 : l ength ( t )
94

95 T_o_tmp = d i s t .T_o. va lue ( d i s t .T_o. time <= t ( i ) ) ;
96 T_o( i ) = T_o_tmp( end ) ;
97

98 m_in_tmp = d i s t .m_in . va lue ( d i s t .m_in . time <= t ( i ) )
;

99 m_in( i ) = m_in_tmp( end ) ;
100 end
101 u_f = ze ro s ( l ength ( t ) ,1 ) ;
102 u_r = ze ro s ( l ength ( t ) ,1 ) ;
103

104 t_int = f i nd ( ( t < u (1) )>0) ;
105 u_f ( t_int ) = max( par . UA_fr∗( x ( t_int , 1 )−x ( t_int , 2 ) ) , 0 )

;
106 t_int = f i nd ( ( t < u (2) )>0) ;
107 u_r( t_int ) = max(−par . UA_fr∗( x ( t_int , 1 )−x ( t_int , 2 ) ) +

( par .UA_ro + m_in( t_int ) . / par .m_r∗par .mCp_r) . ∗ ( x (
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t_int , 2 )−T_o( t_int ) ) , 0 ) ;
108

109 t_int = f i nd ( ( t > u (1) ) .∗ ( t <= d i s t . p r i c e . time (2 ) )
>0) ;

110 u_f ( t_int ) = opt . ub . u . q_f ; %#ok<FNDSB>
111 t_int = f i nd ( ( t > u (2) ) .∗ ( t <= d i s t . p r i c e . time (2 ) )

>0) ;
112 u_r( t_int ) = opt . ub . u . q_r ; %#ok<FNDSB>
113

114 t_int = f i nd ( ( t > u (1) ) .∗ ( t <= d i s t . p r i c e . time (2 ) .∗
( x ( : , 1 ) >= opt . ub . x . T_f) )>0) ;

115 u_f ( t_int ) = max( par . UA_fr∗( x ( t_int , 1 )−x ( t_int , 2 ) ) , 0 )
;

116 t_int = f i nd ( ( t > u (2) ) .∗ ( t <= d i s t . p r i c e . time (2 ) .∗
( x ( : , 2 ) >= opt . ub . x .T_r) )>0) ;

117 u_r( t_int ) = max(−par . UA_fr∗( x ( t_int , 1 )−x ( t_int , 2 ) ) +
( par .UA_ro + m_in( t_int ) . / par .m_r∗par .mCp_r) . ∗ ( x (
t_int , 2 )−T_o( t_int ) ) , 0 ) ;

118

119

120 t_int = f i nd ( ( ( t >d i s t . p r i c e . time (2 ) ) .∗ ( x ( : , 1 ) <=
opt . lb . x . T_f) )>0) ;

121 u_f ( t_int ) = max( par . UA_fr∗( x ( t_int , 1 )−x ( t_int , 2 ) ) , 0 ) ;
122

123 t_int = f i nd ( ( ( t > d i s t . p r i c e . time (2 ) ) .∗ ( x ( : , 2 ) <=
opt . lb . x .T_r) )>0) ;

124 u_r( t_int ) =max( −par . UA_fr∗( x ( t_int , 1 )−x ( t_int , 2 ) ) +
( par .UA_ro + m_in( t_int ) . / par .m_r∗par .mCp_r) . ∗ ( x (
t_int , 2 )−T_o( t_int ) ) , 0 ) ;

Cost function

1 %Cost func t i on
2

3 f unc t i on J = cos t fun (u , d i s t , par , i n i t , opt )
4

5 %opt ion=odeset ( ’ AbsTol ’ , 1 e−10 , ’ RelTol ’ , 1 e−6) ;
6 [ ~ , x ] = ode23 (@( t , x ) model ( t , x , u , d i s t , par , opt ) , [ 0 opt

. sim_time ] , . . .
7 i n i t . vec to r ( 1 : 3 ) ) ;
8 J = x( end , end ) ;
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Model

1 %Function o f the model
2

3 f unc t i on dxdt = model ( t , x , u , d i s t , par , opt )
4

5

6 %% State s
7 T_f = x (1) ;
8 T_r = x (2) ;
9

10 %% Disturbances
11 p r i c e = d i s t . p r i c e . va lue ( d i s t . p r i c e . time <= t ) ;
12 p r i c e = p r i c e ( end ) ;
13

14 T_o = d i s t .T_o. va lue ( d i s t .T_o. time <= t ) ;
15 T_o = T_o( end ) ;
16

17 m_in = d i s t .m_in . va lue ( d i s t .m_in . time <= t ) ;
18 m_in = m_in( end ) ;
19

20

21 %% Inputs
22 switch 1
23 case t < u (1)
24 q_f = max( par . UA_fr∗( opt . lb . x . T_f−T_r) ,0 ) ;
25 case t > u (1) && t <= d i s t . p r i c e . time (2 )
26 i f T_f >= opt . ub . x . T_f
27 q_f = max( par . UA_fr∗( opt . ub . x . T_f−T_r) ,0 ) ;
28 e l s e
29 q_f = opt . ub . u . q_f ;
30 end
31 case t > d i s t . p r i c e . time (2 ) ;
32 i f T_f <= opt . lb . x . T_f
33 q_f = max( par . UA_fr∗( opt . lb . x . T_f−T_r) ,0 ) ;
34 e l s e
35 q_f = 0 ;
36 end
37 end
38
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39 switch 1
40 case t < u (2)
41 q_r =max(−par . UA_fr∗(T_f−opt . lb . x .T_r) + ( par .

UA_ro + m_in/par .m_r∗par .mCp_r) ∗( opt . lb . x .
T_r−T_o) ,0 ) ;

42 case t > u (2) && t <= d i s t . p r i c e . time (2 )
43 i f T_r >= opt . ub . x .T_r
44 q_r =max(−par . UA_fr∗(T_f−opt . ub . x .T_r) + (

par .UA_ro + m_in/par .m_r∗par .mCp_r) ∗(
opt . ub . x .T_r−T_o) ,0 ) ;

45 e l s e
46 q_r = opt . ub . u . q_r ;
47 end
48 case t > d i s t . p r i c e . time (2 )
49 i f T_r <= opt . lb . x .T_r
50 q_r =max(−par . UA_fr∗(T_f−opt . lb . x .T_r) + (

par .UA_ro + m_in/par .m_r∗par .mCp_r) ∗(
opt . lb . x .T_r−T_o) ,0 ) ;

51 e l s e
52 q_r = 0 ;
53 end
54 end
55

56 %% Model
57 %Floor
58 dxdt (1 ) = ( q_f/par .mCp_f)−(par . UA_fr/par .mCp_f) ∗(T_f−

T_r) ;
59

60 %Room
61 dxdt (2 ) = (q_r/par .mCp_r)+(par . UA_fr/par .mCp_r) ∗(T_f−

T_r)−(par .UA_ro/par .mCp_r) ∗(T_r−T_o) . . .
62 +(m_in/par .m_r) ∗(T_o−T_r) ;
63

64 %Cost func t i on
65 dxdt (3 ) = p r i c e ∗( q_f + q_r ) /3600 ;
66

67 dxdt = dxdt ’∗3600 ;
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E.2 Optimal control using PI: tuning parameters

1 %Optimal Temperature Control o f rooms f o r Minimum
Energy Cost

2

3 %Master t h e s i s 2013
4

5 c l o s e a l l
6 c l e a r a l l
7 c l c
8

9 %Optimal c on t r o l us ing PI
10 %Scr i p t that f i n d s the tuning parameters o f the system
11 %Written by S i r i Hofstad Trapnes , 2013
12

13 %% Parameters
14

15 %UA = J/hK
16 %mCp = J/K
17

18 par . UAfr = 0 . 3 5 0 ; % [ kJ/sK = kW/K]
19 par .UAro = 0 . 0 0 7 ; % [ kJ/sK = kW/K]
20 par .mCpf = 4000 ; % [ kJ/K]
21 par .mCpr = 70 ; % [ kJ/K]
22 par .mr = 70 ; % [ kg ]
23

24 min = 0 . 0 6 ; % [ kg ]
25 mout = min ;
26

27 %% Energy p r i c e
28

29 %Varying p r i c e
30 t s = 600 ; % 10min
31 tend = 24∗60∗60; % 24h
32 t = [ 0 : t s : tend ] ’ ; % [ s ]
33 t_p = t /(60∗60) ;
34

35 t1 = length ( t (1 ) : t s : t (37) ) ; % s t a r t − 6h %
36 t2 = length ( t (38) : t s : t (49) ) ; % 6 − 8 %
37 t3 = length ( t (50) : t s : t ( end ) ) ; % 8 − end %
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38

39 P1 = 1/(60∗60) ;
40 P2 = 0.6/(60∗60) ;
41

42 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ; %
15h

43 P_plot = P;
44

45 f i g u r e (1 )
46 s t a i r s ( t_p , (P∗60∗60) , ’b ’ )
47 x l ab e l ( ’Time [ h ] ’ )
48 y l ab e l ( ’ Energy p r i c e [ kr /kWh] ’ )
49 t i t l e ( ’ Energy p r i c e ’ )
50

51 %Saving in t i k z
52 %matlab2t ikz ( ’ Energy_price_plot . t ikz ’ )
53

54 var . time = t ;
55 var . s i g n a l s . va lue s = P;
56 %var = [ t ; P ] ’ ;
57 %var . s i g n a l s . d imensions = dim ;
58

59 %% Inputs and i n i t i a l c ond i t i on s
60

61 %Inputs
62 %qhr = 2 ; % No heat on : 0 %max : 2 [kW]
63 %qhf = 2 . 5 ; % No heat on : 0 %max : 2 .5 [kW]
64 To = 273+0; % [K]
65

66 %Varying inputs
67 t1 = length ( t (1 ) : t s : t (25) ) ; % s t a r t − 4h
68 t2 = length ( t (26) : t s : t (37) ) ; % 4h − 6h
69 t3 = length ( t (38) : t s : t ( end ) ) ; %15h
70

71 qhf_min = 0 ;
72 qhf_max = 2 . 5 ;
73 qhr_min = 0 ;
74 qhr_max = 2 ;
75
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76 qhf = [ ones ( t1 , 1 ) ∗qhf_min ; ones ( t2 , 1 ) ∗qhf_max ; ones ( t3
, 1 ) ∗qhf_min ] ;

77 qhr = [ ones ( t1 , 1 ) ∗qhr_min ; ones ( t2 , 1 ) ∗qhr_max ; ones ( t3
, 1 ) ∗qhr_min ] ;

78

79 varqhf . time = t ;
80 varqhf . s i g n a l s . va lue s = qhf ;
81

82 varqhr . time = t ;
83 varqhr . s i g n a l s . va lue s = qhr ;
84

85 %I n i t i a l c ond i t i on s
86 Tf = 293 ; % [K]
87 Tr = 293 ; % [K]
88 J = 0 ; % [NOK]
89 i n i t = [ Tf Tr J ] ;
90

91 %Set po int
92 Tf_set = 293 ; % [K]
93 Tr_set = 292 ; % [K]
94

95 %normal
96 Tfmax = 298 ; % [K]
97 Tfmin = 293 ; % [K] 293
98 Trmax = 298 ; % [K]
99 Trmin = 292 ; % [K] 293

100

101 %% Simulat ion without PI c o n t r o l l e r
102

103 sim ( ’ simulink_mastermdl ’ )
104

105 %Outputs
106 Tf = simout ( : , 1 ) −273; % [C]
107 Tr = simout ( : , 2 ) −273; % [C]
108 J = simout ( : , 3 ) ;
109 Qhf = qhf_out ;
110 Qhr = qhr_out ;
111

112 %Simulat ion time
113 t = time /(60∗60) ; %[ h ]
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114

115 % Plo t t i ng
116 % f i g u r e (1 )
117 % Subplot ( 4 , 1 , 1 )
118 % plo t ( t , Tf , ’ b ’ )
119 % y lab e l ( ’ Temperature [C] ’ )
120 % x lab e l ( ’Time [ h ] ’ )
121 % t i t l e ( ’ Tf ’ )
122 %
123 % subplot ( 4 , 1 , 2 )
124 % plo t ( t , Qhf , ’ b ’ )
125 % y lab e l ( ’ Heat [kW] ’ )
126 % x lab e l ( ’Time [ h ] ’ )
127 % t i t l e ( ’ qhf ’ )
128 %
129 % Subplot ( 4 , 1 , 3 )
130 % plo t ( t , Tr , ’ r ’ )
131 % y lab e l ( ’ Temperature [C] ’ )
132 % x lab e l ( ’Time [ h ] ’ )
133 % t i t l e ( ’Tr ’ )
134 %
135 % subplot ( 4 , 1 , 4 )
136 % plo t ( t , Qhr , ’ r ’ )
137 % y lab e l ( ’ Heat [kW] ’ )
138 % x lab e l ( ’Time [ h ] ’ )
139 % t i t l e ( ’ qhr ’ )
140 %
141 % f i g u r e (2 )
142 % plo t ( t , J , ’ g ’ )
143 % y lab e l ( ’ Cost [ kr ] ’ )
144 % x lab e l ( ’Time [ h ] ’ )
145 % t i t l e ( ’ Cost funct ion , J ’ )
146

147 %% Simulat ion with PI c o n t r o l l e r
148

149 %Simulat ions to f i nd the tuning parameters
150

151 sim ( ’ simulink_master_PI ’ )
152

153 %Outputs
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154 Tf = simout ( : , 1 ) −273; % [C]
155 Tr = simout ( : , 2 ) −273; % [C]
156 J = simout ( : , 3 ) ;
157 Qhf = qhf_out ;
158 Qhr = qhr_out ;
159 t = time /(60∗60) ; % [ h ]
160

161 %Energy consumption
162 Jend = J ( end )
163

164 %Plot to f i nd the tuning parameters
165 f i g u r e (3 )
166 subplot ( 2 , 1 , 1 )
167 p lo t ( t , Tf , ’b ’ )
168 y l ab e l ( ’ Temperature [C] ’ )
169 x l ab e l ( ’Time [ h ] ’ )
170 t i t l e ( ’ Tf ’ )
171

172 subplot ( 2 , 1 , 2 )
173 p lo t ( t , Qhf , ’b ’ )
174 y l ab e l ( ’ Heat [kW] ’ )
175 x l ab e l ( ’Time [ h ] ’ )
176 t i t l e ( ’ qhf ’ )
177

178 %Saving in t i k z
179 %matlab2t ikz ( ’ open_loop_Tf_plot . t ikz ’ )
180

181 f i g u r e (4 )
182 subplot ( 2 , 1 , 1 )
183 p lo t ( t , Tr , ’b ’ )
184 y l ab e l ( ’ Temperature [C] ’ )
185 x l ab e l ( ’Time [ h ] ’ )
186 t i t l e ( ’Tr ’ )
187

188 subplot ( 2 , 1 , 2 )
189 p lo t ( t , Qhr , ’b ’ )
190 y l ab e l ( ’ Heat [kW] ’ )
191 x l ab e l ( ’Time [ h ] ’ )
192 t i t l e ( ’ qhr ’ )
193
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194 %Saving in t i k z
195 %matlab2t ikz ( ’ open_loop_Tr_plot . t ikz ’ )
196

197 %% Simulat ion o f c on t r o l s t r u c tu r e
198 sim ( ’ s imulink_master_PI_control_structure ’ )
199

200 %Outputs
201 Tf = simout ( : , 1 ) −273; % [C]
202 Tr = simout ( : , 2 ) −273; % [C]
203 J = simout ( : , 3 ) ;
204 Qhf = qhf_out ;
205 Qhr = qhr_out ;
206 t = time /(60∗60) ; % [ h ]
207

208 %Energy consumption
209 Jend = J ( end )

Representation of the simulink models

Figure E.2.1 , E.2.2 and E.2.3 give an overview of the Simulink models used
in the matlab script above. The first, second and third figure represent the
models called simulink _ mastermdl, simulink _ master _ PI and simulink
_ master _ PI _ control _ structure respectively.

Figure E.2.1: Illustration of the Simulink model called simulink _ master-
mdl
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Figure E.2.2: Illustration of the Simulink model called simulink _ master
_ PI
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Figure E.2.3: Illustration of the Simulink model called simulink _ master
_ PI _ control _ structure
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E.3 Optimal control using PI: storage of heat in the floor

1 %Optimal Temperature Control o f rooms f o r Minimum
Energy Cost

2

3 %Master t h e s i s 2013
4

5 c l o s e a l l
6 c l e a r a l l
7 c l c
8

9 % So lut i on o f optimal c on t r o l problem when us ing PI
c o n t r o l l e r s

10

11 % Storage o f heat in the f l o o r
12 % Written by S i r i Hofstad Trapnes , 2013
13

14 %% Parameters
15

16 %UA = J/hK
17 %mCp = J/K
18

19 par . UAfr = 0 . 3 5 0 ; % [ kJ/sK = kW/K]
20 par .UAro = 0 . 0 0 7 ; % [ kJ/sK = kW/K]
21 par .mCpf = 4000 ; % [ kJ/K]
22 par .mCpr = 70 ; % [ kJ/K]
23 par .mr = 70 ; % [ kg ]
24

25 min = 0 . 0 6 ; % [ kg ]
26 mout = min ;
27

28 %% Energy p r i c e
29

30 %Varying p r i c e
31 t s = 600 ; % 10min
32 tend = 20∗60∗60; % 24h
33 t = [ 0 : t s : tend ] ’ ; % [ s ]
34 t_p = t /(60∗60) ;
35

36 t1 = length ( t (1 ) : t s : t (37) ) ; % s t a r t − 6h %
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37 t2 = length ( t (38) : t s : t (49) ) ; % 6 − 8 %
38 t3 = length ( t (50) : t s : t ( end ) ) ; % 8 − end %
39

40 P1 = 1/(60∗60) ;
41 P2 = 0.6/(60∗60) ;
42

43 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ; %
15h

44 P_plot = P;
45

46 var . time = t ;
47 var . s i g n a l s . va lue s = P;
48

49 %% Inputs and i n i t i a l c ond i t i on s
50

51 %Inputs
52

53 %Constant inputs
54 %qhr = 2 ; % No heat on : 0 %max : 2 [kW]
55 %qhf = 2 . 5 ; % No heat on : 0 %max : 2 .5 [kW]
56

57 %Disturbance
58 To = 273+0; % [K]
59

60 %Varying inputs
61 t1 = length ( t (1 ) : t s : t (25) ) ; % s t a r t − 4h
62 t2 = length ( t (26) : t s : t (37) ) ; % 4h − 6h
63 t3 = length ( t (38) : t s : t ( end ) ) ; %15h
64

65 qhf_min = 0 ;
66 qhf_max = 2 . 5 ;
67 qhr_min = 0 ;
68 qhr_max = 2 ;
69

70 qhf = [ ones ( t1 , 1 ) ∗qhf_min ; ones ( t2 , 1 ) ∗qhf_max ; ones ( t3
, 1 ) ∗qhf_min ] ;

71 qhr = [ ones ( t1 , 1 ) ∗qhr_min ; ones ( t2 , 1 ) ∗qhr_max ; ones ( t3
, 1 ) ∗qhr_min ] ;

72

73 varqhf . time = t ;



E. Matlab code 29

74 varqhf . s i g n a l s . va lue s = qhf ;
75

76 varqhr . time = t ;
77 varqhr . s i g n a l s . va lue s = qhr ;
78

79 %I n i t i a l c ond i t i on s
80 Tf = 293 ; % [K]
81 Tr = 292 ; % [K]
82 J = 0 ; % [NOK]
83 i n i t = [ Tf Tr J ] ;
84

85 %Set po int
86 Tf_set = 292 ; % [K]
87 Tr_set = 292 ; % [K]
88

89 %Upper and lower c on s t r a i n t s
90 Tfmax = 298 ; % [K]
91 Tfmin = 293 ; % [K]
92 Trmax = 298 ; % [K]
93 Trmin = 292 ; % [K]
94

95 %% Optimizing , s t o r i n g o f heat in the f l o o r
96

97 %Optimal s o l u t i o n
98 %High p r i c e i n t e r v a l between 6 and 8
99

100 sim ( ’ simulink_master_PI_2 ’ )
101

102 %Outputs
103 Tf = simout ( : , 1 ) −273; % [C]
104 Tr = simout ( : , 2 ) −273; % [C]
105 J = simout ( : , 3 ) ;
106 Qhf = qhf_out ;
107 Qhr = qhr_out ;
108 t = time /(60∗60) ; % [ h ]
109

110 %Energy consumption
111 Jend = J ( end )
112

113 %So lut i on from swi tch ing ru l e
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114 t s = 600 ; % 10min
115 tend = 20∗60∗60; % 20h
116 t_switch = [ 0 : t s : tend ] ’ ; % [ s ]
117 t_p_switch = t_switch /(60∗60) ;
118

119 t1 = length ( t_switch (1 ) : t s : t_switch (37) ) ; % s t a r t − 6h
120 t2 = length ( t_switch (38) : t s : t_switch (49) ) ; % 6 − 8
121 t3 = length ( t_switch (50) : t s : t_switch ( end ) ) ; % 8 − end
122

123 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
124 P_switch = P;
125 var . time = t_switch ;
126 var . s i g n a l s . va lue s = P;
127

128 sim ( ’ simulink_master_PI_2_switch ’ )
129

130 %Outputs
131 Tf_switch = simout ( : , 1 ) −273; % [C]
132 Tr_switch = simout ( : , 2 ) −273; % [C]
133 J_switch = simout ( : , 3 ) ;
134 Qhf_switch = qhf_out ;
135 Qhr_switch = qhr_out ;
136 t_switch = time /(60∗60) ; % [ h ]
137 %Energy consumption
138 Jend_switch = J_switch ( end )
139

140 % Broad peak
141 % High energy p r i c e from 5 h − 12 h
142

143 t s = 600 ; % 10min
144 tend = 20∗60∗60; % 20h
145 t_bp = [ 0 : t s : tend ] ’ ; % [ s ]
146 t_p_broadpeak = t_bp/(60∗60) ;
147

148 t1 = length ( t_bp (1) : t s : t_bp (31) ) ; % s t a r t − 5h
149 t2 = length ( t_bp (32) : t s : t_bp (73) ) ; % 5 − 12
150 t3 = length ( t_bp (74) : t s : t_bp( end ) ) ; % 12 − end
151

152 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
153 P_broadpeak = P;
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154 var . time = t_bp ;
155 var . s i g n a l s . va lue s = P;
156

157 sim ( ’ simulink_master_PI_broadpeak ’ )
158

159 %Outputs
160 Tf_broadpeak = simout ( : , 1 ) −273; % [C]
161 Tr_broadpeak = simout ( : , 2 ) −273; % [C]
162 J_broadpeak = simout ( : , 3 ) ;
163 Qhf_broadpeak = qhf_out ;
164 Qhr_broadpeak = qhr_out ;
165 t_broadpeak = time /(60∗60) ; % [ h ]
166

167 %Energy consumption
168 Jend_broadpeak = J_broadpeak ( end )
169

170 %So lut i on from broad peak us ing swi tch ing ru l e
171

172 t s = 600 ; % 10min
173 tend = 20∗60∗60; % 24h
174 t_bp_s = [ 0 : t s : tend ] ’ ; % [ s ]
175 t_p_broadpeak_s = t_bp_s/(60∗60) ;
176

177 t1 = length ( t_bp_s (1 ) : t s : t_bp_s (31) ) ; % s t a r t − 5h
178 t2 = length ( t_bp_s (32) : t s : t_bp_s (73) ) ; % 5 − 12
179 t3 = length ( t_bp_s (74) : t s : t_bp_s( end ) ) ; % 12 − end
180

181 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
182 P_broadpeak_s = P;
183 var . time = t_bp_s ;
184 var . s i g n a l s . va lue s = P;
185

186 sim ( ’ simulink_master_PI_broadpeak_switch ’ )
187

188 %Outputs
189 Tf_broadpeak_s = simout ( : , 1 ) −273; % [C]
190 Tr_broadpeak_s = simout ( : , 2 ) −273; % [C]
191 J_broadpeak_s = simout ( : , 3 ) ;
192 Qhf_broadpeak_s = qhf_out ;
193 Qhr_broadpeak_s = qhr_out ;
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194 t_broadpeak_s = time /(60∗60) ; % [ h ]
195

196 %Energy consumption
197 Jend_broadpeak_s = J_broadpeak_s ( end )
198

199 %Broad peak 2 . No time to heat up the f l o o r
200 %High energy p r i c e from 3 h − 10 h
201

202 t s = 600 ; % 10min
203 tend = 20∗60∗60; % 20h
204 t_bp2 = [ 0 : t s : tend ] ’ ; % [ s ]
205 t_p_broadpeak2 = t_bp2/(60∗60) ;
206

207 t1 = length ( t_bp2 (1) : t s : t_bp2 (19) ) ; % s t a r t − 3h
208 t2 = length ( t_bp2 (20) : t s : t_bp2 (61) ) ; % 3 − 10
209 t3 = length ( t_bp2 (62) : t s : t_bp2 ( end ) ) ; % 10 − end
210

211 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
212 P_broadpeak2 = P;
213 var . s i g n a l s . va lue s = P;
214

215 sim ( ’ simulink_master_PI_broadpeak2 ’ )
216

217 %Outputs
218 Tf_broadpeak2 = simout ( : , 1 ) −273; % [C]
219 Tr_broadpeak2 = simout ( : , 2 ) −273; % [C]
220 J_broadpeak2 = simout ( : , 3 ) ;
221 Qhf_broadpeak2 = qhf_out ;
222 Qhr_broadpeak2 = qhr_out ;
223 t_broadpeak2 = time /(60∗60) ; % [ h ]
224

225 %Energy consumption
226 Jend_broadpeak2 = J_broadpeak2 ( end )

Representation of the Simulink model

Figure E.3.1 gives an overview of one of the Simulink models used in the
simulations. The model that is given is the first one in the above Matlab
code, called simulink _ master _ PI _ 2.

The temperature in the room is set to a minimum value by the block Trset
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in Figure E.3.1. The switch called P switch represent the place where the
energy price switches between the high and low value, Pricehigh/low, while
the switching time is defined in ts switch. The last switch, ts switch 1, de-
fines the time where the heating of the system should stop, i.e. the time
where the peak period begins.

Only one Simulink model will be given in this report. The reason for this
is that the models described in the above Matlab function will be similar
to Figure E.3.1. The only difference between them are the values imple-
mented in switch ts switch and ts switch 1. In the models where the name
ends with switch, will the switching value be implemented in ts switch, while
the optimal value will be given in ts switch in the rest of the models.
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Figure E.3.1: Overview of Simulink model that solve the dynamic optimization problem
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E.4 Optimal control using PI: storage of heat in the floor
and room

1 %Optimal Temperature Control o f rooms f o r Minimum
Energy Cost

2

3 %Master t h e s i s 2013
4

5 c l o s e a l l
6 c l e a r a l l
7 c l c
8

9 % Function f o r f i nd i n g the s o l u t i o n o f opt imiza t i on
problem when us ing

10 % PI c o n t r o l l e r s
11 % Storage o f heat in the f l o o r and room
12 % Written by S i r i Hofstad Trapnes , 2013
13

14 %% Parameters
15

16 %UA = J/hK
17 %mCp = J/K
18

19 par . UAfr = 0 . 3 5 0 ; % [ kJ/sK = kW/K]
20 par .UAro = 0 . 0 0 7 ; % [ kJ/sK = kW/K]
21 par .mCpf = 4000 ; % [ kJ/K]
22 par .mCpr = 70 ; % [ kJ/K]
23 par .mr = 70 ; % [ kg ]
24

25 min = 0 . 0 6 ; % [ kg ]
26 mout = min ;
27

28 %% Energy p r i c e
29

30 %Varying p r i c e
31 t s = 600 ; % 10min
32 tend = 20∗60∗60; % 20h
33 t = [ 0 : t s : tend ] ’ ; % [ s ]
34 t_p = t /(60∗60) ;
35
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36 t1 = length ( t (1 ) : t s : t (37) ) ; % s t a r t − 6h %
37 t2 = length ( t (38) : t s : t (49) ) ; % 6 − 8 %
38 t3 = length ( t (50) : t s : t ( end ) ) ; % 8 − end %
39

40 P1 = 1/(60∗60) ;
41 P2 = 0.6/(60∗60) ;
42

43 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ; %
20h

44 P_plot = P;
45

46 var . time = t ;
47 var . s i g n a l s . va lue s = P;
48

49 %% Inputs and i n i t i a l c ond i t i on s
50

51 %Inputs
52 %qhr = 2 ; % No heat on : 0 %max : 2 [kW]
53 %qhf = 2 . 5 ; % No heat on : 0 %max : 2 .5 [kW]
54 To = 273+0; % [K]
55

56 %Varying inputs
57 t1 = length ( t (1 ) : t s : t (25) ) ; % s t a r t − 4h
58 t2 = length ( t (26) : t s : t (37) ) ; % 4h − 6h
59 t3 = length ( t (38) : t s : t ( end ) ) ; %15h
60

61 qhf_min = 0 ;
62 qhf_max = 2 . 5 ;
63 qhr_min = 0 ;
64 qhr_max = 2 ;
65

66 qhf = [ ones ( t1 , 1 ) ∗qhf_min ; ones ( t2 , 1 ) ∗qhf_max ; ones ( t3
, 1 ) ∗qhf_min ] ;

67 qhr = [ ones ( t1 , 1 ) ∗qhr_min ; ones ( t2 , 1 ) ∗qhr_max ; ones ( t3
, 1 ) ∗qhr_min ] ;

68

69 varqhf . time = t ;
70 varqhf . s i g n a l s . va lue s = qhf ;
71

72 varqhr . time = t ;
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73 varqhr . s i g n a l s . va lue s = qhr ;
74

75 %I n i t i a l c ond i t i on s
76 Tf = 293 ; % [K]
77 Tr = 292 ; % [K]
78 J = 0 ; % [NOK]
79 i n i t = [ Tf Tr J ] ;
80

81 %Set po int
82 Tf_set = 293 ; % [K]
83 Tr_set = 292 ; % [K]
84

85 %normal
86 Tfmax = 298 ; % [K]
87 Tfmin = 293 ; % [K]
88 Trmax = 298 ; % [K]
89 Trmin = 292 ; % [K]
90

91 %% Optimization , s t o r i n g o f heat in the f l o o r and room
92

93 %Optimal s o l u t i o n
94 %High p r i c e i n t e r v a l between 6 and 8
95

96 sim ( ’ simulink_master_PI_2_storing_floor_room ’ )
97

98 %Outputs
99 Tf = simout ( : , 1 ) −273; % [C]

100 Tr = simout ( : , 2 ) −273; % [C]
101 J = simout ( : , 3 ) ;
102 Qhf = qhf_out ;
103 Qhr = qhr_out ;
104 t = time /(60∗60) ; % [ h ]
105

106 %Energy consumption
107 Jend = J ( end )
108

109 %Switching ru l e
110 t s = 600 ; % 10min
111 tend = 20∗60∗60; % 20h
112 t_switch = [ 0 : t s : tend ] ’ ; % [ s ]
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113 t_p_switch = t_switch /(60∗60) ;
114

115 t1 = length ( t_switch (1 ) : t s : t_switch (37) ) ; % s t a r t − 6h
%

116 t2 = length ( t_switch (38) : t s : t_switch (49) ) ; % 6 − 8 %
117 t3 = length ( t_switch (50) : t s : t_switch ( end ) ) ; % 8 − end

%
118

119 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
120 P_switch = P;
121 var . time = t_switch ;
122 var . s i g n a l s . va lue s = P;
123

124 sim ( ’ simulink_master_PI_2_storing_floor_room_switch ’ )
125

126 %Outputs
127 Tf_switch = simout ( : , 1 ) −273; % [C]
128 Tr_switch = simout ( : , 2 ) −273; % [C]
129 J_switch = simout ( : , 3 ) ;
130 Qhf_switch = qhf_out ;
131 Qhr_switch = qhr_out ;
132 t_switch = time /(60∗60) ; % [ h ]
133 %Energy consumption
134 Jend_switch = J_switch ( end )
135

136 %Broad peak
137 %High energy p r i c e from 5 h − 12 h
138

139 t s = 600 ; % 10min
140 tend = 20∗60∗60; % 20h
141 t_bp = [ 0 : t s : tend ] ’ ; % [ s ]
142 t_p_broadpeak = t_bp/(60∗60) ;
143

144 t1 = length ( t_bp (1) : t s : t_bp (37) ) ; % s t a r t − 5h
145 t2 = length ( t_bp (38) : t s : t_bp (73) ) ; % 5 − 12
146 t3 = length ( t_bp (74) : t s : t_bp( end ) ) ; % 12 − end
147

148 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
149 P_broadpeak = P;
150 var . time = t_bp ;



E. Matlab code 39

151 var . s i g n a l s . va lue s = P;
152

153 sim ( ’ simulink_master_broad_peak_floor_room ’ )
154

155 %Outputs
156 Tf_broadpeak = simout ( : , 1 ) −273; % [C]
157 Tr_broadpeak = simout ( : , 2 ) −273; % [C]
158 J_broadpeak = simout ( : , 3 ) ;
159 Qhf_broadpeak = qhf_out ;
160 Qhr_broadpeak = qhr_out ;
161 t_broadpeak = time /(60∗60) ; % [ h ]
162 %Energy consumption
163 Jend_broadpeak = J_broadpeak ( end )
164

165 %So lut i on from broad peak us ing swi tch ing ru l e
166

167 t s = 600 ; % 10min
168 tend = 20∗60∗60; % 24h
169 t_bp_s = [ 0 : t s : tend ] ’ ; % [ s ]
170 t_p_broadpeak_s = t_bp_s/(60∗60) ;
171

172 t1 = length ( t_bp_s (1 ) : t s : t_bp_s (31) ) ; % s t a r t − 5h
173 t2 = length ( t_bp_s (32) : t s : t_bp_s (73) ) ; % 5 − 12
174 t3 = length ( t_bp_s (74) : t s : t_bp_s( end ) ) ; % 12 − end
175

176 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
177 P_broadpeak_s = P;
178 var . time = t_bp_s ;
179 var . s i g n a l s . va lue s = P;
180

181 sim ( ’ simulink_master_broad_peak_floor_room_switch ’ )
182

183 %Outputs
184 Tf_broadpeak_s = simout ( : , 1 ) −273; % [C]
185 Tr_broadpeak_s = simout ( : , 2 ) −273; % [C]
186 J_broadpeak_s = simout ( : , 3 ) ;
187 Qhf_broadpeak_s = qhf_out ;
188 Qhr_broadpeak_s = qhr_out ;
189 t_broadpeak_s = time /(60∗60) ; % [ h ]
190 %Energy consumption
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191 Jend_broadpeak_s = J_broadpeak_s ( end )
192

193 %Broad peak 2 . No time to heat up the f l o o r
194 %High energy p r i c e from 3 h − 10 h
195

196 t s = 600 ; % 10min
197 tend = 20∗60∗60; % 20h
198 t_bp2 = [ 0 : t s : tend ] ’ ; % [ s ]
199 t_p_broadpeak2 = t_bp2/(60∗60) ;
200

201 t1 = length ( t_bp2 (1) : t s : t_bp2 (19) ) ; % s t a r t − 3h
202 t2 = length ( t_bp2 (20) : t s : t_bp2 (61) ) ; % 3 − 10
203 t3 = length ( t_bp2 (62) : t s : t_bp2 ( end ) ) ; % 10 − end
204

205 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ;
206 P_broadpeak2 = P;
207 var . s i g n a l s . va lue s = P;
208

209 sim ( ’ simulink_master_case3_floor_room ’ )
210

211 %Outputs
212 Tf_broadpeak2 = simout ( : , 1 ) −273; % [C]
213 Tr_broadpeak2 = simout ( : , 2 ) −273; % [C]
214 J_broadpeak2 = simout ( : , 3 ) ;
215 Qhf_broadpeak2 = qhf_out ;
216 Qhr_broadpeak2 = qhr_out ;
217 t_broadpeak2 = time /(60∗60) ; % [ h ]
218

219 %Energy consumption
220 Jend_broadpeak2 = J_broadpeak2 ( end )

Representation of a Simulink model

Figure E.4.1 and E.4.2 give an overview of two of the Simulink models
used in the simulations. The models that are given is the first and fifth one
in the above Matlab code, called simulink _ master _ PI _ 2 _ storing
_ floor _ room and simulink _ master _ case3 _ floor _ room respectively.

The function of each switch will be the same as described in section E.3:
switch P switch give Pricehigh/low, ∆ts is implemented in ts switch, while
ts switch 1 define the time where the peak period begins.
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Only these two models will be illustrated in this report. This because the
only difference between the Simulink models are the values implemented
in ts switch and ts switch 1. As in the above section, the switching value
is implemented in the models where the name ends with switch, while the
optimal value is used in ts switch in the rest of the models.

The models for the optimal and broad case will be similar to Figure E.4.1.
The room temperature will be kept constant, and the set point of TR is
defined in the block Trset, as shown in Figure E.4.1. The case where the
system does not have time to heat up before the peak period will be repre-
sented by the Simulink model given in Figure E.4.2. The room heat should
increase at ts. This means that the set point of TR should be defined in the
same as the set point for TF .
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Figure E.4.1: Overview of Simulink model that solve the dynamic optimization problem
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Figure E.4.2: Overview of Simulink model that solve the dynamic optimization problem. The case where the system
do not have time to heat up before the peak period is implemented, and where the heat in the floor and room are
used for storage
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F Matlab code for the single shooting optimiza-
tion problem

1 %Optimal Temperature Control o f rooms f o r Minimum
Energy Cost

2

3 %Master t h e s i s 2013
4

5 c l o s e a l l
6 c l e a r a l l
7 c l c
8

9 % Sing l e shoot ing opt imiza t i on
10 % Written by S i r i Hofstad Trapnes , 2013
11

12 %% Parameters
13

14 %UA = J/hK
15 %mCp = J/K
16

17 par . UAfr = 0 . 3 5 0 ; % [ kJ/sK = kW/K]
18 par .UAro = 0 . 0 0 7 ; % [ kJ/sK = kW/K]
19 par .mCpf = 4000 ; % [ kJ/K]
20 par .mCpr = 70 ; % [ kJ/K]
21 par .mr = 70 ; % [ kg ]
22

23 min = 0 . 0 6 ; % [ kg ]
24 %mout = min ;
25

26 %% Inputs and i n i t i a l c ond i t i on s
27

28 %Inputs
29 qhr = 2 ; % No heat on : 0 %max : 2 [kW]
30 qhf = 2 . 5 ; % No heat on : 0 %max : 2 .5 [kW]
31

32 %Disturbances
33 To = 273−0; % [K]
34

35 %I n i t i a l c ond i t i on s
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36 Tf = 293 ; % [K] 293
37 Tr = 293 ; % [K] 293
38 J = 0 ;
39 i n i t = [ Tf Tr J ] ;
40

41 %% Energy p r i c e
42

43 %Varying p r i c e
44 t s = 600 ; % 10min
45 tend = 54000 ; % 15h
46 t = [ 0 : t s : tend ] ’ ; % [ s ]
47 t_p = t /(60∗60) ;
48

49 t1 = length ( t (1 ) : t s : t (37) ) ; % s t a r t − 6h
50 t2 = length ( t (38) : t s : t (61) ) ; % 6 − 10
51 t3 = length ( t (62) : t s : t ( end ) ) ; % 10 − end
52

53 P1 = 1/(60∗60) ;
54 P2 = 0.6/(60∗60) ;
55

56 P = [ ones ( t1 , 1 ) ∗P2 ; ones ( t2 , 1 ) ∗P1 ; ones ( t3 , 1 ) ∗P2 ] ; %
15h

57

58 par .P = P;
59

60 %% Solv ing equat ions
61

62 %Constant parameters
63 % u = [ qhf qhr ] ; %Constant u
64 d = [To min ] ; %Constant d
65

66

67 %Time varying parameters
68 % Input , u
69 qhf_min = 0 ; % [kW]
70 qhf_max = 2 . 5 ; % [kW]
71 qhr_min = 0 ; % [kW]
72 qhr_max = 2 ; %4 . 8 ; % [kW]
73

74 t1 = length ( t (1 ) : t s : t (25) ) ; % 0 :10min : 4 h
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75 t2 = length ( t (26) : t s : t (37) ) ; % 4 :10min : 6
76 t3 = length ( t (38) : t s : t ( end ) ) ; % 6 :10min : end
77

78 qhf1 = [ ones ( t1 , 1 ) ∗qhf_min ; ones ( t2 , 1 ) ∗qhf_max ; ones (
t3 , 1 ) ∗qhf_min ] ; % 15h

79 qhr1 = [ ones ( t1 , 1 ) ∗qhr_min ; ones ( t2 , 1 ) ∗qhr_max ; ones (
t3 , 1 ) ∗qhr_min ] ; % 15h

80

81 t i n tp = [ 0 : t s : tend ] ’ ;
82

83 u = [ qhf1 ; qhr1 ] ;
84

85 [ t x ] = ode15s (@( t , x ) equat ions ( t , x , u , d , t intp , par ) , t ,
i n i t ) ;

86

87 %% Optimizat ion
88

89 % Upper and lower c on s t r a i n t s f o r the s t a t e s
90 Tr_min = 293 ; % [K]
91 Tr_max = 300 ; % [K]
92 Tf_min = 292 ; % [K]
93 Tf_max = 300 ; % [K]
94

95 par1 . Tr_min = Tr_min ;
96 par1 .Tr_max = Tr_max ;
97 par1 . Tf_min = Tf_min ;
98 par1 .Tf_max = Tf_max ;
99

100 %Upper and lower bounds f o r the input
101 qhf_upper = 2 . 5 ; % [kW]
102 qhr_upper = 2 ; %4 . 8 ; % [kW]
103 qhf_lower = 0 ; % [kW]
104 qhr_lower = 0 ; % [kW]
105

106 LB = [ ones ( l ength ( t ) ,1 ) ∗qhf_lower ; ones ( l ength ( t ) , 1 ) ∗
qhr_lower ] ;

107 UB = [ ones ( l ength ( t ) , 1 ) ∗qhf_upper ; ones ( l ength ( t ) , 1 ) ∗
qhr_upper ] ;

108

109 %I n i t i a l va lue s
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110 % load h e a t f i l e . mat %Get the va lue s from
model_master_simulink

111 % qhf_g = in t e rp1 ( time_sim , qhf_sim , t ) ;
112 % qhr_g = in t e rp1 ( time_sim , qhr_sim , t ) ;
113 % u0 = [ qhf_g ; qhr_g ] ;
114 % u0 = [ qhf_sim ; qhr_sim ] ;
115 u0 = [ 2 . 5 ∗ ones ( l ength ( t ) , 1 ) ; 2∗ ones ( l ength ( t ) , 1 ) ] ; % [

kW] qhf qhr
116

117 opt ions = opt imset ( ’ Display ’ , ’ I t e r ’ , ’ Algorithm ’ , ’
ac t ive−s e t ’ , . . .

118 ’ TolCon ’ ,4∗10^(−2) , ’TolX ’ , 0 . 0 1 ) ;
119 Z = fmincon (@(u) co s t fun (u , t , i n i t , d , t intp , par ) , u0

, [ ] , [ ] , [ ] , [ ] , LB,UB, . . .
120 @(u) non l incons t (u , d , t intp , par1 , par , t , i n i t ) , opt i ons

) ;
121

122

123 qhf_opt = Z ( 1 : l ength (Z) /2 ,1) ;
124 qhr_opt = Z( length (Z) /2+1:end , 1 ) ;
125 [ t x ] = ode15s (@( t , x ) equat ions ( t , x , Z , d , t intp , par ) , t ,

i n i t ) ;
126

127 % Cost func t i on
128 J = P. ∗ ( Z ( 1 : l ength (Z) /2 ,1)+Z( l ength (Z) /2+1:end , 1 ) ) ;

Model

1 f unc t i on dxdt = equat ions ( t , x , u , d , t intp , par , var )
2

3 %Parameters
4 UAfr = par . UAfr ;
5 UAro = par .UAro ;
6 mCpf = par .mCpf ;
7 mCpr = par .mCpr ;
8 mr = par .mr ;
9 %P = par .P;

10

11 %Inputs and d i s tu rbance s
12 % qhf = u (1) ;
13 % qhr = u (2) ;
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14 To = d(1) ;
15 min = d (2) ;
16

17 %To = 273
18

19 Tf = x (1) ;
20 Tr = x (2) ;
21 %J =x (3) ;
22

23 qhf1 = u ( 1 : l ength ( t i n tp ) ,1 ) ;
24 qhr1 = u( l ength ( t i n tp )+1:end , 1 ) ;
25

26 qhf = in t e rp1 ( t intp , qhf1 , t ’ ) ;
27 qhr = in t e rp1 ( t intp , qhr1 , t ’ ) ;
28

29 % min1 = d ( : , 1 ) ;
30 % min = in t e rp1 ( t intp , min1 , t ) ;
31 P1 = par .P ;
32

33 P = int e rp1 ( t intp , P1 , t ’ ) ;
34

35 %Floor
36 dxdt (1 ) = ( qhf /mCpf)−(UAfr/mCpf) ∗(Tf−Tr) ;
37 %Room
38 dxdt (2 ) = ( qhr/mCpr)+(UAfr/mCpr) ∗(Tf−Tr)−(UAro/mCpr) ∗(

Tr−To) . . .
39 +(min/mr) ∗(To−Tr) ;
40 %Cost func t i on
41 dxdt (3 ) = P. ∗ ( qhf+qhr ) ;
42 % dxdt (3 ) = P. ∗ ( qhf+qhr ) ^2 ;
43 % dxdt (3 ) = P. ∗ ( 0 . 4 ( qhf+qhr )^+(qhf+qhr ) ) ;
44 % Floor Room
45 dxdt = [ dxdt (1 ) dxdt (2 ) dxdt (3 ) ] ’ ;

Cost function

1 f unc t i on J = cos t fun (u , t , i n i t , d , t intp , par )
2

3 %qhf = u ( 1 : l ength (u) /2 ,1) ;
4 %qhr = u( l ength (u) /2+1:end , 1 ) ;
5
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6 [ t x ] = ode15s (@( t , x ) equat ions ( t , x , u , d , t intp , par ) , t ,
i n i t ) ;

7

8 J = x ( : , 3 ) ;
9 J = J ( end ) ;

10

11 %J = trapz ( t intp ,P. ∗ ( qhf+qhr ) ) ;
12 %J = trapz ( t intp ,P. ∗ ( qhf+qhr ) .^2 ) ;
13 %J = trapz ( t intp , (P . ∗ ( 0 . 4 ∗ ( qhf+qhr ) ) .^2+( qhf+qhr ) ) ) ;

Nonlinear inequality constraints

1 f unc t i on [C Ceq ] = non l incons t (u , d , t intp , par1 , par , t ,
i n i t )

2 %Nonl inear i n e qua l i t y c on s t r a i n t s
3

4 %Parameters
5 Tr_min = par1 . Tr_min ;
6 Tr_max = par1 .Tr_max ;
7 Tf_min = par1 . Tf_min ;
8 Tf_max = par1 .Tf_max ;
9

10 [ t x ] = ode15s (@( t , x ) equat ions ( t , x , u , d , t intp , par ) , t ,
i n i t ) ;

11

12 Tf = x ( : , 1 ) ;
13 Tr = x ( : , 2 ) ;
14

15 % C <= 0
16 C(1) = −(max(Tf ) − Tf_max) ; % [K]
17 C(2) = −(max(Tr ) − Tr_max) ; % [K]
18 C(3) = −(Tf_min − min(Tf ) ) ; % [K]
19 C(4) = −(Tr_min − min(Tr ) ) ; % [K]
20

21 C = [C(1) C(2) C(3) C(4) ] ;
22

23 Ceq = [ ] ;


