
Symbolic Differentiation of Multivariable
Functions to Arbitrary Order

Kristian Selvaag

Chemical Engineering and Biotechnology

Supervisor: Tore Haug-Warberg, IKP

Department of Chemical Engineering

Submission date: June 2013

Norwegian University of Science and Technology

i

Summary

Thermodynamic properties, like pressure, volume and temperature can be calcu-
lated as partial derivatives of energy functions. Obtaining analytic partial deriva-
tives can be tedious work. Computer algebra systems can be used instead. Taking
the gradient of a multi-variable scalar function yields a vector, taking the gradient
again yields a matrix, if higher order derivatives are desired, they would have to
be organized in higher-dimensional algebraic structures. Support for these kinds
of objects is limited in existing computer algebra systems.

The concept of a multidimensional algebraic object (MDO) is introduced: An
MDO may have any number of dimensions. A scalar having zero dimensions, a
vector one dimension and a matrix two dimensions. A lightweight computer algebra
system has been implemented in Ruby. It enables the construction of mathematical
expressions using MDOs as variables. These expressions can be both evaluated as
functions and differentiated to return new MDO expressions.

The MDO code has been used to produce a phase diagram for a natural gas
system modelled by the Redlich Kwong equation of state. To solve the implicit
phase equilibrium equations, Newton’s method was used: The objective function
and Jacobian were evaluated as analytic functions derived by the MDO software
- no numerical differentiation took place. The software provides explicit analytic
derivatives to arbitrary order. Evaluation of high order derivatives, however, is
time-consuming.

ii

Preface

This thesis is written as a part of the Master’s Degree program in Chemical Engi-
neering at the Norwegian University of Science and Technology.

I would like to thank my supervisor Tore Haug-Warberg for providing guid-
ance in a multitude of disciplines, spanning thermodynamics, mathematics and
advanced programming. As a chemical engineering student, my object-oriented
programming knowledge was limited, I had never heard of functional program-
ming, or programmed in Ruby before, and my only experience with computer
algebra systems was as a user. A steep learning curve followed. This would not
have been overcome had it not been for my supervisor’s eagerness to discuss issues
and ideas along the way. With that said, I am also grateful for the freedom that I
was given, which encouraged creativity in the programming process.

I declare that this is an independent work according to the exam regulations of
the Norwegian University of Science and Technology (NTNU).

Name Date

Contents

1 Introduction 1

2 Theory 3
2.1 Computer Algebra . 3
2.2 Multidimensional (algebraic) Objects 7
2.3 Programming . 11
2.4 The gradient . 16
2.5 Thermodynamic modelling of phase equilibrium 18

3 The MDO class design 25
3.1 Concept . 25
3.2 Class members . 27
3.3 Graph traversal . 29
3.4 Lambda operators . 34
3.5 Structure operators . 38
3.6 Taking the gradient of an MDO object 45
3.7 Indefinite size MDOs . 46
3.8 Hybrid MDOs . 49

4 Results 53
4.1 The model system . 53
4.2 Implementation using MDO objects 54
4.3 Verifying the gradient calculation . 61
4.4 Tracing the two-phase boundary . 62

5 Discussion 65

6 Conclusion 71

A MDO source code 77

B Thermodynamic model implementation 105

C Phase calculation iteration 109

iii

iv CONTENTS

D Gradient calculation verification 115

E Calculating points on the phase diagram 123

CONTENTS v

Roman letter symbols1

A Helmholtz energy J

A A generic matrix

Ai Heat capacity parameter of component i J/(molK)

a Parameter in the Redlich Kwong equation of state PaK1/2m6

a A generic variable

ai Component parameter in the Redlich Kwong equa-
tion of state

PaK1/2m6/mol2

aij Component pairwise parameter in the Redlich
Kwong equation of state

PaK1/2m6/mol2

a∗ Broadcasted version of a

â Another broadcasted version of a

Bi Heat capacity parameter of component i J/(molK2)

b Parameter in the Redlich Kwong equation of state m3

b A generic variable

bi Component specific parameter in the Redlich Kwong
equation of state

m3/mol

C Total number of chemical components in a system -

Ci Heat capacity parameter of component i J/(molK3)

c A generic variable

cp Molar heat capacity at constant pressure J/(mol K)

Di Heat capacity parameter J/(molK4)

d0, d1 Elements of the dep array

Ei Heat capacity parameter of component i J/(molK5)

f A generic function

F A generic function, used as the residual function
F (x) = 0 in Newton iteration example

G Gibbs energy J

g Generic function

g First derivative of total Helmholtz energy

H Hessian of total Helmholtz energy

h Molar enthalpy J/(mol)

J Jacobian matrix

1Units are given in the right column. Where “-” appears, the quantity is unitless. If nothing is
given in this field, the units are irrelevant (for example for generic symbols or symbols representing
non-scalars)

vi CONTENTS

kij Interaction parameter between species i and j -

l Generic rank 2 MDO

m MDO rank -

m Generic rank 1 MDO

N Total number of moles in a system mol

N Total number of ways to broadcast from rank n to
rank m

-

n MDO rank -

n Mole number vector mol

ni Number of moles of component number i mol

p Pressure Pa

p Generic parameters

S Entropy J/(K)

S A structure operator

s Molar entropy J/(mol K)

T Temperature K

U Internal energy J

V Volume m3

v The value returned by an evaluation call

y A generic variable

y The partial derivatives of Helmholtz energy, but with

constant temperature:
[
∂A
∂V ,

∂A
∂n1

, ∂A
∂n2

, ..., ∂A
∂nc

] [J/m3, J/mol, J/mol, ..., J/mol]

x A generic variable, used as free variable in Newton
iteration example

-

x The free variables of Helmholtz energy, except tem-
perature: [V, n1, n2, ..., nC]

[m3, mol, mol, ..., mol]

z A generic function

CONTENTS vii

Greek letter symbols

α Generic scaling factor -

γ Generic 2-d MDO

δ Kronecker delta -

∆ Mathematical symbol denoting “change in”. F. ex.
∆hf0

λ Lambda function, a function that operates on scalar
elements

µ Chemical potential J/(mol)

Subscripts

0 Standard state (298 K, 105 Pa)

c Critical

f Formation

i Index

i1i2...ir Used for indexing a rank r MDO

j Index

j1j2...jr Used for indexing a rank r MDO

k Index

l Index

m Index

tot Total

viii CONTENTS

Superscripts

0 Standard state (298 K, 105 Pa)

ig Ideal gas

l Liquid phase

res Residual

RK Redlich Kwong equation of state

> Matrix transpose

v Vapour phase

Nomenclature

AD Automatic Differentiation

BC Broadcast

CAS Computer Algebra System

child A node is a child to a node which has a directed
relation pointing at it

DAG Directed Acyclic Graph

graph Representation of linked objects

ig Abbreviation denoting ideal gas equation of state

leaf A graph node with no children

MDO Multidimensional algebraic object

MDO object An instance of the MDO class. Its structure can be
represented by a graph: One MDO object links to
other MDO objects

parent A graph node is the parent of any node it has a
directed relation to

RK-EOS Abbreviation denoting the Redlich Kwong equation
of state

rank The number of dimensions of an MDO

root A graph node without any parents

Chapter 1

Introduction

Given a thermodynamic model, usually an equation of state, it has been the tra-
ditional approach to manually derive analytic expressions for all kinds of partial
derivatives needed in the calculations. With the emergence of new models of in-
creasing complexity, such as the PC-SAFT equation of state (Gross and Sadowski,
2000), the traditional approach is becoming tedious and error prone.

One approach to the new challenges is to estimate derivatives numerically,
using for example finite differences. While this can give good results for low order
derivatives, it is prone to numerical errors as well as accumulated machine rounding
errors (Jain, 2003).

A second approach is to use Automatic Differentiation (AD). Automatic differ-
entiation is a technique for differentiating whole computer programs. The program
must have one or several inputs as well as one or several outputs. Since each ele-
mentary operation in a program is differentiable, the chain rule can be applied to
compute the derivative of the outputs with respect to the inputs. Mischler, Joulia,
Hassold, Galligo, and Esposito (1995) applied AD to computer process engineering
problems and report AD to be of comparable performance to implementation of
the analytically derived derivatives.

Finally, the third approach is to use symbolic differentiation. This usually
constitutes programming the model in a computer algebra system (CAS) and use it
to derive desired derivative functions. Silva and Castier (1993) propose that using
a computer algebra system helps solve the following problems in thermodynamics:

1. The derivation of relationships between thermodynamic properties.

2. Deriving expressions for activity coefficients given a thermodynamic model.

3. Differentiating complicated thermodynamic models to obtain partial deriva-
tives for optimization problems like phase equilibrium calculations.

Points two and three can be addressed by AD as well. Another area where computer
algebra is beneficial is implicit differentiation, which can be useful for estimating
the sensitivities of iteratively found solutions to model parameters.

1

2 CHAPTER 1. INTRODUCTION

This paper provides documentation of work that has gone into solving the issue
at the heart of the three problems mentioned above: Obtaining partial derivatives of
thermodynamic energy functions (A, G, ...), from which all other properties can be
derived. The goal of the investigation is to create a computer code capable of storing
and differentiating function-expressions as well as organizing them into matrix-like
algebraic objects (here called MDOs, more on this later), for use in thermodynamic
modelling and equation solving. This goal might sound very general, but the
intention of applying the code in the thermodynamic modelling of phase equilibrium
has provided a focus for the design process.

The solution opted for in this paper was to implement a light-weight computer
algebra system called MDO. Ruby was chosen as the implementation language. The
unique feature of the MDO system is its general handling of multi-dimensional al-
gebraic objects, be it vectors, matrices or higher-dimensional structures. These
algebraic objects can be used to formulate expressions. Expressions can be dif-
ferentiated to yield new expressions of the same type. These expressions can be
differentiated again and so forth: Arbitrary order gradients can therefore be found.
MDO expressions can also be evaluated as functions, thus they can be used in ther-
modynamic calculations.

Supporting theory on computer algebra as well as thermodynamic theory is
presented in Chapter 2. The software implementation is covered in Chapter 3. The
code has been successfully used to create a phase diagram for a natural gas system.
This example also serves to demonstrate the syntax of the gradient derivation
software, and can be found in Chapter 4. Overall, the project goals were met;
namely algebraic gradients to arbitrary order could be found. However, issues that
could be improved upon include performance (with regard to code execution speed)
and flexibility. These issues are discussed in Chapter 5.

Chapter 2

Theory

This chapter is divided into five main parts: Sections 2.1 introduces the function
representation most commonly used in computer algebra. This representation pro-
vides a base for gradient calculation software. Section 2.2 goes on to introduce
the concept of multidimensional algebraic objects. Next, Section 2.3 provides some
context to the choice of the programming style for the MDO software, at the heart
of which, lies the gradient operator itself, discussed in Section 2.4. The final part,
Section 2.5, outlines the theory of multicomponent phase equilibrium, and how this
can be solved using the Redlich and Kwong (1949) equation of state and Newton’s
method.

2.1 Computer Algebra

In computer algebra, and computer science in general, graph representation of data
is a useful concept. In this particular application, the directed graph (a graph with
arrows) plays a special role. A directed graph is comprised of different parts, with
different names. Figure 2.1 shows a graph labelled with terms used for its parts.

3

4 CHAPTER 2. THEORY

+

* ln

a

b

/

n

2

d

root

leaf nodes

the parent
node of this
child node

relation

Graph's Anatomy

nodes

Figure 2.1: A graph with labels on each part. Every circle/ellipse is a node. The root
node is the node without parents, while the arrows indicate which nodes are parents to
which child nodes. Nodes without children are called leaf nodes, and the text inside each
node is the node label.

The root node is at the top, while the children lie below, with the leaf nodes at
the very bottom. Arrows between nodes are called edges or relations. The reader
needs to have a clear grasp of the terminology related to graphs when reading the
rest of this paper.

2.1. COMPUTER ALGEBRA 5

Function representation in computer algebra

One major difference between mathematical functions and functions encountered in
programming is that mathematical functions themselves are often operated upon.
Classical programming functions are usually defined, and then evaluated, whilst
a mathematical function can be defined, differentiated, rearranged and combined
with other mathematical functions, as well as evaluated. This calls for the use of a
flexible data-structure representation of mathematical functions in their program-
ming environment.

The most common way of representing a mathematical function in a computer
algebra systems is recursively (Liska et al., 1999): Best visualized by a directed
acyclic graph (DAG). The function

f(a, b) = ab+ ln(b/2) (2.1)

can be represented by the graph shown in Figure 2.2. The arrows show the order

+

* ln

a

b

/

n

2

d

Figure 2.2: A graph representation of the function f(a, b) = ab+ ln(b/2). Each node is
either an operator or an operand (leaf node). The leaf nodes represent constants (f. ex.
the node labelled 2) or named independent variables (a and b). The “n” and “d” on the
arrows going out of the division node (labelled “/”) denote numerator and denominator
as the left and right operands respectively.

of operations: e.g. The top node (+) adds the values produced by its children, (*)
and (ln), not the other way around. Acyclic means that it is impossible to return to
a node by following a path of arrows leading from of it. The graph representation
of the function in Equation (2.1) is not a tree, because nodes (like b) are allowed

6 CHAPTER 2. THEORY

to have multiple parents. In mathematical terms: The same variable can be used
several times in an expression.

Evaluation of a function graph starts at the top node. The top node (+) requires
the evaluation of its children, who in turn require evaluation of their children again,
and so it goes on. When a leaf node is reached, it is either a constant (the node
labelled 2 is an example of that), or an independent variable (nodes labelled a and
b). When the evaluation algorithm reaches a leaf node, the value returned is simply
the constant value, or that of the independent variable which was specified in the
function call. The return values propagate back up the graph and are operated
upon at each node on the way, until the function value itself is returned by the
root node. How graphs are evaluated is covered in more detail later, in Section
3.3. Operations done to the function itself means a rearrangement of the graph,
see Figure 2.3.

+

* ln

a

b

/

n

2

d

+

a /

1

n

b

d

Figure 2.3: The function f(a, b) = ab + ln(b/2) is represented as a graph of operations
on the left. The resulting graph to the right shows when f is differentiated with respect
to b: ∂f/∂b = a+ 1/b.

Computer algebra and expression parsing A very similar concept to the
expression graphs used in computer algebra is the abstract syntax tree used by
compilers in syntax analysis (Lee, 2008). The parsing of expressions is not covered
in this paper because the MDO computer algebra system uses operator overloading
instead (more on this in Section 3.4). In practice, the Ruby interpreter itself does
the parsing, and a new “language” did not have to be invented. Because no new
language has been created, an Extended Backus-Naur Form meta-syntax has not
been deemed beneficial for the reader’s understanding of the MDO system and is
therefore not included in this thesis.

2.2. MULTIDIMENSIONAL (ALGEBRAIC) OBJECTS 7

2.2 Multidimensional (algebraic) Objects

Problems in equilibrium thermodynamics can often be represented as optimization
problems, where the objective function f(x) is an energy-potential to be minimized
or maximized under certain constraints. Optimization problems can be formulated
as df/dx = 0. To solve problems on this form, F (x) = 0, a Newton iteration
scheme can be employed. Here F (x) = df/dx. The multivariate Newton iteration
scheme is (Kelley, 2003):

xk+1 = xk − J−1(xk)F (xk) (2.2)

J is the first derivative matrix, or Jacobian, of the function F . Since F is the first
derivative of f , the Jacobian becomes the second derivative matrix, or Hessian of f .
A thermodynamic system can, for example, have 1 + C degrees of freedom, where
C is the number of components. Then the Hessian contains (1 + C)2 elements,
each being a scalar double derivative. The occurrence of matrices and vectors in
thermodynamics calls for programs which are able to handle such concepts in a
general and easy-to-use manner.

The area in which most computer algebra systems today fall short is in the
treatment of vectors, matrices and higher order structures of functions, where the
dimensions of these structures are not known beforehand, i.e. we want an imple-
mentation of a thermodynamic model where the component list can be specified by
the user, and is not hard coded into the model. Taylor (1997) recognizes the need
for this and gives the example of differentiating a sum where the upper limit is not
yet specified. The implementation presented in this paper should include support
for any function with unspecified dimension length.

To illustrate the need for this, take for example Helmholtz energy.

A(T, V,n) (2.3)

It is a function of 2 +C variables. Taking the gradient of this function produces a
vector of 2 +C elements, taking the gradient again produces a matrix of (2 +C)×
(2+C) elements and for each successive time the gradient is taken, a new dimension
of size (2+C) is added to the structure of the function object. In this work such an
object will be called a Multi-Dimensional (algebraic) Object (MDO) and is taken
to mean a collection of elements organized in a rectangular lattice of arbitrary
rank. Rank here refers to the number of dimensions of an MDO. A vector would
be represented by a rank 1 MDO, a matrix by a rank 2 MDO and a scalar by a rank
0 MDO. Calling the MDO a generalization of vectors and matrices is not accurate,
as vectors and matrices have a sense of alignment thereby differentiating between
rows and columns. To further illustrate the concept of MDOs, some examples are
needed.

Figure 2.4 shows four different MDOs. The numbers contained in them have
been chosen arbitrarily. The corresponding rank and size of its dimensions are
listed below. To the far left in the figure, a rank 0 MDO is shown. It is similar to a
scalar, while the rank 1 MDO to its right is similar to a vector. The rank 2 MDO
is similar to a matrix, while the far right MDO is of rank 3 and does not have an

8 CHAPTER 2. THEORY

Figure 2.4: Four different MDOs represented as numbers distributed in several dimen-
sions. Their dimension sizes are shown in curly brackets underneath, and at the bottom,
their respective ranks are listed.

obvious analogy. Incidentally all dimension sizes were chosen to be three in this
example.

The reason for getting rid of the idea of rows and columns is that it allows
for more flexibility on the user’s part. A vector-matrix product, for example, is
not commutative, which means Ax 6= xA. Which elements are multiplied and
what is summed is determined by whether the matrix or vector comes first in the
multiplication. Multiplying two MDOs of different rank, the user would have to
specify which elements align with each other. This does not apply to just MDO
multiplication, but can be specified for an arbitrary function λ(a, b, c...) of several
MDOs and therefore provides great flexibility as to which elements combine in an
expression.

The MDO, just like other algebraic objects, can be used as operands in mathe-
matical expressions. A mathematical expression using MDOs as variables is called
an MDO expression. Similarly, an MDO function is just like a mathematical func-
tion, but uses MDOs as arguments and outputs. Operations on MDOs are done
element-by-element, but then the question arises: What if two MDOs of differing
rank appear in the same MDO expression. Take, for example the MDO expression:

a+ b (2.4)

2.2. MULTIDIMENSIONAL (ALGEBRAIC) OBJECTS 9

What if c was a rank 1 MDO, while b was a rank 2 MDO? There isn’t an element
in c for every element in b. The solution to this question is covered next.

Introduction to broadcasting

The term “broadcasting” is the name given to a technique for aligning an MDOs
elements in several dimensions. It is best described through simple examples. Say
that two MDOs a and b are to be added element-by-element. This could be denoted
as

a+ b (2.5)

If a and b both have rank 0, they can be considered scalars and the above operation
becomes trivial. If a and b both have the same rank, then element-by-element
addition does just that: adds together the corresponding elements to produce a
new MDO where each element equals the corresponding elements of a and b added
together. Here is an example using rank(a) = rank(b) = 2

cij = aij + bij (2.6)

The problems, however, arise when a and b do not have the same rank. A
previous solution to this problem by Løvfall (2008) is to

1. Require that objects used in the same expression have the same dimensions as
the highest rank object involved.

2. The rest of the objects copy their data into the missing dimensions to emulate
a higher rank. The user specifies to which dimensions the data is copied, and
in which dimensions to keep the original distribution.

Choosing which dimension to put the original data from and which dimensions
to copy to is where broadcasting has to be specified. In this paper, broadcasting
will work the same way, except that if MDOs of differing rank appear in the same
expression, they will be broadcasted automatically with a default specification
(discussed at the end of the next paragraph). This provides the benefit of a cleaner
syntax for (much used) operations between scalars and MDOs of higher rank.

Take the above example, this time with rank(a) = 1 and rank(b) = 2. Following
step number 1, the lambda function should assume all arguments to be of rank 2.
The second step is to specify which elements of a to be used in combination which
which elements in b. Call a∗ the the broadcasted version of a, where rank(a∗) = 2.
Expression (2.6) can now be evaluated as

cij = a∗ij + bij (2.7)

But a∗ has to be specified. For this particular case there are two options:

a∗ij = ai (2.8)

and
a∗ij = aj (2.9)

10 CHAPTER 2. THEORY

In Equation (2.8), the elements of a have been distributed in the the first dimension
(indexed by i) and copied into the second dimension (indexed by j), whereas in
Equation (2.9) the data was laid out in the second dimension and copied into the
first dimension. Coming back to the issue of default broadcasting: If an operator
appears between MDOs of differing rank (no broadcasting is specified by the user),
the lower rank MDO will be broadcasted with the added dimensions appearing
after the existing ones, e.g. in the above example it would choose option (2.8).
The difference between the two broadcasting specifications in Equations (2.8) and
(2.9) has been visualized in Figure 2.5

4

2

0

4

2

0

4

2

0

4

2

0

4

4

4

2

2

2

0

0

0

Figure 2.5: Example of different options when broadcasting a one-dimensional MDO
[4, 2, 0] to two dimensions. In this example i is the index of the first dimension (shown as
vertical dimension), while j is the index of the second dimension (horizontal).

Higher rank broadcasting

Take a more complicated case: Say a needs to be broadcasted from rank 2 to rank
3. We have the following options:

a∗ijk = aij (2.10)

a∗ijk = aik (2.11)

a∗ijk = ajk (2.12)

Other ways of taking a rank 2 MDO to rank 3 include:

a∗ijk = aji (2.13)

a∗ijk = aki (2.14)

a∗ijk = akj (2.15)

2.3. PROGRAMMING 11

This covers all possible ordered combinations of two different elements from the
set i, j, k. However, instead of including Equations (2.13) to (2.15) as broadcasting
options, a new operation can be defined: Permutation, meaning the rearrangements
of indices.

Permutation: Permutation1 can be viewed as a generalization of the matrix
transpose to include arbitrary rank MDOs. In a matrix transpose, elements of the
matrix, aij , are rearranged according to

a>ij = aji (2.16)

The transposition operation shown in Equation (2.16) can be thought of the ele-
ments changing their location within the matrix. Another interpretation that the
indices i and j switched places: i, j → j, i. For a rank n MDO, there are n! differ-
ent ways of arranging the indices, which means that if you mean to permute them,
there are n!− 1 options to choose from2. In order to achieve option (2.13) one has
to do a permutation of i, j → j, i followed by broadcasting option (2.10). The need
for Equations (2.13) to (2.15) as unique broadcasting options is eliminated, because
they can be viewed as a combination of a permutation followed by a broadcast.

The total number N of possible combinations when broadcasting from rank
n to rank m is given by the binomial coefficient because specifying a broadcast-
ing scheme involves choosing n dimensions from a set of m dimensions, shown in
Equation (2.17).

N =

(
n

m

)
(2.17)

The binomial coefficients are visualized in Pascal’s triangle in Figure 2.6: The
position from the left indicates the original rank of the MDO, starting at rank
0. The row number in pascal’s triangle corresponds to the rank to broadcast to
(starting at 0 on the row containing just 1) . So if a rank 2 MDO was to be
broadcasted to a rank 4, there are 6 specifications to choose from (5th row from
the top, 3rd position from the left).

2.3 Programming

The Ruby language was chosen to implement the MDO gradient calculation system.
The following sub-section shows that, among many programming styles, object-
oriented and declarative programming would be the most helpful in creating the
MDO computer algebra system. Ruby supports object-oriented programming and
many other programming styles, as well as being dynamic and having a simple
syntax (Flanagan and Matsumoto, 2008).

1GNU Octave is an example of a numerical computation software that implements both broad-
casting and permutation (Eaton, 2011).

2Minus one, because there is always the default configuration. So if you mean to do a permu-
tation there are n!− 1 other index configurations to choose from

12 CHAPTER 2. THEORY

Figure 2.6: Pascal’s triangle:

Paradigms

Most programming languages support a variety of programming styles. Ruby is
no exception. These programming styles can be loosely divided into programming
’paradigms’. Kedar (2008) lists five different programming paradigms:

1. Procedural (Imperative)

2. Functional (Applicative)

3. Logical (Rule-based)

4. Object-oriented

5. Concurrent

In a procedural program, code is executed as it is encountered, for example

int a = 1

int b = 2

int c = 3

d = a + c*b

Now, the value of d is 7. The state of the program (the existence and values of
variables) keeps changing for each line. Typical examples of procedural languages
are C and Fortran.

Functional programming, on the other hand, is more about passing data through
functions, not keeping states in between. A similar program to the above written
in a functional style might look like

c = add(1, multiply(2, 3))

2.3. PROGRAMMING 13

Functional languages include, among others, Lisp and ML.
Not to be confused with the if and switch statements used in most languages,

logical, or rule based programming, sets up a set of relations to control the steps in
a computation. Much like in functional programming, the actual computations are
done first when you query these relations. The prime example of a logical language
is Prolog.

Object oriented programming aims at organizing data and code in a reusable
manner. Data types, called classes encapsulate other data types. Objects of a class
can be created, storing unique values of the encapsulated data. Consider a class
with two member variables.

class Myclass

a

b

end

Objects can be created, and the class members, a and b, can be assigned values.

x = Myclass::new3

x.a = 1

x.b = 2

y = Myclass::new

y.a = 3

y.b = 4

The objects x and y keep their own copies of a and b: a could be 1 in one object,
and 3 in another. C++ and Java are two major object-oriented languages.

Concurrent programming refers to programs where processes can happen si-
multaneously, for example in parallel computing. This is not applicable in the
programming of the MDO4. Object oriented programming, however, plays a major
role, as the MDO can be conveniently defined as its own class: MDO. The inner
workings of the MDO class is described in Chapter 3

Another word that is often used about functional and logical programming is
declarative programming (Chakravarty, 1997). The term is used when the steps in
a computation are expressed without specifying the flow of the computation. For
example in functional programming, functions are defined as separate steps. The
steps are not executed until the functions are called. They may be called in any
order, regardless of the order they were defined in.

There is a resemblance between declarative programming and mathematics:
Mathematical expressions are defined first, and evaluated later. For this reason the
usage of MDO objects will follow the style of declarative programming. The following
pseudo-code is meant to illustrate the vision of how a light-weight computer algebra
system could be implemented using ideas from declarative programming:

3Class::new is the default constructor in Ruby and returns an object of class Class
4Computing each element of an MDO in parallel could be highly beneficial for function eval-

uation performance, but it is beyond the scope of this paper

14 CHAPTER 2. THEORY

Declaration of free variables

x1 = MDO::new

x2 = MDO::new

.

.

.

Declaration of functions, no calculation goes on here

f1 = x1+x2

f2 = f1*x2+...

.

d1 = f1.grad(x2) # find gradients

d2 = d1.grad(x1)

.

Initialization of parameters and free variable values

x1 val = 4.0

x2 val = [1, 2, 3]

.

.

.

Evaluation: The execution of the functions takes place here

f1.eval(x1 val, x2 val)

f2.eval(...)

d1.eval(...)

.

.

Note that the above code does not necessarily represent the actual implementation.
It represents ideas that guided the code design.

Lambda function

The name “lambda function” is borrowed from functional programming where it
describes an anonymous function (Hudak, 1989), in other words, a function without
an identifier5 associated with it. It is often used, however, in conjunction with list
iterators. The iterator fetches elements from the list, whilst the lambda function
does elementary operations on the fetched elements. It is in this sense that the term
“lambda function” fits with the mathematical functions described in this paper.

By separating element-fetching and element operations, lambda functions can
be constructed as scalar functions easily represented by a graph of operators and
operands (previously discussed in Section 2.1).

5An identifier in programming is the variable name. If a function has not been declared as def
myfunction ... or something similar, it could be viewed as a lambda function

2.3. PROGRAMMING 15

Løvfall (2008) created a system called RGrad (also using Ruby) to construct
lambda functions, using a syntax similar to Ruby’s own. Multidimensional alge-
braic objects that appear in the lambda function are broadcasted to the same rank,
then operated upon element-by-element by the lambda function which is specified
in {}-brackets. Below, the expression

aj =

c∑
i=1

lijni
mi

(2.18)

has been implemented in RGrad (a =llm, l =lij, n =n and m =lm):

llm = RGrad::expr(lij,n[nc,nil],lm[nc,nil]){
| lij, mi, lmi| lij* mi/ lmi

}.sum!(nil,nc)
The algebraic object that is returned by the lambda function can be subject to
further structure-altering operations, in this case it is summed. Separating the
element-by-element operations has its advantages, seeing as differentiation here
affects only the lambda function: e.g. the derivative of a sum is trivially the sum
of the derivatives. Differentiation of structure-altering operators is discussed in
Section 3.5.

In this paper, though, another solution was opted for: Instead of lambda func-
tions, the lambda (scalar) operators appear alongside their structure-altering coun-
terparts, this leads to a less bloated syntax. The implementation of the above
expression using the MDO class would look like:

llm = (lij*mi/lmi).sum

In this example, the default specifications for broadcasting and summation would
happen to work. Specifying them explicitly would also work:

llm = (lij*mi.bc(nil, nc)/lmi.bc(nil, nc)).sum(0)

Note that exactly what each bit of code does is not important at this point. The
code examples are here only to show that a different approach was taken, and that
the element-by-element operations are not separated into {}-brackets.

Folding and unfolding of MDOs

A much used operator in thermodynamic modelling is summation. Whether it is
partial molar quantities, compositions, energy contributions or another vectorial
quantity, summation plays an important role. If the summed quantity was or-
ganized in a vector of unspecified length, as would be natural for say, component
mole numbers, then the summation operator takes the vector and produces a single
number: The rank of the MDO is reduced by one.

In functional programming an operation that takes an array and produces a
single number is called folding. Folding uses an operator between elements: For
example a sum is a fold with the addition operator. The commas of a list [1, 2,

16 CHAPTER 2. THEORY

3, 4] is replaced by +: 1 + 2 + 3 + 4 = 10. If the same list is folded with *,
the result would be 1*2*3*4 = 24 which is equal to the factorial of four. Meijer,
Fokkinga, and Paterson (1991) generalized rank reducing operations as catamor-
phisms. Using the paper’s notation, if a list type is denoted A∗, and its element a
type B, then a catamorphism is a function ∈ A∗ → B. In words: A catamorphism
takes a list and produces something of the same type as the elements in the list.
While “catamorphism” is the word used in category theory, “fold” is the functional
programming analogy.

The opposite of folding is sometimes called unfolding. It entails the production
of a list from elements or a seed6. Some sort of production rule has to be specified
that takes the seed and generates the resulting list elements. Meijer et al. (1991)
generalized this concept and named it anamorphism as the dual to catamorphism.
The most common example of this is the zip function. It takes two lists and makes
a list where the elements of the input are listed in pairs: zip([a, b, c], [1,

2, 3]) = [[a, 1], [b, 2], [c, 3]].
In the context of this work broadcasting, adding MDO dimensions and differen-

tiation are examples of anamorphisms because the rank of an MDO is increased.
Summation can be viewed as catamorphism, as well as indexing which picks out
one specific element in a list, reducing the rank by one. Using generalized rank-
increasing and rank reducing formalisms as employed by Meijer et al. (1991), it
might have been possible to implement general fold and unfold operators, but that
was not prioritized in the design of the Expression class. Implementing general
folds and unfolds would have granted the user more flexibility, however, it was
decided that this benefit would not be substantial enough to outweigh the cost of
time that would be spent implementing it.

2.4 The gradient

The “gradient” in this paper is taken to mean the derivatives of a function with
respect to all or a set of its free variables. Taking the gradient of a scalar function
yields a vector

∇f(x1, x2, ...xn) =

[
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

]
(2.19)

However, if f itself was a vector valued function, then each component function fi
must be differentiated with respect to each free variable xj . The result is a matrix,
often called the Jacobian:

∇ [f1, f2, ..., fm] =


∂f1
∂x1

∂f2
∂x1

... ∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

... ∂fm
∂x2

...
. . .

...
∂f1
∂xn

∂f2
∂x2

... ∂fm
∂xn

 (2.20)

6Seed is a value used to determine subsequent values in a sequence

2.4. THE GRADIENT 17

How about if f was a matrix function? Each component function fij must be
differentiated with respect to each differentiation variable xk. The whole gradient
can be collected in a three dimensional MDO with elements ∂fij/∂xk:

∇f =

[
∂fij
∂xk

]
(2.21)

Each time the gradient is taken, a new dimension is added to the MDO. This
is the main reason for introducing multidimensional algebraic objects in the first
place: To find the gradient to arbitrary order (taking the gradient of a function as
many times as one pleases), arbitrary rank MDOs are needed.

Introducing the Kronecker delta

Above it was mentioned that the gradient is the derivative with respect to the
free variables. In thermodynamics a set of the free variables may look like n =
[n1, n2, ..., nC]. Say a function c took the form:

c =

c∑
i=0

c∑
j=0

ninjγij (2.22)

then, assuming that γij is not dependent on n.

∂c

∂nk
=

c∑
i=0

c∑
j=0

∂

∂nk
(ninj) γij (2.23)

which by using the product rule expands to

∂c

∂nk
=

c∑
i=0

c∑
j=0

(
nj
∂ni
∂nk

+ ni
∂nj
∂nk

)
γij (2.24)

If n is a free variable vector, then the elements do not depend on each other, and

∂ni
∂nk

= δik (2.25)

On the right hand side of Equation (2.25) δik represents the Kronecker delta. It’s
definition is

δij =

{
0, i 6= j

1, i = j
(2.26)

It is used here because a variable ni differentiated with respect to itself is 1 but
its derivative with respect to any other variable is 0. The final expression for the
derivative of c with respect to nk becomes

∂c

∂nk
=

c∑
i=0

c∑
j=0

(njδik + niδjk) γij (2.27)

18 CHAPTER 2. THEORY

It is evident that the Kronecker delta will be a necessary component in a program
to differentiate functions with respect to vector elements.

What if one wants to differentiate with respect to higher order objects, like
a 2-d MDO (matrix)? Say, the derivative with respect to the parameters γ was
needed:

∂c

∂γkl
=

c∑
i=0

c∑
j=0

(ninj)
∂γij
∂γkl

(2.28)

Again assuming that the elements γ are independent of each other.

∂γij
∂γkl

=

{
1, i = k, j = l

0, otherwise
(2.29)

Which can be expressed using the Kronecker delta.

∂γij
∂γkl

= δikδjl (2.30)

Two Kronecker deltas multiplied together appear because of the rank 2 differentia-
tion variable. It seems that the Kronecker delta exceeds its intended usefulness as
the derivative of a vector with respect to itself: It can also be used to derivatives
with respect to higher order MDOs.

∂ai1i2...ir
∂aj1j2...jr

= δi1j1δi2j2 ...δirjr (2.31)

The symbol r denotes the rank of the differentiation variable a.

2.5 Thermodynamic modelling of phase equilib-
rium

The classical thermodynamic problem of multicomponent phase equilibrium is used
to test the gradient calculation software. The problem is stated as follows:

min
V v,V l,nv,nl

(Av +Al)T (2.32)

The two phases are denoted as v and l. By introducing more equations, namely
the conservation of volume and mole number

V v + V l = Vtot (2.33)

nv + nl = ntot (2.34)

V l,nl can be expressed as functions of V v,nv, cutting the number of free variables
in half. Equation (2.32) can now be written as

∂(Av +Al)

∂xv
= 0 (2.35)

2.5. THERMODYNAMIC MODELLING OF PHASE EQUILIBRIUM 19

Where x = [V, n1, n2, ..., nC]>. Rearranging yields

∂Av

∂xv
= −∂A

l

∂xv
(2.36)

From differentiation of Equations (2.33) and (2.34), it follows that ∂xv = −∂xl.

∂Av

∂xv
=
∂Al

∂xl
(2.37)

Equation (2.37) is often written as

pv = pl

µv
i = µl

i, i = 1, 2, ..., C
(2.38)

Equations (2.37) and (2.38) are related by Equation (2.39)7.

p = −
(
∂A

∂V

)
T,n

µi =

(
∂A

∂ni

)
T,V,nj 6=ni

(2.39)

Pressure, p, and chemical potential, µi, can be thought of as functionals of A.
Just as a function takes on different values depending on the values of the free
variables, the functionals p and µi take on a different function form depending
on the model for A. They can therefore be applied both for the alpha phase and
the beta phase for any model for A. Combining −p and µi into a vector valued
functional y = [−p, µ1, µ2, ..., µC]>, Equation (2.37) can be written as

yv(xv) = yl(xl) (2.40)

What remains is to find an expression for A(T, V,n). In this particular application,
the Redlich-Kwong equation of state is used to derive an expression for the function
A(T, V,n) such that Equation (2.39) becomes calculable.

The Redlich-Kwong Equation of State

The Redlich and Kwong (1949) equation of state (RK-EOS) is:

pRK =
NRT

V − b
− a

T 1/2V (V + b)
(2.41)

For a mixture of chemical components, the parameters b and a are defined as

b =
∑
i

nibi (2.42)

7The negative pressure has been changed to positive pressure in Equation (2.38) by multiplying
both sides of the equation by −1

20 CHAPTER 2. THEORY

a =
∑
i

∑
j

ninjaij (2.43)

where
aij = (aiaj)

1/2(1− kij) (2.44)

The geometric mixing rule in Equation (2.44) is the most commonly employed
mixing rule for cubic equations of state, such as the RK-EOS8 (Dimian, Bildea,
and Kiss, 2003).

Finally, the component specific parameters ai and bi can be found from critical
point data through:

bi = 0.0867RTc,i/pc,i (2.45)

ai = 0.4278R2T 2.5
c,i /pc,i (2.46)

These equations are derived from the properties of the mechanical critical point as
the point of inflection on the p, V -isotherm. This condition yields two equations:(

∂p

∂V

)
T=Tc

= 0 (2.47)

(
∂2p

∂V 2

)
T=Tc

= 0 (2.48)

By inserting the RK-EOS, Equation (2.41), into Equations (2.47) and (2.48) and
evaluating at the known critical condition (pc, Tc), two equations with two un-
knowns a and b can be solved to give Equations (2.45) and (2.46). In other words:
The parameters ai and bi only depend on Tc,i and pc,i.

Helmholtz energy

As a starting point, Helmholtz energy, being a state function, can be written as

A(T, V,n) = Aig(T, V,n) +Ares(T, V,n) (2.49)

Ideal gas: Looking only at the ideal part, at constant temperature, Helmholtz
energy can be expressed as (Haug-Warberg, 2006):

Aig(T, V,n) = −pigV +

c∑
i=1

µig
i ni (2.50)

The expression for pig is simply NRT/V . The ideal gas component chemical poten-
tial, however, has a slightly more complicated expression. Equation 2.51 is adapted
from Smith (2004).

µig
i = µ0

i (T, p0) +RT ln

(
niRT

V p0

)
(2.51)

8The binary interaction parameter kij is interesting to include, because it can be represented
by a rank 2 MDO, as opposed to vectors like n which are one-dimensional

2.5. THERMODYNAMIC MODELLING OF PHASE EQUILIBRIUM 21

The pure component chemical potential µ0
i (T, p0) is still an unknown function.

For a pure component system, µi = G, and assuming p0 to be the reference
pressure we can write:

µ0
i (T, p0) = h0i (T, p0)− Ts0i (T, p0) (2.52)

Taking the reference state to be elements at standard temperature and pressure
T0, p0, the following expressions can be used for enthalpy and entropy:

h0i (T, p0) = ∆fh
0
i (T0, p0) +

∫ T

T0

c0p,i(T)dT (2.53)

and

s0i (T, p0) = s0i (T0, p0) +

∫ T

T0

c0p,i(T)

T
dT (2.54)

The final expression becomes

µ0
i (T, p0) = ∆fh

0
i (T0, p0)+

∫ T

T0

c0p,i(T)dT−T

[
s0i (T0, p0) +

∫ T

T0

c0p,i(T)

T
dT

]
(2.55)

The standard enthalpy of formation ∆fh
0
i (T0, p0) as well as the standard entropy

s0i (T0, p0) can be found in thermodynamic tables.
The final requirement is an expression for c0p,i. Parameters for the following

polynomial fit were adapted from Berkeley Gas Research Institute (1999)9:

c0p,i (T) = Ai +BiT + CiT
2 +DiT

3 + EiT
4 (2.56)

Residual: An expression for the residual Helmholtz energy can be found from

Ares(T, V,n) = ARK(T, V,n)−Aig(T, V,n) (2.57)

ARK(T, V,n) is Helmholtz energy calculated using the RK-EOS. By recognizing
that Aig = ARK at V → ∞, Equation (2.57) can be rewritten. Keeping T and n
constant, and choosing V =∞ as reference state yields

Ares (T, V,n) =

∫ ∞
V

−pigdV −
∫ V

∞
pRKdV (2.58)

Flipping the limits of the first integral and omitting the unchanged T and n yields

Ares =

∫ V

∞

[
pig(V)− pRK(V)

]
dV (2.59)

9The parameter values were originally formulated for the unit-less polynomial c0p,i/R = ai +

biT + ciT
2 + diT

3 + eiT
4. By multiplying each parameter by R, the unit-specific parameters Ai,

Bi, etc. could be found

22 CHAPTER 2. THEORY

The expressions for pig(V) and pRK(V) can be inserted into Equation (2.59) so
that the integral can be evaluated.

Ares =

∫ V

∞

[
NRT

V
− NRT

V − b
+

a

T 1/2V (V + b)

]
dV (2.60)

The integral in Equation (2.60) evaluates to

Ares = NRT ln

(
V

V − b

)
+

a

bT 1/2
ln

(
V

V + b

)
(2.61)

Iteration scheme

To recap the notation used previously in this section:

x =



V

n1

n2
...

nC


, y =

∂A

∂x
=



−p
µ1

µ2

...

µC


(2.62)

The equilibrium condition from Equation (2.40) is

yv(xv) = yl(xl) (2.63)

The left and right hand side of Equation (2.63) can be Taylor-expanded around
arbitrary points xv

k and xl
k respectively.

yv(xv
k) +

(
dy

dx>

)v ∣∣∣∣
xv
k

∆xv
k = yl(xl

k) +

(
dy

dx>

)l ∣∣∣∣
xl
k

∆xl
k (2.64)

The conservation of volume and mole number reads: xv + xl = x0, where x0 is
the constant total volume and mole numbers. Differentiating the constraint yields
the useful relationship: ∆xv = −∆xl. Inserting this into Equation (2.64) gives
Equation (2.65).

yv(xv
k) +

(
dy

dx>

)v ∣∣∣∣
xv
k

∆xv
k = yl(xl

k)−
(
dy

dx>

)l ∣∣∣∣
xl
k

∆xv
k (2.65)

The last equation can be rearranged to yield an explicit expression for the iteration
variable increment:

∆xv
k =

[(
dy

dx>

)v ∣∣∣∣
xv
k

+

(
dy

dx>

)l ∣∣∣∣
xl
k

]−1 (
yl(xl

k)− yv(xv
k)
)

(2.66)

2.5. THERMODYNAMIC MODELLING OF PHASE EQUILIBRIUM 23

Renaming parts of the above equation according to

H(xv,xl) =

[(
dy

dx>

)v ∣∣∣∣
xv
k

+

(
dy

dx>

)l ∣∣∣∣
xl
k

]
(2.67)

g(xv,xl) =
(
yl(xl

k)− yv(xv
k)
)

(2.68)

yields:
∆xv

k = H−1(xv,xl)g(xv,xl) (2.69)

H−1(xv,xl) can be recognized as the inverse Hessian of total Helmholtz energy10.
The second factor, g(xv,xl), is the first derivative of total Helmholtz energy. In
order to calculate the next ∆xv, the free variables xv, xl must be updated according
to Equations (2.70).

xv
k+1 = xv

k + ∆xv
k, xl

k+1 = xl
k −∆xv

k (2.70)

When the norm of the residual reaches below a certain value,

‖g(xv
k,x

l
k)‖ < ε (2.71)

iteration ends and the solution is taken to be xv
k,x

l
k.

As can be seen from Equation (2.69) this is really just Newton’s method applied
to the function g(xv,xl) = 0. According to Kelley (2003), Newton’s method has
quadratic order of convergence which means that the number of significant figures
in the result (approximated solution) roughly doubles with each iteration.

In the application of the MDO computer algebra system (Chapter 4.2), the func-
tions y(x) and dy/dx> are expressed analytically and such that they are evaluable
for both phases v and l.

10In the Newton scheme H−1(xv ,xl) takes the role of inverse Jacobian

Chapter 3

The MDO class design

The MDO class was written in the Ruby programming language. All programming
examples are therefore given using a Ruby-like pseudo-code. The code as well as
supporting example files can be found in Appendix A. The reader is assumed
to have some knowledge of object-oriented programming, algorithms and data-
structures.

This chapter provides insight into how the MDO class works: How to build func-
tions using MDO objects and how to evaluate and differentiate these functions. Math-
ematical expressions using the MDO class are stored in a graph structure where each
node contains an operator. The first part of the chapter covers how to build basic
MDO graphs using the scalar operators (+, -, * ... etc.). More advanced operators
that affect the dimensionality of an MDO, like summation and indexing, are discussed
towards the end of the chapter.

This chapter does not show how to use the MDO class. To see the MDO syntax in
action, refer to Section 4.2.

3.1 Concept

An MDO object is not a value, but an MDO expression (or function): The data
that makes up an MDO object is a recipe for how to calculate values, not the values
themselves. One cannot differentiate a value, an expression on the other hand can
be differentiated, evaluated or used to construct more complex expressions. Higher
order programming is a name often used about functions which take functions as ar-
guments and produce new functions (Dominus, 2005). In this sense, differentiation
can be thought of as a higher order function.

Two free variables, a and b can be initialized as MDO objects

a = MDO::new

b = MDO::new

The current memory layout of the computer program is visualised in Figure 3.1.

25

26 CHAPTER 3. THE MDO CLASS DESIGN

Figure 3.1: A graph representation of two free variable MDOs, a and b, the square
brackets mean that they don’t have dimensions (they are scalars).

Writing

c = a*b

does not give c the value of of a times b (a and b haven’t even been given values
yet). Instead it stores the operator * and references to a and b, so that when c is
evaluated it can both fetch the values of a and b, and know what to do with them
(multiply). The structure of c has been visualised in Figure 3.2

Figure 3.2: The graph structure of c=a*b. The variable name c refers to the top node.
Empty square brackets indicate no dimensions which means that the nodes represent
scalar expressions. f stands for “factor”.

The expression can be augmented further:

d = c+a

The structure of the MDO object d can be seen in Figure 3.3.

3.2. CLASS MEMBERS 27

Figure 3.3: The graph structure of d=c+a where c=a*b. The variable name d refers to
the top node. Empty square brackets indicate no dimensions which means that the nodes
represent scalar expressions. f stands for “factor” and t stands for “term”

An MDO expression does not have to be constructed one operator at a time,
writing

d = a*b+a

also results in d having the graph structure in Figure 3.3. The terms; MDO object,
node, graph, expression and MDO function are all used to describe MDO objects. They
are all valid, but different, interpretations of what an MDO object represents.

3.2 Class members

An object of the MDO class has several accessible members1: operator, dim, dep,
val and label. Each of them are explained below.

operator

This member variable contains the outer operator of the expression represented by
an MDO object. For example: Writing

c=a/b

gives c the / operator. Each of the different operators has a sub-class within the
MDO class:

1The variables inside an object are called members. Different objects of the same class may
have different values for their members.

28 CHAPTER 3. THE MDO CLASS DESIGN

class MDO

...

class Div

...

end

...

class Mult

...

end

...

class Add # etc.

...

end

...

end

In the above example (c=a/b), what really happens is that a new MDO, c is created
and its operator is assigned an object of the Div class:

c.operator = Div::new(...)2

All the information about how the division operator works is contained in the
MDO::Div class. All nodes but independent variables and constants are given an
operator this way. Independent variables and constants are not assigned operators,
so they have operator = nil3.

Operator classes have been divided into two distinct categories: Lambda opera-
tors and structural operators. Lambda operators are scalar operators such as +, -,
*, /, ln, exp. Structural operators include summation, indexing, adding an MDO
dimension and broadcasting. When an MDO object is evaluated, lambda operators
determine the numbers, while structure operators determine where numbers are
placed in the MDO.

Defining each operator in its own class has the benefit of providing easy exten-
sibility: When a new operator is desired it needs only to be added as a new class
along with the already existing operators. All the functionality specific to that
operator is collected in one place.

dim

An array of dimension sizes for the MDO object. For example an MDO represen-
tation of a 2× 3 matrix would have dim = [2, 3], while a scalar function would
have an empty array, i.e. dim = []. The rank of the MDO is the length of the dim

array.

2Wherever a function argument is not of interest to the present discussion, ellipses are used.
For example, the eval function may take several arguments, but when they are not of importance,
the function call will appear in the text as eval(...).

3In Ruby, nil is a value representing “nothing”, or “empty”

3.3. GRAPH TRAVERSAL 29

Instead of constant numbers, the dim array may also contain dimension vari-
ables. For example, in the definition n = [n1, n2, ..., nC], the letter C could be
said to denote a dimension variable. Just like the expression c=a*b doesn’t store
the value of a*b, the dimensions sizes don’t have to be values either. The value
of the dimension variable would have to be specified upon evaluation, just like a
free variable. Otherwise the evaluation method would not know how many MDO
elements it needs to calculate. Section 3.7 provides more information on how to
create and use dimension variables.

dep

An array of child MDO object references. The elements of this array are not nec-
essarily the dependent variables, but references to sub-expressions, for example:
An MDO object c, defined as c = a-(b+a), contains the - (subtraction) operator,
its dep array has two elements, a reference to a and a reference to a+b. The MDO

object a+b contains the + operator and references to a and b in the dep array:
The references to a and b represent the operands of the + operator. Constants and
independent variables have no dependent nodes which means they have dep = [].

val

One or more parameter values (pure numbers) used to fully specify an operator.
For example a constant node with operator = nil and dep = [] needs a place
to store the numeric value. So the value is stored in val. Other operators that use
val include broadcasting, indexing, powers and summation. Because of Ruby’s
flexibility, the contents of val could have been stored elsewhere, for example in
dep, thereby eliminating the need for an extra variable. It was however prioritized
to make dep contain only MDO references, whilst constant parameters are stored in
val.

label

A string used to identify the node when exported to other code formats. Can also
be useful for distinguishing between independent variables in a graphical represen-
tation of the function graph.

3.3 Graph traversal

Traversing a graph means visiting all its nodes in a particular order. It distinguishes
itself from tree traversal where each node is visited exactly once: In graph traversal,
each edge (arrow/relation) is visited only once (Valiente, 2002).

Traversing an expression graph can be done by calling a method on the root
object, which calls the same method on its child objects (who again calls the method
on their children). It is similar to recursion, meaning a function calling itself. What
separates traversal from recursion is that the method calls itself, but on another

30 CHAPTER 3. THE MDO CLASS DESIGN

object. There are two ways of traversing an MDO: Evaluation and differentiation.
The evaluation method has been called eval4. Differentiation can be done by
calling the grad method: It not only visits the nodes of the graph, but returns a
new graph representing the derivative expression.

Scalar evaluation

A small program which utilized the evaluation method may look like:

initialize two independent variables

a = MDO::new #

b = MDO::new #

c = a*b+a

puts c.eval({a=>4.0, b=>2.0}) # => 12.05

puts c.eval({a=>2.0, b=>3.0}) # => 8.0

The state of the evaluation (a = 4, b = 2 in the first eval call) is specified through
a hash table6 which associates a with the value 4.0 and b with the value 2.0 (The
=> symbol is used in Ruby to associate hash keys with hash values).

The evaluation of the c node requires evaluation of its child nodes. The child
nodes in turn require the evaluation of their child nodes and so on until the leaf
nodes are met. Figure 3.4 shows how a call to eval traverses the graph. When the
leaf nodes are reached, the eval function finds the specified value of the independent
variable in the hash table given as argument. Since leaf node MDOs have no children,
no further eval calls are made, and the whole expression has been evaluated.

Scalar function differentiation

Differentiation distinguishes itself from evaluation in that it does not return nu-
meric values, but a new MDO object. Differentiation can be called through the grad

method as the following example illustrates:

4Not to be confused with Ruby’s own eval function. Ruby’s eval function executes a string of
Ruby code from within a script.

5c.eval means that the method eval is called from the MDO object c. An object method works
with the input (here, {a=>4.0, b=>2.0}) and the member values of the object. Looking at the
expression for c, it has the operator.class = Add, eval will end up adding some numbers in this
case. The method eval will call eval on c’s children. Since these children again will call eval on
their children, eval is said to traverse the graph.

6A hash table is a data structure that provides an easy way of looking up values from associated
keys (here, the independent variable MDOs a and b are the keys). In Ruby, a hash table is specified
with {}-braces, and relations are specified with an arrow a=>b

3.3. GRAPH TRAVERSAL 31

4.0
2.0

8.0

12.0eval

eval

eval

eval

Figure 3.4: A graph representation of the function c=a*b+a. The dotted line arrows
labelled “eval” show the eval method traverses the graph, while the dotted line arrows
labelled with numbers shown the return values of the same calls.

initialize two independent variables

a = MDO::new

b = MDO::new

c = a*b+a

d = c.grad(a)

Writing c.grad(a) really means ∂c/∂a. The function d should now be something
equivalent to b+1.

The way in which grad works is best seen in Figure 3.5. The gradient call is
starts at the top node (named c in the above example). It has operator.class =

Add, so it simply returns
∂

∂a
(f + g) =

∂f

∂a
+
∂g

∂a
(3.1)

32 CHAPTER 3. THE MDO CLASS DESIGN

The sub-figures 1-5 are listed in chronological order as different stages encountered
when the grad function is called. Opened, and unreturned7 calls are represented
by downwards facing arrows pointing at red colored nodes. In the time between
sub-figures 3.5-1 and 3.5-2, a new + node is created (colored blue) and the gradient
call is let loose on the old + node’s children. Between sub-figures 3.5-2 and 3.5-
3, a is differentiated to the constant 1, because a is the differentiation variable.
Between sub-figures 3.5-3 and 3.5-4, the node with the * sign is differentiated by
the product rule:

∂

∂a
(ab) = a

∂b

∂a
+ b

∂a

∂a
(3.2)

Finally, between sub-figures 3.5-4 and 3.5-5, the nodes a and b differentiate to 1
and 0 respectively.

Taking the graph in Figure 3.5-5 and turning it back to a mathematical expres-
sion yields (b*1+0*a)+1 which indeed is equivalent to b+1 and is therefore a valid
gradient expression. It is evident that a simplification algorithm would be benefi-
cial, as multiple gradients of the same function will quickly result in increasingly
large graphs. Reduction is covered in Section 3.8.

7When a function is called, its code is executed from the top down. At a point in time it
might not have reached the end (or the return statement), this is what is meant by unreturned :
A function still under execution.

3.3. GRAPH TRAVERSAL 33

grad

grad
grad

grad

grad

1. 2.

3. 4.

5.

Figure 3.5: The development of the function graph a*b+a during a recursive gradient
function call (∂/∂a). When the gradient is called on a node (marked red), a differentiation
rule specific for the operator at that node creates new graph nodes (shown in blue), and
calls for differentiation of child nodes. 1. The + node is to be differentiated. 2. The
resulting graph after the + node is differentiated. 3. Result after the independent variable
a was differentiated. 4. The multiplication node has been differentiated using the product
rule. 5. The whole graph has finally been differentiated. Now the graph represents the
expression 1*b+0*a+1.

34 CHAPTER 3. THE MDO CLASS DESIGN

The following sections go more into more depth with regard to the operator
types; what they produce when evaluated, how they are differentiated, and how
they utilize the accessible members of the MDO class.

3.4 Lambda operators

This section describes each of the lambda operators in detail. As explained in
Section 3.2, the lambda operators are scalar operators. All the operators + - *

/ are overloaded8. This was an easy choice considering the benefit of the Ruby
parser handling the order of operations automatically. The syntax is also very
clean. Implementing the equation a = b+ cb can by done as

a=b+c*b

Because the operators are properly handled by the programming language, multi-
plication is automatically recognized as the innermost operation, followed by addi-
tion. The above example would have looked different if other solutions were opted
for. Using methods for example, it could look like:

a=b.add(c.mult(b))

or, circumventing the Ruby parser, the MDO class could parse strings to create
expressions. That could look something like:

a=MDO::parse(’b+c*b’) # not implemented!

The two latter alternatives give a more lengthy syntax than operator overloading.

Addition

An MDO object with operator.class = Add has two MDO references in the dep

array, each representing a term. The Add operator takes two arguments, call them
d0 and d1. When eval is called on an MDO object with operator.class = Add it
returns the value of

v = d0 + d1 (3.3)

It returns the function

f(x, ...) =
∂d0
∂x

+
∂d1
∂x

(3.4)

when differentiated with respect to x.

8Overloading an operator is similar to defining a method. However, they look different when
called. In Ruby, if an object method was defined as def mult(b), then an operator to do the same
could be defined as def *(b) return mult(b). Now, writing a.mult(b) would be equivalent to
writing a*b

3.4. LAMBDA OPERATORS 35

Subtraction

The subtraction operator is handled in much the same way as the addition operator.
The only difference is that distinction must be made between the minuend and the
subtrahend. The difference = minuend - subtrahend. In practice this means that the
first element of dep becomes the minuend and the second element of dep becomes
the subtrahend. Upon evaluation a node with operator.class = Sub returns

v = d0 − d1 (3.5)

It returns the function

f(x, ...) =
∂d0
∂x
− ∂d1

∂x
(3.6)

when differentiated with respect to x.

Multiplication

An MDO node with operator.class = Mult has two child nodes, each representing
a factor. When evaluation is called it returns the product of the two child nodes:

v = d0d1 (3.7)

When a multiplication node is differentiated with respect to an MDO x, the func-
tion returned is according to the product rule:

f(x, ...) = d1
∂d0
∂x

+ d0
∂d1
∂x

(3.8)

Division

Division nodes have operator.class = Div. Like the subtraction operator, a dis-
tinction must be made between the node children. The first child dep[0] contains
a reference to the MDO for the numerator. The second child dep[1] contains a ref-
erence to the denominator MDO. When evaluated, a division node returns the value
of

v = d0/d1 (3.9)

A division node returns the function

f(x, ...) =
∂d0
∂x

/d1 −
∂d1
∂x

d0
d21

(3.10)

when differentiated with respect to an MDO x.

Powers

A node with operator.class = Pow has two child nodes. The first, dep[0], is the
base, while the second dep[1] is the exponent. So far only constant exponents are
supported, because of their ease of differentiation. The Pow node returns

v = (d0)
d1 (3.11)

36 CHAPTER 3. THE MDO CLASS DESIGN

when evaluated, and the function

f(x, ...) = d1 (d0)
d1−1 ∂d0

∂x
(3.12)

when differentiated with respect to x.

Natural logarithm

Unlike the MDO node types described above, a node with operator.class = Ln has
only one dependent, representing the argument to the natural logarithm function.
Evaluation of a node of this type yields the value

v = ln (d0) (3.13)

when evaluated, and the function

f(x, ...) =
∂d0
∂x

/d0 (3.14)

is produced when differentiated with respect to another MDO x.

Exponential

An exponential MDO node has operator.class = Exp and one dependent node
dep[0] which represents the argument to the exponential function. When evalu-
ated an exponential node returns the value of

v = ed0 (3.15)

And upon differentiation it returns the function

f(x, ...) =
∂d0
∂x

ed0 (3.16)

.

Constants and free variables

A node with no type (operator = nil) and no dependent nodes is either a constant
or a free variable. If there is a value stored in val, it means that the node represents
a constant and val is used in the evaluation of the MDO. If val = nil then it
is a free variable. During evaluation calls, the values of free variables must be
specified in a hash table (discussed in Section 3.3). If a node is found to be a free
variable, then the hash-table argument to the eval function is searched to find a
value corresponding with the node being evaluated.

MDO objects to represent constants are created by the MDO::const(value) con-
structor9, while free variables use the default MDO::new constructor.

9A constructor, as opposed to a method, is not called from an existing object as a.method, but
called as a traditional function a = constructor(). It returns an object of the class for which it
is a constructor. For example a = MDO::const(...) makes a an MDO object.

3.4. LAMBDA OPERATORS 37

An example application

The following example utilizes all the concepts of the MDO class that have been
introduced up until now. Say a function

z(x, y) = ln(x+ y)− exp(y)

x2
(3.17)

is to be differentiated and evaluated. Equation (3.17) differentiated is

∂z(x, y)

∂x
=

1

x+ y
− 2 exp(y)

x3
(3.18)

Using the MDO class to code this up looks like:

x = MDO::new # create some independent variables

y = MDO::new

z = (x+y).ln - y.exp/x**210

print the value of z at x=2 and y=3

puts z.eval({x=>2.0, y=>3.0})

dzdx = z.grad(x) # take the derivative with respect to x

One noticeable feature is that the operators ln and exp are written in post-fix
notation. An advantage of using x.ln instead of ln(x) is that the global namespace
remains uncluttered. Apart from the post-fix notation, the definition of z looks
almost exactly the same as in Equation (3.17).

If one more line

dzdx.dump graph(’example’) # creates a file called ’example.gv’

is added, it is possible to take a look at the structure of dzdx. The method
dump graph translates the MDO graph to the DOT language (.dot or .gv file exten-
sion). There exists a plethora of tools to convert DOT files to vector graphics, thus
making them viewable. The output file from the dump graph method is shown in
Figure 3.6

10In Ruby, ** means ”to the power of”

38 CHAPTER 3. THE MDO CLASS DESIGN

Relations legend
m – minuend
s – subtrahend
f – factor
t – term
n – numerator
d – denominator
b – base
e – exponent

Figure 3.6: A graph representing dzdx = z.grad(x) where z = (x+y).ln -

y.exp/x**2. Nodes are labelled with their operators. The empty square brack-
ets in each label indicates the dimensions of the MDO, they are all empty be-
cause z is a scalar function. The free variables x1 and x2 are x and y respec-
tively. By interpreting the graph it is possible to deduce its symbolic equivalent:
1.0/(x+y)-(-1.0)*(2*x*(y.exp/((x**2)**2.0))) or 1/(x + y) + 2 exp(y)/x4 on sim-
plified mathematical form.

3.5 Structure operators

Structure operators as opposed to lambda operators utilize MDO dimensions and
indices. Structure operators are needed to give a non-zero rank to an MDO. These
operators can be roughly categorized as either rank increasing, rank decreasing
or rank conserving. The rank increasing operators include broadcasting, adding
an MDO dimension. On the other hand, the summation and indexing operations
are rank decreasing. The generalization of these kinds of operations is described
in Section 2.3. Structure operators, like lambda operators, are added to an MDO

object as additional graph nodes.
The problem of evaluating a whole MDO can be broken down into evaluating

each element of an MDO. What separates the elements from one another are indices.
If elements are evaluated one at a time, the scalar evaluation routine described in
Section 3.3 can still be used. In order to give the user the opportunity to evaluate

3.5. STRUCTURE OPERATORS 39

the whole MDO at once, a simple wrapper has been added to the outside of the
evaluation routine which finds all index combinations to evaluate and organizes the
results into nested lists. Take for example a 2× 2 MDO given by

a =

[
[1 2]

[3 4]

]
(3.19)

Instead of passing the indices as a second argument to eval like this

a00 val = a.eval({}, [0, 0])

a10 val = a.eval({}, [1, 0])

a01 val = a.eval({}, [0, 1])

a11 val = a.eval({}, [1, 1])

one can simply write

a val = a.eval({})
p a val # => [[1, 2], [3, 4]]

Both the above examples would work, the first one is clearly the more tedious
one. When eval is called on a rank > 0 MDO and no indices are specified it
automatically breaks the problem down to multiple scalar evaluations. This means
that when it is time to evaluate the function’s nodes, the evaluation routine always
has a specified index combination to evaluate.

In the following subsection, each structure operator is discussed. The goal is to
give an overview over how each operator works, and how to use it. Differentiation
is not mentioned for the most part, as none of the structure operators seem to
be affected by differentiation. Summation happens to be a linear operator, and
therefore is unaffected by the derivative. Summation is set apart from the rest of
the structural operators as it not only changes the indexing of an MDO, but does
so with the help of a lambda operator (+ between each element), which happens
to be linear.

The rest of the structure operators however are independent of lambda oper-
ators, and affect only the indexing of an MDO. These include indexing, permu-
tation11 (transposition), broadcasting and adding a dimension. Not affecting the
MDO values themselves, only how they organized in the MDO makes these oper-
ators independent of differentiation. A structure operator S that takes an MDO
from rank r to rank R can be loosely defined as something that changes the indexing
of an MDO according to:

ai1i2...ir
S−→ aj1j2...jR (3.20)

The new indices j1j2...jR are a function, call it s, of the old indices i1i2...ir:

Sai1i2...ir = as(i1,i2,...,ir) (3.21)

11Permutation is not discussed further in this section as it was not prioritized highly enough to
fully support in the code. Neither is it used in the phase equilibrium calculations.

40 CHAPTER 3. THE MDO CLASS DESIGN

Indexing itself is a linear operator

(a+ b)i = ai + bi

(αa)i = αai
(3.22)

Therefore a function that only affects indices may be argued to be linear as well

S(ai1i2...ir + bj1j2...jr) = Sai1i2...ir + Sbj1j2...jr

S(αai1i2...ir) = αSai1i2...ir
(3.23)

Linear operators are commutative (their order can change). Therefore, the deriva-
tive ∂ of a structure operator is just the structure operator applied to the derivative:

∂Sa = S∂a (3.24)

Adding a dimension (MDO)

This operator is at the heart of the MDO class. To create a new dimension con-
taining MDO objects, the constructor MDO::MDO(mdo1, mdo2, ..., mdoN) is used.
The constructor returns an MDO object with operator.class = MDOop, and the ar-
guments mdo1, mdo2, ..., mdoN as children (in the dep array). In mathematical
terms, the operator does

a, b, c −→ [a, b, c] (3.25)

In the following example the vector function f(x, y) = [2x, y+x, y2] is constructed
using the MDO::MDO function and evaluated at (x = 1, y = 2):

x = MDO::new

y = MDO::new

f = MDO::MDO(2.0*x, y+x, y**2.0)

p f.eval(x=>1.0, y=>2.0) # => [2.0, 3.0, 4.0]

It can be used subsequently to construct MDOs of higher rank. Continuing the
above code:

g = MDO::MDO(f, 2.0*f, 3.0*f)

p g.eval(x=>1.0, y=>2.0) # => [[2.0, 3.0, 4.0], [4.0, 6.0, 8.0],

[6.0, 9.0, 12.0]]

When an MDO dimension is added, the dep array is populated by the elements
that make up the new dimension; where each element is given as an argument to
MDO::MDO. The dim array in that node adds a dimension length corresponding to
the number of elements. In the above example, f has dimension [3] while g has
dimension [3, 3].

Just like the lambda operators are defined as their own classes, structure op-
erators have their own classes as well. An MDO object created with the function
MDO::MDO(...) is assigned an operator of the MDOop class.

3.5. STRUCTURE OPERATORS 41

Earlier it was mentioned that the evaluation of an MDO of rank > 0 is done by
evaluating one combination of indices at the time. When a node with operator.class

= MDOop is evaluated it uses the first supplied index to find the corresponding child
node and evaluates that (the index is used to dereference the MDO). To show how
the evaluation works, take an MDO defined as

x = MDO::new

h = MDO::MDO(x, 2.0*x, 3.0*x)

It can be evaluated with the index 1

p h.eval(x=>1.0, [1]) # => 2.0

The first and only index, 1, calls for the evaluation of child number 1; dep[1],
which is 2.0*x, producing 2.0.

Continuing the previous example and making it a little less trivial, y can be
defined as:

y = MDO::MDO(h, 10.0*h)

Typing

p y.dim

Reveals that y has dimensions [2, 3]. The structure of y can be seen in Figure
3.7. A nested list representation of y is

y(x) =

[
[x 2x 3x]

[10x 20x 30x]

]
(3.26)

Being of rank 2, y can be evaluated with two indices. Take [0, 1] as an

p y.eval(x=>1.0, [0, 1]) # => 2.0

How did it get to the right answer? The first index, 0, was used to dereference
y, the outermost MDOop-node. The second index, 1 was used to dereference the
innermost MDOop-node, h.

42 CHAPTER 3. THE MDO CLASS DESIGN

MDO [2,3]

MDO [3]

e * [3]

e

x1 []

e* []

e

* []

e

10.0 []

ff

2.0 []

f f

3.0 []

ff

Figure 3.7: The MDO graph representation of the function y(x) = [h(x), 10h(x)] where
h(x) = [x, 2x, 3x]. Dimension of each node is shown in brackets beside the operator type.
h(x) is the subgraph from the node labelled “MDO [3]” and down. Arrow labels ’e’:
element, ’f’: factor.

Summation (sum)

The summation operator adds all the elements in a dimension together. Visualize
a dimension collapsing, leaving the sum of what was there before. The user must
specify which dimension to sum, and the MDO to be summed must have at least
rank 1. Calling the sum(sum dim) method on an MDO object returns a new MDO

object with operator.class = Sum. The argument sum dim indicates which di-
mension to be summed and is stored in val: For example, if a rank 3 MDO with
dim = [2, 3, 4] were to be summed once, there are three options: val = 0 in-
dicates that the first dimension should be summed and the resulting rank 2 MDO
would have dim = [3, 4]. Another option is val = 1 where the second dimension
is summed and the resulting rank 2 MDO have dim = [2, 4], and finally val =

2 gives a resulting MDO with dim = [2, 3].

Broadcasting (bc)

The theory behind broadcasting is described in detail in Sections 2.2 and 2.2.
Within the MDO class it acts as an index filter, choosing the indices to be passed
down to the lower rank broadcasted object. When broadcasting, one or more new

3.5. STRUCTURE OPERATORS 43

dimensions are added to the MDO. The added dimension sizes have to be specified
as arguments to the broadcasting function. An argument equal to 0 or nil means
that the MDO is not broadcasted in this dimension, and the dimension of the
original MDO will be used. Take for example an MDO a with dim = [2, 4].
If this MDO is broadcasted as b = a.bc(3, 0, 5, 0), b would have dim = [3,

2, 5, 4]. The old dimensions of a appear in order where the argument 0 was
given in the broadcasting call. The zero argument can be interpreted as “do not
broadcast in this direction”. a.bc(...) returns an MDO with operator.class

= Broadcast. The arguments 3, 0, 5, 0 are stored in val as an array.
The broadcasting from a to b can be shown symbolically as

bijkl = ajl (3.27)

Equation 3.27 is representative what happens when an MDO with operator.class

= Broadcast is evaluated. b is of rank four and therefore evaluated using four
indices. Upon evaluation of b, the second and fourth indices are passed to a, as
the second and fourth dimensions are not broadcasted to.

Indexing ([])12

Supplying an index to an MDO eliminates a dimension, just like the summation
operator does. Where the sum adds all the elements present in that dimension, the
indexing operator chooses the element corresponding to the supplied index. The
indexing operator uses square brackets: [i, d] in the tradition of many program-
ming languages (including Ruby). The first argument i is the index and the second
argument is the position of the dimension on which it works (default is 0, meaning
the “outer” dimension). Say a = [[1, 2], [3, 4]]. Indexing this as b = a[0]

would make b yield [1, 2] when evaluated. a[0, 1] on the other had would yield
[1, 3] when evaluation.

If one is not sure yet what value the index should be, one can set up an Index

variable. For all purposes this variable is just a scalar integer MDO. This index
variable must be given as the first argument in the indexing brackets, then given a
value in the hash table passed to the evaluation function. In the following example,
the auxiliary constructor MDO::express has been used to easily create a constant
MDO from a nested list.

a = MDO::express([[1, 2], [3, 4]])

p a[0].eval() # => [1, 2]

p a[0, 0].eval() # => [1, 2]

p a[1].eval() # => [3, 4]

p a[1, 0].eval() # => [3, 4]

12The indexing operator should not be confused with the index argument supplied to the
eval method. The results are similar, but the indexing operator adds a node to an MDO’s graph
structure, whereas specifying indices as an argument to the eval method affects only the outcome
of that evaluation

44 CHAPTER 3. THE MDO CLASS DESIGN

In the above code, indices 0 and 1 are applied in turn to the first dimension (the
default dimension, outer dimension), producing what would be called the rows if
a were a matrix. To pick out what corresponds to columns, (the second/inner
dimension), the dimension counter 1 must be supplied as the second argument to
the [] operator:

p a[0, 1].eval() # => [1, 3]

p a[1, 1].eval() # => [2, 4]

The index doesn’t have to be constant, instead an index variable can be supplied
to the [] operator, and then specified when eval is called

i = Index::new # initialize an index variable

a row = a[i, 0]

a col = a[i, 1]

p a row.eval(i=>0) # => [1, 2]

p a row.eval(i=>1) # => [3, 4]

p a col.eval(i=>0) # => [1, 3]

p a col.eval(i=>1) # => [2, 4]

The final example shows how indexing operators can be chained:

indexing can be done several times

as long as the MDO still has dimensions

p a[0][0].eval() # => 1

p a[0][1].eval() # => 2

etc...

Kronecker delta (kronecker)

The Kronecker delta can be produced with the constructor MDO::kronecker. It
does not provide much functionality when used manually, but it can be used to
construct identities of arbitrary rank. The zero, first and second order identities can
be defined using one Kronecker delta broadcasted to their respective dimensions.

a = MDO::kronecker

p a.eval() # => 1.0

p a.bc(2).eval() # => [1.0, 1.0]

p a.bc(2,2).eval() # => [[1.0, 0.0], [0.0, 1.0]]

In Section 2.4 it was demonstrated that

∂ai1i2...ir
∂aj1j2...jr

= δi1j1δi2j2 ...δirjr (3.28)

3.6. TAKING THE GRADIENT OF AN MDO OBJECT 45

Equation (3.28) is equivalent to an identity13 of rank r. It can be constructed by
multiplying Kronecker delta functions. Using the rank three identity as example,
δijk = δijδik for can be written as:

i3 = (MDO::kronecker(2) * MDO::kronecker)

Writing i3.bc(3,3,3).eval outputs

[[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],

[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],

[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]]

The above is a rank 3 identity with 1.0 along the main diagonal
MDO::kronecker without any arguments compares the first and last index; i

and k. MDO::kronecker(2) compares the first and the second index (i and j)
because of the argument: 2. Creating the fourth order identity δijkl is a matter of
defining δijδikδil

δij = MDO::kronecker(2) # compare the first and second index

δik = MDO::kronecker(3) # compare the first and third index

δil = MDO::kronecker # compare the first and last index

Giving:

i4 = (MDO::kronecker(2) * MDO::kronecker(3) * MDO::kronecker)

3.6 Taking the gradient of an MDO object

So far, scalar derivatives have been considered (see Section 3.3). As implied by
the title of this thesis, finding an analytic expression for the gradient is the real
objective. The gradient is the derivative of a function with respect to either all or a
set of the free variables. In the context of MDOs, this can be seen as the derivative
of one MDO function with respect to a first order MDO containing the set of free
variables one wants the derivative with respect to. The title of this thesis also says
“Gradient Calculations to Arbitrary Order”. This means that taking the gradient
of an MDO object better result in a new MDO object, so that the gradient may be
taken consecutively.

Taking the gradient of a function of multiple variables results in the rank in-
creasing by one, it is therefore natural that taking the gradient of an MDO function
results in the root node becoming a node with operator.class == MDOop (the
operator for adding a dimension). Each element of this MDO contains the scalar
derivative with respect to the free variable occupying that position in the free vari-
able MDO. Written out as a code example, this means that, if f was previously
defined as a function of x, y and z, then

13If we take the rank r identity to mean a rank r MDO with elements ai1i2...ir such that
ai1i2...ir = 1 if i1 = i2 = ... = ir and ai1i2...ir = 0 otherwise.

46 CHAPTER 3. THE MDO CLASS DESIGN

v = MDO::MDO(x, y, z)

dfdv = f.grad(v)

is equivalent to

dfdv = MDO::MDO(f.grad(x), f.grad(y), f.grad(z))

That is how the gradient operator works when supplied a rank 1 MDO as argument.
The resulting function dfdv is also of class MDO and the grad function can be called
subsequently if a higher order derivative is desired.

3.7 Indefinite size MDOs

In thermodynamic modelling it is often the case that when applying a model, one
wants not only to specify values of parameters and free variables, but also the actual
number of free variables. Multicomponent systems can in fact have any number of
components. Changing the number of free variables affects the dimension sizes of
gradients and other MDOs associated with the system. It is undesirable to code
up the model each time the number of components change. For that reason, a way
of specifying variable dimension sizes at run-time is necessary.

The simplest way of solving this problem is to allow for dimension sizes as
free variables. As other free variables, these would have to be specified when the
MDO is evaluated. The class of variable used for dimension sizes is called Dim for
distinction purposes, but it behaves like the MDO class. It should be mentioned that
the unspecified dimensions are never infinite, but indefinite, and could in theory
be of arbitrary length. In the following example, the dimension length argument
to the bc (broadcasting) function is replaced by a dimension variable reference.

c = Dim::new

n = MDO::const(1.0).bc(c)

p n.eval(c=>2) # => [1.0, 1.0]

p n.eval(c=>3) # => [1.0, 1.0, 1.0]

p n.eval(c=>4) # => [1.0, 1.0, 1.0, 1.0]

When specifying a new free variable, its dimension can be given as an argument
to the initializer MDO::new. The following example implements

n = [n1, n2, ..., nc]

f = 2n
(3.29)

and evaluates f(n = [1, 2]) then f(n = [1, 2, 3]). Specifying the value of a rank > 0
MDO’s in the eval function is done through a nested list:

3.7. INDEFINITE SIZE MDOS 47

c = Dim::new

n = MDO::new(c)

f = 2.0*n

p f.eval({n=>[1.0, 2.0]}) # =>[2.0, 4.0]

p f.eval({n=>[1.0, 2.0, 3.0]}) # =>[2.0, 4.0, 6.0]

The value of c, 3 in the latter evaluation call, could have been specified in the
hash table {n=>[1.0, 2.0, 3.0], c=>3}, though it would be redundant. Since
the length of the array [1.0, 2.0, 3.0] is three, c is automatically given the
right value. Rank > 1 free variables are also supported to a limited degree (if the
dimension lengths are all the same).

c = Dim::new

n = MDO::new(c, c)

f = 2.0*n

p f.eval(n=>[[1.0, 2.0], [3.0, 4.0]])

=>[[2.0, 4.0], [6.0, 8.0]]

It is worth mentioning that differentiation with respect to free variables of
unspecified lengths is not as straight-forward as differentiation with respect to
constant length MDOs. When a new free variable of unspecified length is created

c = Dim::new

n = MDO::new(c)

the variable n contains a reference to a node with operator class MDOop which has a
child node being a scalar independent variable to represent an element of n. Say the
function, f = n.sum is differentiated. Its graph representation is shown in Figure
3.8. Taking the derivative would involve writing:

dfdn = f.grad(n)

The gradient call adds an MDO node with operator class MDOop as the root node.
Then it passes right through the summation operator (not affected by differentia-
tion), and when finally grad is called on the elements of n itself (the bottom node),
it replaces it with a Kronecker delta, rather than 1.0 as it would if it was a scalar.

In Section 2.4, the Kronecker delta was introduced to replace dni/dnj . The
Kronecker delta compares two indices: The index attempting to access element ni
and the index of the differentiation variable nj . The kronecker node needs a way
in which to identify these two indices. Figure 3.9 shows the layout of dfdn.

48 CHAPTER 3. THE MDO CLASS DESIGN

sum(0) []

MDO [x1]

a

x2 []

e

Figure 3.8: A graph representation of the function f(n) =
∑c

i=0 ni, where n is a vector
with c elements. The dimensions are shown in square brackets to the right of the node
type. The bottom node labelled “x2” represents an element in the free variable n. The
variable n is represented by the node labelled “MDO”. “x1” is the name generated for
the dimension length variable c. The zero argument to the sum indicates that the first
(and only) dimension should be summed over.

MDO [x1]

sum(0) []

e

MDO [x1]

a

kronecker(2) []

e

Figure 3.9: A graphical representation of the derivative of the function f(n) =
∑c

i=0 ni

with respect to n, where n is a vector with c elements. The derivative shown by the graph
has elements ∂f/∂nj =

∑c
i=0 δij which is equivalent to ∂f/∂nj = 1. The dimensions

are shown in square brackets to the right of the node type. The bottom node labelled
“kronecker” represents Kronecker’s delta. “x1” is the name generated for the dimension
variable c. The zero argument to the sum indicates that the first (and only) dimension
should be summed over.

3.8. HYBRID MDOS 49

The node labelled “kronecker” has an argument, 2. This indicates the position
of the index j corresponding to the differentiation variable and was previously
discussed in Section 3.5.

3.8 Hybrid MDOs

The hybrid is another variation of the indefinite size MDO, where the first part of
the dimension contains references to specific elements, for example: In thermody-
namics the list of free variables often take the form of x = [T, V, n1, n2, ..., nC] or
x = [T, p, n1, n2, ..., nC]. The first two elements, T and V or T and p, have less in
common than the rest of the elements ni, yet they are all free variables. So taking
the gradient of Helmholtz energy or Gibbs energy would mean to differentiate with
respect to x. The length of x is 2 + C i.e. it depends on the length of n. This is
where dimension sizes behaving like MDOs become useful; instead of using a free
variable for the dimension size, an expression is used. Here the dimension length
of x is not a free variable, but a function of C.

Setting up x as a hybrid length MDO is simple:

c = Dim::new

n = MDO::new(c) # create a free variable MDO with size c

t = MDO::new

v = MDO::new

x = MDO::MDO(t, v) << n

point = {t=>298.0, v=>0.01, n=>[1.0, 2.0, 3.0]}
p x.eval(point) # => [298.0, 0.01, 1.0, 2.0, 3.0]

The Ruby “append” operator << is used for this function, as it closely matches what
is being done: Appending an unspecified dimension length MDO to a constant
dimension length MDO. The indefinite part of an MDO can only be added at the
end, the reason for this choice is that this layout is the most frequently used in
thermodynamics. Other options to consider include the use of the splat operator:
MDO::MDO(t, v, *n). This was discarded because the splat symbol, *, is not
directly overloadable in Ruby, and therefore would require an ugly workaround.

Little new functionality was needed to handle the hybrid MDO; before proceeding
with either eval or diff, the constant size part would simply be handled as con-
stant size MDO while the indefinite size part would be handled as a pure indefinite
MDO. The graph layout of a hybrid MDO is like a constant dimension MDO, but
with the indefinite part as the last element. The graph layout of x = MDO::MDO(t,

v) << n is shown in Figure 3.10. The two first element nodes represent T and V
whilst the last node contains the sub-array n1, n2, ..., nC . The dimension length de-
noted by x3 is the one defined as c in the above example code, while the dimension
length x9 refers to the expression 2 + C.

50 CHAPTER 3. THE MDO CLASS DESIGN

MDO [x9]

x1 []

e

x2 []

e

MDO [x3]

e

x4 []

e

Figure 3.10: The MDO graph representation of the hybrid vector [T, V, n1, n2, ..., nC].
The nodes labelled “x1” and “x2” refer to T and V while the sub-graph “MDO [x3]” and
down contains the sub-array n1, n2, ..., nC . “x3” is the sub-array length C, while “x9”
refers to the length of the total and is not a free variable, but an expression: 2 +C. “x4”
represents and element ni.

Reduction

The grad method applies differentiation rules without any simplification of the
resulting expression. Taking successive gradients of the same function therefore
produces large graphs which take a long time to evaluate. The solution to this
problem is to do simplifications for each call to the grad function. In particular,
differentiating produces a lot of ones and zeros. Ones, where the free variable is
differentiated with respect to itself, and zeros where other variable are differentiated
with respect to the free variable.

As an example, take

f=x**2+b

Differentiating with respect to x and using only the raw differentiation rules de-
scribed in Section 3.4, gives the result:

dfdx = (((2.0*x)*1.0)+0.0)

The constant 1.0 arises because the chain rule is used to differentiate x**2.0 where
x itself is the inner function. It is clear that the 1.0 can be omitted alongside with
the 0.0, but the computer needs specific rules for this simplification. The clean!14

method is automatically called when the gradient is taken with grad. All the rules
accounted for have been summarized in Table 3.1

14The “bang” symbol ! is used in Ruby to indicate that a method changes the object itself
instead of creating a new one and returning a reference to the new object. When clean! is called,
it simplifies the MDO object from which it was called rather than creating a simplified MDO object
and returning that.

3.8. HYBRID MDOS 51

Table 3.1: Rules for simplifying MDO expressions

Description Example

1. Plus zero can be omitted a+ 0 = a

2. Minus zero can be omitted a− 0 = a

3. Any lambda operator with only constant
children can be evaluated

5 + 2 = 7

4. Anything multiplied by zero is zero a× 0 = 0

5. Anything multiplied by one is itself a× 1 = a

6. Zero divided by anything is zero 0/a = 0

7. Anything divided by one is itself a/1 = a

8. The logarithm of one is zero ln 1 = 0

9. The exponential of zero is one exp(0) = 1

10. Anything to the power of one is itself a1 = a

11. The sum of zero is zero
∑c

i=0 0 = 0

External software, like Maple, could have been used for simplification. This has
not been implemented, but the opportunity is discussed in Chapter 5

Chapter 4

Results

In this chapter the MDO class is used to implement a thermodynamic model for a
hydrocarbon mixture using the RK-EOS model described in Section 2.5. Section
4.1 introduces the model system. The reader will be guided through an algebraic
implementation of the the model using MDO objects: In Section 4.2, each line of
code is explained and mathematical analogies are shown to provide the reader with
enough context to follow the reasoning.

In order to confirm that the project goals were met, Section 4.3 attempts to ver-
ify that gradients of arbitrary order (at least up to fourth) are calculated correctly.
To give an example of a thermodynamic application, the model is used to produce
a phase diagram in Section 4.4. All derivatives needed for Newton iteration were
found automatically as MDO objects.

4.1 The model system

The model in Section 2.5 was applied to a hydrocarbon mixture of methane, ethane
and propane. The system specific parameters are listed in Table 4.1.

53

54 CHAPTER 4. RESULTS

Table 4.1: System specific parameters. Critical temperature and pressure found from
Lange and Dean (1979). The heat capacity parameters are found from Berkeley Gas
Research Institute (1999). All binary interaction parameters were assumed to be zero.

Property Value Units

Methane Ethane Propane

Mole num. ni 80.0 60.0 40.0 mol

Crit. temp. Tc 190.6 305.3 369.6 K

Crit. pres. Pc 4.61 4.91 4.25 MPa

Heat A 42.82 35.68 7.76 J/(molK)

capacity B -0.11 -4.57×10−2 0.22 J/(molK2)

parameters C 4.09×10−4 -4.98×10−4 5.08×10−5 J/(molK3)

D -4.03×10−7 -5.89×10−7 -1.83×10−7 J/(molK4)

E 1.39×10−10 2.23×10−10 7.91×10−11 J/(molK5)

Interaction Methane 0.0 0.0 0.0 -

parameters Ethane 0.0 0.0 0.0 -

kij Propane 0.0 0.0 0.0 -

As mentioned in Section 2.5, the expression for the heat capacity of component
i is:

c0p,i (T) = Ai +BiT + CiT
2 +DiT

3 + EiT
4 (4.1)

All interaction parameters were set to zero. The reason that they are included at
all is to show the MDO class’ ability to handle rank > 1 free variables.

4.2 Implementation using MDO objects

In this section the thermodynamic model described in Chapter 2 is implemented
using the MDO class. The complete implementation can be found in Appendix B.
Some code comments have been omitted to enhance readability. The code lines are
presented in order, with descriptions in between explaining what the code does.

The first line

require ’./mdo main.rb’

is the command to import the file ’mdo main.rb’ which contains the source code
for the MDO class. The next part is:

4.2. IMPLEMENTATION USING MDO OBJECTS 55

r = MDO::const(8.314)

c = Dim::new # the number of components defined as a dimension

t = MDO::new # temperature

v = MDO::new # volume

First the universal gas constant R, here given the identifier r, is initialized
and given a value. This MDO object now represents a constant node. The number
of components, C, is initialized as c; a free dimension-variable. Similarly, the
temperature and volume variables are named t and v respectively and initialized
as independent variable MDO objects by use of the MDO::new constructor. Since no
arguments are given to MDO::new, t and v are rank 0 MDO’s (scalars).

The next few lines look a little bit different.

n vec = MDO::new(c) # mole number vector

tc vec = MDO::new(c) # critical temperature vector

pc vec = MDO::new(c) # critical pressure vector

The free variable n is initialized with size C, which gives it rank 1. So far, the
free variables are T, V,n. No surprises there, seeing as they are the canonical free
variables of Helmholtz energy. The subsequent two lines, however, initialize the
critical temperature and pressure, tc vec and pc vec, as free variables with length
C. Since we want the model to be able to handle different systems at run-time,
system specific parameters like Tc and Pc must be initialized as free variables. Since
each component has a critical temperature and pressure, tc vec and pc vec are
given size C.

The next few lines implement the definition of the a and b parameters for the
RK-EOS

b vec = 0.0867*r*tc vec/pc vec

a vec = 0.4278*r**2.0*tc vec**2.5/pc vec

These two MDO expressions can be recognised as Equations (2.45) and (2.46)

bi = 0.0867RTc,i/pc,i

ai = 0.4278R2T 2.5
c,i /pc,i

It is important to reinforce that nothing is actually being calculated yet. The
only thing happening is that MDO object relations are set up, ready for evalu-
ation or differentiation. Working with vectors and scalar operators as in the
above lines of code, results in element by element operations. Writing b vec =

0.0867*r*tc vec/pc vec is equivalent to bi = 0.087RTc,i/pc,i. Here, the rank 0
MDO, r, is multiplied with the rank 1 MDO tc vec. This results in r to be de-
fault broadcasted into the dimensions of tc vec: Every element of tc vec will be
multiplied by the value of r upon evaluation.

56 CHAPTER 4. RESULTS

The next bit of code creates a new independent variable representing kij . Since
each interaction parameter is between two components, two indices are needed
to specify a value kij . The interaction parameter matrix is therefore given two
dimensions of the same size as n.

k mat = MDO::new(c, c) # interaction parameter matrix

This parameter is used in the mixing rule aij = (aiaj)
1/2(1− kij), from Equation

(2.44). Implementing that equation is not as straight forward as the previous
equations. An element ai multiplied by an element aj is not an element-by-element
multiplication seeing as the index i may be different from the index j.

The way of solving this is through broadcasting: Call

a∗ij = ai (4.2)

and
âij = aj (4.3)

two different broadcasted versions of a = [a1, a2, ..., aC]. Following this definition:

(aiaj) = (a∗ij âij) (4.4)

The first broadcast, a∗ij = ai, keeps the first index i and is therefore said to be
broadcasted in the second dimension. Using the MDO class, this can be specified as
bc(0, c) where c is the length of the added dimension. The second broadcast,
âij = aj , only uses the second index j and is therefore broadcasted in the first
dimension. Similarly, this can be specified as bc(c, 0). To summarise:

ai →a vec.bc(0, c)

aj →a vec.bc(c, 0)

Using these two broadcasts, the following MDO expression represents aij = (aiaj)
1/2(1−

kij) :

a mat = (a vec.bc(0, c)*a vec.bc(c, 0))**0.5*(1.0-k mat)

In the next two lines, component-specific parameters aij and bi are used to
set up expressions for the total mixture parameters a and b which appear in the
RK-EOS. This is a direct implementation of Equations (2.42) and (2.43):

b =

c∑
i=1

nibi

a =

c∑
i=1

c∑
j=1

ninjaij

Implemented as MDO expressions:

b = (n vec*b vec).sum

a = (n vec.bc(0, c)*n vec.bc(c, 0)*a mat).sum.sum

4.2. IMPLEMENTATION USING MDO OBJECTS 57

As can be seen in the expression for a; n vec is broadcasted in just the same way
as a vec was. The reason being to distinguish ni from nj . Given no argument,
the sum method defaults to summing the outer dimension1. Seeing as i and j are
interchangeable in the expression for aij (aij is an element of a symmetric matrix),
it doesn’t matter what dimension is summed first.

The next lines of code do not introduce any new concepts. First, the vector n is
summed to create the total mole number N =

∑C
i=0 ni. Secondly, Equation (2.41)

for pressure2 and Equation (2.61) for the residual Helmholtz energy (here named
f res) are implemented.

n tot = n vec.sum

p rk = n tot*r*t/(v-b) - a/(t**0.5*v*(v+b))

f res = n tot*r*t*(v/(v-b)).ln+a/(b*t**0.5)*(v/(v+b)).ln

The two bottom equations contain only lambda operators and rank 0 (scalar)
MDOs. Because of operator overloading, the Ruby syntax itself is used to construct
expression graphs.

Now that the non-ideal part of the Helmholtz energy function is constructed,
it is time for the ideal part. First, a great deal of component-specific parameters
must be initialized as free variables. As before, the reasoning for making them
free variables is that we want the choice of components to remain open until run-
time: The functions themselves can be constructed without prior knowledge of the
system.

a cp = MDO::new(c)

b cp = MDO::new(c)

c cp = MDO::new(c)

d cp = MDO::new(c)

e cp = MDO::new(c)

h0 = MDO::new(c)

s0 = MDO::new(c)

The first variables, a cp to e cp, are component specific coefficients for the expres-
sion for molar heat capacity, cp,i(T) = Ai + BiT + CiT

2 + DiT
3 + EiT

4. Since
each components has its set of parameters A-E, the parameters are initialized as
1d MDOs with size corresponding to the number of components C. Similarly,
the component standard enthalpy and entropy, called h0 and s0 respectively, are
initialized the same way as the parameters for the heat capacity polynomial.

Next, the reference pressure and temperature are initialized as constants.

t0 = MDO::const(298.0) # K

p0 = MDO::const(1.0e5) # 1 bar in Pa

1The outer dimension is the one using the first index, for example, the rows in a matrix
2The expression for pressure was not actually used in calculation, the derivative of Helmholtz

energy with respect to volume was used instead.

58 CHAPTER 4. RESULTS

This is done in a similar way as R was initialized. Then the integrals I1,i =∫ T

T0
cp,i(T)dT and I2,i =

∫ T

T0
cp,i(T)/TdT are constructed as:

integral of cp(T) dT

int1 = a cp*(t-t0) +

b cp*(t**2.0-t0**2.0)/2.0 +

c cp*(t**3.0-t0**3.0)/3.0 +

d cp*(t**4.0-t0**4.0)/4.0 +

e cp*(t**5.0-t0**5.0)/5.0

integral of cp(T)/T dT

int2 = a cp*(t/t0).ln +

b cp*(t-t0) +

c cp*(t**2.0-t0**2.0)/2.0 +

d cp*(t**3.0-t0**3.0)/3.0 +

e cp*(t**4.0-t0**4.0)/4.0

Since the MDO class only includes support for differentiation and not integration, the
integrals must be done by hand first, and then implemented as MDO expressions.
The above code resembles the integrals:∫ T

T0

Ai+BiT + CiT
2 +DiT

3 + EiT
4dT =

Ai(T − T0) +
Bi

2
(T 2 − T 2

0) +
Ci

3
(T 3 − T 3

0)

+
Di

4
(T 4 − T 4

0) +
Ei

5
(T 5 − T 5

0)

(4.5)

and ∫ T

T0

1

T
(Ai+BiT + CiT

2 +DiT
3 + EiT

4)dT =

Ai ln

(
T

T0

)
+Bi(T − T0) +

Ci

2
(T 2 − T 2

0)

+
Di

3
(T 3 − T 3

0) +
Ei

4
(T 4 − T 4

0)

(4.6)

The goal of constructing these integrals is to express the ideal gas chemical
potential. Equation (2.55) for µ0

i (T), is finally constructed in parts, and named
mu vec.

h = h0 + int1

s = s0 + int2

mu0 vec = h - t*s

mu vec = mu0 vec + r*t*(n vec*r*t/(v*p0)).ln

Finally, the expression for the ideal gas Helmholtz energy, Aig = −NRT+
∑C

i=1 µ
ig
i ni,

can be constructed:

4.2. IMPLEMENTATION USING MDO OBJECTS 59

f ig = -n tot*r*t + (mu vec*n vec).sum

f ig can be added to f res to create the function for Helmholtz energy f.

f = f ig + f res

The function for Helmholtz energy is not evaluated directly in the phase equi-
librium calculation scheme, rather its derivatives are what we’re after. Since the
temperature will be assumed a known constant in the model application, the differ-
entiation variables are V, n1, n2, ..., nc. Defining these in a one-dimensional MDO
is done as follows:

x = MDO::MDO(v) << n vec

The first part, MDO::MDO(v), adds a dimension to the v variable. It being rank 0,
that results in a rank 1 MDO containing one element, v. Next, the << operator
appends the elements in n vec to the newly created 1d MDO, making x resemble
V, n1, n2, ..., nc.

Now we can differentiate with respect to x by supplying it as argument to the
grad function

y = f.grad(x)

dydx = y.grad(x)

y is the gradient of Helmholtz energy

∂A

∂x
=

[
∂A

∂V
,
∂A

∂n1
,
∂A

∂n2
, ...,

∂A

∂nc

]
(4.7)

Also known as [−p, µ1, µ2, ..., µc]. The second derivative dydx is needed in the
Newton iteration scheme. Both y and dydx are now analytic functions, and can
be evaluated for a system with any number of components at any temperature,
volume and composition.

Now that all necessary functions have been created, what remains before they
can be evaluated is to specify the parameter values. This is the break between
where the model is declared and what is called ”run-time”.

60 CHAPTER 4. RESULTS

CH4 CH3CH3 CH3CH2CH3

tc vals = [190.6 , 305.3 , 369.552] # Kelvin

pc vals = [46.1e5 , 49.0e5 , 42.4924e5] # Pascal

k vals = [[0.0, 0.0, 0.0], # interaction parameter values

[0.0, 0.0, 0.0], # set to zero

[0.0, 0.0, 0.0]]

cp parameters from 300-1000K

Cp = A + B*t + C*t^2 + D*t^3 + E*t^4

a cp vals = [42.8161, 35.6789 , 7.76157]

b cp vals = [-0.113661 , -4.573982e-2 , 0.219694]

c cp vals = [4.08883e-4, 4.983730e-4 , 5.07651e-5]

d cp vals = [-4.0301535e-7 , -5.890189e-7 , -1.827209e-7]

e cp vals = [1.38589e-10 , 2.2338535e-10, 7.91070889e-11]

h0 vals = [-78870.0 , -84000 , -104700] # J/mol 298K (g) 1

bar

s0 vals = [186.25, 229.6 , 269.91] # J/(K mol) 1 bar 298K (g)

The parameter values are given on nested list form. It is important that their rank
matches exactly that of the free variables which the values are specified for. For
example, component specific parameters are all a single list with three numbers,
while the interaction parameter values k vals are specified in a list within a list,
representing a rank 2 MDO. The dimension lengths of k vals also matches the
number of components for this system (three).

The dimension length c is not specified explicitly, as its value, 3, is deduced
from the length of the lists by the eval function. Since the argument to the eval

function is a hash table associating the variables with their values, this has to be
created next.

params = {tc vec=>tc vals, pc vec=>pc vals,

a cp => a cp vals,

b cp => b cp vals,

c cp => c cp vals,

d cp => d cp vals,

e cp => e cp vals,

h0=>h0 vals, s0=>s0 vals,

k mat=>k vals}

The most important variable values however, T , V , and n have not been spec-
ified yet. They are the canonical free variables of the Helmholtz energy function,
and will vary for different applications. T will however be assumed known and
constant , while x = [V, n1, n2, ..., nc] will be iterated upon. To give an example, y
and dydx can now be evaluated for some example choices of T , V , and n. Since the
parameters have been specified using three components, n must correspondingly
have three values.

4.3. VERIFYING THE GRADIENT CALCULATION 61

t val = 280.0 # K

v val = 0.07 # m3

n vals = [80.0 , 60.0 , 40.0] # moles

p y.eval(params.merge({t=>t val, v=>v val, n vec=>n vals}))3
p dydx.eval(params.merge(t=>t val, v=>v val, n vec=>n vals))

The incrementation step of the iteration scheme (Equation 2.66) reads:

∆xv
k =

[(
dy

dx>

)v ∣∣∣∣
xv
k

+

(
dy

dx>

)l ∣∣∣∣
xl
k

]−1 (
yl(xl

k)− yv(xv
k)
)

If V v is represented by a numeric value v val v and nv by a list of numbers
n vals v, then evaluating (

dy

dx>

)v ∣∣∣∣
xv
k

is a matter of writing

dydx.eval(params.merge({t=>t val, v=>v val v, n vec=>n vals v})

Similary, if V l was called v val l and nv was called n vals v, then(
dy

dx>

)l ∣∣∣∣
xl
k

can be evaluated by writing

dydx.eval(params.merge({t=>t val, v=>v val l, n vec=>n vals l})

The only difference between the two above cases is that the values of the free
variables V,n are given as the vapour values and liquid value respectively.

Being able to evaluate y(x) and its derivative for both phases, the iteration
scheme can proceed to solve for nl, nv, V l, V v. The source code for the iteration
scheme can be found Appendix C.

4.3 Verifying the gradient calculation

In order to verify that the gradient expressions found by the grad function are
correct, they were compared with numerical estimates. Recursive central differ-
ence was used to estimate arbitrary order derivatives. To estimate the next level
derivative, the following formula was used:

∂f

∂x
=
f(x+ ∆x/2)− f(x−∆x/2)

∆x
(4.8)

3params.merge(...) means that the hash table specifying parameter values is merged with the
one specifying free variables {t=>t val, v=>v val, n vec=>n vals}. Together they fully specify
the state of the evaluation.

62 CHAPTER 4. RESULTS

Where f could be the undifferentiated function itself or a lower derivative. The
accuracy of the method was not of great importance, as the intention is to compare
with analytically found gradients. If the numbers lie in the same neighbourhood,
that will be enough reason not to doubt the analytic derivatives.

The test case used the function for Helmholtz energy derived in Section 2.5. The
first, second, third and fourth order gradients (∇A, ∇∇A, ∇∇∇A and ∇∇∇∇A)
were compared at the point T = 280 K, V = 0.07 m3, n = [80.0, 60.0, 40.0] mol,
using methane, ethane and propane as components in that order. The gradient
operator was defined as

∇ =

[
∂

∂V
,
∂

∂n1
,
∂

∂n2
,
∂

∂n3

]
(4.9)

Note that constant temperature was assumed.
The calculated gradients were compared element by element, for example, the

fourth order gradient contained 4 × 4 × 4 × 4 = 256 elements. Each element of
the analytic calculation was compared with the numerical. The comparisons were
successful for all gradient orders. The analytic gradient elements never deviating
more than 1.1%4 from the numerical gradient. This deviation can be explained by
truncation error in the numerical estimates. Therefore it can be safely assumed
that the analytic gradients are calculated correctly.

Appendix D shows the relevant Ruby script files and detailed results of the
comparison. The performance of evaluating the analytically derived gradients is,
on the other hand, very bad compared to the numerical estimates. For example:
The 3rd order numerical gradient takes ∼ 0.5 seconds to evaluate, whereas the 3rd
order analytic gradient takes ∼ 20 seconds.

4.4 Tracing the two-phase boundary

In this section, a T, V -diagram is produced showing a part of the two-phase region
for the system described in Section 4.1. The two-phase region can be found as
the set of values for T and V (total volume) for which the equilibrium calculation
converges. However, the phase-equilibrium calculation does not always converge
even inside the two phase region: The Newton iteration has to be initialized with
a guess which is close to the solution.

To assure convergence in the entire two-phase region, phase equilibrium cal-
culation was started out at a T, V -point known to be well within the two phase
region. When this equilibrium was found, it was used as a guess to calculate the
equilibrium at a nearby point. The equilibrium found at this point was used as
guess to calculate a new point, and so on. If a point did not converge, a point
closer to the guess was attempted. Scripts to produce the diagram are supplied in
Appendix E. The resulting phase envelope can be seen in Figure 4.1

4This deviation was seen in the fourth order derivative, and is not of note given the uncertainty
in the numerical algorithm.

4.4. TRACING THE TWO-PHASE BOUNDARY 63

280

285

290

295

300

305

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T
e
m
p
e
r
a
t
u
r
e

(
K
)

Volume (m
3
)

F
r
a
c
t
i
o
n

o
f

t
o
t
a
l

m
o
l
e
s

i
n

t
h
e

l
i
q
u
i
d

p
h
a
s
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Phase diagram for a system of 80 moles of methane, 60 moles of ethane and
40 moles of propane. The volume and composition in gas and liquid phase was found at
each point. The colors indicate volume fraction of liquid phase. Red means mostly liquid,
blue means mostly gas. Since this mixture was high in the lighter components, the liquid
phase is not present in high volume other than close to the pure-liquid region (to the left
of the two-phase region). The top of the phase envelope (close to the critical point) could
not be calculated due to convergence problems.

The points shown in the figure are the points where phase equilibrium calcula-
tion was successfully attempted. Close to the critical point, at around 302 K and
0.045 m3 the iteration scheme has trouble differentiating between the two phases,
as the mixture is about to become one homogeneous supercritical fluid.

The data for Figure 4.1 is produced entirely through Ruby scripts, but has been
visualized using Octave. Producing the data takes approximately two hours on a
mid-range CPU. No rigorous profiling has been done, but experience indicates that
much time is spent evaluating the MDO object dydx (the Jacobian in the Newton-
iteration). The reduction scheme outlined in Section 3.8 helps, but could benefit
from interfacing with another computer algebra system, like Maple, or Mathemat-
ica. This, and being able to export the functions y and dydx to a faster language,
like C, would go a long way towards reducing time spent on evaluation. Options
for increasing performance are discussed further in Chapter 5.

64 CHAPTER 4. RESULTS

Convergence

In Section 2.5 it was mentioned that Newton’s method converged quadratically. To
confirm this, the residual norms (L2-norm ‖g‖ =

√∑
g2i) in iteration step number

k + 1 have been plotted against the residual norms in the previous step k. Figure
4.2 shows the development of the residual norm for a sample phase calculation:
The slope of the curve is 2, confirming that the method is indeed quadratic. The
very first iteration (the flat part to the right in Figure 4.2) did not yield as large
an increase in precision as the subsequent iteration steps. Sometimes, a bad initial
guess leads the free (extensive) variables to drop below zero in the first step (this is
unphysical). Step-size control reduces ∆x to avoid this but at the same time slows
convergence.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

r
e
s
i
d
u
a
l

a
t

i
t
e
r
a
t
i
o
n

k
+
1

residual at iteration k

Figure 4.2: Shows the residual in the next step k + 1 as a function of the residual in
the last step k. The axes are logarithmic. The slope of the curve is almost exactly 2,
confirming that Newton’s method is of quadratic convergence order. The iteration starts
with the right-most point

Chapter 5

Discussion

This chapter deals with some of the loose ends regarding the MDO class. Did the
algebraic approach provide a benefit compared to a numerical approach? Simplifi-
cation is one issue that could be improved: Applying the chain rule to differentiate
a function without any simplification results in long expressions. Next we look at
the missed opportunities provided by rank > 1 differentiation variables in the con-
text of sensitivity analysis. Legendre transforms is another part of thermodynamics
that is not covered by the MDO class. This is discussed as well as the opportunity
to export code to other languages.

Benefits of the MDO system

If the alternative is to find partial derivative functions by hand, then being able to
find analytic derivatives at the call of a (grad) method has its clear advantages.
However, when using Newton’s method it is common to estimate the Jacobian
numerically. New names are given to these types of methods depending on the
numerical differentiation scheme: The secant method, for example, is Newton’s
method using “backwards-difference” to find the Jacobian (Kelley, 2003). Calcu-
lating the Jacobian numerically is a slow, but relatively straight-forward process
(Arrillaga and Watson, 2004). There will also be numerical error in the Jacobian as
opposed to an analytically calculated Jacobian. This leads to slower convergence,
the secant method for example has super-linear convergence order, but not quite
quadratic (Kelley, 2003). However it should be emphasised that convergence order
does not change the accuracy of the solution approximated by Newton’s method,
it only changes the number of iterations needed to get there.

When comparing the analytic gradient calculation with the finite difference
method (Section 4.3), there was a significant gap in performance: The numerical
gradient was much quicker to evaluate. For the application of producing a phase
diagram, using numerical derivatives would have resulted in a much faster overall
algorithm. For speed, using MDO objects is clearly not advantageous. However,
having implemented the thermodynamic model in Section 4.2 once means that it
can be reused for a new system with any number and choice of components.

65

66 CHAPTER 5. DISCUSSION

Reduction

Reduction in computer algebra means to simplify an expression. As mentioned in
Section 4.4, calling the eval method is a time consuming operation for complex
MDOs. A complex MDO expression has very many nodes (operators), some of
these might be eliminated by simplification, something which is quite extensive
to implement algorithmically. Luckily, software like Maple, Mathematica, Reduce
among others are very efficient at simplifying mathematical expressions. Though,
they handle for the most part scalar expressions. If the scalar (lambda) parts of an
MDO expression could be separated out, then they could be exported as strings1,
simplified, then returned. Figure 5.1 attempts to illustrate the possible flow of a
call to the grad method using external software simplification:

a+b*...
c/b-...
2+c^...

a+b*... Maple or other
external CAS

b...
2*..

1+...

Raw string expressions

Simplified string
expressions

Differentiated
function graph

Final output
of grad
method

Figure 5.1: The chart illustrates a way of simplifying an MDO graph by using external
software. To the left is a complex graph. Structure nodes are shown as dashed circles,
while lambda (scalar operator) nodes are colored, one color for each lambda function
(they are separated by structure nodes). Most computer algebra systems can only handle
scalar expressions: the lambda functions can be exported to string format. They can then
be simplified by external software. The simplified string expressions can be read back to
Ruby to recreate parts of the MDO graph. The simplified expressions use fewer nodes.

1String is an series of characters, for example a+b
c2

could have a string representation of
"(a+b)/c^2"

67

The main hurdle to overcome when interfacing with external software is the
input-output format. The MDO class would have to have a method for converting
an expression graph into a set of lambda function strings, then reading back the
simplified string expressions. In Figure 5.1, the dashed nodes represent structure
operators. Lambda nodes are the one in between. Structure operators separate
lambda functions, shown as green red and blue nodes. The black nodes repre-
sent free variables. Since external software tend to deal with scalar functions, the
lambda parts have to be exported separately, simplified, and reintroduced to the
graph, in between the structure operators.

Løvfall (2008) used a notation where the lambda function was strictly separated
from the structure of an algebraic object. For the purpose of exporting lambda
functions for simplification, this approach is advantageous. Using MDO objects there
is some extra work involved in separating lambda nodes from structure nodes.
There should be little trouble recreating MDO expressions from external input, seeing
as the operators +-*/ have been overloaded, making the MDO expression syntax
similar to general mathematical notation (with some exceptions, post-fix (...).ln
instead of ln(...) being one of them).

Differentiation variables above rank one

The basic approach to sensitivity analysis of a problem on the form

F (y, x, p) = 0 (5.1)

is to find the derivative of the above system with respect to all parameters (Maly
and Petzold, 1996). In thermodynamics, the interaction parameters k = [kij] are an
example of a rank 2 parameter. Doing a sensitivity analysis of the model described
in Section 2.5 would involve differentiating with respect to k something which is
not currently possible using MDO objects.

In Section 2.4, the Kronecker delta (currently implemented) is shown to be
sufficient for describing the derivative of a rank r MDO with respect to itself:

∂ai1i2...ir
∂aj1j2...jr

= δi1j1δi2j2 ...δirjr (5.2)

Therefore, implementing support for higher rank differentiation variables (than
rank 1) does not require implementation of any new operators. The grad func-
tion, however, would need to be adapted. For instance, while differentiating with
respect to a rank 1 MDO adds one dimension to a function, differentiating with
respect to a rank 2 MDO adds two new dimensions2. Due to time constraints and
lack of an immediate application, rank > 1 differentiation variables have not been
implemented

2The number of dimensions added when differentiating equals the rank of the differentiation

variable:
∂fijk
∂xlm

=
(

∂f
∂x

)
ijklm

: Here a rank 3 MDO f is differentiated with respect to a rank 2

MDO x. The derivative has rank 5.

68 CHAPTER 5. DISCUSSION

Variable transforms

Producing a phase diagram is but one application using the MDO class. Any model
can be implemented as long as an explicit expression for an energy function, like
A or G can be formulated. Because of the gradient-taking capabilities of the MDO

class, derivative properties, like µi, will follow. The major limitation of the MDO class
is its inability to handle implicit expressions. Legendre transforms, for example,
requires a change of variables. Rearrangement of MDO expressions and implicit
differentiation is not possible. In this regard, traditional computer algebra systems
hold the upper hand.

Say, for example, that an explicit function for A(T, V,n) has been defined and
called f using free variables initialized as t, v and n vec. To derive an expression
for U the Legendre transform of A is taken with respect to −T :

U = A− (−T)

(
∂A

∂(−T)

)
V,n

= A+ TS

(5.3)

This could be implemented as:

s = -f.grad(t)

u = f + t*s

The internal energy U could be evaluated, but the function u would still use the
free variables t, v and n vec. This is a problem, because we want to be able
to produce partial derivatives of U with respect to its canonical variables, e.g.
T = (∂U/∂S)V,n.

What could solve the above issue is if it was possible to rearrange expressions.
Then T could be made a function of S, and substituted in. In terms of a graph
representation this is inversion: What was previously a leaf node becomes the root.
Operators would be inverted as well to emulate changing sides in the equation3.
Rearrangement, however, is not possible in general4, therefore we are left with the
option of handling implicit functions.

We want to evaluate and differentiate U(S, V,n), but we are given are the
functions A(T, V,n) and S(T, V,n). U(S0, V0,n0) can be evaluated by finding T
such that

S(T, V0,n0) = S0 (5.4)

then calculate
U = A(T, V0,n0) + TS(T, V,n0) (5.5)

This way S is emulated as free variable. Differentiating U with respect to S could
be done via the chain rule

∂U

∂S
=
∂U

∂T

(
∂S

∂T

)−1
(5.6)

3For example: a = bc rearranged to c = a/b, the multiplication operator was inverted to a
division operator because b moved to the other side of the equation

4For example, you cannot rearrange x = t + ln t to t =

69

Since the code is able to produce U and S as a function of T, V,n it can also find
the derivatives in Equation 5.6.

Even though the above solution would lead to Legendre transformed functions
that could be evaluated and differentiated using their canonical variables, the issue
still remains that transforming would add immense complexity to the MDO expres-
sion. Therefore, implementing the above solution should be done in conjunction
with performance enhancing measures, such as improved simplification or the abil-
ity to export MDO expressions as functions in a faster language.

Code export

Building mathematical models using MDO objects in Ruby does not demand a lot
of computer resources. Evaluating the model is what takes time. After expressions
have been built, there isn’t any need to keep them in the MDO object format. They
can be exported as calculation routines to a fast language, like C, or FORTRAN.
As ordinary programming functions, they can still be evaluated, just no longer
differentiated.

This feature has not been implemented due to time constraints, however it
would improve the MDOs applicability towards more complex thermodynamic mod-
elling.

Chapter 6

Conclusion

The MDO class has been implemented in Ruby. It provides a programming inter-
face for creating mathematical expressions using multidimensional algebraic objects
(MDOs): A scalar would be represented by a zero-dimensional MDO, a vector by
a one-dimensional MDO, and a matrix by two-dimensional MDO. An MDO may
have any number of dimensions (rank) 0, 1, 2...∞. Algebraic expressions for the
gradients of these MDO expressions can be derived automatically by calling the
grad method on an MDO object. The grad method returns a new MDO, thus subse-
quent gradients can be derived, enabling differentiation to arbitrary order. MDO
expressions can be evaluated as functions by calling the eval method, where the
values of parameters and free variables are supplied as arguments.

The intended application of the software is thermodynamic modelling of phase
equilibria. The MDO class has been used to generate a phase diagram of a natural
gas system using the Redlich and Kwong (1949) equation of state. Using the same
model, the software has been proven successful in evaluating gradients of Helmholtz
energy of order up to fourth order. The reason that it has not been tested further is
because of performance issues. With limited capability for simplifying expressions,
MDOs gain a lot of complexity as they are differentiated.

The project has been successful in providing usable framework for expressing
and differentiating thermodynamic energy functions. Being able to handle many-
dimensional algebraic objects, though, has come at the cost of more traditional
functionality supplied by other computer algebra systems: Reduction using Maple
or other external software would remedy the performance issues and efficient leg-
endre transforms require the ability to change free variables. A good way forward
would be to interface with other computer algebra systems: The MDO class could
handle the multi-dimensional side of things, while other aspects are handled by the
external CAS.

71

Bibliography

J. Arrillaga and N.R. Watson. Power System Harmonics. Wiley, 2004. ISBN
9780470871218. URL http://books.google.no/books?id=mDGfHsEoiN8C.

Manuel M. T. Chakravarty. On the Massively Parallel Execution of Declarative
Programs. PhD thesis, Technischen Universität Berlin, 1997.

A.C. Dimian, C.S. Bildea, and A.A. Kiss. Integrated Design and
Simulation of Chemical Processes. Computer Aided Chemical En-
gineering. Elsevier Science, 2003. ISBN 9780080534800. URL
http://books.google.no/books?id=VTUl2Yph sMC.

M.J. Dominus. Higher-Order Perl: Transforming Programs with Pro-
grams. Elsevier Science, 2005. ISBN 9780080478340. URL
http://books.google.no/books?id=4 q8JJWNaTsC.

John W. Eaton. Gnu octave documentation, 2011. URL
http://www.gnu.org/software/octave/doc/interpreter/Broadcasting.html.

D. Flanagan and Y. Matsumoto. The Ruby Programming Lan-
guage. O’Reilly Media, 2008. ISBN 9780596554651. URL
http://books.google.no/books?id=jcUbTcr5XWwC.

Joachim Gross and Gabriele Sadowski. Application of perturba-
tion theory to a hard-chain reference fluid: an equation of state
for square-well chains. Fluid Phase Equilibria, 168(2):183 – 199,
2000. ISSN 0378-3812. doi: 10.1016/S0378-3812(00)00302-2. URL
http://www.sciencedirect.com/science/article/pii/S0378381200003022.

T. Haug-Warberg. Den termodynamiske arbeidsboken. Kolofon Forlag AS, 2006.
ISBN 9788230002056.

Paul Hudak. Conception, evolution, and application of functional pro-
gramming languages. ACM Comput. Surv., 21(3):359–411, Septem-
ber 1989. ISSN 0360-0300. doi: 10.1145/72551.72554. URL
http://doi.acm.org/10.1145/72551.72554.

Berkeley Gas Research Institute. Gri-mech ver-
sion 3.0 thermodynamics, July 1999. URL
http://www.me.berkeley.edu/gri mech/version30/files30/thermo30.dat.

73

74 BIBLIOGRAPHY

K. Jain. Numerical Methods For Scientific And Engineering Computation.
New Age International (P) Limited, 2003. ISBN 9788122414615. URL
http://books.google.no/books?id=5XappvcENCMC.

S.V. Kedar. Programming Paradigms And Methodology. Tech-
nical Publications, 2008. ISBN 9788184312966. URL
http://books.google.no/books?id=gvm9TPE96t4C.

C.T. Kelley. Solving Nonlinear Equations with Newton’s Method. Fundamentals
of Algorithms. Society for Industrial and Applied Mathematics, 2003. ISBN
9780898715460. URL http://books.google.no/books?id=-aYWtUuRlwQC.

N.A. Lange and J.A. Dean. Lange’s Handbook of chemistry. Number v. 12 in
Lange’s Handbook of Chemistry. McGraw-Hill, 1979. ISBN 9780070161917. URL
http://books.google.no/books?id=ln0eAQAAIAAJ.

K.D. Lee. Programming Languages: An Active Learning Approach.
Springer London, Limited, 2008. ISBN 9780387794228. URL
http://books.google.no/books?id=OuW5dC2O99AC.

Richard Liska et al. Computer algebra, algorithms,
systems and applications, February 1999. URL
inst.eecs.berkeley.edu/ cs282/sp02/readings/liska.pdf.

B.T. Løvfall. Computer Realization of Thermodynamic Models Using Alge-
braic Objects. Doktoravhandlinger ved NTNU. Norwegian University of
Science and Technology, Faculty of Natural Sciences and Technology, De-
partment of Chemical Engineering, 2008. ISBN 9788247113554. URL
http://books.google.no/books?id=5h9GMwEACAAJ.

Timothy Maly and Linda R. Petzold. Numerical methods and software for sensi-
tivity analysis of differential-algebraic systems. Applied Numerical Mathematics,
20(12):57 – 79, 1996. ISSN 0168-9274. doi: 10.1016/0168-9274(95)00117-4. URL
http://www.sciencedirect.com/science/article/pii/0168927495001174.
¡ce:title¿Method of Lines for Time-Dependent Problems¡/ce:title¿.

Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In John Hughes, editor, FPCA,
volume 523 of Lecture Notes in Computer Science, pages 124–144. Springer, 1991.
ISBN 3-540-54396-1.

C. Mischler, X. Joulia, E. Hassold, A. Galligo, and R. Esposito. Au-
tomatic differentiation applications to computer aided process engineer-
ing. Computers & Chemical Engineering, 19, Supplement 1(0):779 –
784, 1995. ISSN 0098-1354. doi: 10.1016/0098-1354(95)87129-2. URL
http://www.sciencedirect.com/science/article/pii/0098135495871292.

BIBLIOGRAPHY 75

Otto. Redlich and J. N. S. Kwong. On the thermodynamics of solu-
tions. v. an equation of state. fugacities of gaseous solutions. Chem-
ical Reviews, 44(1):233–244, 1949. doi: 10.1021/cr60137a013. URL
http://pubs.acs.org/doi/abs/10.1021/cr60137a013. PMID: 18125401.

A.S. Silva and M. Castier. Automatic differentiation and implementa-
tion of thermodynamic models using a computer algebra system. Com-
puters & Chemical Engineering, 17, Supplement 1(0):S473 – S478,
1993. ISSN 0098-1354. doi: 10.1016/0098-1354(93)80268-R. URL
http://www.sciencedirect.com/science/article/pii/009813549380268R.

E.B. Smith. Basic chemical thermodynamics. Imperial college Press, 2004. ISBN
9781860944468. URL http://books.google.no/books?id=zmIwN-FRd4cC.

Ross Taylor. Automatic derivation of thermodynamic property func-
tions using computer algebra. Fluid Phase Equilibria, 129(12):37 –
47, 1997. ISSN 0378-3812. doi: 10.1016/S0378-3812(96)03184-6. URL
http://www.sciencedirect.com/science/article/pii/S0378381296031846.

G. Valiente. Algorithms on Trees and Graphs. Springer, 2002. ISBN 9783540435501.
URL http://books.google.no/books?id=NSfIWxqPlbcC.

Appendix A

MDO source code

mdo main.rb

1 #!/usr/bin/env ruby

2

3 require ’./mdo_operators.rb’

4 #require ’./mdo_string.rb’

5

6 class MDO

7 # The MDOop adds a dimension to an MDO

8 # MDOop syntax: a = MDO::MDO(x, y, z)

9 # mathmatical equivalent: a = [x, y, z]

10 class MDOop < MultidimOperator

11 def initialize(dim, dep, val)

12 connect([], dim, dep, val)

13 end

14

15 def symbol_string

16 return ’MDO’

17 end

18

19 def to_s

20 if @dim[0].respond_to?(:eval) # an indefinite size MDO

21 if @dep.length>1 # this is a hybrid MDO

22 return "(MDO::MDO("+@dep[0..-2].to_s[1..-2]+") << "+

23 @dep[-1].to_s+’)’

24 else # pure indefinite size MDO

25 return ’(’+@dep[0].to_s+’.bc(’+@dim[0].to_s+

26 @dim[1..-1].collect{

27 |i| ’, ’+0.to_s

28 }.join+’))’

29 end

30 else # A constant size MDO

31 return "MDO::MDO("+@dep.to_s[1..-2]+")"

77

78 APPENDIX A. MDO SOURCE CODE

32 end

33 end

34

35 def dep_strings

36 return @dep.collect{’e’}

37 end

38 end

39

40 #############################

41 # MDO class workings #

42 #############################

43

44 # class variables

45 @@last_id = 0 # Used for node identification,

46 # checking if the node is a free variable and the like

47 @@id_var_hash = {} # for finding node references from id

48

49 def incr_id # This function assigns a unique ID to an MDO node

50 @@last_id = @@last_id + 1 # ensures that different MDOs get

51 # different IDs

52 @@id_var_hash[@@last_id] = self

53 return @@last_id

54 end

55

56 # accessors

57 attr_accessor :dim, :dep, :val, :label, :operator

58

59 # This method is called by writing MDO::new

60 # it returns a free variable MDO with dimensions dim_in

61 def initialize(*dim_in)

62

63 if (dim_in !=[]) # unpack the dimension if there is argument

64

65 a = MDO.new()

66

67 dim_in.reverse.each{ |dim|

68 a = MDO.infiniteMDO(a, dim) # recursively add

69 # dimensions

70 }

71

72 @dep = a.dep.dup

73 @dim = a.dim.dup

74 @id = incr_id

75 @val = a.val.dup

76 @operator = a.operator

77 else

78 @dep = []

79 @dim = []

80 @id = incr_id

81 @val = []

79

82 end

83 end

84

85 def getID

86 return @id

87 end

88

89 def setID(idin)

90 @id = idin

91 end

92

93 def label!(stringin)

94 @label = stringin

95 return self

96 end

97

98 # the gradient method. Returns an MDO object containing the

99 # expression for the gradient with respect to vars

100 def grad(vars)

101 if @spec_grad==nil # check if any gradient functions have

102 # been specified

103 # if not, then differentiate

104 return diff(vars).clean!

105 else

106 if @spec_grad.has_key?(vars)

107 return @spec_grad[vars] # return the specified

108 # gradient

109 else

110 return diff(vars).clean! # could not find the

111 # a specified gradient with the right variables

112 end

113 end

114 end

115

116 def grad!(vars_in, expr_in) # define the gradient using an MDO

117 # vars_in are the differentiation variables

118 # expr_in is the user-spcified gradient with respect to

119 # vars_in

120 if (@spec_grad.respond_to?(:keys))

121 @spec_grad[vars_in] = expr_in

122 else

123 @spec_grad = {}

124 @spec_grad[vars_in] = expr_in

125 end

126 end

127

128 # Differetiate with respect to a

129 def diff(a, outerind=[]) # outerind keeps track of how many

130 # dimensions are dereferenced before the free variable

131 # is reached, this is used in the kronecker operator

80 APPENDIX A. MDO SOURCE CODE

132 # a could have 0 or 1 dimension

133

134 if a.dim != [] # check if it has a dimension

135 if (a.dim[0].respond_to?(:eval)) # indefinite size a

136 if a.dep.length>1 # hybrid a

137

138 outerind1 = [1.0]

139 outerind2 = []

140

141 first_list = a.dep[0..-2].collect{

142 |i| diff(i, outerind1)

143 } # cut out the first part of the list and

144 # append the indefinite part

145

146 out = MDO.finiteMDO(first_list) <<

147 diff(a.dep[-1], outerind2)

148 else # "a" is a pure indefinite size MDO

149 outerind = [1.0]

150

151 out = MDO.infiniteMDO(diff(a.dep[0], outerind),

152 a.dim[0]) # creates an unspecified MDO

153 # with new element reference.

154 end

155 return out

156 else # it is a pure non-lambda MDO

157 struct_list = a.dep.collect{|y| diff(y, outerind)}

158 return MDO.finiteMDO(struct_list)

159 end

160 else # by the time this is reached, a is split up into its

161 # elements

162 return MDO.const(1.0) if a.getID==@id # the derivative

163 # of the free variable is one

164

165 if @operator != nil # if it has an operator

166 if @operator.class == MDOop # an this is MDOop

167 if (@dim[0].respond_to?(:eval)) # indefinite size

168 if @dep.length>1 # hybrid dimension

169 outerind1 = outerind.dup << 1.0

170 outerind2 = outerind.dup

171 non_lambda = @dep[0..-2].collect{

172 |i| i.diff(a, outerind1)

173 }

174 return MDO.finiteMDO(non_lambda) <<

175 @dep[-1].diff(a, outerind2)

176 else # it is a pure indefinite dimension

177 # check if independent var

178 if (@dep[-1].getID==a.getID) # The dimension

179 # is of a free variable vector

180

181 outerind1 = outerind.dup << 1.0

81

182

183 # save the dimension corresponding

184 # to the differentiation variable

185 arg2kronecker = outerind1.length

186

187 # create a kronecker delta MDO

188 return MDO.infiniteMDO(

189 MDO.kronecker(arg2kronecker),

190 @dim[0])

191 else # it is not the free variable

192 outerind1 = outerind.dup << 1.0

193 return MDO.infiniteMDO(@dep[-1].diff(a,

194 outerind1), @dim[0])

195 end

196 end

197 else # it is a constant dimension MDO

198 outerind1 = outerind.dup << 1.0

199

200 return MDO.finiteMDO(@dep.collect{|x|

201 x.diff(a, outerind1)

202 })

203 end

204 else # has an operator, but it is not MDOop

205 return @operator.diff(a, outerind)

206 end

207 else

208 return MDO.const(0.0)

209 end

210 end

211 end

212

213 def array_dig(var_values_in, dim_in, num) # organize

214 # evaluation results in a nested list

215 dim_f = dim_in.dup

216 if num < dim_in.length

217 if dim_f[num].respond_to?(:eval)

218 dim_f[num] = dim_f[num].eval(var_values_in, [])

219 # evaluate MDO for dimension

220 end

221

222 raise "unspecified dimension" if dim_f.include?(nil)

223

224 return Array.new(dim_f[num]) {|i|

225 dim_f[num] = i; array_dig(var_values_in, dim_f.dup, num+1)

226 }

227 else

228 return self.eval(var_values_in, dim_in)

229 end

230 end

231

82 APPENDIX A. MDO SOURCE CODE

232 def eval(var_values = {}, index=:all, abs_index=[])

233 # var_values is a hash table associating variables

234 # with their values

235

236 if (!var_values.has_key?(:not_top)) # if the var_values are

237 #given by using MDO references as keys ->

238 #Switch to using the id’s as keys

239 temp_hash = {}

240 var_values.each{ |key, value|

241 if value.respond_to?(:each) and

242 key.dim[0].respond_to?(:eval) # one of the arguments

243 # to the eval function is a list, and its variable has

244 # an unspecified dimensions size

245

246 if !var_values.has_key?(key.dim[0])

247 # hasn’t got specified dim

248 if !(key.dim[0].dep[0].class == Fixnum)

249 # The dimension is not a constant

250 temp_hash[key.dim[0]] = value.length

251 else # the dimension is specified constant

252 spec_dim = key.dim[0].eval()

253

254 if !(value.length == spec_dim)

255 puts "warning: specified dimension mismatch

, predefined constant length = #{spec_dim}, while supplied free

variable length = #{value.length}. Using predifened dimension"

256 temp_hash[key.dim[0]] = spec_dim

257 else

258 temp_hash[key.dim[0]] = value.length

259 end

260 end

261 else

262 if (var_values[key.dim[0]] != value.length)

263 puts "warning: specified dimension mismatch,

dimension length supplied upon evaluation = #{var_values[key.dim[0]]},

while supplied free variable length = #{value.length}. Using specified

dimension, not free variable length"

264 end

265 end

266 end

267 }

268 temp_hash.each{|key, value| var_values[key] = value} # add

269 # the newly found dimensions

270

271 # This next bit relates to higher rank free variables

272 unwarped = {}

273

274 var_values.each{ |key, value|

275 if value.respond_to?(:length)

276 if value[0].respond_to?(:length) # nested list

83

277 # if it is of rank 2 or above,

278 # warp it into a constant for the course

279 # of the evaluation

280 unwarped[key] = MDO::copy(key);

281 key.copy_constructor!(MDO::express(value))

282 end

283 end

284 }

285

286 # the warped variable, are no longer free variables

287 # but redefined as "contants"

288 unwarped.each{|key, value| var_values.delete(key)}

289

290 var_values_id = {}

291 var_values.each{|key, value| var_values_id[key.getID] = value}

292 var_values = var_values_id

293

294 var_values[:not_top] = true # key to the var_values argument

295 # to indicate that further eval calls are not the top call

296 # evaluation can therefore proceed as it was intended

297 # from this point

298

299 outvalue = eval(var_values, index, abs_index)

300

301 # revert rank 2 or above independent variables

302 # from constants to variables

303 unwarped.each{|key, value| key.copy_constructor!(value)}

304

305 return outvalue

306 end

307

308 # It will only get here if it is not the top eval call

309 # this is however, where all the evaluation takes place

310 if index == :all

311 # call eval with all index combinations and put them in a list

312 if @dim.first!=nil # test if the dimensionality is an integer

313 out = array_dig(var_values, @dim.dup, 0) # nested list

314 else

315 out = self.eval(var_values, [])

316 end

317 return out

318 else

319 if var_values.has_key?(getID)

320 if var_values[getID].respond_to?(:/) # if it is not

321 #an array

322 return var_values[getID]

323 else # it is an array

324 return var_values[getID][index[0]]

325 end

326 end

84 APPENDIX A. MDO SOURCE CODE

327

328 if (@operator != nil)

329 if @operator.class == MDOop

330 if (!dim[0].respond_to?(:eval)) # constant size MDO

331

332 shaved = index[0]

333 remainder = index[1..-1]

334 abs_index_down = abs_index.dup << index[0]

335

336 return @dep[shaved].eval(var_values,

337 remainder, abs_index_down)

338 end

339 if (dim[0].respond_to?(:eval) and @dep.length>1)

340 # hybrid

341 if (index[0]<(@dep.length-1-0.1))

342 # in the constant size section

343

344 shaved = index[0]

345 remainder = index[1..-1]

346 abs_index_down = abs_index.dup << index[0]

347

348 return @dep[shaved].eval(var_values,

349 remainder, abs_index_down)

350 else

351 # in the indefinite section

352

353 index_down = index

354 index_down[0] = (index_down[0]-(@dep.length-1))

355

356 return @dep[-1].eval(var_values, index_down,

357 abs_index)

358 end

359 end

360 if (dim[0].respond_to?(:eval) and @dep.length==1)

361 # pure indefinite size MDO

362 if (var_values.has_key?(@dep[-1].getID))

363 # have a free variable MDO

364 return @dep[-1].eval(var_values, index,

365 abs_index)

366 end

367 # if not, then delete the top index and keep going

368 remainder = index[1..-1]

369 abs_index_down = abs_index.dup << index[0]

370

371 return @dep[-1].eval(var_values, remainder,

372 abs_index_down)

373 end

374 else

375 return @operator.eval(var_values, index, abs_index)

376 end

85

377 else

378 return @val if @val != nil # We have a constant

379 end

380

381 # if this part is reached, then a variable has been

382 # left unspecified. eval will return nil

383

384 puts "Warning: reached unspecified variable (id = #{getID},

label = #{@label}), make sure that all necessary variables are

specified when calling eval. returning nil"

385 return nil

386 end

387 end

388

389 # constant constructor

390 def self.const(a)

391 c = MDO.new

392 c.val = a

393 c.dim = []

394 return c

395 end

396

397 # return the rank

398 def rank

399 return @dim.length

400 end

401

402 # produce a indefinite size MDO

403 def self.infiniteMDO(lambda_func, dimension)

404 c = MDO.new

405 c.operator = MDOop::new(c.dim, c.dep, c.val)

406 c.dep[0..-1] = [lambda_func]

407

408 c.dim[0..-1] = (!dimension.respond_to?(:eval) ? (dimension==0? (

raise "tried to add an MDO dimension of length 0") : [MDO.const(

dimension)]) : [dimension]) + lambda_func.dim

409

410 return c

411 end

412

413 # produce a constant size MDO

414 def self.finiteMDO(*elements)

415 structure = elements.flatten

416

417 c = MDO.new

418 c.operator = MDOop::new(c.dim, c.dep, c.val)

419 c.dep[0..-1] = structure

420

421 dims = structure.collect{|i| i.dim}

422 larg_dim = []

86 APPENDIX A. MDO SOURCE CODE

423 dims.each{|d| larg_dim = d if d.length>larg_dim.length}

424 c.dim[0..-1] = [structure.length] + larg_dim

425 return c

426 end

427

428 # constructor used for creating a constant size MDO

429 def self.MDO(*structure)

430 flattened = structure.flatten

431

432 return MDO.finiteMDO(flattened)

433 end

434

435 def assim!(lambda_in)

436 # lambda_in is a function with an MDO in dim[0]

437 # the object calling assim has to have operator.class == MDOop

438 if (@operator.class==MDOop)

439 @dep << lambda_in

440 old_dim = @dim[0]

441

442 if !lambda_in.dim[0].respond_to?(:eval)

443 raise "lambda dimension needs to be bound to dimension

object"

444 end

445 @dim[0] = MDO.const(old_dim).add(lambda_in.dim[0])

446 return self

447 else

448 raise "type error, only operator.class == MDOop MDOs can

assimilate"

449 end

450 end

451

452 def <<(y)

453 ymod = MDO.express(y)

454 assim!(ymod)

455 end

456

457 # the structuring from list function

458 def self.express(input)

459

460 # MDO

461 return input if input.respond_to?(:eval)

462

463 # NUMBER

464 return MDO.const(input) if !input.respond_to?(:length)

465

466 # ARRAY

467 return MDO.finiteMDO(input.collect{|i| express(i)})

468 end

469

470 # To allow for 4+x as well as x+4

87

471 def coerce(other)

472 return MDO.express(other), self

473 end

474 end

475

476 #require ’./mdo_dot.rb’

477 require ’./mdo_clean.rb’

478 # require ’./maple_simplified.rb’

479

480 Dim = MDO

481 Index = MDO

source/mdo main.rb

mdo operators.rb

1 #!/usr/bin/env ruby

2

3

4 class MDO

5 # @operator = nil # a constant or a free variable

6

7 ##

8 # PARENT CLASS FOR ALL SIMPLE/SCALAR/LAMBDA OPERATORS #

9 ##

10

11 class LambdaOperator

12 attr_accessor :symbol_string, :dep_strings, :dep, :dim, :val

13 def connect(a, dim, dep, val) # connect nodes in graph

14 @dim = dim

15 @dep = dep

16 @val = val

17

18 @dep[0...a.length] = a

19

20 larg_index = 0

21 dim_lengths = @dep.collect{|d| d.dim.length}

22 dim_lengths.each_index{|i|

23 if dim_lengths[i]>=dim_lengths[larg_index]

24 larg_index = i

25 end

26 }

27

28 @dim[0..-1] = @dep[larg_index].dim

29 end

30 end

31

32 ###################

33 # MULTIPLICATION #

34 ###################

88 APPENDIX A. MDO SOURCE CODE

35

36 class Mult < LambdaOperator

37 def initialize(a, b, dim, dep, val)

38 @symbol_string = "*"

39 @dep_strings = [’f’, ’f’]

40 connect([a, b], dim, dep, val)

41 end

42

43 def to_s

44 return ’(’+@dep[0].to_s+@symbol_string+@dep[1].to_s+’)’

45 end

46

47 def diff(a, outerind)

48 return @dep[0].mult(@dep[1].diff(a, outerind))

49 .add(@dep[1].mult(@dep[0].diff(a, outerind)))

50 end

51

52 def eval(var_values, index, abs_index)

53 return @dep[0].eval(var_values, index, abs_index) *

54 @dep[1].eval(var_values, index, abs_index)

55 end

56 end

57

58 def mult!(a, b)

59 @operator = Mult::new(a, b, @dim, @dep, @val)

60 end

61

62 def mult(b)

63 c = MDO.new

64 c.mult!(self, b)

65 return c

66 end

67

68 def *(y)

69 ymod = MDO.express(y)

70 return mult(ymod)

71 end

72

73 #################

74 # ADDITION #

75 #################

76

77 class Add < LambdaOperator

78 def initialize(a, b, dim, dep, val)

79 @symbol_string = "+"

80 @dep_strings = [’t’, ’t’]

81 connect([a, b], dim, dep, val)

82 end

83

84 def to_s

89

85 return ’(’+@dep[0].to_s+@symbol_string+@dep[1].to_s+’)’

86 end

87

88 def diff(a, outerind)

89 return @dep[0].diff(a, outerind).add(@dep[1].diff(a,

90 outerind))

91 end

92

93 def eval(var_values, index, abs_index)

94 return @dep[0].eval(var_values, index, abs_index) +

95 @dep[1].eval(var_values, index, abs_index)

96 end

97 end

98

99 def add(b)

100 c = MDO.new

101 c.operator = Add::new(self, b, c.dim, c.dep, c.val)

102 return c

103 end

104

105 def +(y)

106

107 ymod = MDO.express(y) # should call this function here, to

make y into

108 # an MDO from whatever input

109 return add(ymod)

110 end

111

112 #################

113 # SUBTRACTION #

114 #################

115

116 class Sub < LambdaOperator

117 def initialize(a, b, dim, dep, val)

118 @symbol_string = "-"

119 @dep_strings = [’m’, ’s’]

120 connect([a, b], dim, dep, val)

121 end

122

123 def to_s

124 return ’(’+@dep[0].to_s+@symbol_string+@dep[1].to_s+’)’

125 end

126

127 def diff(a, outerind)

128 return @dep[0].diff(a, outerind).sub(@dep[1].diff(a,

129 outerind))

130 end

131

132 def eval(var_values, index, abs_index)

133 return @dep[0].eval(var_values, index, abs_index) -

90 APPENDIX A. MDO SOURCE CODE

134 @dep[1].eval(var_values, index, abs_index)

135 end

136 end

137

138 def sub(b)

139 c = MDO.new

140 c.operator = Sub::new(self, b, c.dim, c.dep, c.val)

141 return c

142 end

143

144 def -(y) # Subtraction

145 ymod = MDO.express(y)

146 return sub(ymod)

147 end

148

149 def -@ # Negative sign

150 return -1.0*self

151 end

152

153 #################

154 # DIVISION #

155 #################

156

157 class Div < LambdaOperator

158 def initialize(a, b, dim, dep, val)

159 @symbol_string = "/"

160 @dep_strings = [’n’, ’d’]

161 connect([a, b], dim, dep, val)

162 end

163

164 def to_s

165 return ’(’+@dep[0].to_s+@symbol_string+@dep[1].to_s+’)’

166 end

167

168

169 def diff(a, outerind)

170 return (@dep[0].diff(a, outerind).div(@dep[1]))

171 .sub(@dep[1].diff(a, outerind).mult(@dep[0]

172 .div(@dep[1].pow(MDO.const(2.0)))))

173 end

174

175 def eval(var_values, index, abs_index)

176 return @dep[0].eval(var_values, index, abs_index) /

177 @dep[1].eval(var_values, index, abs_index)

178 end

179 end

180

181 def div(b)

182 c = MDO.new

183 c.operator = Div::new(self, b, c.dim, c.dep, c.val)

91

184 return c

185 end

186

187 def /(y)

188 ymod = MDO.express(y)

189 return div(ymod)

190 end

191

192 ######################

193 # NATURAL LOGARITHM #

194 ######################

195

196 class Ln < LambdaOperator

197 def initialize(a, dim, dep, val)

198 @symbol_string = "ln"

199 @dep_strings = [’a’]

200 connect([a], dim, dep, val)

201 end

202

203 def to_s

204 return ’(’+@dep[0].to_s+’.’+@symbol_string+’)’

205 end

206

207 def diff(a, outerind)

208 return @dep[0].diff(a, outerind).div(@dep[0])

209 end

210

211 def eval(var_values, index, abs_index)

212 return Math.log(@dep[0].eval(var_values, index,

213 abs_index))

214 end

215 end

216

217 def ln

218 c = MDO.new

219 c.operator = Ln::new(self, c.dim, c.dep, c.val)

220 return c

221 end

222

223 #################

224 # EXPONENTIAL #

225 #################

226

227 class Exp < LambdaOperator

228 def initialize(a, dim, dep, val)

229 @symbol_string = "exp"

230 @dep_strings = [’a’]

231 connect([a], dim, dep, val)

232 end

233

92 APPENDIX A. MDO SOURCE CODE

234 def to_s

235 return ’(’+@dep[0].to_s+’.’+@symbol_string+’)’

236 end

237

238 def diff(a, outerind)

239 return @dep[0].diff(a, outerind).mult(@dep[0].exp)

240 end

241

242 def eval(var_values, index, abs_index)

243 return Math.exp(@dep[0].eval(var_values, index,

abs_index))

244 end

245 end

246

247

248 def exp

249 c = MDO.new

250 c.operator = Exp::new(self, c.dim, c.dep, c.val)

251 return c

252 end

253

254 #####################

255 # POWERS/EXPONENTS #

256 #####################

257

258 class Pow < LambdaOperator

259 def initialize(a, b, dim, dep, val)

260 @symbol_string = "**"

261 @dep_strings = [’b’, ’e’]

262 connect([a, b], dim, dep, val)

263 end

264

265 def to_s

266 return ’(’+@dep[0].to_s+@symbol_string+@dep[1].to_s+’)’

267 end

268

269 def diff(a, outerind)

270 return @dep[1].mult(@dep[0].pow(@dep[1].sub(

271 MDO.const(1.0))))

272 .mult(@dep[0].diff(a, outerind))

273 end

274

275 def eval(var_values, index, abs_index)

276 return @dep[0].eval(var_values, index, abs_index) **

277 @dep[1].eval(var_values, index, abs_index)

278 end

279 end

280

281 def pow(b)

282 c = MDO.new

93

283 c.operator = Pow::new(self, b, c.dim, c.dep, c.val)

284 return c

285 end

286

287 def **(y)

288 ymod = MDO.express(y)

289 return pow(ymod)

290 end

291

292 ##

293 # PARENT CLASS FOR ALL MULTIDIMENTIONAL OPERATORS #

294 ##

295

296 class MultidimOperator

297 attr_accessor :dep, :dim, :val

298 def connect(a, dim, dep, val)

299 @dim = dim

300 @dep = dep

301 @val = val

302

303 @dep[0...a.length] = a # dup ?

304 end

305

306 end

307

308 def deref_dim(var_values = {})

309 a = @dim.collect{|i| i.respond_to?(:eval) ? i.eval(var_values,

310 []) : i}

311 return a

312 end # function used to check and evaluate if a dimensions is

313 # represented by a dimension variable

314

315 #################

316 # INDEXING #

317 #################

318

319 class Ind < MultidimOperator # The indexing operator class

320

321 def initialize(a, b, dim, dep, val, col_dim)

322 connect([a, b], dim, dep, val)

323

324 @val[0] = col_dim

325

326 g = @dep[0].dim.dup

327 g.delete_at(col_dim)

328 @dim[0..-1] = g.dup

329 end

330

331 def symbol_string

332 return ’[’+@val[-1].to_s+’]’

94 APPENDIX A. MDO SOURCE CODE

333 end

334

335 def dep_strings

336 return [’a’, ’i’]

337 end

338

339 def to_s

340 return ’(’+@dep[0].to_s+’[’+@dep[1].to_s+’, ’+

341 @val[-1].to_s+’]’+’)’

342 end

343

344 def diff(a, outerind)

345 return @dep[0].diff(a, outerind).index(@dep[1],

346 @val[-1])

347 end

348

349 def eval(var_values, index, abs_index)

350 index_down = index.insert(@val[-1],

351 @dep[1].eval(var_values))

352

353 return @dep[0].eval(var_values, index_down, abs_index)

354 end

355 end

356

357 def index(index_in, col_dim)

358 c = MDO.new

359 c.operator = Ind::new(self, index_in, c.dim, c.dep,

360 c.val, col_dim)

361

362 return c

363 end

364

365 def [](y, dimen=0)

366 return index(MDO.express(y), dimen)

367 end

368

369 #################

370 # SUMMATION #

371 #################

372

373 class Sum < MultidimOperator

374 def initialize(a, dim, dep, val, col_dim)

375

376 connect([a], dim, dep, val)

377

378 @dep[0] = a

379 @val[0] = col_dim

380

381 g = @dep[0].dim.dup

382 g.delete_at(col_dim)

95

383 @dim[0..-1] = g.dup

384 end

385

386 def symbol_string

387 return ’sum(’+@val[-1].to_s+’)’

388 end

389

390 def dep_strings

391 return [’a’]

392 end

393

394 def to_s

395 return ’(’+@dep[0].to_s+’.’+symbol_string+’)’

396 end

397

398 def diff(a, outerind)

399 return (dep[0].diff(a, outerind)).sum(@val[-1])

400 # the sum of the derivatives

401 end

402

403 def eval(var_values, index, abs_index)

404 sum = 0.0

405 (0...@dep[0].deref_dim(var_values)[@val[-1]])

406 .collect{ |k|

407 @dep[0].eval(var_values,

408 index.dup.insert(@val[-1], k),

409 abs_index.dup)

410 }.each{ |i| sum = sum + i }

411 return sum

412 end

413 end

414

415 def sum(col_dim=0) # collapsing dimension

416 c = MDO.new

417 c.operator = Sum::new(self, c.dim, c.dep, c.val, col_dim)

418

419 return c

420 end

421

422 #################

423 # BROADCASTING #

424 #################

425

426 class Broadcast < MultidimOperator # index (verb). Not to be

confused with Index (noun) (which is a special type of Expr)

427 def initialize(a, dim, dep, val, spec)

428

429 connect([a], dim, dep, val)

430

431 @dep[0] = a

96 APPENDIX A. MDO SOURCE CODE

432 @val[0..-1] = spec.dup

433

434 c = -1

435 @dim[0..-1] = spec.collect{|i| i==0? (c=c+1; @dep[0].

dim[c]) : i }

436

437 end

438

439 def symbol_string

440 return ’bc(’+@val.collect{|i| i.to_s}.join(’, ’)+’)’

441 end

442

443 def dep_strings

444 return [’l’]

445 end

446

447 def to_s

448 return ’(’+@dep[0].to_s+’.’+symbol_string+’)’

449 end

450

451 def diff(a, outerind)

452

453 outerind1 = outerind.dup + @val.select{|i|

454 i!=0}.collect{|j| 1.0}

455

456 return dep[0].diff(a, outerind1).broadcast(@val)

457 end

458

459 def eval(var_values, index, abs_index)

460 # index coming in [1, 1]

461 # if broadcast is [0, 1] => send down indices

462 # corresponding to the positions of the ones!

463 # example index = [1, 3, 5, 2, 0]

464 # example broad = [0, 1, 0, 0, 1]

465 # sent down = [3, 0] = [3, 0]

466

467 filter = @val.collect{|i| i==0? 1 : 0}

468

469 index_down = index.zip(filter).select{|i|

470 (i[1]!=0 and i[1]!=nil)}.collect{|i| i[0]}

471

472 index_popped = index.zip(filter).select{|i|

473 (i[1]==0 or i[1]==nil)}.collect{|i| i[0]}

474

475 abs_index_down = abs_index + index_popped

476

477 return @dep[0].eval(var_values, index_down,

478 abs_index_down)

479 end

480 end

97

481

482 # Broadcasting specification:

483

484 # a.dim = [c, c]

485 #

486 # a.bc(c, 0, 5, 0) # produces a broadcast of

487 # dim = [c, c, 5, c]

488 # 0 or nil means do not broadcast in that

489 # direction (in other words:

490 # keep the indices)

491

492 def broadcast(spec)

493

494 c = MDO.new

495 c.operator = Broadcast::new(self, c.dim, c.dep, c.val,

496 spec)

497

498 return c # to be changed

499 end

500

501 def bc(*args)

502 broadcast(args.flatten)

503 end

504

505 def call(*args)

506 broadcast(args.flatten)

507 end

508

509 #################

510 # KRONECKER #

511 #################

512

513 class KroneckerDelta < MultidimOperator

514 def initialize(dim, dep, val, outerind)

515 connect([], dim, dep, val)

516

517 @val << outerind

518 end

519

520 def symbol_string

521 return ’kronecker(’+@val.collect{|i| i.to_s}

522 .join(’, ’)+’)’

523 end

524

525 def dep_strings

526 return []

527 end

528

529 def to_s

530 return ’MDO::kronecker(’+@val.collect{|i| i.to_s}

98 APPENDIX A. MDO SOURCE CODE

531 .join(’, ’)+’)’

532 end

533

534 def diff(a, outerind)

535 return MDO.const(0.0)

536 end

537

538 def eval(var_values, index, abs_index)

539 abs_index_mod = abs_index[-@val[-1]...-@val[-1]+1] +

540 [abs_index[-1]]

541

542

543 # compares the specified index number @val,

544 # with the final remaining index

545 # the value of @val is not intuitive and is

546 # specified during

547 # grad. It is hardly meant to be used manually

548

549 out = (abs_index_mod.uniq.length == 1 or

550 abs_index_mod.length == 0)? 1.0 : 0.0

551 return out

552 end

553 end

554

555 def self.kronecker(outerind=0)

556

557 c = MDO.new

558 c.operator = KroneckerDelta::new(c.dim, c.dep, c.val,

559 outerind)

560

561 return c

562 end

563

564 #################

565 # PERMUTATION #

566 #################

567

568 class Permute < MultidimOperator

569 def initialize(a, dim, dep, val, spec)

570

571 connect([a], dim, dep, val)

572

573 @dep[0] = a

574 @val[0..-1] = spec.dup

575

576 @dim[0..-1] = a.dim.dup

577

578 # check if the number if specified arguments are valid

579 if !(spec.sort == (0...dim.length)

580 .collect{|i| i})

99

581

582 raise ’invalid permutation: for a 2d MDO: (0, 1)

and (1, 0) valid, for a 3d MDO (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2,

0), (2, 1, 0) and (2, 0, 1) allowed and so on...’

583 end

584 end

585

586 def symbol_string

587 return ’perm(’+@val.collect{|i| i.to_s}.join(’, ’)+’)’

588 end

589

590 def dep_strings

591 return [’a’]

592 end

593

594 def to_s

595 return ’(’+@dep[0].to_s+’.’+symbol_string+’)’

596 end

597

598 def diff(a, outerind)

599 outerind1 = outerind.dup # this does not change,

600 # as no indices are used for dereferencing

601 # in this operator

602 return dep[0].diff(a, outerind1).permute(@val)

603 end

604

605 def eval(var_values, index, abs_index)

606

607 index_down = @val.collect{|i| index[i]}

608

609 abs_index_down = abs_index

610

611 return @dep[0].eval(var_values, index_down,

612 abs_index_down)

613 end

614 end

615

616 def permute(spec) # spec is a list of arguments

617

618 c = MDO.new

619 c.operator = Permute::new(self, c.dim, c.dep, c.val, spec)

620

621 return c

622 end

623

624 def per(*args) # this is supposed to be the user’s

625 # way to permute

626

627 permute(args.flatten)

628 end

100 APPENDIX A. MDO SOURCE CODE

629

630 end

source/mdo operators.rb

mdo clean.rb

1 #!/usr/bin/env ruby

2

3 class MDO

4

5 # ideas for cleaning:

6 # sum -> struct -> 0.0 THIS ONE

7 # ^1.0, 0.0

8

9 def self.copy(input)

10 c = MDO.new

11 c.copy_constructor!(input)

12 return c

13 end

14

15 def copy_constructor!(expr_in)

16 @dim = expr_in.dim.dup

17 @val = expr_in.val

18 @label = (expr_in.label.class!=NilClass)?

19 expr_in.label.dup : expr_in.label

20 @dep = expr_in.dep.dup

21 @id = expr_in.getID

22 @operator = (expr_in.operator.class!=NilClass)?

23 expr_in.operator.dup : expr_in.operator

24 end

25

26 def clean!

27 still_changing = true

28 while still_changing

29 still_changing = self_sweep!

30 end

31 return self

32 end

33

34 def self_sweep!()

35 changed = false

36

37 # if all dependents are constants: Evaluate

38 if @operator.class < LambdaOperator

39 if (@dep.all?{|d| (d.operator==nil and

40 d.val.respond_to?(:/))})

41 temp = MDO::const(eval)

42 copy_constructor!(temp)

43 changed = true

101

44 end

45 end

46 if @operator.class == Add # Realized in hindsight that case

47 # would be better at this, but has to be used as case @operator

48 # when Add etc. not case @operator.class when Add

49 if (@dep[0].operator==nil and @dep[0].val==0.0)

50 if (@dep[1].operator==nil and @dep[1].val==0.0)

51 copy_constructor!(MDO::const(0.0))

52 changed = true

53 else

54 copy_constructor!(@dep[1])

55 changed = true

56 end

57 else

58 if (@dep[1].operator==nil and @dep[1].val==0.0)

59 copy_constructor!(@dep[0])

60 changed = true

61 end

62 end

63 end

64 if @operator.class == Sub

65 if (@dep[0].operator==nil and @dep[0].val==0.0)

66 if (@dep[1].operator==nil and @dep[1].val==0.0)

67 # both 0 ok, return 0

68 copy_constructor!(MDO::const(0.0))

69 changed = true

70 else

71 mult!(MDO.const(-1.0), dep[1])

72 # only the minuend 0, return -1.0*dep[1]

73 changed = true

74 end

75 else

76 if (@dep[1].operator==nil and @dep[1].val==0.0)

77 copy_constructor!(@dep[0])

78 changed = true

79 end

80 end

81 end

82 if @operator.class == Mult

83 if ((@dep[0].operator==nil and @dep[0].val==0.0) or

84 (@dep[1].operator==nil and @dep[1].val==0.0))

85 copy_constructor!(MDO::const(0.0))

86 changed = true

87 else

88 if (@dep[0].operator==nil and @dep[0].val==1.0)

89 copy_constructor!(@dep[1])

90 changed = true

91 else

92 if (@dep[1].operator==nil and @dep[1].val==1.0)

93 copy_constructor!(@dep[0])

102 APPENDIX A. MDO SOURCE CODE

94 changed = true

95 end

96 end

97 end

98 end

99 if @operator.class == Div

100 if (@dep[0].operator==nil and @dep[0].val==0.0)

101 # if numerator zero, whole zero

102 copy_constructor!(MDO::const(0.0))

103 changed = true

104 else

105 if (@dep[1].operator==nil and @dep[1].val==1.0)

106 # if the denominator is one, then numerator

107 copy_constructor!(@dep[0])

108 changed = true

109 end

110 end

111 end

112 if @operator.class == Ln

113 if (@dep[0].operator==nil and @dep[0].val==1.0)

114 copy_constructor!(MDO::const(0.0))

115 changed = true

116 end

117 end

118 if @operator.class == Exp

119 if (@dep[0].operator==nil and @dep[0].val==0.0)

120 copy_constructor!(MDO::const(1.0))

121 changed = true

122 end

123 end

124 if @operator.class == Pow

125 if (@dep[1].operator==nil and @dep[1].val==1.0)

126 copy_constructor!(@dep[0])

127 changed = true

128 else

129 if (@dep[0].operator==nil and @dep[0].val==0.0)

130 copy_constructor!(MDO::const(0.0))

131 changed = true

132 end

133 end

134 end

135

136 if @operator.class == Sum # sum of zero is zero

137 if (@dep[0].operator.class==MDOop and

138 @dep[0].dep[0].operator==nil and

139 @dep[0].dep[0].val==0.0) # sum of a 0 vector

140 copy_constructor!(MDO::const(0.0))

141 changed = true

142 end

143 end

103

144 @dep.each{|i| (if changed

145 i.self_sweep!;

146 else;

147 changed = i.self_sweep!;

148 end) if i.respond_to?(:self_sweep!)}

149 return changed

150 end

151

152 end

source/mdo clean.rb

Appendix B

Thermodynamic model
implementation

mdo impl ex.rb

1 #!/usr/bin/env ruby

2

3 require ’./mdo_main.rb’

4

5 ###

6 # BUILDING THE MODEL USING EXPRESSION OBJECTS #

7 ###

8

9 # CONSTANTS AND VARIABLES

10 ######################

11 r = MDO::const(8.314)

12 c = Dim::new # the number of components defined as a dimension

13

14 t = MDO::new # temperature

15 v = MDO::new # volume

16

17 n_vec = MDO::new(c) # mole number vector

18

19 tc_vec = MDO::new(c) # critical temperature vector

20 pc_vec = MDO::new(c) # critical pressure vector

21

22 # RK-EOS SPECIFIC

23 ######################

24 b_vec = 0.0867*r*tc_vec/pc_vec # vector of b values for each component

25 a_vec = 0.4278*r**2.0*tc_vec**2.5/pc_vec # vector of a values for each

component

26

27 k_mat = MDO::new(c, c) # interaction parameter matrix

105

106 APPENDIX B. THERMODYNAMIC MODEL IMPLEMENTATION

28

29

30 a_mat = (a_vec.bc(0, c)*a_vec.bc(c, 0))**0.5*(1.0-k_mat)

31

32 b = (n_vec*b_vec).sum

33 a = (n_vec.bc(0, c)*n_vec.bc(c, 0)*a_mat).sum.sum

34

35 n_tot = n_vec.sum

36

37 p_rk = n_tot*r*t/(v-b) - a/(t**0.5*v*(v+b)) # pressure = f(T,V,n) according

to RK-EOS

38

39 f_res = n_tot*r*t*(v/(v-b)).ln+a/(b*t**0.5)*(v/(v+b)).ln # residual

helmholtz free energy

40

41 # IDEAL GAS SPECIFIC

42 #######################

43 # Using non-constant heat capacities

44 a_cp = MDO::new(c)

45 b_cp = MDO::new(c)

46 c_cp = MDO::new(c)

47 d_cp = MDO::new(c)

48 e_cp = MDO::new(c)

49 h0 = MDO::new(c)

50 s0 = MDO::new(c)

51

52 t0 = MDO::const(298.0) # K

53 p0 = MDO::const(1.0e5) # 1 bar in Pa

54

55 # C p = A + B*t + C*t^2 + D*t^3 + E*t^4

56 # integral of cp(T) dT

57 int1 = a_cp*(t-t0) +

58 b_cp*(t**2.0-t0**2.0)/2.0 +

59 c_cp*(t**3.0-t0**3.0)/3.0 +

60 d_cp*(t**4.0-t0**4.0)/4.0 +

61 e_cp*(t**5.0-t0**5.0)/5.0

62

63 # integral of cp(T)/T dT

64 int2 = a_cp*(t/t0).ln +

65 b_cp*(t-t0) +

66 c_cp*(t**2.0-t0**2.0)/2.0 +

67 d_cp*(t**3.0-t0**3.0)/3.0 +

68 e_cp*(t**4.0-t0**4.0)/4.0

69

70

71 h = h0 + int1

72 s = s0 + int2

73 mu0_vec = h - t*s

74 mu_vec = mu0_vec + r*t*(n_vec*r*t/(v*p0)).ln

75

107

76 f_ig = -n_tot*r*t + (mu_vec*n_vec).sum

77

78 # TOTAL HELMHOLTZ FREE ENERGY

79 #########################

80

81 f = f_ig + f_res

82

83 x = MDO::MDO(v) << n_vec

84

85 ############################

86 # FOR USE IN ITERATION #

87 ############################

88

89 y = f.grad(x)

90 dydx = y.grad(x)

91

92 #########################

93 # MODEL EVALUATION DATA #

94 #########################

95

96

97

98 # System 2: My arbitrary test system

99 ####################

100

101 # CH4 CH3CH3 CH3CH2CH3

102 # Critical temperature and pressure

103 # found from Lange’s Handbook of Chemistry:

104 # http://books.google.no/books?id=ln0eAQAAIAAJ

105 tc_vals = [190.6 , 305.3 , 369.552] # Kelvin

106 pc_vals = [46.1e5 , 49.0e5 , 42.4924e5] # Pascal

107

108 k_vals = [[0.0, 0.0, 0.0], # interaction

109 [0.0, 0.0, 0.0], # parameter values

110 [0.0, 0.0, 0.0]] # all set to zero

111

112 # cp parameters from 300-1000K

113 # C p = A + B*t + C*t^2 + D*t^3 + E*t^4

114 # Adapted from:

115 # http://www.me.berkeley.edu/gri_mech/version30/files30/thermo30.dat

116 a_cp_vals = [42.8161, 35.6789 , 7.76157] # J/(K mol)

117 b_cp_vals = [-0.113661 , -4.573982e-2 , 0.219694] # J/(K^2 mol)

118 c_cp_vals = [4.08883e-4, 4.983730e-4 , 5.07651e-5] # J/(K^3 mol)

119 d_cp_vals = [-4.0301535e-7 , -5.890189e-7 , -1.827209e-7] # J/(K^4

mol)

120 e_cp_vals = [1.38589e-10 , 2.2338535e-10, 7.91070889e-11] # J/(K^5

mol)

121

122 # standard enthalpy and

123 # entropy found from:

108 APPENDIX B. THERMODYNAMIC MODEL IMPLEMENTATION

124 # http://webbook.nist.gov/chemistry/

125 h0_vals = [-78870.0 , -84000 , -104700] # J/mol 298K (g) 1 bar

126 s0_vals = [186.25, 229.6 , 269.91] # J/(K mol) 1 bar 298K (g)

127

128 params = {tc_vec=>tc_vals, pc_vec=>pc_vals,

129 a_cp => a_cp_vals,

130 b_cp => b_cp_vals,

131 c_cp => c_cp_vals,

132 d_cp => d_cp_vals,

133 e_cp => e_cp_vals,

134 h0=>h0_vals, s0=>s0_vals,

135 k_mat=>k_vals}

136

137 #########################

138 # EXAMPLE EVALUATION #

139 #########################

140 t_val = 280.0 # K

141 v_val = 0.07 # m3

142 n_vals = [80.0 , 60.0 , 40.0] # moles

143

144 p y.eval(params.merge(t=>t_val, v=>v_val, n_vec=> n_vals))

145 p dydx.eval(params.merge(t=>t_val, v=>v_val, n_vec=> n_vals))

source/mdo impl ex.rb

Appendix C

Phase calculation iteration

numphases.rb

1 #!/usr/bin/env ruby

2

3 require ’matrix.rb’

4

5 # Prepare iteration scheme

6 def numphases(t, t_val, v, v_val, n_vec, n_vals, all_but_x, b, y, dydx,

7 guess = nil, points = nil)

8

9 puts "calculating if 2 or 1 phase at #{t_val}, #{v_val}"

10 puts "n_vals = #{n_vals.inspect} and guess = #{guess.inspect}"

11 # the above is outputted in order to be able to reproduce a

12 # call in case of errors

13

14 all_but_x.merge!(t=>t_val)

15

16 if guess == nil or guess == []

17 n_g = [n_vals[0]*0.6, n_vals[1]*0.5, n_vals[2]*0.4]

18 n_l = [n_vals[0]*0.4, n_vals[1]*0.5, n_vals[2]*0.6]

19

20 b_l = b.eval(all_but_x.merge(n_vec=>n_l))

21 v_l = 1.5*b_l

22 v_g = v_val-v_l

23 else

24 # use the guess = x_g_guess = [v_l, n_l_1, n_l_2, ...etc]

25 puts "using guess: #{guess.inspect}"

26

27 v_l = guess[0]

28 v_g = v_val - v_l

29

30 n_l = guess[1..-1] # The total mole number doesn’t change

31 n_g = n_vals.zip(n_l).collect{|n_val, n_l_val| n_val - n_l_val }

109

110 APPENDIX C. PHASE CALCULATION ITERATION

32

33 if (!n_g.all? {|n_g_i| n_g_i > 0.0} or

34 !n_l.all? {|n_l_i| n_l_i > 0.0}) # check if unphysical

35 puts "bad guess for n"

36 n_g = [n_vals[0]*0.6, n_vals[1]*0.5, n_vals[2]*0.4]

37 n_l = [n_vals[0]*0.4, n_vals[1]*0.5, n_vals[2]*0.6]

38 end

39

40 b_l = b.eval(all_but_x.merge(n_vec=>n_l)) # hard sphere volume

41 if v_l < b_l

42 puts "bad guess for v"

43 v_l = 1.5*b_l

44 v_g = v_val-v_l

45 end

46 end

47

48

49 x_g = [v_g] + n_g

50 x_l = [v_l] + n_l

51

52 res_norms = []

53

54 # check if gas and liquid can both be above the hard sphere volume

55 b_l = b.eval(all_but_x.merge(n_vec=>n_l))

56 b_g = b.eval(all_but_x.merge(n_vec=>n_g))

57

58 # puts "safetyrat g = #{v_g/b_g}"

59 # puts "safetyrat l = #{v_l/b_l}"

60

61 # Iteration loop

62 ii = -1 # for counting iterations

63 finished = false # termination criteria

64 max_iter = 40 # maximum iterations

65 tol = 1e-4 # tolerance in residual before it is "converged"

66 converged = false # has it converged?

67

68 if x_g[0]<b_g or x_l[0]<b_l # if it starts out with volumes

69 finished = true # below hard sphere, then there is no hope

70 end

71

72 while not finished

73 ii = ii + 1

74

75 y_g = Matrix.column_vector(y.eval(

76 all_but_x.merge({v=>x_g[0], n_vec=>x_g[1..-1]})))

77

78 y_l = Matrix.column_vector(y.eval(

79 all_but_x.merge({v=>x_l[0], n_vec=>x_l[1..-1]})))

80

81 dydx_g = Matrix.rows(dydx.eval(

111

82 all_but_x.merge({v=>x_g[0], n_vec=>x_g[1..-1]})))

83

84 dydx_l = Matrix.rows(dydx.eval(

85 all_but_x.merge({v=>x_l[0], n_vec=>x_l[1..-1]})))

86

87 jacobian = dydx_g + dydx_l

88

89 if jacobian.singular? # this iteration scheme has failed

90 res_norms << 100.0 # add an element to res_norm to

91 # avoid a crash later

92 break

93 end

94

95 del_x_g = (jacobian).inverse * (y_l - y_g)

96

97 x_g_i = (Matrix.column_vector(x_g) + del_x_g)

98 x_l_i = (Matrix.column_vector(x_l) - del_x_g)

99

100 # Step-size control

101 modfac = 1.0

102 und_relax_fac = 0.3

103

104 while ((x_g_i.to_a.flatten.min < 0.0) or

105 (x_l_i.to_a.flatten.min < 0.0)) # check if unphysical

106 x_g_i = x_g_i - del_x_g # roll back

107 x_l_i = x_l_i + del_x_g # roll back

108

109 del_x_g = und_relax_fac*del_x_g # moderate step

110

111 x_g_i = x_g_i + del_x_g # apply moderated step

112 x_l_i = x_l_i - del_x_g # apply moderated step

113 modfac = modfac*und_relax_fac

114 end

115

116 x_g = x_g_i.to_a.flatten

117 x_l = x_l_i.to_a.flatten

118

119

120 b_l = b.eval(all_but_x.merge(n_vec=>x_l[1..-1]))

121 b_g = b.eval(all_but_x.merge(n_vec=>x_g[1..-1]))

122 safetyrat_l = x_l[0]/b_l # check hard-sphere volume

123 safetyrat_g = x_g[0]/b_g

124

125 if safetyrat_l < 1.2 or safetyrat_g < 1.2

126 # this iteration has gone wrong

127 res_norms << 100.0

128 break

129 end

130

131 new_newton_func = Matrix.column_vector(y.eval(

112 APPENDIX C. PHASE CALCULATION ITERATION

132 all_but_x.merge({v=>x_l[0], n_vec=>x_l[1..-1]}))) -

133 Matrix.column_vector(y.eval(

134 all_but_x.merge({v=>x_g[0], n_vec=>x_g[1..-1]})))

135

136 res_norms << new_newton_func.to_a.flatten.inject(0){|sum, i|

137 sum+i.abs}

138

139

140 # Termination check

141 if ii > 1 # Either it has converged, or it has stalled,

142 # or it has reached an incredible number of iterations

143

144 if ii == max_iter/2

145 puts "iteration taking longer than normal"

146 end

147

148 # check if the error tolerance is reached

149 if res_norms[-1] < tol

150 converged = true

151 finished = true

152 puts "converged"

153 else

154 # check if max_iter has been reached

155 if ii==max_iter

156 finished = true

157 converged = false

158 puts "max_iter reached"

159 else # check if it has stalled

160 if ii > 3

161 average = res_norms[-4..-1].inject(0.0){|sum, e|

162 sum+e}/4.0

163

164 average_change = res_norms[-4..-1].collect{|e|

165 (e-average).abs}.inject(0.0){|sum, e|

166 sum+e}/4.0

167

168 av_rel_change = average_change/average

169

170 if av_rel_change < 0.001 # then it has stalled

171 finished = true

172 converged = false

173 puts "iteration stalled"

174 end

175 end

176 end

177 end

178 end

179

180 end

181

113

182 if converged

183 is2phase = true

184 p res_norms

185 else

186 is2phase = false

187 end

188

189 if is2phase # converged

190 y_g = (Matrix.column_vector(y.eval(all_but_x.merge({v=>x_g[0],

191 n_vec=>x_g[1..-1]})))).to_a.flatten

192

193 # Always update the guess with the last converged phase calculation

194 if guess != nil

195 guess[0..-1] = x_l[0..-1]

196 end

197

198 out = [t_val, v_val, x_g, x_l, -y_g[0], is2phase]

199 else # not converged

200 y_g = [-100000.0]

201 out = [t_val, v_val, [v_val, *n_vals],

202 [0.0, *([0.0]*n_vals.length)], -y_g[0], is2phase]

203

204 end

205

206 if points.respond_to?(:each) and is2phase

207 points << out

208 end

209

210 return out

211 # [temperature, volume, x_gas, x_liq, pressure, is two phase?]

212

213 end

source/numphases.rb

Appendix D

Gradient calculation
verification

verifying grad.rb

1 #!/usr/bin/env ruby

2

3 require ’./mdo_main.rb’

4

5 ###

6 # BUILDING THE MODEL USING EXPRESSION OBJECTS #

7 ###

8

9 # CONSTANTS AND VARIABLES

10 ######################

11 r = MDO::const(8.314)

12 c = Dim::new # the number of components defined as a dimension

13

14 t = MDO::new # temperature

15 v = MDO::new # volume

16

17 n_vec = MDO::new(c) # mole number vector

18

19 tc_vec = MDO::new(c) # critical temperature vector

20 pc_vec = MDO::new(c) # critical pressure vector

21

22 # RK-EOS SPECIFIC

23 ######################

24 b_vec = 0.0867*r*tc_vec/pc_vec # vector of b values for each component

25 a_vec = 0.4278*r**2.0*tc_vec**2.5/pc_vec # vector of a values for each

component

26

27 k_mat = MDO::new(c, c) # interaction parameter matrix

115

116 APPENDIX D. GRADIENT CALCULATION VERIFICATION

28

29

30 a_mat = (a_vec.bc(0, c)*a_vec.bc(c, 0))**0.5*(1.0-k_mat)

31

32 b = (n_vec*b_vec).sum

33 a = (n_vec.bc(0, c)*n_vec.bc(c, 0)*a_mat).sum.sum

34

35 n_tot = n_vec.sum

36

37 p_rk = n_tot*r*t/(v-b) - a/(t**0.5*v*(v+b)) # pressure = f(T,V,n) according

to RK-EOS

38

39 f_res = n_tot*r*t*(v/(v-b)).ln+a/(b*t**0.5)*(v/(v+b)).ln # residual

helmholtz free energy

40

41 # IDEAL GAS SPECIFIC

42 #######################

43 # Using non-constant heat capacities

44 a_cp = MDO::new(c)

45 b_cp = MDO::new(c)

46 c_cp = MDO::new(c)

47 d_cp = MDO::new(c)

48 e_cp = MDO::new(c)

49 h0 = MDO::new(c)

50 s0 = MDO::new(c)

51

52 t0 = MDO::const(298.0) # K

53 p0 = MDO::const(1.0e5) # 1 bar in Pa

54

55 # C p = A + B*t + C*t^2 + D*t^3 + E*t^4

56 # integral of cp(T) dT

57 int1 = a_cp*(t-t0) +

58 b_cp*(t**2.0-t0**2.0)/2.0 +

59 c_cp*(t**3.0-t0**3.0)/3.0 +

60 d_cp*(t**4.0-t0**4.0)/4.0 +

61 e_cp*(t**5.0-t0**5.0)/5.0

62

63 # integral of cp(T)/T dT

64 int2 = a_cp*(t/t0).ln +

65 b_cp*(t-t0) +

66 c_cp*(t**2.0-t0**2.0)/2.0 +

67 d_cp*(t**3.0-t0**3.0)/3.0 +

68 e_cp*(t**4.0-t0**4.0)/4.0

69

70

71 h = h0 + int1

72 s = s0 + int2

73 mu0_vec = h - t*s

74 mu_vec = mu0_vec + r*t*(n_vec*r*t/(v*p0)).ln

75

117

76 f_ig = -n_tot*r*t + (mu_vec*n_vec).sum

77

78 # TOTAL HELMHOLTZ FREE ENERGY

79 #########################

80

81 f = f_ig + f_res

82

83 x = MDO::MDO(v) << n_vec

84

85 ############################

86 # FOR USE IN ITERATION #

87 ############################

88

89 y = f.grad(x)

90 dydx = y.grad(x)

91

92 #########################

93 # MODEL EVALUATION DATA #

94 #########################

95

96

97

98 # System 2: My arbitrary test system

99 ####################

100

101 # CH4 CH3CH3 CH3CH2CH3

102 # Critical temperature and pressure

103 # found from Lange’s Handbook of Chemistry:

104 # http://books.google.no/books?id=ln0eAQAAIAAJ

105 tc_vals = [190.6 , 305.3 , 369.552] # Kelvin

106 pc_vals = [46.1e5 , 49.0e5 , 42.4924e5] # Pascal

107

108 k_vals = [[0.0, 0.0, 0.0], # interaction

109 [0.0, 0.0, 0.0], # parameter values

110 [0.0, 0.0, 0.0]] # all set to zero

111

112 # cp parameters from 300-1000K

113 # C p = A + B*t + C*t^2 + D*t^3 + E*t^4

114 # Adapted from:

115 # http://www.me.berkeley.edu/gri_mech/version30/files30/thermo30.dat

116 a_cp_vals = [42.8161, 35.6789 , 7.76157] # J/(K mol)

117 b_cp_vals = [-0.113661 , -4.573982e-2 , 0.219694] # J/(K^2 mol)

118 c_cp_vals = [4.08883e-4, 4.983730e-4 , 5.07651e-5] # J/(K^3 mol)

119 d_cp_vals = [-4.0301535e-7 , -5.890189e-7 , -1.827209e-7] # J/(K^4

mol)

120 e_cp_vals = [1.38589e-10 , 2.2338535e-10, 7.91070889e-11] # J/(K^5

mol)

121

122 # standard enthalpy and

123 # entropy found from:

118 APPENDIX D. GRADIENT CALCULATION VERIFICATION

124 # http://webbook.nist.gov/chemistry/

125 h0_vals = [-78870.0 , -84000 , -104700] # J/mol 298K (g) 1 bar

126 s0_vals = [186.25, 229.6 , 269.91] # J/(K mol) 1 bar 298K (g)

127

128 t_val = 280.0 # K

129 v_val = 0.07 # m3

130 n_vals = [80.0 , 60.0 , 40.0] # moles

131

132 all_but_x = { t=>t_val,

133 tc_vec=>tc_vals, pc_vec=>pc_vals,

134 a_cp => a_cp_vals,

135 b_cp => b_cp_vals,

136 c_cp => c_cp_vals,

137 d_cp => d_cp_vals,

138 e_cp => e_cp_vals,

139 h0=>h0_vals, s0=>s0_vals,

140 k_mat=>k_vals}

141

142

143

144 def find_jac(x_g, x_tot, expr, params, v_in, n_in)

145 dx = 0.0000001

146 jac = (0...x_g.length).collect{|i|

147 (0...x_g.length).collect{|j|

148

149 x_g_plus = (0...x_g.length)

150 .collect{|e| if e==i; x_g[e]+dx; else x_g[e]; end} ;

151

152 x_g_minus = (0...x_g.length)

153 .collect{|e| if e==i; x_g[e]-dx; else x_g[e]; end} ;

154

155 plus = big_f(x_g_plus, x_tot, expr,

156 params, v_in, n_in)[j] ;

157

158 minus = big_f(x_g_minus, x_tot, expr,

159 params, v_in, n_in)[j] ;

160

161 (plus-minus)/(2.0*dx)

162 }

163 }

164 end

165

166 def func_eval(x_vals, x, func, p_hash)

167 to_eval = p_hash.merge({x[0]=>x_vals[0], x[1]=>x_vals[1..-1]})

168 return func.eval(to_eval)

169 end

170

171 def diff_dig(level, length, f, p_hash, x, x_vals, dx, indexes = [])

172 if level>0

173 return (0...length).collect{|i|

119

174 diff_dig(level-1, length, f, p_hash,

175 x, x_vals, dx, indexes.dup << i)}

176 else

177 denom = 1.0

178 indexes.each{|i| denom = denom*dx[i]}

179

180 terms = []

181 i = indexes[0]

182 x_i_plus = (0...length).collect{|e|

183 if e==i; x_vals[e]+dx[e]/2.0; else x_vals[e]; end}

184

185 x_i_minus = (0...length).collect{|e|

186 if e==i; x_vals[e]-dx[e]/2.0; else x_vals[e]; end}

187

188 terms = [[1.0, x_i_plus], [-1.0, x_i_minus]]

189

190 indexes[1..-1].each{ |index|

191 old_terms = terms.dup

192

193 terms = []

194 old_terms.each{ |term|

195 factor = term[0]

196

197 x_i_plus = (0...length).collect{|e|

198 if e==index; term[1][e]+dx[e]/2.0;

199 else term[1][e]; end}

200

201 x_i_minus = (0...length).collect{|e|

202 if e==index; term[1][e]-dx[e]/2.0;

203 else term[1][e]; end}

204

205 terms << [factor*1.0, x_i_plus]

206 terms << [factor*-1.0, x_i_minus]

207 }

208

209 }

210

211 terms = terms.collect{|t| t[0]*func_eval(t[1], x, f, p_hash)}

212

213 out = (terms.inject(0.0){|sum, elem| sum + elem}) / denom

214

215 return out

216 end

217

218 end

219

220 def num_ho_grad(x_vars_hash, order, f, p_hash, dx) # look at calls

221 # below for example usage

222

223 x_vals = x_vars_hash.values.flatten

120 APPENDIX D. GRADIENT CALCULATION VERIFICATION

224 x = x_vars_hash.keys

225

226 if !dx.respond_to?(:each)

227 old_dx = dx

228 dx = x_vals.collect{old_dx}

229 end

230

231 structure = diff_dig(order, x_vals.length, f, p_hash, x, x_vals, dx)

232

233 return structure

234

235 end

236

237 def ana_ho_grad(x_diff, order, x_vars_hash, f, p_hash)

238

239 argument = x_vars_hash.merge(p_hash)

240

241 diffed = [f.grad(x_diff)]

242 (1...(order)).each{|i| diffed[i] = diffed[i-1].grad(x_diff)}

243

244 return diffed[-1].eval(argument)

245 end

246

247

248 dv = 1e-3

249 dn = 1e-0

250

251 first_num = num_ho_grad({v=>v_val, n_vec=>n_vals}, 1, f,

252 all_but_x, [dv, dn, dn, dn])

253

254 second_num = num_ho_grad({v=>v_val, n_vec=>n_vals}, 2, f,

255 all_but_x, [dv, dn, dn, dn])

256

257 third_num = num_ho_grad({v=>v_val, n_vec=>n_vals}, 3, f,

258 all_but_x, [dv, dn, dn, dn])

259

260 #fourth_num = num_ho_grad({v=>v_val, n_vec=>n_vals}, 4, f,

261 # all_but_x, [dv, dn, dn, dn])

262

263 first_ana = ana_ho_grad(x, 1, {v=>v_val, n_vec=>n_vals}, f, all_but_x)

264 second_ana = ana_ho_grad(x, 2, {v=>v_val, n_vec=>n_vals}, f, all_but_x)

265 third_ana = ana_ho_grad(x, 3, {v=>v_val, n_vec=>n_vals}, f, all_but_x)

266 #fourth_ana = ana_ho_grad(x, 4, {v=>v_val, n_vec=>n_vals}, f, all_but_x)

267

268 grad1_comp = first_ana.zip(first_num).collect{|a, b| a/b}

269 p grad1_comp

270 puts "max deviation = #{grad1_comp.collect{|e| (e-1.0).abs}.max}"

271 puts ""

272

273 grad2_comp = (0...4).collect{|i1| (0...4).collect{|i2| second_ana[i1][i2]/

121

second_num[i1][i2]}}

274 p grad2_comp

275 puts "max deviation = #{grad2_comp.flatten.collect{|e| (e-1.0).abs}.max}"

276 puts ""

277

278 grad3_comp = (0...4).collect{|i1| (0...4).collect{|i2| (0...4).collect{|i3|

third_ana[i1][i2][i3]/third_num[i1][i2][i3]}}}

279 p grad3_comp

280 puts "max deviation = #{grad3_comp.flatten.collect{|e| (e-1.0).abs}.max}"

281 puts ""

282

283 #grad4_comp = (0...4).collect{|i1| (0...4).collect{|i2| (0...4).collect{|i3

| (0...4).collect{|i4| fourth_ana[i1][i2][i3][i4]/fourth_num[i1][i2][i3

][i4]}}}}

284 #p grad4_comp

285 #puts "max deviation = #{grad4_comp.flatten.collect{|e| (e-1.0).abs}.max}"

286 #puts ""

source/verifying grad.rb

Appendix E

Calculating points on the
phase diagram

phaseTraceBeam.rb

1 #!/usr/bin/env ruby

2

3 require ’./mdo_main.rb’

4

5 ###

6 # BUILDING THE MODEL USING EXPRESSION OBJECTS #

7 ###

8

9 # CONSTANTS AND VARIABLES

10 ######################

11 r = MDO::const(8.314)

12 c = Dim::new # the number of components defined as a dimension

13

14 t = MDO::new # temperature

15 v = MDO::new # volume

16

17 n_vec = MDO::new(c) # mole number vector

18

19 tc_vec = MDO::new(c) # critical temperature vector

20 pc_vec = MDO::new(c) # critical pressure vector

21

22 # RK-EOS SPECIFIC

23 ######################

24 b_vec = 0.0867*r*tc_vec/pc_vec # vector of b values for each component

25 a_vec = 0.4278*r**2.0*tc_vec**2.5/pc_vec # vector of a values for each

component

26

27 k_mat = MDO::new(c, c) # interaction parameter matrix

123

124 APPENDIX E. CALCULATING POINTS ON THE PHASE DIAGRAM

28

29

30 a_mat = (a_vec.bc(0, c)*a_vec.bc(c, 0))**0.5*(1.0-k_mat)

31

32 b = (n_vec*b_vec).sum

33 a = (n_vec.bc(0, c)*n_vec.bc(c, 0)*a_mat).sum.sum

34

35 n_tot = n_vec.sum

36

37 p_rk = n_tot*r*t/(v-b) - a/(t**0.5*v*(v+b)) # pressure = f(T,V,n) according

to RK-EOS

38

39 f_res = n_tot*r*t*(v/(v-b)).ln+a/(b*t**0.5)*(v/(v+b)).ln # residual

helmholtz free energy

40

41 # IDEAL GAS SPECIFIC

42 #######################

43 # Using non-constant heat capacities

44 a_cp = MDO::new(c)

45 b_cp = MDO::new(c)

46 c_cp = MDO::new(c)

47 d_cp = MDO::new(c)

48 e_cp = MDO::new(c)

49 h0 = MDO::new(c)

50 s0 = MDO::new(c)

51

52 t0 = MDO::const(298.0) # K

53 p0 = MDO::const(1.0e5) # 1 bar in Pa

54

55 # C p = A + B*t + C*t^2 + D*t^3 + E*t^4

56 # integral of cp(T) dT

57 int1 = a_cp*(t-t0) +

58 b_cp*(t**2.0-t0**2.0)/2.0 +

59 c_cp*(t**3.0-t0**3.0)/3.0 +

60 d_cp*(t**4.0-t0**4.0)/4.0 +

61 e_cp*(t**5.0-t0**5.0)/5.0

62

63 # integral of cp(T)/T dT

64 int2 = a_cp*(t/t0).ln +

65 b_cp*(t-t0) +

66 c_cp*(t**2.0-t0**2.0)/2.0 +

67 d_cp*(t**3.0-t0**3.0)/3.0 +

68 e_cp*(t**4.0-t0**4.0)/4.0

69

70

71 h = h0 + int1

72 s = s0 + int2

73 mu0_vec = h - t*s

74 mu_vec = mu0_vec + r*t*(n_vec*r*t/(v*p0)).ln

75

125

76 f_ig = -n_tot*r*t + (mu_vec*n_vec).sum

77

78 # TOTAL HELMHOLTZ FREE ENERGY

79 #########################

80

81 f = f_ig + f_res

82

83 x = MDO::MDO(v) << n_vec

84

85 ############################

86 # FOR USE IN ITERATION #

87 ############################

88

89 y = f.grad(x)

90 dydx = y.grad(x)

91

92 #########################

93 # MODEL EVALUATION DATA #

94 #########################

95

96

97

98 # System 2: My arbitrary test system

99 ####################

100

101 # CH4 CH3CH3 CH3CH2CH3

102 # Critical temperature and pressure

103 # found from Lange’s Handbook of Chemistry:

104 # http://books.google.no/books?id=ln0eAQAAIAAJ

105 tc_vals = [190.6 , 305.3 , 369.552] # Kelvin

106 pc_vals = [46.1e5 , 49.0e5 , 42.4924e5] # Pascal

107

108 k_vals = [[0.0, 0.0, 0.0], # interaction

109 [0.0, 0.0, 0.0], # parameter values

110 [0.0, 0.0, 0.0]] # all set to zero

111

112 # cp parameters from 300-1000K

113 # C p = A + B*t + C*t^2 + D*t^3 + E*t^4

114 # Adapted from:

115 # http://www.me.berkeley.edu/gri_mech/version30/files30/thermo30.dat

116 a_cp_vals = [42.8161, 35.6789 , 7.76157] # J/(K mol)

117 b_cp_vals = [-0.113661 , -4.573982e-2 , 0.219694] # J/(K^2 mol)

118 c_cp_vals = [4.08883e-4, 4.983730e-4 , 5.07651e-5] # J/(K^3 mol)

119 d_cp_vals = [-4.0301535e-7 , -5.890189e-7 , -1.827209e-7] # J/(K^4

mol)

120 e_cp_vals = [1.38589e-10 , 2.2338535e-10, 7.91070889e-11] # J/(K^5

mol)

121

122 # standard enthalpy and

123 # entropy found from:

126 APPENDIX E. CALCULATING POINTS ON THE PHASE DIAGRAM

124 # http://webbook.nist.gov/chemistry/

125 h0_vals = [-78870.0 , -84000 , -104700] # J/mol 298K (g) 1 bar

126 s0_vals = [186.25, 229.6 , 269.91] # J/(K mol) 1 bar 298K (g)

127

128 # CH4 CH3CH3 CH3CH2CH3

129 n_vals = [80.0 , 60.0 , 40.0] # mixture of hydrocarbons

130

131 all_but_x = {tc_vec=>tc_vals, pc_vec=>pc_vals,

132 a_cp => a_cp_vals,

133 b_cp => b_cp_vals,

134 c_cp => c_cp_vals,

135 d_cp => d_cp_vals,

136 e_cp => e_cp_vals,

137 h0=>h0_vals, s0=>s0_vals,

138 k_mat=>k_vals}

139

140 require ’./numphases.rb’

141

142 # before starting to call numphases, set up a reference to a guess variable

143 guess = [] # empty array, to be filled by the

144 # numphases calculation when it converges

145

146 points = [] # empty array, to be filled by the

147 # numphases calculation when it converges

148

149 # First find upper or lower phase boundary

150 # then increase temperature and repeat

151

152 # starting point chosen freely

153 start = [280.0, 0.05, true]

154

155 start_phase = numphases(t, start[0], v, start[1], n_vec, n_vals, all_but_x,

b, y, dydx, guess, points)

156

157 # confirm that we started inside the phase envelope

158 start[-1] = start_phase[-1]

159

160 # the direction to move after the phase boundaries

161 # have been found for this temperature

162 dir = [1.0, 0.0]

163

164 # will denote the upper and lower volume checked

165 vol_pairs = []

166

167

168 starts = []

169 starts << start_phase[3].dup

170

171 while true

172 step_vol = 0.1

127

173

174 # find a point above that doesn’t converge

175 top = [start[0], start[1], true]

176

177 while top[-1]==true

178 top[1] = top[1]+step_vol

179 top_phase = numphases(t, top[0], v, top[1], n_vec, n_vals,

180 all_but_x, b, y, dydx, guess, points)

181 top[-1] = top_phase[-1]

182 end

183

184 # the bot point is known to be outside the two phase region

185 bot = [start[0], 0.008, false]

186

187 # puts "here"

188 # p start

189 # p top

190 # p bot

191

192 ind = -1

193 bot_top_vols = []

194 [bot, top].each{|other_point|

195 ind = ind+1

196 pinch = [start.dup, other_point.dup]

197 del_vol = pinch[1][1]-pinch[0][1]

198

199 # reset guess

200 guess = []

201

202 tol1 = 0.003 # m3

203

204 p pinch

205

206 # "divide and conquer phase"

207 while del_vol.abs > tol1

208 mid = []

209 mid[0..-1] = pinch[0][0..-1]

210 mid[1] = mid[1]+del_vol/2.0

211

212 mid[-1] = numphases(t, mid[0], v, mid[1], n_vec, n_vals,

213 all_but_x, b, y, dydx, guess, points) [-1]

214

215 if mid[-1] == pinch[0][-1]

216 pinch[0][0..-1] = mid[0..-1]

217 else

218 pinch[1][0..-1] = mid[0..-1]

219 end

220

221 del_vol = pinch[1][1]-pinch[0][1]

222 p pinch

128 APPENDIX E. CALCULATING POINTS ON THE PHASE DIAGRAM

223 end

224

225

226 # dump points to a file

227 if !FileTest.exist?("beamresult.m")

228 file = File.open("beamresult.m", "w")

229 file.close

230 end

231 dump = File.open("beamresult.m", "w")

232 dump.puts "resultvec = ["+points.collect{|e|

233 e.flatten[0..-2].join(" ") }.join("; ")+"]; "

234 dump.close

235

236

237 # "shooting phase"

238 # take the first point, go up a tiny bit,

239 # if it is outside the two-phase region, roll back

240 # use half step length

241 dv = del_vol

242 next_point = [pinch[0][0], pinch[0][1], false]

243

244 tol2 = 0.00001

245

246 while dv.abs > tol2

247 next_point[1] = next_point[1]+dv

248 next_point[-1] = numphases(t, next_point[0], v, next_point[1],

249 n_vec, n_vals, all_but_x, b, y, dydx,

250 guess, points) [-1]

251

252 if next_point[-1] == false

253 # roll back and divide dv by 2.0

254 next_point[1] = next_point[1]-dv

255

256 dv = dv/2.0

257

258 puts "overshot"

259 end

260

261 p next_point

262 end

263

264 bot_top_vols[ind]= next_point[1]

265

266 dump = File.open("beamresult.m", "w")

267 dump.puts "resultvec = ["+points.collect{|e|

268 e.flatten[0..-2].join(" ") }.join("; ")+"]; "

269 dump.close

270 }

271 # Now both the top and bottom boundary of the

272 # two phase region has been found and saved in

129

273 # "bot_top_vols"

274

275 # update dir

276 if vol_pairs.length > 0

277 # go in the direction that the phase boundaries move

278 old_av = (vol_pairs[-1][1]+vol_pairs[-1][0])/2.0

279 av_change = (bot_top_vols[1]+bot_top_vols[0])/2.0 - old_av

280 dir[1] = av_change

281

282 start = [start[0]+dir[0], old_av+dir[1], true]

283

284 else

285 start = [start[0]+dir[0], start[1]+dir[1], true]

286 end

287

288 # confirm that the next starting point (=the last +dt)

289 # is inside the two phase region

290 guess = starts[-1]

291

292 start_phase = numphases(t, start[0], v, start[1], n_vec, n_vals,

293 all_but_x, b, y, dydx, guess, points)

294

295 start[-1] = start_phase[-1]

296

297 while start[-1]==false # if it is not inside

298 dir[0] = dir[0]/2.0 # halve the distance moved

299 dir[1] = dir[0]/2.0

300

301 start = [start[0]-dir[0], start[1]-dir[1], true]

302 guess = starts[-1]

303 start_phase = numphases(t, start[0], v, start[1], n_vec, n_vals,

304 all_but_x, b, y, dydx, guess, points)

305 end

306

307 starts << start_phase[3].dup

308

309 vol_pairs << bot_top_vols

310 end

source/phaseTraceBeam.rb

