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Abstract. We propose a technique for analysis of fingerprints scanned
free-air (not pressed against a glass) with Optical Coherence Tomogra-
phy (OCT). Fingerprints from the surface and subdermal parts of the
finger are extracted from a 2GB volumetric scan in cca. 2 s using our
specialized technique and GPU acceleration on GeForce GTX 980. The
technique provides fingerprints that perform with promising error rates
that demonstrate the potential of the OCT for improved fingerprint iden-
tification, as well as its potential for prevention of biometric spoofing
(PAD).

1 Introduction

In the recent years, biometrics are on the rise as a convenient alternative au-
thentication mechanism. Unlike passwords, which can be easily forgotten, and
access cards or keys, which can be easily lost, biometrics provide a means of
authentication that is always readily available.

Among the many existing biometric modes, such as iris, face, retina and
others, fingerprint stands among the best known and most widely applied.

However, despite the three-decade-long history, fingerprint sensing solutions
still struggle with a number of challenges, which limit their applicability espe-
cially for unsupervised scenarios such as border control:

– Worn out fingers - For persons whose fingertip skin has been subjected to a
lot of stress, the fingerprint can be abraded or significantly damaged (guitar
players, construction workers, chemists etc.)

– Wet or greasy fingers - liquids on the surface of the fingerprint tend to
diffuse into the fingerprint valleys when the finger is pushed against the
sensor surface, which makes the acquisition difficult

– Dry fingers - If the fingerprint skin is too dry, it does not come into good
contact with the fingerprint sensor surface, which results in low quality

– Infant fingerprints - the fingerprint skin of infants is very soft, and if pressed
against a sensor surface, the fingerprint pattern will not be observable - this
limits the usage of fingerprinting in fight against child trafficking
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Similarly to other biometric modes, a significant challenge comes also with the
susceptibility of fingerprinting to spoofing attacks [10,14].

A large body of research exists addressing this challenge of Presentation At-
tack Detection (PAD) for 2D fingerprint sensors. However, no single solution
as of yet provides for a good level of security, especially considering resistance
against novel materials and production techniques regarding the artefact finger-
prints [14]. The existing approaches in the industry typically focus on combining
a larger number of additional single-purpose sensors and features extracted from
the 2D image to take the PAD decision. Considering the variability of properties
of genuine human fingers, this requires machine learning approaches, which in-
herently depend on the training data, and as such are vulnerable against novel
approaches not considered before [14].

1.1 OCT fingerprinting

Due to the above mentioned shortcomings of the existing fingerprint sensors, the
community has been looking for an alternative solution.

A promising path is offered by the Optical Coherence Tomography (OCT).
The OCT is a light-beam-based scanning technology that is capable of penetrat-
ing the fingerprint skin up to the depth of 2-3mm and acquiring a 3D volumetric
representation of the light-scattering properties of the scanned sample - the sur-
face fingerprint along with the sub-surface structure - Fig. 2, 3. Contact with a
surface is not necessary, and as such many of the challenges such as dry, wet,
greasy or infant fingers can be easily overcome. In addition, the OCT is able
to spot a second representation of the fingerprint in the subsurface data - the
master template responsible for the stability of fingerprint during a person’s
lifetime. In addition to the inner fingerprint, presence of which could readily be
used for the PAD purposes, the OCT is also able to spot sweat glands - fine
spiral structures which end as sweat pores on the surface on the fingers. And
last but not least, the volumetric measurements from the OCT readily provide
a general scattering profile of the underlying material.

However, along with the significant promise, a rather significant challenge
comes also associated with the step up from 2D to 3D scanning. The amounts of
data generated by the OCT are very significant, and require novel scanning and
processing approaches in order to achieve the practical speeds of a few seconds
as required by many applications, such as border control.

2 Related Work

Some initial research has been carried out regarding the application of the OCT
for the fingerprint sensing scenario.

Cheng and Larin [2] performed fingerprint Liveliness Detection by using au-
tocorrelation analysis applied to the OCT. They scanned a small 2D in-depth
part of the fingerprint tip in both the x-direction (2.4mm) and in the z-direction
(2.2mm). In the depth direction they applied autocorrelation analysis. They
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proved that autocorrelation values resulting from living fingerprints differ sub-
stantially from the values resulting from fake fingerprints. The same authors also
obtained 3D density representations of fake and living fingerprints. They were
among the first to use OCT technology to do this. A 3D OCT scan of a fake
fingerprint surface on a real finger was published in their paper.

Peterson and Larin [12] classified OCT scans into fake and real samples.
For this they used various neural network based approaches. The features that
were used were based on first-order image statistics as well as on Gabor filter
responses. Self-organizing maps (SOM) were used to reduce the dimentionality
of the vector of Gabor filter reponses.

Nasiri-Avanaki et al. have also shown in [11] that OCT scanning can be
used to separate between genuine fingerprints and fake ones. In [1], Bossen et
al. have shown that standard fingerprint comparison methods can be used for
classification when applied on both the inner and outer fingerprint extracted
from an OCT scan. Menrath [9] came up with a method to use OCT scans for
detection of both sweat glands and extraction of the outer and innter fingerprint.
His results are based on rather small fingerprint areas of 4x4 mm.

Khutlang et al. [7] have been capturing a partial fingerprint area using a
commercially available OCT scanner and experimenting with the the detection
of the inner fingerprint and its extraction.

Despite the fact that a number of initial studies exists regarding the ap-
plication of the OCT for fingerprint sensing and genuine/fake finger detection,
very few studies take the speed of the processing into account. OCT fingerprint
scans represent volumetric data of very significant sizes if one aims for standard
resolutions of 500dpi or 1000dpi in 2D, which easily exceeds 1 GB per finger
(1024x1024x1024 at 8bit). This fact calls for an approach where the speed of the
processing techniques is taken seriously into account as an actual research chal-
lenge, rather than disregarded as simply a matter of faster processing hardware.

In addition, majority of the studies assume a finger pressed against a flat
surface (e.g. glass) during the scanning, which greatly simplifies the processing
challenges (since the fingerprint surface is flattened) but introduces a number
of disadvantages shared with standard 2D fingerprint sensors, such as difficulty
to scan wet, greasy, dry or soft-skinned fingers, which could otherwise be easily
overcome by the OCT [3,8].

Last but not least, the free-air scanning approach taken in our work has
the potential for touch-less fingerprint sensing applications, where the subjects
do not have to come into contact with any potentially unclean surface of the
fingerprint sensor, increasing acceptability and convenience.

Regarding the work that satisfies the challenging constraints mentioned above,
we are aware only of the promising works by Darlow et al. [3–5].

3 Fingerprint Surface Extraction in 3D

Our approach is to scan the fingerprint free-air, such that it is undistorted by
pressing against a flat surface (such as glass). This comes with the challenge of
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precise 3D segmentation of the volumetric fingerprint OCT scan, so that further
analysis is possible. A well segmented OCT fingerprint scan could be further
used for extracting the fingerprints both from the surface and from underneath
the skin and it could also serve well for further analysis of the skin regarding
PAD (Fig. 2).

3.1 Database

We utilized the following OCT fingerprint scan dataset collected by our earlier
work [13]:

– 1408x1408x1024 voxels
– 8bit per voxel
– 72 participants
– all 10 fingers
– 720 OCT fingerprint scans in total
– 2x2cm scanning area

Along with the OCT fingerprints, we also collected standard 2D fingerprints
from an identical set of participants, in order to enable testing of compatibility
of the OCT fingerprints and the standard 2D fingerprints. This dataset contains
500 2D fingerprints, of all 10 fingers from 50 participants.

3.2 Efficient edge detection

In order to address the challenge of processing 2GB OCT fingerprint scans in a
matter of a few seconds, as required by numerous applications including border
control, we took a combined approach of GPU acceleration and our specifically
developed fast approximate filtering technique. Utilizing the following mathe-
matical equality,∫ ∞
−∞

f(τ)

∫
· · ·

∫
g(t− τ)dt· · · dtdτ =

∫
· · ·

∫ ∫ ∞
−∞

f(τ)g(t− τ)dτdt· · · dt, (1)

it is possible to perform a convolution of a signal and a convolution core by
deriving the convolution core, performing the convolution, and integrating the
result. The advantage comes with the fact that a wide filtering core, which
would take a significant computational effort to perform convolution with, can
in specific cases derive into a very sparse representation that is very efficient
to perform convolution with. Following this train of thought, we designed the
following filter in order to detect edges in the scan-lines of the OCT fingerprint
data - Fig. 1:

G(n) =


−height2 + (n+ 1) · slope if n ∈ [− size

2 ,−1]

height2 − n · slope if n ∈ [0, size2 − 1]

0 otherwise

(2)
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(a) (b) (c)

Fig. 1. Fast approximate edge detection filter and its derivatives for height1 = 15,
height2 = 29, size = 30: (a) filter core G(x); (b) first derivative G′(x); (c) second
derivative G′′(x) (slope = height2−height1

size/2−1
)

Second derivation of such a filtering core results in the following core:

G′′(n) =



−height1 if n = − size
2

height1 − slope if n = − size
2 + 1

2 · height2 + slope if n = 0

−(2 · height2 + slope) if n = 1

−height1 + slope if n = size
2

height1 if n = size
2 + 1

0 otherwise

(3)

Notably, such core has always only 6 non-zero coefficients, which come in 3 pairs
of 2 coefficients positioned immediately next to each other - Fig. 1. This allows
for a very efficient implementation of the convolution on the GPU, since only 3
memory reads per voxel are necessary to perform the filtering along the scan-
lines, as the other 3 reads can be implemented using 3 delay variables reusing
the results from a previous voxel. Integrating the results twice along the way
allows to obtain the convolution of the scan-lines with the core, G(n), in very
efficient manner in a single GPU thread per scan-line. In addition, the technique
can calculate the results for each of the scan-lines without using any extra in-
termediary memory buffer, which supports both the speed and the flexibility of
the approach.

The actual edge detection is performed by identifying the position of a max-
imum during the process of convolution of the OCT scan-lines and the above
discussed convolution core.

3.3 Outer Fingerprint Surface

However, it is highly sub-optimal to simply perform the above discussed edge
detection for each of the (x, y) in-depth scan lines and treat the result as the
detected surface. The OCT scan inherently contains large amounts of noise, and
such an approach would result in a highly noisy surface, full of holes, where
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the detection failed due to noise. In addition, the strength of the finger’s re-
sponse diminishes with depth, which poses further challenges - Fig. 2. In order

depth scan-line depth scan-line

(a) (b)

Fig. 2. OCT finger 2D slices - inner and outer fingerprint edges visualization

to address the challenges, we took inspiration from the approach by Darlow et
al. [5] regarding performing the detection using a 3D equivalent of the image
down-sampling pyramid.

Unlike Darlow et al. [5], who suggest building the pyramid by downsampling
the OCT scan in all three dimensions, we have taken an approach where the
pyramid is built by downsampling the scan always to 1/2 in width and height,
leaving the depth dimension unaltered as illustrated by Fig. 3. The detection of
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Fig. 3. Downsampling of the OCT scan along the width and height dimensions

the outer fingerprint surface, outer0(x, y), is then performed using the algorithm
1.1.

The rationale is that it is far more likely to correctly detect the position of
the fingerprint surface in a more downsampled scan, since the down-sampling
heavily reduces the noise levels. If the surface, outern(x, y), is assumed only
in proximity of the surface, outern+1(x, y), detected in a more down-sampled
version of the scan, the likelihood of a correct detection is greatly increased.

In addition, detecting the surface, outern(x, y), only in a distance, dn, from
a lower resolution surface outern+1(x, y), allows for a significant speed-up since
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the entire scan does not need to be processed on any but the most downsampled
level.

Algorithm 1.1: Outer fingerprint detection - 531 ms - GeForce GTX 980

1 Copy data from RAM to the GPU;
2 From the original OCT fingerprint scan, S0(x, y, z), generate N additional

versions of the OCT scan, S1(x, y, z)...SN (x, y, z), each downsampled to 1/2 of
the previous one along width and height dimensions;

3 While filtering the scan-lines using the edge detection filter, detect the
maximum position in each SN (x, y) scan-line and store it to outerN (x, y);

4 for each n in N − 1 to 0 do
5 Up-sample outern+1(x, y) by a factor of two into regionn(x, y)
6 While filtering the scan-lines using the edge detection filter, detect the

maximum position in each Sn(x, y) scan-line and store it to outern(x, y) IF
at a distance dn from regionn(x, y);

3.4 Fingerprint Flattening

After the outer fingerprint surface, outer0(x, y), has been identified at full reso-
lution, the detection of the inner fingerprint surface constitutes the natural next
step. The inner fingerprint is more difficult to detect, compared to the outer fin-
gerprint, since the contrast between the inner fingerprint and and surrounding
tissue is much lower than the contrast between the outer fingerprint and the
empty air - Fig. 2.

In addition, the depth at which the inner fingerprint appears in various people
varies widely (range wider than 1-5x in our experience). If one attempts to
detect the inner fingerprint simply as a second surface around the outer surface,
outern(x, y), the outer fingerprint easily interferes with the inner fingerprint on
the more downsampled versions of the scan and the detection is highly unreliable,
especially for fingers where the distance between the inner and outer layer is
rather small.

In order to address this issue, we perform full flattening of the original OCT
scan according to the identified outer fingerprint surface. By flattening we mean
re-arranging of the data along the z-axis using the following equation:

S0(x, y, z)← S0(x, y, z − outer0(x, y)) (4)

3.5 Inner Fingerprint Surface

The re-arranged data naturally put any remnants of the outer fingerprint close
to the bottom of the scan. This prevents interference of the outer fingerprint
during the inner fingerprint detection.

Even though the algorithm, used for extracting the inner fingerprint surface,
is similar to the algorithm for extracting the outer fingerprint surface, there are
two important differences.



8

The inner fingerprint surface is not searched using a constant filter size, but
rather an adaptive filter size. This is necessary to handle the cases of very thin
inner layers, where the inner fingerprint is very close to the outer one. It also
improves performance for the fingerprint where the the distance between the
outer and inner fingerprint surface is large, and as such a larger filter size can
perform much more reliably.

The inner fingerprint surfaces, detected even in the most down-sampled ver-
sions of the flattened OCT scan, can still contain significant number of errors.
This appears to be caused by interference of the inner fingerprint with itself, if a
significant amount of down-sampling is considered. The problem is mitigated by
a guessing procedure, where any detected points that deviate too much from the
average depth range are replaced by a position that gained maximum response
in a histogram of the detected positions - by the most likely depth encountered.
Although this could seem to damage the inner fingerprint surface, in practice,
it provides a precise-enough estimate for the higher-resolution detection steps,
and the technique can recover even from severe failures encountered at the most
down-sampled level.

The concept is described by algorithm 1.3.

3.6 Surface Conversion to 2D Fingerprint

We extract the fingerprint into 2D representation by utilizing the identified 3D
surface, masking out the random noise that appears where the finger was not
present - Fig. 6. The concept is described by algorithm 1.2.

Algorithm 1.2: 2D fingerprint extraction - 59 ms - GeForce GTX 980

1 Process the 3D fingerprint surface, inner or outer, s(x, y), by a 2D Gaussian
core and store to sblurred(x, y);

2 ssubtracted ← (s− sblurred) · fingerprint height ratio;
3 sfingerprint(x, y)← s(x, y) IF s(x, y) ∈ [0, 1] or 1 IF s(x, y) > 1 or 0 IF

s(x, y) < 0;
4 Threshold the confidence map confidence(x, y) into fingerprint and empty area,

median filter to remove holes, and utilize to mask out the noisy areas;

4 Results

Direct comparison with the method of Darlow et al. [3] is difficult, since we were
not able to obtain the codes/executables from the authors and we do not have
any opportunity to share the data either due to their sensitive nature. However,
we believe our method clearly outperforms the method of Darlow et al. [3] for
the following reasons:

– Our approach using adaptive filter size allows processing of the cases where
the inner fingerprint is at very small depth - something that is not possi-
ble using a simple 3-point edge detector on a scan down-sampled in all 3
dimensions as in [3]
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Algorithm 1.3: Inner fingerprint detection - 328 ms - GeForce GTX 980

1 Flatten the fingerprint according to Eq. 4;
2 Re-compute the image pyramid;
3 From the original OCT fingerprint scan, S0(x, y, z), generate N additional

versions of the OCT scan, S1(x, y, z)...SN (x, y, z), each downsampled to 1/2 of
the previous one along width and height dimensions (re-calculate the pyramid
for the flattened scan);

4 current maxima = −INF ;
5 for each tested filter size in l to h with step s do
6 While filtering the scan-lines using the edge detection filter, detect the

maximum position in each SN (x, y) scan-line and store the maxima
positions to innerN (x, y) and the values of the maxima (the response of
the filter at the maxima positions) to confidenceN (x, y);

7 Calculate a weighted histogram h(d) of innerN (x, y) using
confidenceN (x, y) as weights;

8 Gaussian blur the h(d) as a 1D function;
9 Detect maxima m in h(d);

10 if m > current maxima then
11 set current maxima← m;
12 set optimal filter size← tested filter size;

13 set optimal filter size as the edge detection filtering size for all further
operations;

14 While filtering the scan-lines using the edge detection filter, detect the
maximum position in each SN (x, y) scan-line and store the maxima positions
to innerN (x, y) and the value of the maxima (the response of the filter at the
maxima positions) to confidenceN (x, y);

15 for each n in N − 1 to 0 do
16 if n > ec depth limit then
17 Calculate a weighted histogram h(d) of innern(x, y) using

confidencen(x, y) as weights;
18 Calculate a histogram h(d) of inner weightedn;
19 Gaussian blur the h(d) as a 1D function;
20 Detect the maxima, m, and its position, p, in h(d);
21 From the position, p, search to the right and to the left in h(d) until a

number smaller than m · ratio is encountered (intuitively, measure the
width of the peak in the histogram);

22 Utilize the identified positions to calculate the acceptable level of
deviation, inner layer deviation ;

23 Process innerN (x, y) such that any value further than
inner layer deviation/2 · d ratio from m is replaced by m (Replace
values too far from the average by the average value)

24 Up-sample innern+1(x, y) by a factor of two into regionn(x, y);
25 While filtering the scan-lines using the edge detection filter, detect the

maximum position in each Sn(x, y) scan-line and store the maxima
positions to innern(x, y) and the value of the maxima (the response of the
filter at the maxima positions) to confidencen(x, y) IF at a distance dn
from regionn(x, y);



10

– Our approach uses a filter with a wide support, which allows obtaining a
much higher quality surface than in [3]

– Darlow et al. [3] did not follow the path of extracting the 2D fingerprints
directly from the 3D surface, and instead utilized the surface simply as an
estimate of the fingerprint positions. The fingerprint is read off from the
original scan by averaging the data above and below the estimated surface.
Our method does not require this, in fact, we were able to obtain complete
fingerprints using the layer information alone.

4.1 Compatibility with 2D Fingerprints

To further prove the robustness of our approach, we performed a N : N com-
parison between the OCT fingerprints and the 2D fingerprints in the above
mentioned dataset: The metrics considered are miss-classified comparisons of
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Fig. 4. ROC curve for the outer fingerprints and the 2D fingerprints comparisons
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Fig. 5. ROC curve for the inner fingerprints and the 2D fingerprints comparisons

identical fingerprints (FNMR) and miss-classified comparisons of non-identical
fingerprints (FMR). The failure-to-extract (FTX) metric expresses the percent-
age of fingerprints the comparison software failed to extract fingerprint features
from [6]. The outer fingerprints compared to the 2D fingerprints with an equal-
error-rate (EER) of 0.7% and a FTX rate of 11%. The inner fingerprints com-
pared to the 2D fingerprints with EER of 1% and a FTX rate of 3.5%. The 2D
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fingerprints from a commercial sensor resulted in FTX of 3.2%. A commercial
fingerprint identification software Verifinger 9.0 was used.

The average durations of the above proposed algorithms are stated in their
heading (Al. 1.1, 1.2, 1.3). The speed was measured as the CPU time since the
start of the stage until its end, synchronizing with the GPU to make sure the
GPU computation has finished as well. In total, our algorithm processes a 2GB
scan (including additional data management) in cca. 2 s on GeForce GTX 980.

4.2 Fingerprint Surfaces

Fig. 6. Left: inner fingerprint surface 3D surface and extracted 2D fingerprint; Right:
outer fingerprint surface 3D surface and extracted 2D fingerprint

5 Conclusion and Future Work

Based on the fact that the inner fingerprint seems to perform better than the
outer fingerprint, considering the FTX, we believe it is indeed very promising to
expect significant improvements from the OCT. At the same time, the finger-
prints already do perform close to practical error rates - in spite of the significant
potential of our custom-built OCT scanner for improvements. Our technique can
process 2GB in cca. 2 s, which shows promise regarding the speed challenges.
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The future work would involve further improvements of the underlying scan-
ner design. In addition, the method for the detection of the outer fingerprint
could probably benefit from further improvements.
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