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Abstract— This article presents a control system for velocity
and orientation control of underwater snake robots using
absolute velocity feedback. The control system is structured in a
hierarchical way, where the highest priority is to enforce virtual
constraints encoding a planar gait on the body shape of the
robot. To this end, we propose an adaptive joint controller and
show that it asymptotically stabilizes the constraint manifold.
The virtual constraints are parametrized by the states of
two dynamic compensators, which can be used to control
the velocity and the orientation of the robot, the second and
third control priority. We design an adaptive controller that
asymptotically stabilizes the forward velocity to a reference and
an orientation controller that utilizes the current estimate of
the velocity controller. It is shown that the zero dynamics of the
closed-loop system remains bounded, and we present simulation
results that demonstrate the performance of the controller.

I. INTRODUCTION

In today’s technology there is a large potential for im-

proving efficiency and reducing costs by increasing auton-

omy. This includes improving traditional industrial robots

as well as developing new robotic solutions for sectors

that have so far relied on conventional technology. Subsea

inspection, maintenance and repair (IMR) operations is a

field of technology with a large potential for autonomous

robotics to increase the efficiency, reduce operation costs, and

provide safer and more environmentally friendly solutions.

This requires the development of new systems for IMR

operations that are more robust, agile, and versatile than

existing technology. When designing solutions with these

properties, inspiration can be found in nature, where a

variety of species has adapted to subsea conditions over

millions of years, and are thus specialised in propelling and

maneuvering underwater. Underwater snake robots, a class

of robots that propel their slender body by mimicking the

swimming motion of eels, are therefore considered promising

to provide autonomous IMR solutions in the future.

Research on snake robots started with land-based snake

robots [1,2], and more recently broadened towards amphibi-

ous and swimming snake robots [3–5]. A closely related field

is that of robotic fish, see for instance [6]. In previous studies

on underwater snake and fish-like robots, researchers have

often considered the velocity of the robot with respect to

the surrounding fluid, i. e. the relative velocity of the robot.
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This is an obvious assumption, since the relative velocity

determines the drag forces, the dominating fluid force for low

velocities [7], and thus the dynamic equations of the robot.

Motion control approaches for underwater snake robots that

rely on position and relative velocity measurements can for

instance be found in [8,9]. Similarly, hardware solutions

following this line of research have been presented, e. g. a

fish robot that can sense the surrounding flow [10]. Absolute

velocity measurements in the global frame have not been

considered as much in the context of underwater snake

robots, even though they are often easier to obtain than their

relative counterparts. The absolute velocity can for instance

be measured with an acoustic Doppler velocity log with

bottom lock [11] or obtained from position measurements.

In this article, we take a first step towards the control of

underwater snake robots using absolute velocity measure-

ments for feedback. We will present a control system for

velocity and orientation control of underwater snake robots,

motivated by the direction following results using virtual

holonomic contstraints (VHCs) for terrestrial snake robots in

[12]. Other than methods such as central pattern generators,

using VHCs to encode the robotic gait has the advantage

that it makes the control design amenable to hierarchical

synthesis, where the gait is enforced at the lowest level and

velocity and orientation control are done at a higher level.

To this end, we will employ the hierarchical control design

methodology from [13], that was used for control design for

ships in [14] and terrestrial snake robots in [15]. In order

to make the feedback independent of the unknown relative

velocities that enter the dynamic equations via the fluid drag

forces, we will make use of adaptive backstepping control

[16]. More specifically, we propose a joint controller that

asymptotically stabilizes the VHCs with absolute velocity

measurements available for feedback, as opposed to a design

based on relative velocity measurements in previous work

[17]. The gait that is encoded in the VHCs is widely used

for snake robots, and modified in this article to take into

account actuator constraints. The velocity controller and the

orientation controller are designed subsequently. In doing so,

we prioritize the velocity control higher than in previous

approaches for terrestrial snake robots, a change of paradigm

that removes a singularity from the orientation controller that

was an issue in [12,18]. The velocity controller is designed

along the lines of adaptive backstepping. The design is

not a straightforward application of the method, because

the system is non-autonomous and unknown terms enter

the equations at every stage of the backstepping procedure.

By postponing the design of the adaptive update law until
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Fig. 1: The control oriented model.

the last step, we are able to compensate for the effect of

these signals in the closed-loop system, and show asymptotic

stability of the origin of the velocity error dynamics. In

the last step, the orientation controller is designed as a

feedback-linearizing controller utilizing the adaptive term of

the velocity controller as a current estimate. We show that

the zero dynamics of the closed-loop system is bounded for

the proposed controller. Simulation results of a snake robot

that is exposed to an unknown ocean current are presented.

The results validate the theoretical analysis.

This article is structured as follows. In Sec. II, the control-

oriented model, which the design is based on, is briefly

reviewed. Sec. III presents the control objectives, the hier-

archical design strategy that is employed to solve the control

problem, and the proposed control system. Furthermore, the

stability properties of each controller are discussed in the

respective design step. An analysis of the zero dynamics

and conditions for stability of the closed-loop system are

presented in Sec. IV. Simulation results are presented in

Sec. V and concluding remarks are given in Sec. VI.

II. THE CONTROL-ORIENTED MODEL

This section briefly reviews the control-oriented model that

the hierarchical control design in this article is based on. The

model was originally developed for land-based snake robots

that conduct a planar, sinusoidal gait with limited link angles

[2]. It was later shown that a similar formulation can be

used to describe neutrally buoyant underwater snake robots

as well, provided that they also move slowly with a planar,

sinusoidal gait [17]. The general idea of the control-oriented

modelling approach is to approximate the rotational joint

motion of the snake robot by the corresponding translational

motion, as displayed in Fig.1. An extensive simulation study

in [17] shows that this captures the behaviour of a more

complex model with rotational joints quite well.

The model considers a snake robot that consists of N

links of mass m and length 2l each. The links are connected

with N − 1 translational joints, with the joint coordinates

φi, i = 1, . . . , N − 1 assembled into the vector φ =
[φ1, . . . , φN−1]

T ∈ R
N−1. The joints are actuated with the

control input u ∈ R
N−1. The position of the robot in the

plane is defined by the position of its center of mass, (px, py),
and the orientation of the robot is defined as θ. Furthermore,

the velocity of the robot is described by the forward velocity

component, vt, and the sideways velocity component, vn.

These velocities are defined in the body-aligned t−n-frame.

The t − n-frame, the global x − y-frame, and the above

kinematic definitions are visualized in Fig.1. The analysis in

[17] shows that it is a valid assumption to model the external

forces as linear drag forces, which depend on the relative

velocity, i. e. the velocity of the robot with respect to the

surrounding fluid [vt,rel, vn,rel]
T = [vt, vn]

T − R
T
θ Vc. The

matrix Rθ ∈ R
2×2 denotes the rotation matrix with rotation

angle θ. Furthermore, we make the following assumption

regarding the ocean current:

Assumption 1: The unknown ocean current is irrotational

and constant in the inertial frame, Vc = [Vx, Vy]
T ∈ R

2. The

magnitude of the current is bounded:
√

V 2
x + V 2

y ≤ Vmax.

We define the state vector x = [φ, θ, px, py,vφ, vθ, vt, vn]
T

∈ R
2N+4. The kinematic and dynamic equations of the robot

are then given by

φ̇ = vφ, (1a)

θ̇ = vθ, (1b)

ṗx = vt cos θ − vn sin θ, (1c)

ṗy = vt sin θ + vn cos θ, (1d)

v̇φ = − cn
m
vφ +

cp
m
vt,relAD

Tφ+ 1
m
DD

T
u, (1e)

v̇θ = −λ1vθ +
λ2

N−1vt,relē
Tφ, (1f)

v̇t = − ct
m
vt,rel +

2cp
Nm

ē
Tφvn,rel −

cp
Nm

φTAD̄vφ, (1g)

v̇n = − cn
m
vn,rel +

2cp
Nm

ē
Tφvt,rel, (1h)

with the drag coefficients in tangential and normal direction

satisfying ct < cn, a propulsion coefficient cp, and two con-

stants λ1 and λ2, which determine the rotational dynamics.

In (1), we have used the following notation:

A =






1 1
. . .

. . .

1 1




 , D =






1 −1
. . .

. . .

1 −1




,

with A,D∈ R
(N−1)×N , D̄=D

T
(
DD

T
)
−1

∈ R
N×(N−1),

ē=[1, . . . , 1]T∈ R
N−1. IN∈ R

N×N denotes the unity matrix.

The relative velocities vt,rel and vn,rel enter the dynamics

of the system in (1e),(1f),(1g),(1h). This happens because the

external force, the fluid drag force, depends on the velocity

of the robot relative to the surrounding fluid. In this paper,

we focus on controlling the robot with absolute velocity

feedback, which means that the relative velocities in the

dynamic equations represent a design challenge.

III. CONTROL DESIGN

In this section, we present the proposed control system. In

the first part, we will outline the control objectives and the

hierarchical design approach that is employed. Subsequently,

the control system is designed stage by stage, following the

hierarchical structure. The stability properties of each stage

are discussed in the respective sub-sections.

A. Control objectives and the hierarchical control approach

The control objectives can be categorized into three sta-

bilization tasks that are prioritized in a hierarchical manner.

The design is based on the model (1), i. e. the stabilization

tasks will be formulated in terms of the dynamics in (1).

The highest priority is to stabilize VHCs that encode a

sinusoidal gait, thus propelling the robot forward. We will

design a feedback u for the joints, described by (1a),(1e),
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Fig. 2: A block diagram of the proposed control system with

absolute velocity measurements for feedback.

that controls each joint i, for i = 1, . . . , N−1, to follow the

reference signal

φref,i(λ, φ0) = αg1(i) sin(λ+ (i− 1)δ) + g2(φ0), (2)

where α is the maximal amplitude and δ is the phase shift

between adjacent joints. The VHC in (2) is an adaptation

of the VHC used in [18] where g1 : Z 7→ [0, 1] is a

scaling function that varies the amplitude along the body

and a smooth, strictly increasing, and twice differentiable

saturation function g2 : R 7→ [−φ0,max, φ0,max] has been

added. The additional function g2 ensures that the theoretical

joint reference always respects the physical constraints of the

robot and that the joint reference remains uniformly bounded

by |φref,i| ≤
ǫφ
N−1 = α+φ0,max. The two states λ and φ0 are

generated by dynamic compensators that will be developed

later in order to control the velocity and the orientation of

the robot, respectively.
The second priority of the control system is to control the

forward velocity vt, the dynamics of which are given in (1g),

to a constant reference vref using the dynamic compensator

λ̈ = uλ. We employ the second derivative of λ as the control

input, because in order to stabilize the constraints in (2), the

time derivatives of φref,i up to φ̈ref,i are required, as we will

see in Sec. III-B. Thus λ̈ = uλ is a natural choice. In order

to make sure that the robot does not just float with the ocean

current, we will furthermore choose the reference vref larger

than the current magnitude: vref > Vc,max.
Remark 1: As opposed to similar control approaches for

snake robots in the literature [12,18], in this work, we

consider the regulation of the forward velocity as a higher

priority than the orientation control. Several motion control

systems for snake robots in the literature (e. g. [2,5,17])

do not control the velocity of the robot, but propose to

choose a constant λ̇ to achieve some forward velocity, while

controlling the orientation of the robot to follow the reference

of a guidance system. We conjecture that making velocity

control a higher priority than orientation control will provide

a velocity controller that is a natural complement of motion

control approaches such as in [2,5].
Controlling the orientation of the robot, θ, to a constant

reference θref is the third and lowest priority of the proposed

control system. Based on (1b),(1f), we will design a feedback

for the control input uφ to the dynamic compensator φ̈0 = uφ
in order to achieve this task. The structure of the proposed

control system is visualized in Fig. 2.
Remark 2: The robot described by (1) is an underactuated

system. In particular, we cannot directly control the sideways

velocity vn. However, we will design the control system

such that vn remains bounded. It was shown in [17] that

the average of vn converges to the sideways component of

the current when the robot conducts steady forward motion.

In the presence of a current, we will therefore expect the

robot to drift sideways, as it travels in the direction θref with

the forward velocity vref . If this is not the desired behaviour

of the robot, one typically designs a guidance system that

provides the references θref and vref in a way that implicitly

controls the position and sideways velocity of the robot.

B. Joint control

The aim of the joint controller is to stabilize the joint coor-

dinates to obey the VHCs given by (2), which is analogous

to stabilizing the system to a constraint manifold. Details

on the stabilization of sets can for instance be found in

[13]. The dynamics of the joints are described by (1a),(1e)

and the unknown relative velocity vt,rel enters the system in

(1e). To this end, the error coordinates φ̃i = φi − φref,i and
˙̃
φi = φ̇i− φ̇ref,i, i = 1, . . . , N − 1, will be stabilized to zero

with the following adaptive backstepping controller:

u = m(DD
T )−1

[
cn
m
vφ −Xt(φ)vt + βT (φ, θ)θ̂

+ φ̈ref − (k1 + k2)
˙̃
φ− (1 + k1k2)φ̃

]
,

˙̂
θ = −γβ(φ, θ)(

˙̃
φ + k1φ̃),

(3)

with the control gains k1, k2 > 0 and the adaptive gain γ >

0. In (3), the joint errors and references are assembled in the

vectors φ̃,φref ∈ R
N−1. Furthermore, Xt(φ) =

cp
m
AD

Tφ

and βT (φ, θ) = Xt(φ)R
T
θ .

Proposition 1: Consider a robot described by (1). The

joint control law (3) asymptotically stabilizes the set

Γ3 = {(x, ẋ, λ, λ̇, φ0, φ̇0) ∈ R
2N+8 :

φ = φref ,vφ = λ̇
∂φref

∂λ
+ φ̇0

∂φref

∂φ0
},

(4)

i. e. (φ̃, ˙̃φ) → (0,0).
Proof: We define the new error coordinates ξ1 = φ̃,

ξ2 = ˙̃
φ+ k1φ̃, and θ̃ = Vc − θ̂. In the new coordinates, the

closed-loop system (1a),(1e) with (3) transforms to
[
ξ̇1
ξ̇2

]

=

[
−k1IN−1 IN−1

−IN−1 −k2IN−1

] [
ξ1
ξ2

]

+

[
0

βT (φ, θ)

]

θ̃,

˙̃
θ = −γβ(φ, θ)ξ2.

(5)

With the Lyapunov function V = 1
2ξ

T
1 ξ1+

1
2ξ

T
2 ξ2+

1
2γ θ̃

T
θ̃,

we have

V̇ = −k1ξ
T
1 ξ1 − k2ξ

T
2 ξ2 ≤ 0. (6)

Therefore, V̇ is negative semi-definite, and thus the ori-

gin (ξ1, ξ2, θ̃) = (0,0,0) is uniformly globally stable

and ξ1, ξ2, and θ̃ are bounded. The error system (5) is

a non-autonomous system because it depends on time-

varying parameters. Furthermore, V is lower bounded by

zero and V̈ is finite because β(φ, θ) in (5) is bounded,

since β(φ, θ) = β(φ,Rθ), ξ1 = φ̃ is bounded, and φref

is bounded by design. With these conditions, it follows from



Barbalat’s Lemma [19] that (ξ1, ξ2) → (0,0) asymptotically

as t→ ∞. This implies that also φ̃ and
˙̃
φ converge to zero

asymptotically.

Remark 3: Since the regressor β(φ, θ) is not persistently

exciting, we cannot expect the adaptive estimate, θ̂ to con-

verge to the true ocean current Vc.

C. Velocity control

For the design of the velocity controller, the reduced

system dynamics on the invariant manifold Γ3 is considered.

On Γ3, the dynamics of the forward velocity (1g) reduces to

v̇t = − ct
m
vt,rel +Xn(λ, φ0)vn,rel −Xφ(λ, φ0)vφ, (7)

with Xn(λ, φ0) =
2cp
Nm

ē
Tφref(λ, φ0) and Xφ(λ, φ0) =

cp
Nm

φTref(λ, φ0)AD̄. For the feedback control of the forward

velocity, we propose an adaptive backstepping controller in

order to stabilize the error coordinates z1 = ṽt = vt − vref
and z2 = λ̇− ζ, where ζ is a virtual control input. While the

adaptive backstepping controller in Sec. III-B was derived

using standard techniques (e. g. [16]), the adaptive velocity

controller design is not as straightforward. Both the dynamics

in Sec. III-B and in this section are non-autonomous, but

for the joint controller in Sec. III-B, this did not affect the

control design, it only complicated the analysis. For the

velocity controller, however, the system structure is such

that parameter-varying terms have to be compensated in

the first design step. The dynamics of these terms depend

on the unknown ocean current as well, which makes the

control design different from the method for non-autonomous

systems in [20]. The derivation of the controller is therefore

presented step by step in the following.

To begin with, (7) is re-written and expanded to

v̇t = − ct
m
vt +Xn(λ, φ0)vn −Xφ(λ, φ0)ē

∂g2
∂φ0

φ̇0−

β
T
λ,1(λ, φ0, θ)Vc −Xλ(λ, φ0)λ̇, (8a)

λ̈ = uλ, (8b)

with βTλ,1(λ, φ0, θ) = [− ct
m
, Xn(λ, φ0)]R

T
θ and Xλ(λ, φ0)

= Xφ(λ, φ0)[αg1(1) cos(λ), . . . , αg1(N − 1) cos(λ + (N −
2)δ)]T . The first design step is then to use the virtual control

input in (8a), ζ = λ̇, and the current estimate θ̂λ to stabilize

z1 = ṽt to zero. With the Lyapunov function V1 = 1
2z

2
1 and

ż1 = v̇t, we choose

ζ = 1
Xλ(λ,φ0)

ζ∗(λ, φ0, φ̇0, vn, θ, z1, θ̂λ) (9a)

ζ∗(·) = − ct
m
vref +Xn(λ, φ0)vn −Xφ(λ, φ0)ē

∂g2
∂φ0

φ̇0−

βTλ,1(λ, φ0, θ)θ̂λ + kλ,1z1 (9b)

with the control gain kλ,1 > 0. Note that Xλ(λ, φ0) > 0 is

bounded away from zero because of the phase shift δ [18].

However, when analysing V̇1, we need to keep in mind that

we do not directly control λ̇, and that the current estimate

θ̂λ is not necessarily exact, i. e. take into account the errors

z2 = λ̇− ζ and θ̃λ = Vc − θ̂λ in

ż1 = −( ct
m
+kλ,1)z1−Xλ(λ, φ0)z2− θ̃

T

λβ1(λ, φ0, θ), (10)

yielding

V̇1 = −( ct
m

+ kλ,1)z
2
1 −Xλ(λ, φ0)z1z2 − θ̃

T

λβ1(λ, φ0, θ)z1.
(11)

In order to stabilize z2 to zero, we design the control law

uλ in the second step, using the Lyapunov function V2 =

V1 +
1
2z

2
2 +

1
2γλ

θ̃
T

λ θ̃λ. For doing so, the time derivative ζ̇ is

required. This complicates the control design significantly,

because the dynamics of the uncontrolled state vn enters the

controller and it depends on the relative velocities, i. e. the

unknown term. The time derivative of ζ is given by

ζ̇ = ζ̇∗(λ,λ̇,φ0,φ̇0,φ̈0,vn,v̇n,θ,vθ,z1,ż1,θ̂λ,
˙̂
θλ)

Xλ(λ,φ0)

− ζ∗(λ,φ0,φ̇0,vn,θ,z1,θ̂λ)Ẋλ(λ,λ̇,φ0,φ̇0)
X2

λ
(λ,φ0)

.
(12)

The second term in (12) only contains known signals and

is not written down explicitly for compactness. However, ζ̇∗

in the first term contains unknown signals that have to be

compensated for by the adaptive controller. It is obtained by

taking the time derivative of ζ∗ in (9b) and inserting (1h),

(10) and θ̃λ = Vc − θ̂λ:

ζ̇∗ =
(
∂Xn

∂λ
λ̇+ ∂Xn

∂φ0
φ̇0 −Xn

cn
m

)

vn +X2
nvt

+
[
−X2

n Xn
cn
m

]
R
T
θ Vc −

∂Xφ

∂λ
ēλ̇ ∂g2

∂φ0
φ̇0

−
∂Xφ

∂φ0
ē
∂g2
∂φ0

φ̇20 −Xφē
∂2g2
∂φ2

0

φ̇20 −Xφē
∂g2
∂φ0

φ̈0 (13)

−
(
∂βT

λ,1

∂λ
λ̇+

∂βT
λ,1

∂φ0
φ̇0 +

∂βT
λ,1

∂θ
vθ

)

θ̂λ − βTλ,1
˙̂
θλ

+ kλ,1

(

− ( ct
m

+ kλ,1)z1 −Xλz2 + βTλ,1θ̂λ − βTλ,1Vc

)

.

In (13), the function arguments are omitted for better read-

ability and the time derivative of the current estimate
˙̂
θλ has

not been inserted yet, because it will be designed in the next

step. From (13) we can see why backstepping methods from

the literature [16,20] cannot be applied: the unknown term,

Vc, enters the time derivative of the virtual control input ζ

through ζ̇∗. With the Lyapunov function V2 and ż2 = uλ− ζ̇,

the control input is chosen as

uλ = −(kλ,2 + kλ,1)z2 +
(

Xλ +
X2

n

Xλ
−

kλ,1

Xλ
( ct
m

+ kλ,1)
)

z1

+
X2

n

Xλ
vref −

ζ∗Ẋλ

X2
λ

+ 1
Xλ

(
∂Xn

∂λ
λ̇+ ∂Xn

∂φ0
φ̇0 −Xn

cn
m

)

vn

− 1
Xλ

(
∂Xφ

∂λ
ēλ̇ ∂g2

∂φ0
φ̇0 +

∂Xφ

∂φ0
ē
∂g2
∂φ0

φ̇20 +Xφē
∂2g2
∂φ2

0

φ̇20

+Xφē
∂g2
∂φ0

φ̈0

)

− 1
Xλ

(
∂βT

λ,1

∂λ
λ̇+

∂βT
λ,1

∂φ0
φ̇0 +

∂βT
λ,1

∂θ
vθ

− kλ,1β
T
λ,1

)

θ̂λ −
1
Xλ

β
T
λ,1

˙̂
θλ + β

T
λ,2θ̂λ (14)

with the control gain kλ,2 > 0 and

βTλ,2 = 1
Xλ

[
kλ,1

ct
m

−X2
n −kλ,1Xn +Xn

cn
m

]
R
T
θ . (15)

Again, the function arguments in (14) and (15) have been

omitted for compactness. The control law (14) yields the

following dynamics of the error z2:

ż2 = Xλ(λ, φ0)z1 − kλ,2z2 − θ̃
T

λβ2(λ, φ0, θ) (16)



and thus

V̇2 =− ( ct
m

+ kλ,1)z
2
1 − kλ,2z

2
2 − θ̃

T

λβλ,1(λ, φ0, θ)z1

− θ̃
T

λβλ,2(λ, φ0, θ)z2 −
1
γλ

θ̃
T

λ
˙̂
θλ. (17)

Finally, the adaptive update law is designed as

˙̂
θλ = −γλ(βλ,1z1 + βλ,2z2), (18)

thus cancelling the remaining indefinite terms in V̇2 and

making

V̇2 = −( ct
m

+ kλ,1)z
2
1 − kλ,2z

2
2 (19)

negative semidefinite. Postponing the design of the adaptive

update law until the last step is inspired by the tuning

function procedure in [16]. Note, however, that the system

structure in this article is fundamentally different from the

autonomous system in [16].

Proposition 2: Suppose that the robot described by (1)

moves according to (3) on the manifold Γ3. The adaptive

control law (14),(18) asymptotically stabilizes the set

Γ2 = {(x, ẋ, λ, λ̇, φ0, φ̇0) ∈ Γ3 : vt = vref}. (20)

i. e. ṽt → 0.

Proof: The closed-loop system with the error coor-

dinates z1 and z2 reads as given by (10) and (16). With

the Lyapunov function V2 = 1
2z

2
1 + 1

2z
2
2 + 1

2γλ
θ̃
T

λ θ̃λ we

get the time derivative V̇2 in (19), which is negative semi-

definite. We can conclude that the origin (z1, z2, θ̃λ) =
(0, 0,0) is uniformly globally stable and z1, z2, and θ̃λ
are bounded. Again, the analysed error system is a non-

autonomous system because it depends on the time-varying

parameters φ0, θ. However, V2 is lower bounded by zero

and V̈2 is finite because all time-varying parameters enter

the dynamics of z1, z2 within a sine, cosine, or saturation

function. With these conditions, we can employ Barbalat’s

Lemma to conclude that (z1, z2) → (0, 0) as t → ∞. This

implies that vt → vref and λ̇→ ζ.

Remark 4: Note that the result in Prop. 2 implies that θ̃λ
is bounded. However, in order to show convergence of the

estimate θ̂λ → Vc, one has to check if the regressor defined

by β1,β2 is persistently exciting (PE). In the particular case

of snake robots, this is complicated by the fact that the

regressor and thereby the PE property depend on the gait

parameters, as will be discussed in Sec.V. A formal analysis

of the regressor and rigorous conditions on the gait for PE

remain a topic for future work.

D. Orientation control

In the last step of the hierarchical control design, we

propose an orientation controller based on the reduced sys-

tem dynamics on Γ2. The reduced system is obtained by

evaluating (1b),(1f) on the invariant manifold Γ2:

θ̇ = vθ, (21a)

v̇θ = −λ1vθ +
ψ1(θ)
N−1 ē

Tφref(λ, φ0), (21b)

where ψ1(θ) = λ2(vref − [cos θ, sin θ]Vc). The objective of

the orientation controller is to use the control input uφ = φ̈0

to stabilize the error coordinate θ̃ = θ−θref to zero. Inspired

by the control design in [12], this is achieved by taking the

time derivatives of (21b) until the input uφ shows up:

v
(3)
θ = −λ1v̈θ + ψ2(φ0, φ̇0, λ, λ̇, θ, vθ, v̇θ)

+ ψ1(θ)
∂g2
∂φ0

uφ + ψ3(θ, λ)λ̈.
(22)

The expressions for ψ2(·) and ψ3(·) in (22) can be obtained

by taking the second time derivative of (21b) and are omitted

because of space restrictions. The single terms of (22) depend

on the unknown ocean current, which complicates the control

design. In particular, the function ψ1 that is multiplied with

the control input contains the unknown signal, which is why

we cannot design an adaptive controller analogously to the

joint and velocity controllers. We will therefore make the

following assumption.
Assumption 2: For the design of the orientation controller,

an exact current estimate θ̂ = Vc is available.
Remark 5: The adaptive term in the velocity controller

(14) provides an estimate of the unknown current. More

specifically, the analysis in Sec. III-C shows that θ̂λ con-

verges and the estimation error θ̃λ is bounded. If the re-

gressor in (18) is PE, the remaining offset will converge to

zero.
Based on Ass. 2 and (22), the control law

uφ = 1

ψ̂1(θ)
∂g2
∂φ0

[
λ1θ̃

(3) − ψ̂2(·) (23)

−kφ,3θ̃
(3) − kφ,2

¨̃
θ − kφ,1

˙̃
θ − kφ,0θ̃

]

is proposed. In (23), the control gains kφ,3, kφ,2, kφ,1, kφ,0 >

0 are introduced and the superscript ·̂ indicates that instead

of the unknown current, the estimate θ̂λ is used to compute

ψ1(·) and ψ2(·). The same is done for the computation of

the time derivatives of θ. Note that the last term on the right

hand side of (22) cannot be compensated by the feedback

linearising controller (23). This is due to the design of uλ in

(14), which contains a term depending on φ̈0.
Remark 6: Because of prioritizing the velocity control

higher than the orientation control, the choice vref > Vc,max,

and Ass. 2, ψ1 is bounded away from zero. Furthermore,
∂g2
∂φ0

6= 0, because g2 is strictly increasing. The controller

in (23) therefore improves previous results for terrestrial

snake robots [12,18], where singularities were an issue in

the orientation controller. However, care needs to be taken

when implementing (23). When tuning the control system it

needs to be made sure that the current estimate converges

sufficiently fast in order to avoid a singularity. Similarly, the

control gains in (23) should be tuned such that φ0 remains

sufficiently small to not drive g2 into saturation. Even though
∂g2
∂φ0

6= 0, numerical problems can occur for large φ0.
Under Ass.2, the following result holds for the orientation

controller in (23):
Proposition 3: Suppose that the robot described by (1)

moves according to (3) and (14) on the manifold Γ2. If

the control input of the velocity controller has no finite

escape times and goes to zero, uλ → 0, the control law

(23) asymptotically stabilizes the manifold

Γ1 = {(x, ẋ, λ, λ̇, φ0, φ̇0) ∈ Γ2 : ‖θ − θref‖ = 0}, (24)



i. e. θ → θref .

Proof: The closed-loop system (22) with (23) is a linear

system with the parameter-varying input matrix b(λ, θ) =

[01×3,
λ2(vref−[cos θ,sin θ]Vc)

N−1

∑N−1
i=0 αg1(i) cos(λ+(i−1)δ)]T

and input λ̈. With Θ = [θ̃, ˙̃θ, ¨̃θ, θ̃(3)]T we have that

Θ̇ =







0 −1 0 0
0 0 −1 0
0 0 0 −1

−kφ,0 −kφ,1 −kφ,2 −kφ,3







︸ ︷︷ ︸

H

Θ+ b(λ, θ)λ̈.

(25)

The matrix H is Hurwitz by design and it can be verified with

the matrix exponential of H and the bound ‖b(λ, θ)‖ ≤ B

that (25) is ISS and disturbed by the input λ̈:

‖Θ(t)‖ ≤ ce−λ̃(t−t0)‖Θ(t0)‖ +
cB

λ̃
λ̈. (26)

If the finite bound ‖λ̈‖ ≤ ǫλ exists and λ̈ → 0 as t → ∞,

the orientation will therefore converge to θ → θref .

Note that even if λ̈ does not converge to zero, the disturbance

by λ̈ can be made small by making λ̃ in (26) large, i. e.

placing the eigenvalues of H such that they are far in the

left hand plane by choosing the gains accordingly. In this

case, θ̃ is practically stabilized to zero.

IV. STABILITY ANALYSIS

In Sec. V, simulation results will demonstrate that the

proposed control system (3),(14),(23) can stabilize all error

coordinates to zero for an underwater snake robot that is

exposed to an unknown, constant ocean current. In this

section we will present an analysis that shows boundedness

of the zero dynamics. Furthermore, we sketch how to show

uniform global asymptotic stability of the closed-loop system

under conditions that guarantee PE in the velocity controller.

As was pointed out in Remark 2, the sideways velocity

vn of the robot cannot be controlled directly. However, the

following property holds for the closed-loop system.

Proposition 4: Suppose that the body shape, forward ve-

locity, and orientation of an underwater snake robot described

by (1) are controlled according to (3),(14), and (23). Then,

the sideways velocity, vn, is uniformly bounded.

Proof: With the Lyapunov function Vn = 1
2v

2
n and (1h)

the time derivative V̇n is given by

V̇n = − cn
m
v2n+

2cp
Nm

ē
Tφvtvn+( cn

m
Vn−

2cp
Nm

ē
TφVt)vn, (27)

where Vn and Vt are the components of the current velocity

in the body-aligned frame. The second and third term on the

right hand side of (27) are indefinite. However, we know that

vt and ē
Tφ are bounded since vt → vref and φ → φref , and

‖ēTφref‖ ≤ ǫφ. We denote these bounds by ‖vt‖ ≤ v̄t and

‖ēTφ‖ ≤ ǭφ. Furthermore we conclude from the bound on

the current magnitude in Ass. 1, Vc,max, that ‖Vn‖ ≤ Vc,max

and ‖Vt‖ ≤ Vc,max.

Therefore we have that

V̇n ≤ − cn
m
v2n + vnk. (28)

We can now use Young’s inequality [21]

ab ≤ ξa2

2 + b2

2ξ , ξ > 0 (29)

to reformulate (28) to

V̇n ≤ (− cn
m

+ ξ
2 )v

2
n + k2

2ξ . (30)

By choosing ξ < 2cn
m

we can make sure that the coefficient

of v2n is negative and conclude from the Comparison Lemma

[19] that

Vn(t) ≤ e−c1tVn(0) + c2, (31)

which implies that vn is bounded.

Remark 7: Note that the result in Prop. 4 does not depend

on Ass. 2.

Future work will establish conditions on the gait in (2)

under which the regressor in (18) is PE, and the convergence

of the current estimate to the true value can be shown. With

these conditions, the orientation controller can be shown to

asymptotically stabilize the set

Γ1 = {(x, ẋ, λ, λ̇, φ0, φ̇0) ∈ Γ2 : ‖θ − θref‖ ≤ ǫ}, (32)

if all states are bounded. In previous studies for terrestrial

snake robots [12,18], numerical simulations were used to

show that the states generated by uλ and uφ remain bounded.

Similarly, in the next section of this article, we will see

simulation results that indicate that all states remain bounded,

and the error coordinates converge to zero.

V. SIMULATION STUDY

This section presents simulation results that illustrate the

performance of the control system.

A. Simulation set-up

The model (1) and the control system (3),(14),(23) were

implemented in Matlab and simulated using the ode23t solver

with an absolute and relative error tolerance of 10e-6. The

model parameters and control gains are displayed in Table I.

The gains were obtained by tuning the control system stage

by stage. The gait parameters of (2) were set to α = 7 cm

and δ = 40◦, and the gait functions were chosen as g(i) = 1
and g2(φ0) = φ0,max tanh(

φ0

φ0,max
) with φ0,max = α. The

references for the velocity and orientation controller were set

to vref = 8 cm/s and θref = 45◦. All states were initialized

at zero, i. e. the robot was initially straight, aligned with the

x-axis, and fixed in the origin. As a first step, only the joint

and velocity controllers were activated, and the orientation

control input uφ was set to zero in order to investigate Ass.2.

In a second step, the entire control system was simulated.

TABLE I: Parameters of the simulation.

N m ct cn cp λ1 λ2 Vx Vy

10 1.56 kg 4.45 17.3 35.7 6 120 - 4 cm/s - 1 cm/s

k1 k2 γ1 kλ,1 kλ,2 γ2 kφ,0 kφ,1 kφ,2 kφ,3
3 6 1 0.1 10 0.04 2 21 60 20
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(b) The robot for δ = 50◦

Fig. 3: The path of the robot during velocity control.
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(c) The current compensation terms of the adaptive joint controllers

Fig. 4: Simulation results of the velocity controller, δ = 40◦.

B. Simulation results

Fig. 3a shows the path of the robot during the first

simulation. The error signal of the joint controller and the

control torque are displayed in Fig. 4a, the forward velocity

and the state related to the body frequency, λ̇, in Fig.4b, and

the adaptive term of both the joint and the velocity controller

in Fig. 4c. It becomes clear from the figures that all error

coordinates converge to zero and all signals remain bounded.

However, for the current estimate of both control stages, only

one component converges to the correct value. Clearly, the

regressors used in the adaptive control laws are not PE for

the particular choice of gait parameters.

The simulation was therefore re-run with a phase shift

of δ = 50◦. The path of the robot during this simulation

is displayed in Fig. 3b. Fig. 5 shows the analogous signals

of Fig. 4 for the second simulation. All controlled states

still converge, all signals remain bounded, and the current

term of the joint controller still does not provide an exact

estimate. However, it can now be seen from Fig. 5c that the

current estimate of the velocity controller, θ̂λ, converges to
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Fig. 5: Simulation results of the velocity controller, δ = 50◦.
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Fig. 6: The path of the robot with the complete controller.

the correct values after an initial overshoot. This overshoot

is a result of not tuning the control gains for the new gait

parameters. The parameter convergence in Fig. 5c indicates

that Ass. 2 is a valid assumption if the gait parameters are

chosen accordingly.

The first simulation was repeated with the orientation

controller. The path of the robot is shown in Fig. 6, where

we see that the robot is now turning towards its reference

orientation. The signals of the single control stages are

displayed in Fig.7, which show that all error signals converge

to zero while all signals remain bounded. In addition to the

signals presented in the above discussion, the orientation of

the robot, and the offset φ0 that induces turning motion are

now displayed in Fig.7c. It can be concluded from Fig.7c that

the orientation of the robot converges towards its reference,

even though Ass. 2 is violated in the first scenario. This is a

result of the turning of the robot, which provides additional

information to the adaptive controller. The same effect can

be observed in Fig. 7d, where the current estimate of the

velocity controller now converges to the correct value.
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Fig. 7: Simulation results of the complete controller.

VI. CONCLUSIONS

We have presented a control system for velocity and

orientation control of underwater snake robots using absolute

velocity feedback. The control system has a hierarchical

structure, where the highest priority is to stabilize virtual

joint constraints that encode a planar gait. In order to do

so, we designed an adaptive joint controller and showed

that the controller asymptotically stabilizes the constraint

manifold. The second and third priority of the control system

were to control the velocity and the orientation of the robot

using dynamic compensators whose states parametrize the

virtual joint constraints. We proposed an adaptive controller

that asymptotically stabilizes the forward velocity error to

zero and an orientation controller that utilizes the current

estimate of the velocity controller. It was shown that the

zero dynamics of the closed-loop system remains bounded,

and simulation results demonstrated the performance of the

controller.

In future work we will formulate conditions for the gait

under which we can show PE in the velocity controller. This

will enable a formal stability analysis of the entire closed-

loop system. We will furthermore extend the orientation

controller to take into account a time-varying reference, and

combine the system with a guidance scheme in order to do

maneuvering control.
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