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Abstract—With the introduction of more and more renewables
into the power system both the inertia and the primary frequency
reserves are expected to decrease. It is therefore a growing
concern that the frequency quality will deteriorate. One way
of mitigating these problems may be a more detailed monitoring
of the generators providing the primary reserves.

A promising approach for monitoring the generators is to
identify turbine governing system parameters using system
identification. This will allow for estimating the droop and the
bandwidth of the governor, parameters that are important for
the primary control. Furthermore, if this can be reliably done
on ambient data, updated estimates of these parameters can be
obtained relatively fast.

In this paper we will look into how vector fitting can be
used for this purpose. The algorithm possesses some interesting
properties for automatically constructing models from ambient
data. How this can be done will be presented together with results
obtained using real data from the Norwegian power system. A
simple criterion for reducing the obtained model order is also
proposed.
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I. HYDRO GOVERNOR PARAMETER ESTIMATION USING
VECTOR FITTING

The introduction of more and more renewables into the
power system has lead to a concern for the system’s frequency,
since these units often do not provide inertia or the ability to
provide frequency containment reserves (FCR). To mitigate
these problems for continental Europe one proposal is to
use hydro power plants in the Nordic, as providers of FCR
thorough interconnectors. For the Nordic countries this is both
an opportunity and a challenge as their systems will have to
both handle their own intermittent production and large shifts
in power flows on interconnectors to continental Europe. These
challenges are well understood by the Nordic transmission
system operators (TSOs) and are thoroughly covered in their
challenges and opportunities report [1].

In this paper we will investigate the possibility to use
phasor measurement units (PMUs) to monitor the FCR. One
advantage of this approach is that TSOs can use their own
equipment to monitor generators, which are important power
system equipment not owned by the generators. Furthermore,
we propose to use ambient PMU data to not disturb the
operation of the power plant. This will serve as a supplement to

the required data exchange between generators and TSOs and
can also be used on generators not covered by the grid code
on requirement for grid connection of generators (RfG)[2].

System identification techniques have previously been ap-
plied to real system data in papers such as [3]–[5]. The
authors of [5] use constrained optimization on disturbance
data from the Crete power system and the authors of [4]
apply an unscented Kalman filter to the measurements from a
trip event in the Midcontinent Independent System. Common
for these papers is the use of data from disturbances. For
the purpose of model validation this is sufficient, however,
for a more continuous monitoring one would need to use
data from normal system operation. An example on how this
can be achieved is presented in [3] where an auto regressive
exogenous (ARX) model structure is applied to recordings
from normal system operation in the Norwegian grid.

One disadvantage of the ARX model structure is that one
needs to select an appropriate model order to get a good
fit. For the purpose of performing a continuous monitoring
it would be an advantage if less tuning was needed. One
method that may have these properties is time domain vector
fitting [6]. Therefore, we will in this paper present how this
method can be applied to estimate model of turbine governors.
Furthermore, we will show that the method does indeed
possess interesting properties for online applications, due to its
performance with respect to speed, accuracy and the amount
of tuning needed.

Time domain vector fitting is presented in section II and the
code used is available at [7]. Hydro governors are discussed
in section III and the results are presented and discussed in
section IV. The final section covers the conclusion regarding
the methods performance and how it should be tuned.

II. TIME DOMAIN VECTOR FITTING

Vector fitting was introduced for the frequency domain in
[8] and later extended to the time domain in [6]. It is an
iterative algorithm where each step start with a set of starting
poles that are updated at the end of the step until convergence
is reached.



A. The algorithm

In the vector fitting algorithm it is assumed that the transfer
function of the system can be expressed using the rational
transfer function:

H(s) = d+

np∑
i=1

ri
s− pi

(1)

In (1) the unknowns to be estimated are d, ri and pi. Since
some of the unknowns are situated in the denominator the
problem is not linear. To make the problem linear it is
multiplied by an unknown scaling function σ(s) with known
poles p̃i defined such that:

σ(s)H(s) = d+

np∑
i=1

ri
s− p̃i

(2)

It can be proven that the zeros of σ(s) will be equal to
the poles of (1) [9]. σ(s) is unknown, hence the following
approximation for σ(s) given in [8] is introduced as:

σ(s) ≈ 1 +

np∑
i=1

ki
s− p̃i

=

∏nz

i=1(1− z̃i)∏np

i=1(1− p̃i)
(3)

Notice that if the zeros z̃i of (3) equal the starting poles p̃i (3),
the weighted problem (2) equals the original problem (1). This
implies that if the correct poles of the system is identified, ki
equals zero.

Vector fitting in the time domain can now be obtained by
multiplying (2) by the input signal u(t) and performing laplace
inverse.

y(t) ≈ d̃x(t) +

np∑
i=1

r̃ixi −
np∑
i=1

k̃iyi (4)

Notice that the unknowns in (4) are denoted with a ˜ to mark
that these are recalculated every iteration. The waveforms
xi(t) and yi(t) are obtained from the following convolution
integrals:

xi =

∫ t

0

ep̃i(t−τ)xi(τ)dτ (5)

yi =

∫ t

0

ep̃i(t−τ)yi(τ)dτ (6)

These integrals can be solved using an IIR filter [6].

xi[k] = αixi[k − 1] + βx[k] + βx[k − 1] (7)

In (7) we use the coefficients defined in [10], which imple-
ments the trapezoidal method for numerical integration.

α =
1 + p̃i

∆t
2

1− p̃i
∆t
2

, β =
∆t

2− p̃i∆t
(8)

where ∆t is the sampling time.
The unknowns of (4) are now obtained using least square

fitting. Then the updated poles to be used in the next iteration
of the vector fitting is obtained as the zeros of (3).

B. Starting poles for vector fitting

Unlike the (autoregressive moving average exogenous) AR-
MAX type model structures, vector fitting does not require
one to find an appropriate model order for the system. One
only needs to define a set of starting poles, which should be
given according to the rule of thumbs described in [8] that is
the starting poles should be:

• Linearly or logarithmically spaced
• Real or complex conjugate

Real poles should only be used to fit smooth functions,
whereas complex conjugate poles should be chosen in the
general case. Furthermore, for complex conjugate starting
poles the real part should be 1/100 of the complex part.

When it comes to the order of the model [8] states that
the starting poles that converge towards poles that are not
in the system one tries to fit will have low values of the
corresponding residues. This fact is used to make an automatic
order reduction procedure. The procedure is inspired by the
following convergence criterion from [9]:

‖ k̃1
p̃1

, · · · ,
k̃np

p̃np

‖ < ε (9)

which states that the vector norm of the normalized residues
of σ(s) should be below a certain tolerance limit ε. A similar
criterion can also be stated for the residues of the function we
are fitting, that is:

| ri
pi
, | < ε, i ∈ np (10)

where the normalized residue below the tolerance limit ε are
discarded. Other model reduction schemes have been proposed
in [11] where single value decomposition (SVD) and balanced
realization model is compared.

C. Indicator for goodness of fit

Various indicators exist for measuring the goodness of
fit when performing system identification. Typically theses
indicators try to give an indication on which model performs
best with respect to both ability to predict and complexity.
In this paper, however, we will use the simple indicator
normalised root mean square error (NRMSE) as defined in
(11) from [12].

NRMSE = 100(1− ||y − ŷ||
||y − ȳ||

) (11)

where y is the measured response and ŷ is the estimated
response. The reason is that it is intuitively easy to understand.
Furthermore, as will be shown later, vector fitting normally
provides low order models meaning that the penalty term
for higher order models, included in most other indicators,
becomes less relevant. For an introduction to indicators on
goodness of fit please refer to a standard text book in system
identification such as [13].
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Fig. 1: PID hydro turbine governor

TABLE I: Hydro turbine governor parameters

Variable Explanation Approximate value
TD Derivative time 1− 2s
Tf Low pass filter time constant 0.2s
Kp Controller gain 1− 3
Ti Integral time 2− 10s
ρ Droop 0.04− 0.12

III. HYDRO TURBINE GOVERNORS

Since the Norwegian system is dominated by hydro units
our study will only consider hydro units. Therefore, a few
basic properties of hydro governors useful for understanding
identification of these will be briefly covered.

A. Transfer function of hydro turbine governors

In Fig. 1 a simple block system representation of a governor
and a turbine is depicted. The turbine and generator are
represented by the transfer function Ht(s), and their dynamics
are assumed to be negligible in the frequency range under
study. Unlike [14] the derivative action of the governor is
moved before the frequency reference to prevent changes in the
frequency reference to influence the derivative. The parameters
in the model are presented in Table I.

As explained in section II the vector fitting algorithm
requires a set of starting poles. To get an indication on what
range to choose from, the transfer function of the governor
can be analyzed.

H = −Kp
1 + sTD

1 + sTf
· 1 + sTi

ρKp + sTi
(12)

From (12) one can see that the system’s poles will be placed
at:

p1 = − 1

Tf
, p2 = −ρKp

Ti
(13)

This means that it is possible to get purely real poles or one
complex conjugate pair. Using the parameter values from Table
I one can see that the maximum range of the poles will be
5Hz and 0.18Hz.

B. Potential problems when performing the fitting

In our approach we will try to identify the transfer function
of the governor by measuring the frequency and the power
at a generator busbar. As can be seen from Fig. 1 the results
may be influenced by changes in the frequency and power

reference set points. The power reference is typically changed
as a ramp around the hour change. Unless the ramp is known
an identification during such an event will risk identifying
the ramp, instead of the governor dynamics. One also has to
be careful to select a filter that filters out electromechanical
dynamics. Furthermore both the governor and turbine contain
nonlinearities such as dead bands and limiters [14]. However,
in this paper it is assumed that the governor behaves linearly
around the operating point where its behaviour is observed.
Furthermore, when working with ambient data it is important
to choose a measurement time window where the relevant
dynamics of the governor is excited.

IV. VECTOR FITTING ON REAL SYSTEM PMU DATA

To test the applicability of vector fitting on real data, PMU
measurements from five generators at two different location in
Norway were collected. When testing vector fitting for online
identification there are some properties we want to look for:

1) Easy configuration.
2) Results valid outside of the measurement window.
3) A small measurement time window.
4) Low execution time

A. Identification approach

The approach used for performing the identification consists
of five main steps:

1) Data collection: This step consists of collecting PMU
data measurements from locations in the Norwegian
grid.

2) Partitioning of data set: When performing identification
It is important to ensure that a good fit is obtained. To
do this it is normal to partition the data set into one
identification part and one validation part, an approach
referred to as cross validation [13]. In principle cross
validation could be done by merely splitting the data set
into two parts. However, due to nonlinearities, lack of
dynamics or ramping, parts of a data sets may be unfit
for either identification or validation. To circumvent this
problem each data set is partitioned into partitions of
equal lengths. For a data set of one hour and partitions of
five minutes this gives 132 cross validation possibilities.

3) Preprocessing of data: All data is detrended, decimated
and filtered through a low pass filter. The decimation
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Fig. 2: Datasets for fall 2015 and spring 2016
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Fig. 3: Validation of models constructed from spring and fall dataset

factor and filter cut-off frequency is chosen such that dy-
namics up to 0.5Hz can be captured. At this frequency
one may have electromechanical dynamics, however,
it is unlikely that dynamic that close to the Nyquist
frequency will be identified.

4) Vector fitting is performed on all partitions
5) Cross validation and model selection All cross valida-

tion possibilities are attempted and the model with the
highest NRMSE is selected.

B. Starting order for vector fitting

As explained in section II the vector fitting algorithm takes
a set of starting poles as input. It is therefore of interest to
investigate which starting orders are best for performing vector
fitting on hydro governor data. To test this 19 data sets with
a measurement time window of 60 minutes were selected.

To decide what ranges of starting poles to test it is useful
to further investigate how many poles one can expect to find
and what values they will take. From the sampling rate of the

processed signal a natural upper bound of 0.5 is easy to deduce
using the Nyquist criterion. Furthermore, if one considers the
results obtained from (13) and the values from Table I one can
see that the maximum value of a pole should be no more than
0.18Hz. However, when testing different starting poles we
will try up to 0.5Hz which is the maximum we can identify.

To find the best starting poles for hydro governor fitting
different combinations of both real starting poles, complex
conjugate starting poles and combinations were tested for the
ranges reported in Table II. The purely real and purely complex
starting poles were linearly spaced and consisted of ten starting
poles. The mixed starting poles were a superposition of the
purely real and purely complex. Furthermore, different time
windows were also tested.

From Table II it is evident that best fits are obtained when
the starting poles contains complex conjugate pairs. When it
comes to the distribution of the poles there are no significant
difference. It is therefore reasonable to choose the maximum
starting pole as half of the sampling frequency. The important



TABLE II: Fit for the different starting poles and time win-
dows

Minutes Poles [0, 0.5] [0, 0.1] [0, 0.05]

5
Real 66.66% 66.66% 66.66%

Complex 73.07% 74.60% 73.53%
Mixed 74.89% 74.69% 74.42%

10
Real 68.45% 68.45% 68.45%

Complex 72.49% 73.84% 72.75%
Mixed 73.49% 72.60% 73.73%

15
Real 66.01% 66.01% 66.01%

Complex 69.72% 70.40% 70.33%
Mixed 70.86% 70.43% 70.12%

20
Real 70.73% 70.73% 70.73%

Complex 72.53% 72.27% 71.16%
Mixed 71.28% 71.91% 72.38%

25
Real 60.27% 60.27% 60.27%

Complex 63.45% 62.31% 63.45%
Mixed 63.14% 63.45% 63.45%

30
Real 68.01% 68.01% 68.01%

Complex 71.75% 71.45% 72.54%
Mixed 72.52% 71.44% 72.21%

decision then reduces to which cut-off frequency to use in the
antialiasing filter.

C. Measurement time window

Preferably one would want to obtain a good fit with a time
window as short as possible. Furthermore, one would want
the results to be valid for a wide as possible time range. In
subsection IV-B we investigated the best starting poles for
different time windows and as can be seen from Table II
good NRMSE values were obtained for all time windows. This
should not be very surprising as we look at dynamics in the
minute time range, which means that a time window of a
couple of minutes should be enough. It is also of interest to
investigate the validity range of a constructed model in terms
of time. To do this we will cross validate models constructed
from datasets that are measured half a year apart. The datasets
are from one measurement site and are from fall 2015 and
spring 2016 and are depicted in Fig. 2.

In Fig. 3 the result of using the frequency signal from
the spring dataset as input to the fall model and vice versa
is depicted. From this one can see that models constructed
half a year apart from the validation data perform satisfactory.
It should also be noted that all time windows perform well,
however, it varies which one is the best. The reason for this
is that the fit is more dependent on the dynamics contained in
the signal than the length of the signal.

Another aspect relevant for choosing the time window is the
execution time. Since, the execution time increases with the
number of samples a too large time window may result in a
too long execution time. However, with a time window of half
an hour one identification takes approximately half a second,
which should for all practical purposes be fast enough. It is
also worth noticing that the maximum model order obtained
using vector fitting and the proposed model reduction scheme
is third order models.
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Fig. 4: Bode plot showing governor gain and bandwidth

TABLE III: Estimated droop for generator at two different
times

Dataset Droop[%] Bandwidth[mHz]
Fall 2015 10 4.16

Spring 2016 8 2.41

D. Applications

The most obvious application for identifying governor mo-
dels are system validation. As one can see from Fig. 3 the
identified models represent the real system behaviour well and
can be used for this purpose. Another useful application is the
ability to estimate the droop and bandwidth of the turbine
governor. This can be used to check whether or not generator
droop settings are close to their reported values or to validate
that generators actually change their droop when instructed.

In Fig. 4 the Bode plots of the transfer functions constructed
from five minute time windows using the data sets presented
in Fig. 2 are presented. From the bode plot one can see both
the available bandwidth as well as the droop. Bode plots are
useful for graphical presenting the dynamics of the transfer
functions. However, one is also quite likely to be interested
in the values of the droop and the bandwidth. These values
are reported in Table III. An interesting observation is that
the estimated values of the droop and the bandwidth differ
in between the fall and spring dataset. This observation rises
an important question, that is out of the scope of this paper.
Namely, is the deviation due to an actual change in the droop
settings or due to uncertainties in the estimation technique.

V. CONCLUSIONS

Vector fitting shows very promising results for identifying
governor parameters obtaining good fits for all the considered
datasets. The most notable feature being the ability to obtain
good fits with little tuning. In short the tuning decisions that
has to be made are:

1) The cut off-frequency of the antialiasing filter



2) The time window
To choose the time window the decisive factor should be the
dynamics contained in the signal a discussion not covered in
this paper.

The algorithm also obtains the results quickly and the
proposed model reduction scheme results in low order models.
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