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1 Abstract 
Stochastic optimization approaches ignore that the decisions of different actors in markets typically do 
not lead to a system-wide optimal solution. Suppliers in markets with entrance barriers or other 
aspects that hinder competition, can use their dominant positions to exert market power and drive up 
market prices. To represent such gaming behavior, a different modeling approach is needed. 
Equilibrium models can represent varying market structures, including perfect competition and 
oligopoly. This chapter presents a multi-stage stochastic equilibrium model for a general commodity 
market wherein suppliers, transportation agents and storage agents make capacity investment 
decisions while facing uncertainty in future market circumstances and production and sales decisions 
in later stages when the uncertainty has been revealed. An illustrative example for the natural gas 
market is used to show how market power may affect decisions and expected profits, and discuss the 
value of the stochastic solution for the different agents in our gaming setting. 

Keywords: stochastic equilibrium model, resource markets, Karush-Kuhn-Tucker conditions, 
investment under uncertainty, value of stochastic solution 

2 Introduction 
Many resource markets are characterized by uneven resource distribution, highly expensive up-front 
investments for exploration and production, as well as by high transportation and storage costs due to 
physical and regulatory constraints. As a consequence, barriers to enter such markets are high, which 
reduces competition and allows market participants to exert market power over consumers.  

Moreover, the future development of demand is uncertain and driven by factors largely external to the 
commodity market in question. Suppliers have to make their decisions on infrastructure investments 
ahead of time, and thereby risk creating significant overcapacities, or missing out on business 
opportunities. These factors pose great risks for the firms and consumers involved, and increase price 
volatility. Examples of unforeseen dramatic market changes in recent years include the rapid 
expansion of US natural gas and oil production due to technological advancements in shale-bed 
exploration and exploitation (Stevens 2010), the significant drop in oil prices since June 2014 due to 
overcapacity and low demand (Bowler 2015), and the boom and bust in the Australian mining 
business (Yeomans, 2016). 

Hence, on the one hand, consumer prices are affected by the technological and general economic 
development; while on the other hand, they are prone to manipulation by suppliers. As a consequence, 
market prices can significantly differ from the fundamental supply cost of goods. When analyzing 
commodity markets, these two major factors, market power and uncertainty, should be represented in 
the model. In the following, we briefly touch on the basic concepts of mathematical models which can 
account for market power exertion and exogenous uncertainty. 

Markets are usually represented by the game-theoretical concept of the Nash-equilibrium (Nash 
1950). In a commodity market, Nash equilibrium is reached if all suppliers produce at an output level 
that leads to a market price that does not incentivize any suppliers to change his output. 
Mathematically, the behavior of each supplier is modeled by an optimization problem. Consequently, 
the Nash-equilibrium is equivalent to a vector of outputs fulfilling the Karush-Kuhn-Tucker 
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conditions of all optimization problems simultaneously. Such problems are referred to as equilibrium 
problems (Gabriel et al. 2013). 

For the special case of a perfectly competitive market, the corresponding market equilibrium 
coincides with the one resulting from social welfare maximization under the assumption that the 
optimization problems of the individual suppliers are convex (Bertocchi et al. 2011). Hence, in 
practice, for competitive markets rather than an equilibrium problem, the equivalent optimization 
problem is usually solved. 

Uncertainty (for instance in demand) can be incorporated into a model by defining a scenario tree 
representing different outcomes of random events (e.g., different inverse demand functions). 
Subsequently, the suppliers optimize the value of their objective function, given all possible scenarios, 
and the respective probabilities that the scenarios will play out. Unfortunately, as the number of 
variables scales with the number of scenarios and time steps (stages), stochastic models can quickly 
become intractable. One common approach to solving stochastic problems with large data instances is 
to decompose the problem into subproblems, and iteratively solve these to provide a solution for the 
original problem. One such method is Benders decomposition (see for instance Gabriel & Fuller 
(2010), and Egging (2013) for development and application of Benders decomposition variants to 
energy market models). Another approach recently proposed by Devine et al. (2016) is to limit the 
time steps considered for investment decisions to a subset of the entire planning horizon, and to 
gradually roll the optimization horizon forward in time; this technique is similar to “receding horizon 
control”, which is frequently applied in process control. The obtained results are suboptimal, but may 
approximate the planning process in practice, particularly if scenarios with a low probability 
materialize. 

Several approaches to model imperfectly competitive markets exist. In contrast to including 
uncertainty, which mainly increases the size of the problem, the incorporation of market power 
increases the mathematical complexity of the formulation, and hence, a previously tractable large-
scale problem can become intractable. To avoid this, the key is to preserve the convexity properties of 
the original formulation. We can distinguish between single-level and multi-level formulations: 
specifically, single-level models preserve convexity, while multi-level models typically do not. 

Markets with competition à la Bertrand, Cournot, Cournot with competitive fringe, and conjectural 
variations1 fall into the category of single-level formulations. A model with agents competing à la 
Bertrand has a solution equivalent to the perfectly competitive market and can be represented as a 
welfare maximization problem. The remaining single-level problems can be represented by mixed 
complementarity problems (MCP). Examples include Boots et al. (2004), Egging & Gabriel (2006), 
Egging et al. (2008), Holz et al. (2008), and Lise et al. (2008) for the natural gas market, Haftendorn 
& Holz (2008) for the coal market, and Huppmann & Holz (2009) for the oil market. Besides energy 
and commodity markets, other industries are also affected by market power exertion by dominant 
players and are studied with similar model types. See, for instance, Alves & Forte (2015) who study 
the effects of an open sky agreement in the airline industry, and Hu et al. (2014) who study vegetable 
supply chains in Taiwan. 

Multi-level approaches, such as the Stackelberg leader-follower game, can be modeled as 
Mathematical Problems with Equilibrium Constraints (MPEC), and can require even more involved 
formulations. Examples include Chen et al. (2006), who model emission allowance markets with a 
Stackelberg game, and Huppmann (2013) who investigates the development of oil prices via a 
Stackelberg game. As MPEC representations are non-convex, and therefore not suitable for modeling 
large-scale markets, we refrain from going into more detail here. 

                                                      
1 Conjectural variations concern supplier perception of how competitors adjust their supply in response to a price change. A 
value of 1 implies that competitors will adjust so much that total supply in the market stays the same; this is equivalent to a 
perfectly competitive market. A value of 0 implies that competitors will not respond at all; this is equivalent to a Cournot 
oligopoly. Conjectural variations have been used by many researchers, especially in energy markets. See, e.g., Day et al. 
(2002), Hobbs et al. (2004); Egging & Gabriel (2006), Lise et al. (2006), and Holz et al. (2008). See also footnote 7. 
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In the remainder of this chapter, we present a stochastic model for commodity and resource markets 
with market power exertion using conjectural variations. This problem can be formulated as an MCP 
and is thus suitable to represent large-scale markets – a pre-requisite when assessing resource / energy 
/ commodity markets on a global scale. In the next section, we introduce the notation and formulate 
the model. In Section 4, we demonstrate the capabilities of the model with a small, insightful 
example, and discuss the effects of market power and consideration of uncertainty by the suppliers. 
Section 5 summarizes and concludes this chapter. Appendices at the end of the Chapter as well as 
online provide additional details and a model implementation. 

3 A stochastic equilibrium model for resource markets 
Suppliers produce resources in one or more nodes (countries) and sell the resources to consumers in 
various countries, including domestically. Suppliers can invest in production capacity expansions to 
allow for higher future production levels. A supplier can export resources through a transportation 
network and can use storage to arbitrage between seasons in a year, and thereby, benefit from 
differences in consumers' willingness to pay between seasons. Infrastructure service operators manage 
and operate the available transport and storage capacities. To make use of infrastructure services, the 
suppliers must pay a cost, consisting of a base tariff plus a market-determined congestion rate, for 
each unit of capacity used. Suppliers and service operators maximize their expected discounted profit. 
Consumers are represented by downward-sloping affine inverse demand curves, which represent 
consumer surplus maximization. The information structure is a stochastic scenario tree, which is 
common to all agents in the market (see Figure 1). Figure 2 shows a stylized example of a resource 
market with the notation used in the model formulation below.  

 

s1

s2

s3

s5

s13

s9

s4

s12

s8

s7

s15

s11

s6

s14

s10

 
Figure 1. Scenario tree illustration 
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Figure 2. Value chain illustration with variable names (dual variables in parentheses) 

3.1 Model formulation 
Each market agent is represented by an expected profit maximization problem subject to operational 
and engineering constraints. The interaction between agents is governed by market clearing 
conditions. To allow determination of market equilibria, Karush-Kuhn-Tucker (KKT) conditions of 
all the suppliers and service operators are derived and combined with the market clearing conditions. 
This leads to an instance of an MCP.  

Table 1 introduces the notation used in the model formulation below. For a natural gas market model, 
typical units of measurements for volumes (rates) and capacities are millions of cubic meters per day 
(Mcm/d) or billion cubic feet per day (bcf/d). Operational costs and prices can be in USD per 
thousand cubic meters ($/kcm) or USD per 1000 cubic feet $/mcf). Expansion costs may be denoted 
in $/mcm/d or $/bcf/d. 
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Table 1: Notation used to formulate the resource model. 

 

Indices and Sets 
a A∈  Transportation arcs 

nA+ , nA−  Inward resp. outward arcs from node n 

d D∈  Demand seasons 
,i j I∈  Suppliers 

n N∈  Geographical location nodes 
s S∈  Scenario tree nodes 

( )pred s  Predecessors of scenario tree node2 
( )succ s  Successors of scenario tree node3 

w W∈  Seasonal storages 

nW  Storages at node n 
 

Parameters 

nsdA  Intercept of inverse demand curve at 
location n for scenario node s in season d 

nsdB  Slope of inverse demand curve 
A
asc  Base cost for transport, linear 

( )P
insc  Production cost, convex 

W
wsc  Base cost for usage of seasonal storage, 

linear 
A

asc∆  Arc expansions costs, linear 
P

insc∆  Production capacity expansion cost, 
linear 

W
wsc∆  Storage expansions costs, linear 

CV
insdδ  Conjectural variation value4 
A
as∆  Bound on arc expansion 
P
ins∆  Bound on production capacity expansion 
W
ws∆  Bound on storage capacity expansion 

sγ  Discount rate for scenario node 
A
al  Loss rate for transport 
W
wl  Loss rate for storage injections 

dL  (Relative) length of season 

an+  End node of arc 

an−  Start node of arc 

wn  Node where storage is located 
 

A

asQ  Initial arc capacity5 

P

insQ  
Initial production capacityError! Bookmark not 

defined. 
W

wsQ  
Initial capacity of seasonal storageError! 

Bookmark not defined. 

( )insdΠ  Supplier-specific price function 

( )nsdΠ  Inverse demand curve 

sθ  Probability of scenario tree node 
 

Variables (all nonnegative) 
A
as∆  Arc capacity expansion 
P
ins∆  Production capacity expansion 
W
ws∆  Storage capacity expansion 
A

asdf  Total allocated transport capacity, auxiliary6 

iasdf  Supplier transport capacity usage 
W
wsdi  Total alloc. storage injection capacity, aux. 

iwsdi  Supplier storage injection rate 
P
insdq  Supplier production rate 
S
insdq  Supplier sales rate 
W
wsdx  Total alloc. storage extraction capacity, aux. 

iwsdx  Supplier storage extraction rate 
 

Duals – nonnegative, unless indicated 
A

asdλ  Dual to arc capacity 
P

insdλ  Dual to production capacity 
W
wsλ  Dual to capacity of seasonal storage 
N
insdϕ ∈  Dual to nodal mass balance 
W
iwsϕ ∈  Dual to supplier storage cycle 

nsdπ ∈ Wholesale market price, auxiliary 
A

asρ∆  Dual to arc expansion limit 
P

insρ∆  Dual to production capacity expansion limit 
W

wsρ∆  Dual to expansion limit of seasonal storage 
A
asdτ  Transport arc usage charge, auxiliary 

                                                      

2 E.g., in Figure 1: ( ) { }13 1 3 6' , ,s pred s s s s∈ =  
3 E.g., in Figure 1: ( ) { }3 6 13' ,s succ s s s∈ =  
4 Value in the range 0 to 1; closer to 1 represents a higher level of market power. 
5 Subscript s allows including exogenous capacity expansions, e.g., known to come on stream in the future. 
6 Auxiliary variables are used when setting up the model, but will be substituted out before implementation.  
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3.1.1 Optimization problem of the supplier 
A supplier produces, transports, stores, and sells goods. Transportation and storage services are obtained 
from external providers. These service providers charge a minimum base fee equal to their marginal cost 
(all agents are price takers in the markets for infrastructure services), and an additional congestion charge 
whenever capacity is restrictive. All storage costs (and losses, if applicable) are accounted for at the 
moment the goods are added to storage (injections). Each supplier i  maximizes expected discounted 
profits Eq. (3.2.1) and is subject to production capacity constraints (3.2.2), production capacity expansion 
constraints (3.2.3), nodal mass balance constraints (3.2.4), and storage cycle constraints (3.2.5). Decision 
variables are production P

insdq , production capacity expansions P
insd∆ , transport shipments (flows) A

iasdf , 

storage injection iwsdi  and extraction rate iwsdx  and sales levels S
insdq  in all stages and seasons. Objective 

function (3.2.1) is a probability weighted ( sθ ) discounted ( sγ ) sum of revenues ( ) S
d insd insdL qπ , 

production costs ( )P P
d ndm insdL c q , transport costs A A

asd iasdfτ , storage costs W
wsd iwsdiτ , and capacity expansion 

costs P
ins insc∆ ∆ .7 The nodal mass balance constraint (3.2.4) states that production, storage extractions and 

inward flows must meet sales, storage injections, and outward flows. Storage cycle constraints (3.2.5) 
state that the sum of loss-corrected storage injections must cover extractions. This assumes that injections 
occur before extractions, but leaves flexibility in which season injections and extractions occur. 

( ) ( )
, , , ,
, ,

max
P
insd iwsd iwsd

S P
iasd insd ins nn

S P P
insd insd ins insd

P P
A Ws s d ins ins

q i x asd iasd wsd iwsdn s d
f q w Wa A

q c q
L cf iθ γ τ τ

+

∆

∆ ∈∈

  Π −
   − ∆  − −  

  

∑ ∑ ∑ ∑  (3.2.1) 

s.t.   
( )

'
'

PP P
insd insins

s pred s
q Q

∈

≤ + ∆∑  ( )P
insdλ  , ,n s d∀  (3.2.2) 

   P P
ins ins∆ ≤ ∆  ( )P

insρ ∆  ,n s∀  (3.2.3) 

 ( )1
n nn n

P A S
insd iwsd a iasd insd iwsd iasd

w W w Wa A a A

q x l f q i f
+ −∈ ∈∈ ∈

+ + − = + +∑ ∑ ∑ ∑  ( )N
insdϕ  , ,n s d∀  (3.2.4) 

                                                      

7 Note that the definition of the sales price function ( )insdΠ  implements the competitive behavior of the supplier. Having 

( )insd nsdπΠ =  implies perfectly competitive behavior, i.e., taking the market price as given. Incorporating the inverse 

demand curve ( ) S S
insd nsd insd nsd nsd insd

i i
q A B q Π = Π = − 

 
∑ ∑  represents oligopolistic behavior à la Cournot. 

Intermediate market power levels in hybrid market structures between perfectly competitive and oligopoly can be represented 

using conjectural variation values CV
insδ  in the following way:  ( ) ( )1CV S CV

insd insd nsd insd insd nsd
i

qδ δ π Π = Π + − 
 
∑ . 
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   ( )1 W
w d iwsd d iwsd

d d
l L i L x− =∑ ∑  ( )W

iwsϕ  ,w s∀  (3.2.5) 

3.1.2 Optimization problem of the transport system operator 
The transport system operator (TSO) manages and operates the network of transportation arcs by 
allocating transport capacity A

asdf  and expanding the network A
as∆ . The TSO’s objective is to maximize the 

expected value of the network, which is reflected by the probability-weighted, discounted congestion 
revenues minus operational and investment costs (3.2.6), subject to are capacity constraints (3.2.7) and 
restrictions to allowable expansions (3.2.8).  

 
( )

, ,
max

A A
asd as

A A A A A
s s d asd as asd as as

f a s d
L c f cθ γ τ ∆

∆

 − − ∆ 
 

∑ ∑  (3.2.6) 

s.t. 
( )

'
'

AA A
asd asas

s pred s
f Q

∈

≤ + ∆∑  ( )A
asdλ  , ,a s d∀  (3.2.7) 

 A A
as as∆ ≤ ∆  ( )A

asρ∆  ,a s∀  (3.2.8) 

3.1.3 Optimization problem of the storage system operator 
The Storage System Operator (SSO) manages and operates seasonal storage.8 The SSO rents out storage 
injection capacity W

wdsi to suppliers and expands storage capacity by W
ws∆ . The SSO’s objective is to 

maximize the discounted congestion revenues minus investment costs, subject to storage capacity 
constraints.9 All storage costs and losses are accounted for when goods are injected (added) to storage. 
Note that suppliers are responsible for the storage cycle balance, see Eq. (3.2.5) above. 

 
( )

, ,
max
W W
wsd ws

W W W W W
s s d wsd ws wsd ws ws

i w s d
L c i cθ γ τ ∆

∆

 − − ∆ 
 

∑ ∑  (3.2.9) 

s.t. ( )
( )

'
'

1
WW W W
wsw d wsd ws

d s pred s
l L i Q

∈

− ≤ + ∆∑ ∑  ( )W
wsλ  ,w s∀  (3.2.10) 

 W W
ws ws∆ ≤ ∆  ( )W

wsρ∆  ,w s∀  (3.2.11) 

3.2 Market clearing conditions 
Eq. (3.3.1) equilibrates allocated and used transport capacity between the TSO and the suppliers.  

  A
asd jasd

j
f f=∑  ( )A

asdτ  , ,a s d∀  (3.3.1) 

                                                      
8 The formulation given in this section can be too restrictive for other storage types, in particular for storages with more than one 
injection/extraction cycle per stage. 
9 We refrain from adding constraints on injection/extraction in this basic formulation. 
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Eq. (3.3.2) balances allocated and used storage injection capacity between the SSO and the suppliers.  

  W
wsd jwsd

j
i i= ∑  ( )W

wsdτ
 

, ,w s d∀  (3.3.2) 

The inverse demand curve, Eq. (3.3.3), is the relationship between market price and supplied quantities. 

  S
nsd nsd nsd jnsd

j
A B qπ = − ∑  ( )nsdπ  , ,n s d∀  (3.3.3) 

Note that all market clearing conditions are substituted out of the formulation in a later section, based on a 
result by Baltensperger et al. (2016). Details for this are provided in the Appendix. 

3.3 Formulation as a mixed complementarity problem 
MCPs can be used to determine equilibria in imperfect markets (Ferris & Pang (1997), Facchinei & Pang 
(2003)). Formally, for a given function : n nF →  , the MCP is to find a vector nx∈  such that: 

( ) 0
( ) 0
( ) 0

i i i

i i i i

i i i

x b F x
a x b F x

x a F x

= ⇒ ≤
 < < ⇒ =
 = ⇒ ≥

 

where a  and b  are lower and upper bound vectors, respectively, and 
{ }, , , , 1, 2, ,i i i ia b a b i n∈ −∞ +∞ < ∀ =   (Facchinei & Pang 2003). For the application at hand, the 

value of 0a =  and of b = ∞ ; the MCP reduces to 0 ( ) 0,i ix F x i≤ ⊥ ≥ ∀ , where the complementarity 
operator ⊥ indicates that the product ( ) 0,i ix F x i= ∀ . 

To transform a collection of optimization problems and market clearing conditions into an MCP, Karush-
Kuhn-Tucker (KKT) optimality conditions are derived for all the optimization problems. Each 
optimization problem can be brought into the form: 

 
min

( ) 0
( ) 0

 f(z)
s.t. g z

h z
≤
=

 

with : , : , :n n m n lf g h→ → →      , and 0 a zero-vector with appropriate dimensions. The 
corresponding KKT conditions are as follows.  

* * *
1 1

*

*

*

( ) ( ) ( ) 0

( ) 0, {1,...,m}

( ) 0, {1,..., l}
0, {1,...,m}

( ) 0, {1,...,m}

m l
j j k kj k

j

k

j

j j

f z g z h z

g z j

h z k
j

g z j

µ ν

µ

µ

= =
∇ + ∇ + ∇ =

≤ ∈

= ∈

≥ ∈

= ∈

∑ ∑
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By combining primal variables z , and dual variables µ  and ν  of all optimization problems, and all 
variables from the market clearing conditions in x , and by combining all KKT and market clearing 
conditions in ( )F x , the transformation to an MCP is completed.  

3.3.1 Complementarity conditions related to supplier decisions 
Appendix A to this Chapter contains the derivation steps, including details for the derivation of KKT 
conditions, and the substitution of variables and equations. Here, we present the resulting, final model. 

, , , :i n s d∀  
( )0 0

P P
ins insd

P
insd

dc qP P N
insd s s d insd insdq

q Lθ γ λ ϕ≤ ⊥ + − ≥  (3.5.1) 

, , :i n s∀  
( )

'
' ,

0 0P P P P
ins s s ins ins d ins

s succ s d
cθ γ λ ρ∆ ∆

∈

≤ ∆ ⊥ − + ≥∑    
(3.5.2) 

, , , :i a s d∀  ( )0 1 0
a a

A A A
iasd s s d as asd ain sd in sd

f L c lθ γ λ ϕ ϕ− +≤ ⊥ + + − − ≥ . (3.5.3) 

, , , : 0 0S S CV S N
insd s s d nsd nsd jnsd insd insd insd

j
i n s d q L A B q qθ γ δ ϕ

  
∀ ≤ ⊥ − − + + ≥     

∑  (3.5.4) 

( ) ( ), , , : 0 1 1 0W W W N W W
iwsd s s d ws w d ws insd w d insi w s d i L c l L l Lθ γ λ ϕ ϕ∀ ≤ ⊥ + − + − − ≥  (3.5.5) 

, , , :i w s d∀  0 0N W
iwsd insd d insx Lϕ ϕ≤ ⊥ − + ≥  (3.5.6) 

, , , :i n s d∀  
( )

'
'

0 0
PP P P

insd insd insins
s pred s

q Qλ
∈

≤ ⊥ − − ∆ ≥∑  (3.5.7) 

, , :i n s∀  0 0P P P
ins ins insρ∆≤ ⊥ ∆ −∆ ≥  (3.5.8) 

, , , :i n s d∀  ( ), 1 0
n nn n

N P A A S A
insd insd iwsd a iasd insd iwsd iasd

w W w Wa A a A

fis q x l f q i fϕ
+ −∈ ∈∈ ∈

+ + − − − − =∑ ∑ ∑ ∑  
(3.5.9) 

, , :i w s∀  ( ), 1W W
iws w d iwsd d iwsd

d d
fis l L i L xϕ − =∑ ∑  (3.5.10) 

3.3.2 Complementarity conditions related to TSO decisions 

, , :a s d∀  
( )

',
' ,

0 0A A A A
as s s as as d as

s succ s d
cθ γ λ ρ∆ ∆

∈

≤ ∆ ⊥ − + ≥∑
 

(3.5.11) 

, , :a s d∀  
( )

'
'

0 0
AA A

asd as jasdas
s pred s j

Q fλ
∈

≤ ⊥ + ∆ − ≥∑ ∑  
(3.5.12) 

, , :a s d∀  0 0A a a
as as asρ≤ ⊥ ∆ −∆ ≥  (3.5.13) 
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3.3.3 Complementarity conditions related to SSO decisions 

, :w s∀  ( )
'

'
0 0W W W W

ws s s ws ws ws
s succ s

cθ γ λ ρ∆ ∆

∈

≤ ∆ ⊥ − + ≥∑
 (3.5.14) 

, :w s∀  ( )
( )'

' ,
0 1 0

WW W W W
ws ws w d jwsdws

s pred s j d
Q l L iλ

∈

≤ ⊥ + ∆ − − ≥∑ ∑  
(3.5.15) 

, :w s∀  0 0W W W
ws ws wsρ∆≤ ⊥ ∆ −∆ ≥  (3.5.16) 

These sixteen KKT conditions are implemented in GAMS (Brooke et al. 1998), parameterized to represent 
a stylized natural gas market (details in Appendix C), and solved for equilibrium using the PATH solver 
(Dirkse & Ferris (1995), Ferris & Munson (2000)).  

4 An imperfect natural gas market 
In this section, we first demonstrate the effects of market power exertion by suppliers on the market 
outcomes, and next, we look into the impact of uncertainty on the decisions of the suppliers and service 
operators, and discuss the value of stochastic solution (VSS) to the various agents.  

4.1 Effects of market power 
To demonstrate the effects of market power, we introduce a model with three nodes, where each node is 
connected to both of the other nodes. This setting is symmetrical for all suppliers and consumers, and 
leads to symmetrical supply, consumption, and trade / pipeline usage. The symmetry allows a succinct 
presentation and discussion of the results because production and consumption in all three nodes are the 
same in an equilibrium, as are the flows in all six pipelines. 

We compare two market settings: in the first case, all suppliers behave in a perfectly competitive (PC) 
manner, while in the second case, they exert market power à la Cournot (MP). Here, we exclude 
uncertainty and seasonality and assume perfect foresight over all four stages of the simulations, such that 
the effects of market power can be assessed independently from the effects of uncertainty. 

a)  b)  

Figure 3: a) Daily production in each node, b) daily pipeline usage. Consumption levels are not shown as they 
correspond to production minus losses from transportation and storage, and hence, are similar to production 
levels. 

0
2
4
6
8

10
12

1 2 3 4

Vo
lu

m
e 

[M
cm

/d
]

Daily production per stage

MP

PC

0

0,5

1

1,5

2

2,5

1 2 3 4

Vo
lu

m
e 

[M
cm

/d
]

Pipeline usage per stage 

PC

MP



Baltensperger, Egging 2016. Stochastic modeling of imperfect markets in Stochastic Programming: Theory, Applications and Impacts. Nova. 

 

 

11 

 

 

 

Market-power exerting agents withhold supplies to drive up market prices. Figure 3a shows that 
production is significantly lower in the MP case in all stages. Compared to competitive suppliers, market-
power exerting suppliers have an incentive to supply lower amounts domestically (to drive up domestic 
prices), while diversifying supplies to other markets (see also Egging & Gabriel (2006) or Baltensperger et 
al. (2016)). This diversification is illustrated clearly in Figure 3b by the high pipeline usage in MP. In fact, 
in our symmetrical network, in the PC case suppliers only supply at their own node causing a welfare 
maximizing and cost-minimizing equilibrium outcome. Finally, in MP lower supply implies lower 
consumption, and thus higher prices (c.f., the inverse demand function, Footnote 7).  

4.2 Impact of uncertainty on market outcomes 
We extend the model with three interconnected nodes from above by allowing investment in storage 
capacity at node two and imposing uncertainty using the scenario tree in Figure 1. We assume all 
suppliers to behave à la Cournot. We represent uncertainty by varying the intercept of the inverse demand 
curve among the scenarios in future stages (see Table 3 in Appendix C). This adjusted setting is 
symmetrical for suppliers and consumers in nodes one and three, as well as the pipelines to and from 
nodes one and three to node two, which allows a succinct analysis and presentation of the results.  

We carry out two simulations: a deterministic benchmark problem considering the storage expansion 
option, and the full stochastic problem. In the deterministic problem all agents base their choice of actions 
on the assumption that the average scenario will happen with 100% certainty: the Expected Value problem 
(EV). In the stochastic problem, all agents consider all scenarios individually and maximize expected 
profits under the assumption that all scenarios are equally likely: the recourse problem (RP) (cf., (Birge & 
Louveaux 2011)).  

First, we analyze the impact of uncertainty on investment decisions. By assumption, production capacity 
expansions in each stage cannot be higher than four Mcm/d, and storage and pipeline expansions cannot 
be higher than two Mcm/d.  

 
Figure 4: Average capacity expansions by stage in production, storage, and pipeline capacities in EV and RP. 
Due to symmetry in the problem characteristics, several bars represent results for multiple indices.  

Figure 4 shows that the infrastructure expansions are generally higher in RP, most notably in production 
capacity. At nodes one and three, production capacity expansions (i1, i3) in the first stage are restricted to 
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four by the upper bound. Similarly, the first-stage expansions of storage w2 at node two, and of arcs from 
node two to nodes one (a21) and three (a23) are at the upper bound. Where upper bounds are not 
restrictive, the first-stage expansions in RP are slightly higher, indicating that the upward profitability 
potential, due to the uncertainty, more than outweighs the downward potential and that expected 
profitability warrants higher investment early on. That expansions of a21 and a23 are much higher than of 
the other arcs, indicates that the storage facility to be constructed at node two also affects the supply at the 
other nodes. In the second stage, the picture is mixed. Storage investment is lower in RP than in EV, 
whereas pipeline expansions vary. Furthermore, we observe that some storage and pipeline investments 
are delayed. The possibility for recourse, corrective decisions in later stages after some of the uncertainty 
has been resolved, results in third-stage investment in capacity in the stochastic problem in all capacity 
types. In contrast, only very small investment in storage will happen in EV. Here, we see a culmination of 
two effects. One the one hand, only infrastructures investments that are profitable in expectation are made. 
On the other hand, in later stages, the capacities are optimized considering fewer scenarios, which boosts 
the weight of profitable investments in the investment decision.  

Naturally, we should not draw hard conclusions based on such a small example. It illustrates, however, the 
combined impact of 1. Market power, which results in more trade and pipeline capacity expansions 
compared to perfect competition, and 2. The impact of uncertainty, which tends to favor higher capacity 
expansion in general to benefit from profitability opportunities while hedging upward and downward 
potential (the latter might be different for risk-averse agents). 

4.3 Value of stochastic solution 
The value of the stochastic solution (VSS) is a concept that shows the added value of considering 
uncertainty explicitly in optimization models (Birge & Louveaux 2011). To determine the VSS, we carry 
out additional simulations: we take the capacity expansions in each stage from the EV solution and fix the 
expansion values, and thereby, all capacities in the RP. The resulting model will not determine any new 
investment decisions, but only the optimal operational volumes (production, flow, and storage injection 
and extraction) in the stochastic setting given the now exogenous capacities. The result is referred to as the 
Expected outcome of the Expected Value (EV) problem: the EEV.  

Because we don’t have an optimization problem, but an equilibrium problem, the VSS definition does not 
translate directly to the multi-agent settings. Still, to give some insight in the impact of including 
uncertainty, we use the concept. Formally, the VSS is defined as the difference between the maximized 
objective value of the RP and the EEV (Birge and Louveaux, 1997): 

( )( )( ) ( )( )( ), ,
max , max , 0T T

x y x y
VSS a x z y x a x z y xυ υυ υ= Ε + −Ε + ≥ . 

Figure 5 shows that the VSS is positive for most agents, but not for one supplier and the storage operator, 
and is also positive when considering the total social welfare (SW, the aggregate of agent profits and 
consumer surpluses). As it turns out, the on average slightly lower storage investment in EV vs RP causes 
the "EV" storage capacity to be more restrictive when evaluated in the stochastic setting: the EEV results. 
This drives up congestion rents and hence profitability of storages. A result by (Birge & Louveaux 2011) 
shows that VSS has to be non-negative for optimization models. However, several authors have found 
negative VSS for some of the agents in multi-agent game theoretic problems such as the one discussed 
above (e.g., Zhuang & Gabriel (2008), Genc et al. (2007), and Egging (2010)). 
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Figure 5: VVS by agent and on aggregate.  

5 Conclusion 
This chapter introduces a stochastic model to analyze resource markets under uncertainty where suppliers 
may exert market powers towards consumers. We consider capacity investment in production, storage, 
and the transportation network in a multi-stage stochastic model. A stylized case study for a four-stage 
problem considering a natural gas market on a three-node network shows the combined impact of market 
power and uncertainty. In this stylized network, we observe how market power exertion leads to higher 
investment in the transportation network, and how uncertainty leads to higher capacity investment in 
general. Additionally, we show that in this multi-agent gaming setting, the value of the stochastic solution 
is negative for some of the agents. 

6 Model extensions 
The stochastic MCP introduced in this chapter contains the elements necessary to illustrate the merits of 
this modeling approach. Several functional extensions have been introduced in the literature, although 
most of them ignore uncertainty. Table 2 gives an overview of extensions that have been included by 
researchers in MCPs, with references. 
Table 2: Functional extensions to the introduced resource market model. 

Challenge Addressed in 
Case study – global gas market  Egging (2010), Egging (2013), Egging & Holz (2016)  
Daily variation Huppmann & Egging (2014)  
Decomposition – multiple fuels Siggerud (2014)  
Decomposition – single fuel Egging (2010), Egging (2013) 
Demand for energy services 
(rather than energy units) 

Egging & Huppmann (2012), Huppmann & Egging (2014) 

Investment budgets Egging, Pichler, Kalvo & Walle-Hansen (2016) 

Kirchhoff's laws in electricity 
markets 

Leuthold et al. (2012)  

Limitations in seasonal 
variation of infrastructure usage  

Implemented in an industry project for a major French utility in the period 2009-
2010 by coauthor Egging 
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Challenge Addressed in 
Multi-horizon uncertainty Tomasgard et al. (2016), Egging Su & Tomasgard (2016) 
Multi-level Kalashnikov et al. (2010), Huppmann & Holz (2012), Neumann et al. (2011) 
Multiple fuels Egging & Huppmann (2012), Huppmann & Egging (2014), Abrell & Weigt 

(2012) 
Resource / Reserve expansions Huppmann & Egging (2014); Egging Su Tomasgard (2016) 
Resource / Reserve limitations Egging et al. (2008) 
Risk aversion Chin & Siddiqui (2014), Cabero et al. (2010), Luna et al. (2016), Egging, Pichler, 

Kalvo & Walle-Hansen (2016), Abada et al. (2014)  
Supply contracts Egging et al. (2010), Cabero et al. (2010), Chin & Siddiqui (2014) 
Transformation  Egging & Huppmann (2012),  Huppmann & Egging (2014) 
Weymouth equations for 
pressure-flow in natural gas 

Midthun (2007) (not an MCP but the discussed linearization of the Weymouth 
equations does allow for inclusion.) 

7 Appendix A – Model derivation details 
7.1 Supplier problem - standard form 
To facilitate the derivation of Karush-Kuhn-Tucker (KKT) conditions, it is helpful to reformulate all 
maximization problems as minimization problems, and change all constraints to inequalities. In addition to 
the problem formulations presented in the main part of the chapter, inequality conditions and 
corresponding dual variables are added enforcing non-negativity for non-negative variables.  

The intermediate derivation step is shown here for completeness, but is typically skipped by more 
experienced developers, since all newly introduced inequalities and dual variables are substituted out of 
the formulation again in a later step10.  

 

( ) ( )

( ) ( ),
min n

n

P P A A
ins insd as asd iasd

a A P P
i s s d ins insW W S

n s d ws wsd iwsd insd insd
w W

c q c f
Z L c

c i q

τ

θ γ
τ

+∈ ∆

∈

  + +
   − = + ∆  

+ + −Π      

∑
∑ ∑

∑
 

(8.1.1) 

 

s.t. ( )
'

'
0

PP P
insd insins

s pred s
q Q

∈

− − ∆ ≤∑  ( )P
insdλ  , ,n s d∀  

(8.1.2) 

0P P
ins ins∆ −∆ ≤  ( )P

insρ∆  ,n s∀  
(8.1.3) 

( )1 0
n nn n

P A S
insd iwsd a iasd insd iwsd iasd

w W w Wa A a A

q x l f q i f
+ −∈ ∈∈ ∈

− − − − + + + =∑ ∑ ∑ ∑  ( )N
insdϕ  , ,n s d∀  

(8.1.4) 

                                                      
10 Concerning the supplier nodal mass balance equation Eq. (3.2.4) and storage cycle equation Eq. (3.2.5), there is no 
mathematical reason to change the '+' and '-' signs. However, starting from the perspective -SUPPLY + DEMAND ≤ 0 ensures 
that (i) the values of the free-in-sign duals will have a more intuitive interpretation, and (ii) when deriving the KKT-conditions in 
the following steps no adjustments are needed when implementing the model in GAMS (Brooke et al. 1998), and using the PATH 
solver (Dirkse & Ferris (1995), Ferris & Munson (2000)). The derivation, as presented here, ensures that the signs of the values in 
the Hessian matrix (of second order derivatives), which is used by the PATH solver, will be correct and consistent 
(www.gams.com/docs/pdf/path.pdf , http://pages.cs.wisc.edu/~ferris/path.html). 

http://www.gams.com/docs/pdf/path.pdf
http://pages.cs.wisc.edu/%7Eferris/path.html
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( )1 0W
w d iwsd d iwsd

d d
l L i L x− − + =∑ ∑  ( )W

iwsϕ  ,w s∀  
(8.1.5) 

0P
insdq− ≤  ( )1

insdψ  , ,n s d∀  
(8.1.6) 

0P
ins−∆ ≤  ( )2

insψ  ,n s∀  
(8.1.7) 

0iasdf− ≤  ( )3
iasdψ  , ,a s d∀  

(8.1.8) 

0S
insdq− ≤  ( )4

insdψ  , ,n s d∀  
(8.1.9) 

0iwsdi− ≤  ( )5
iwsdψ  , ,w s d∀  

(8.1.10) 

0iwsdx− ≤  ( )6
iwsdψ  , ,w s d∀  

(8.1.11) 

7.2 Lagrangian of the supplier problem 
The next intermediate step is the formulation of the Lagrangian. (Like the previous step, this step is also 
typically skipped by more experienced developers, but is shown here for illustrative purposes.) 

( )

( )

( )
( )

,

'
, , ' ,

n

n

P P A
ins insd asd iasd

a A P P
i s s d ins insW S

n s d wsd iwsd insd insd
w W

PP P P P P P
insd insd ins ins ins insins

n s d s pred s n s

N P
insd insd iwsd

w

c q f
L L c

i q

q Q

q x

τ
θ γ

τ

λ ρ

ϕ

+∈ ∆

∈

∆

∈

∈

  +
   = + ∆  

+ −Π  
   
 

+ − − ∆ + ∆ −∆  
 

+ − −

∑
∑ ∑

∑

∑ ∑ ∑

( )

( )

( ) ( ) ( )

( ) ( )

, ,

,

1 2 3

, , , , ,

4 5

, , , ,

1

1

n nn n

A S
a iasd insd iwsd iasd

n s d W w Wa A a A

W W
iws w d iwsd d iwsd

w s d d

P P
insd insd ins ins iasd iasd

n s d n s a s d

S
insd insd iwsd iwsd

n s d w s d

l f q i f

l L i L x

q f

q i

ϕ

ψ ψ ψ

ψ ψ

+ −∈∈ ∈

 
− − + + +  

 
 + − − + 
 

+ − + −∆ + −

+ − + − +

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ( )6

, ,
iwsd iwsd

w s d
xψ −∑

 (8.2.1) 

 

7.3 Supplier problem - partial derivatives 
Next, the partial derivatives of the Lagrangian of supplier i with respect to the original, non-auxiliary 
primal and dual variables are shown: 
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( ) 1
P P
ins insd P Ni

s s d insd insd insdP P
insd insd

dc qL L
q q

θ γ λ ϕ ψ∂
= + − −

∂
 , ,n s d∀  (8.3.1) 

( )

2
'

' ,

P P Pi
s s ins ins d ins insP

s succ s dins

L cθ γ λ ρ ψ∆ ∆

∈

∂
= − + −

∂∆ ∑  ,n s∀  (8.3.2) 

( ) 31
a a

A A N Ni
s s d asd a iasdin sd in sd

iasd

L L l
f

θ γ τ ϕ ϕ ψ− +

∂
= − − + −

∂
 , ,a s d∀  (8.3.3) 

( )( ) 4
S

insd insd Ni
s s d insd insdS S

insd insd

d qL L
q dq

θ γ ϕ ψ
Π∂

= − + −
∂

 , ,n s d∀  (8.3.4) 

( ) 51
w

W N W Wi
s s d wsd in sd w d iws iwsd

iwsd

L L l L
i

θ γ τ ϕ ϕ ψ∂
= + − − −

∂
 , ,w s d∀  (8.3.5) 

6
w

N Wi
in sd d iws iwsd

iwsd

L L
x

ϕ ϕ ψ∂
= − + −

∂
 , ,w s d∀  (8.3.6) 

( )

5PP Pi
insd inm insdinsP

pred sinsd

L q Q ψ
λ
∂

= − − ∆ −
∂ ∑  , ,n s d∀  (8.3.7) 

2P Pi
ins ins insP

ins

L ψ
ρ∆

∂
= ∆ −∆ −

∂
 ,n s∀  (8.3.8) 

( )1
n nn n

P A A S Ai
insd iwsd a iasd insd iwsd iasdN

w W w Wa A a Ainsd

L q x l f q i f
ϕ + −∈ ∈∈ ∈

∂
= − − − − + + +

∂ ∑ ∑ ∑ ∑  , ,n s d∀  (8.3.9) 

( )1 Wi
w d iwsd d iwsdW

d diwsd

L l L i L x
ϕ
∂

= − − +
∂ ∑ ∑  , ,w s d∀  (8.3.10) 

7.4 Karush Kuhn Tucker conditions  
Karush Kuhn Tucker conditions are derived by setting the partial derivatives Eqs. (8.3.1)-(8.3.10) equal to 
zero and eliminating the auxiliary variables , 1, 2,..,6i iψ = . We first present all KKT-conditions that 
follow from the optimization problems and market clearing conditions, before we show how several 
conditions can be eliminated to find an equivalent however more compact formulation. 

7.4.1 KKT conditions - suppliers 
The partial derivative of iZ  with respect to P

insdq , resulted in Eq. (8.3.1). We set Eq. (8.3.1) equal to zero 

and moved the auxiliary variable to the right-hand side to get the following equality:   
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( ) 1
P P
ins insd P

s s d insd insd insdP
insd

dc q
L

q
θ γ λ ϕ ψ+ − =  (8.4.1) 

For a KKT point, we have P
insdq  and 1

insdψ  complementarity to each other (ref. Eq.(8.1.6) and Section 3.3). 

We used this to eliminate 1
insdψ  and obtained the following:     

( ) 10 0
P P
ins insd P P

s s d insd insd insd insdP
insd

dc q
L q

q
θ γ λ ϕ ψ≤ + − = ⊥ − ≤  (8.4.2) 

Next, rewrite and reorder this to the following KKT condition:  

, , :n s d∀  
( )0 0

P P
ins insd

P
insd

dc qP P N
insd s s d insd insdq

q Lθ γ λ ϕ≤ ⊥ + − ≥  (8.4.3) 

In a similar way, we can derive the remaining KKT conditions for supplier i: 

, :n s∀   
( )

'
' ,

0 0P P P P
ins s s ins ins d ins

s succ s d
cθ γ λ ρ∆ ∆

∈

≤ ∆ ⊥ − + ≥∑    
(8.4.4) 

, , :a s d∀  ( )0 1 0
a a

A A
iasd s s d asd ain sd in sd

f L lθ γ τ ϕ ϕ− +≤ ⊥ + − − ≥  (8.4.5) 

The KKT condition reflecting the stationarity condition for sales quantities reads: 

, , :n s d∀  ( )0 0
S

insd insd
S
insd

d qS
insd s s d insddq

q Lθ γ ϕΠ≤ ⊥ − + ≥  (8.4.6) 

with ( ) ( )1CV S CV
insd insd nsd jnsd insd nsd

j
qδ δ π

 
Π = Π + − 

 
∑ , and S S

nsd jnsd nsd nsd jnsd
j j

q A B q
 

Π = − 
 
∑ ∑ (cf., 

Footnote 7), we have:  
( )( ) ( )1

S
insd insd

S
insd

d q CV S S CV
insd nsd nsd jnsd insd insd nsddq

j
A B q qδ δ π

Π   
= − + + −     

∑ . From 

Eq.(3.3.3), we know that S
nsd nsd nsd jnsd

j
A B qπ

 
= −  

 
∑ , hence: 
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S

nsd insd

S
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d q CV S S CV S
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Finally, we can state the KKT conditions for the sales quantities S
insdq as follows:11 

, , :n s d∀  0 0S S CV S N
insd s s d nsd nsd jnsd insd insd insd

j
q L A B q qθ γ δ ϕ

  
≤ ⊥ − − + + ≥     

∑  (8.4.7) 

The derivation of the remaining KKT conditions is straightforward: 

, , :w s d∀  ( )0 1 0W N W W
iwsd s s d wsd insd w d insi L l Lθ γ τ ϕ ϕ≤ ⊥ + − − ≥  (8.4.8) 

, , :w s d∀  0 0N W
iwsd insd d insx Lϕ ϕ≤ ⊥ − + ≥  (8.4.9) 

, , :n s d∀  
( )

'
'

0 0
PP P P

insd insd insins
s pred s

q Qλ
∈

≤ ⊥ − − ∆ ≥∑  (8.4.10) 

, :n s∀   0 0P P P
ins ins insρ∆≤ ⊥ ∆ −∆ ≥  (8.4.11) 

, , :n s d∀    ( ), 1 0
n nn n

N P A A S A
insd insd iwsd a iasd insd iwsd iasd

w W w Wa A a A

fis q x l f q i fϕ
+ −∈ ∈∈ ∈

+ + − − − − =∑ ∑ ∑ ∑  
(8.4.12) 

, :w s∀   ( ), 1W W
iws w d iwsd d iwsd

d d
fis l L i L xϕ − =∑ ∑  (8.4.13) 

7.4.2 KKT conditions – TSO 
The stationarity conditions for the TSO are derived similarly as above for the supplier: 

, , :a s d∀  ( )0 0A A A A
asd s s d asd as asdf L cθ γ τ λ≤ ⊥ − − + ≥  (8.4.14) 

, :a s∀  
( )

',
' ,

0 0A A A A
as s s as as d as

s succ s d
cθ γ λ ρ∆ ∆

∈

≤ ∆ ⊥ − + ≥∑  
(8.4.15) 

, , :a s d∀  
( )

'
'

0 0
AA A A

asd as asdas
s pred s

Q fλ
∈

≤ ⊥ + ∆ − ≥∑  (8.4.16) 

, :a s∀  0 0A a a
as as asρ≤ ⊥ ∆ −∆ ≥  (8.4.17) 

7.4.3 KKT conditions – SSO 
Except for the first equation below, Eq. (8.4.18) for storage capacity, the KKT conditions for the SSO are 
similar to the KKT conditions derived for the TSO. 

, , :w s d∀  ( ) ( )0 1 0W W W W W
wsd s s d wsd ws w d wsi L c l Lθ γ τ λ≤ ⊥ − − + − ≥  (8.4.18) 

                                                      

11 Note that for positive sales, we have: CV S
insd nsd insd nsd insdB qϕ π δ= − , which illustrates the effect of the conjectural variation. 
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, :w s∀  
( )

'
'

0 0W W W W
ws s s ws ws ws

s succ s
cθ γ λ ρ∆ ∆

∈

≤ ∆ ⊥ − + ≥∑  (8.4.19) 

, :w s∀   
( )

( )'
' ,

0 1 0
WW W W W

ws ws w d jwsdws
s pred s j d

Q l L iλ
∈

≤ ⊥ + ∆ − − ≥∑ ∑  
(8.4.20) 

, :w s∀  0 0W W W
ws ws wsρ∆≤ ⊥ ∆ −∆ ≥  (8.4.21) 

7.5 Reduction of model equations and variables 
We aim to reduce the number of variables and equations to simplify notation and maintenance of the 
model by applying the findings of Baltensperger et al. (2016). First, we substitute A

asdf  with jasd
j

f∑ , and 

W
wsdi  with jwsd

j
i∑ in our formulation, since these terms are equivalent at all times – this follows directly 

from the market clearing conditions Eqs. (3.3.1) and (3.3.2). After this substitution, the market clearing 
conditions are redundant. The adjusted KKT conditions Eqs. (3.5.12) and (3.5.15) can be interpreted as a 
feasible region of one player which is affected by decisions of other players. This means that we now have 
a Generalized Nash Problem (GNP). However, because the model was set up as a Nash problem, and 
these substitutions are only made to the system of equations after deriving the KKT, the system still 
represents the original Nash problem. Additionally, Midthun (2007) shows that if a common constraint is 
valued the same by all agents, the solution of the GNP solved as an MCP is unique. Since the same dual 
variable / congestion price applies to all agents (namely A

asdλ  and W
wsλ ), we have the common valuation in 

place.  

Second, we eliminate the conditions associated with A
asdf  and W

wsdi : Eqs. (8.4.14) and (8.4.18). We can 

differentiate two cases for condition (8.4.14): if 0A
asdf > , we obtain 

A
asd

s s d

T A
asd as Lc λ

θ γτ = + ; if 0A
asdf = , then 

A
asd

s s d

T A
asd as Lc λ

θ γτ ≤ + . Hence, by setting 
A
asd

s s d

T A
asd as Lc λ

θ γτ = + , the model obtains an unambiguous solution for 

non-operating services ( 0A
asdf = ). Eq. (8.4.5) now reads 

  ( ) ( )0 1 0
A
asd

s s d a a

A A
iasd s s d as aL in sd in sd

f L c lλ
θ γθ γ ϕ ϕ− +≤ ⊥ + + − − ≥ , (8.5.1) 

which can be reformulated to 

  ( )0 1 0
a a

A A A
iasd s s d as asd ain sd in sd

f L c lθ γ λ ϕ ϕ− +≤ ⊥ + + − − ≥ . (8.5.2) 

Following the same argument, we set ( )1 W W
w ws

s s

lW W
wsd wsc

λ

θ γτ
−

= + , and reformulate Eq. (8.4.8) as follows: 

, , :w s d∀  ( ) ( )1
0 1 0

W W
w ws

s s

lW N W W
iwsd s s d ws insd w d insi L c l L

λ

θ γθ γ ϕ ϕ
− ≤ ⊥ + + − − ≥ 

 
 (8.5.3) 
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, , :w s d∀  ( ) ( )0 1 1 0W W W N W W
iwsd s s d ws w d ws insd w d insi L c l L l Lθ γ λ ϕ ϕ≤ ⊥ + − + − − ≥  (8.5.4) 

This concludes the derivation of the KKT conditions, and the elimination of the redundant equations to 
arrive at a compact model formulation. This formulation is the basis for the implementation in GAMS. 

8 Appendix B – GAMS code 
We will make the GAMS code of the model available online. Add reference before final submission. 

9 Appendix C – Input data 
Values for the model parameterization are chosen for illustrative purposes. In the main text units of 
measurement have been added to improve readability.  

The discount rate sγ is 20% per stage for all agents. 

Supplier data 

Production and investment cost are the same for all suppliers (cf., Table 3).  
Table 3: Supplier data. 

 All stages 
 All suppliers 
Constant per unit cost 1.0 
Linear per unit cost term 0.5 
Initial capacity 6 
Maximum expansion 4 
Expansion cost per unit 2 

Network data 

All six transportation arcs have an initial capacity of 1 unit / day. The (regulated) basic fee for usage is $ 1 
per unit transported, and the loss rate is 10%. Expansion costs are 1 per unit for each arc, and the 
maximum expansion is 2 units per stage. 
Demand data 

The inverse demand curve varies by node in the scenario tree. Specifically, the value of the intercepts are 
chosen differently as illustrated in Table 4. 
Table 4: Inverse demand curve data. 

 Stage 1 stage 2 stage 3 stage 4 
 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 
intercept 20 24 20 28 24 24 20 32 30 28 26 26 24 22 20 
Slope -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Seasonality and storage 

Three seasons exist: Low, High, and Peak demand. L, H, and P account for 50%, 30%, and 20% of the 
year and have relative to average loads of 70%, 110%, and 160%, respectively.  (50%x70% + 30%x110% 
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+ 20% x 160% = 100%) The load values are used as multiplication factors of the intercepts presented in 
Table 4 to find the intercepts of the inverse demand curves in all seasons in all scenario nodes.) 

Storage is present at node two but initially without capacity. Maximum expansion is 2 units per stage. 
Investment costs are 1.6 per unit. Injection costs are 2 per unit and the injection loss rate is 5%. 

10 Appendix D – Detailed Results 
This will automatically be part of the GAMS code that will be made available online. 
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