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Abstract 

The structural and electronic response of LaAlO3 to biaxial strain in the (111) plane is studied by density 

functional theory (DFT) and compared to strain in the (001) plane and isostatic strain. For (111)-strain, 

in-plane rotations are stabilized by compressive strain and out-of-plane rotations by tensile strain. This 

is an opposite splitting of the modes compared to (001)-strain. Furthermore, for compressive (111)-

strain in-plane rotations are degenerate with respect to rotation axis, giving rise to Goldstone-like 

modes. We rationalize these changes in octahedral rotations by analyzing the VA/VB polyhedral volume 

ratios.  Finally, we investigate how strain affects the calculated band gap, and find a 28 % difference 

between the strain planes under 4 % tension. This effect is attributed to different A-site dodecahedral 

crystal field splitting for (001)- and (111)-strain.  
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I. INTRODUCTION 

A central trait of the perovskite oxides is their strong structure – property coupling. From a thin film 

point-of-view this opens the possibility to tune and modify the properties by epitaxial strain. Examples 

include induced room temperature ferroelectricity in SrTiO3, which is non-polar in bulk,1 induced metal 

insulator transitions in manganites,2 enhanced Curie temperature and polarization in BaTiO3,3 

increased superconducting critical temperature in La2-xSrxCuO4,4 as well as induced multiferroicity in 

SrMnO3.5 This makes strain a valuable tool not only for applications, but also for understanding the 

physics of perovskite oxides.  

Particularly interesting is the strain response of the corner-sharing BO6 octahedra, which is essential 

to the physical properties of perovskite materials. In general, strain in perovskites can be 

accommodated by either changes in B-O bond lengths, rotations of the oxygen octahedra or by the 

formation of dislocations or point defects.6 In bulk materials octahedral rotations reduce the size of 

the A-site dodecahedron, thereby mitigating the size mismatch between A and B cations when the 

Goldschmidt tolerance factor is below unity.7 Generally it has been shown that compressive strain in 

the (001)-plane increases the rotations around the out-of-plane axis, and reduces rotations around in-

plane directions, while for tensile strain in the (001)-plane the rotations around in-plane directions 

increases.7-10 It has further been shown that these effects can be tuned by changing the out-of-plane 

lattice parameter through strain doping by light noble elements such as He.11 

Recent advances in thin film technology have opened up for high quality epitaxial growth along other 

crystallographic facets, such as [111].12 The (111)-interface is interesting because of its buckled 

honeycomb lattice can result in exotic topological states,13 strong magnetic reconstructions due to a 

reduced interlayer distance,14 and strong octahedral coupling as compared to the (001)-interface.15 

The pseudocubic rotation axes of the oxygen octahedra are neither parallel nor perpendicular to the 

strain plane for (111)-oriented strain, which is the case for (001)-oriented strain (Fig. 1 a-b), expected 

to affect the strain relaxation mechanism. Strain engineering based on the (111)-plane is however less 

studied compared to strain applied in the (001)-plane. The studies that do exist have e.g. shown 

experimentally that (111)-strain preserves the bulk rhombohedral symmetry of BiFeO3, where (111)-

strain gave a single domain polar phase, while (001)- and (110)-strain resulted in monoclinic phases.16  

Density functional theory (DFT) studies of BaTiO3 and PbTiO3 have shown that the effect on the electric 

polarization depends strongly on whether the strain is in the (001)- or the (111)-plane.17 (111)-strain 

in SrTiO3 was further found to be viable route to tailor the electronic band gap for optoelectronic 

devices.18 While, recently it was shown experimentally that strained LaNiO3(111) can result in a polar 

metal.19 Still, as the octahedral rotations are essential for the properties of many perovskites, there is, 
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to the best of our knowledge, no systematic study of how octahedral rotations behave when strained 

in the (111)-plane as compared to the (001)-plane.  

 

In this work DFT is used to study how the octahedral rotations are affected by biaxial strain in the (111)-

plane and compared to (001)-strain. To this extent LaAlO3 (LAO) is chosen as model system as bulk LAO 

only exhibit rotational distortions with no Jahn-Teller or ferroelectric instabilities. The choice is further 

motivated by the findings of a quasi 2-dimensional electron gas at the (001)-interface between LAO 

and SrTiO3,
20 which has later been extended to also include the (111)-interface.21 The octahedral 

response of LAO to (001)-strain is well established.9,10 For strain in the (001)-plane, even small values 

of strain changes symmetry away from bulk 𝑅3#𝑐 which has octahedral rotations around the [111] axis. 

Compressive strain results in 𝐼4/𝑚𝑐𝑚 symmetry with rotations around the [001]	out-of-plane axis, 

and tensile strain in 𝐼𝑚𝑚𝑎 with rotations around the [110] in-plane axis.9,10 We show that strain along 

the (111) facet results in different crystallographic phases with different octahedral rotation patterns 

as compared to (001)-strain, where the in-plane rotations are stabilized by compressive strain, while 

out-of-plane rotations are stabilized by tensile strain. Furthermore, any combination of the two 

stabilized orthogonal in-plane rotations for (111)-strain are degenerate, giving rise to Goldstone-like 

modes. The choice of strain plane also affects the orbital splitting, and in LAO this manifests as 

significant changes to the band gap. The paper is structured as follows: In section II the calculation 

details are given. Section III discusses the different crystalline phases that are stable for different values 

of strain, followed by section IV where we discuss how the octahedral rotations depend on strain and 

compare it to the calculated polyhedral volume ratio. Finally, in section V the effect of strain plane on 

crystal field splitting of the orbital energies and the electronic band gap is discussed.   

II. COMPUTATIONAL DETAILS 

The calculations were performed with the projected augmented wave (PAW) method22,23 as 

implemented in the Vienna Ab-initio Simulation package (VASP).23,24 All relaxations were done with the 

Perdew-Burke-Ernzerhof generalized gradient approximation for solids (PBE-sol) functional, which has 

been shown to give better results than the standard PBE for structural relaxations.25  The PAW-

potentials with electron configurations 4𝑠²4𝑝⁶5𝑑¹6𝑠², 3𝑠73𝑝8 and 2𝑠²2𝑝⁴ were used for the La, Al 

and O respectively, while the plane wave cut off was set to 550 and 800 eV for (001) and (111)-strain 

respectively. The GGA+U (Dudarev et al.26) with U=10 eV was applied to the La f-states, in order to 

move them away from the bottom of the conduction band,10,27 this assumption was later confirmed 

by the hybrid functional calculations, which were done with the HSE-sol functional.28 



 4 

To simulate the effect of epitaxial strain, the in-plane lattice parameters were locked, while the out-

of-plane lattice parameter was allowed to relax. We define (001)-strain and (111)-strain as strain in the 

(001)-plane and (111)-plane, respectively. Strain is calculated as 𝜖∥ = (𝑎 − 𝑎@)/𝑎@ where 𝑎	is the 

enforced in plane lattice parameter, and 𝑎@ is equilibrium PBE-sol lattice parameter along the [100] 

and [010], or [11#0] and [101#] pseudocubic directions depending on strain plane, see Fig. 1 c) and d). 

Quadratic strain was assumed for all calculations.  Constant volume calculations were used to calculate 

the effects of hydrostatic pressure. The internal coordinates of the ions and the out-of-plane lattice 

parameter were relaxed until the forces on the ions were below 10 and 1 meV/f.u for (001)- and (111)-

strain respectively. We allowed less strict convergence for (001)-strain as our calculations were in 

excellent agreement with the results from Hatt and Spaldin.9 The calculations for strain in (001)-plane 

were done with a 40 atom 2 × 2 × 2 supercell (Fig. 1c) to allow for all types of octahedral rotations, in 

this structure lattice vectors a, b and c are along the [100], [010] and [001] pseudocubic directions 

respectively. While for the calculations for strain in the (111)-plane and for the calculations with 

constant volume were done with a 30 atom √2 × √2 × 2√3		supercell (Fig. 1d), where a, b and c lattice 

vectors are along the [11#0], [101#] and [111] pseudocubic directions respectively. For the 40 atom 

2 × 2 × 2 supercell a 4 × 4 × 4 k-point Γ-centered mesh was used to sample the Brillouin zone, while 

for the 30 atom √2 × √2 × 2√3		supercell, a  6 × 6 × 3 Γ-centered k-point mesh was used. Phonon 

calculations were performed utilizing the frozen phonon approach29 and analyzed with the phonopy 

software.30 The phonon calculations were performed with 2 × 2 × 2	supercells of the ideal 5 atom 

perovskite structure; 𝑃𝑚3#𝑚	symmetry for the unstrained cells, and 𝑃4/𝑚𝑚𝑚 and 𝑅3#𝑚 for (001)- and 

(111)-strain, respectively. These cells were relaxed until the energy difference between subsequent 

ionic steps were lower than 10FG eV. The determination of space groups where done with the 

FINDSYM software with a tolerance of 0.005 Å.31  

Rotations angles 𝛼, 𝛽 and 𝛾 about the pseudocubic axes 𝑥, 𝑦 and 𝑧 respectively, are defined as shown 

in Fig. 1 a and b). For (001)-strain, the 𝑥 and 𝑦 directions are in the strain plane, while 𝑧 is out-of-plane, 

while for (111)-strain none of the directions are perpendicular or parallel to the strain plane. All 

crystallographic directions are given in the pseudocubic setting unless otherwise stated.  

III. STRUCTURAL PHASES 

LAO has 𝑅3#𝑐 symmetry which deviates from the aristotype cubic 𝑃𝑚3#𝑚 perovskite with anti-phase 

rotations around one of the pseudocubic 〈111〉-axes ([111], [111#], [11#1], or [1#11]), which can be 

described in the Glazer tilt system as 𝑎F𝑎F𝑎F.32 The equilibrium structure based on our calculations 

has lattice parameters of a = 5.384 Å (pseudocubic 3.807 Å), c = 13.146 Å (pseudocubic 3.795 Å) in the 

hexagonal setting, and has rotations of the oxygen octahedra around the [111] axis of 4.75°, all in good 
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agreement with litterature.33 Hydrostatic pressure results in a decrease of the rotation angle, and for 

compressive isostatic strain of more than 2 %, the cubic 𝑃𝑚3#𝑚  phase is lower in energy than 𝑅3#𝑐. 

This is also in good agreement with experiments on bulk LAO where the rotation angles decrease with 

increasing hydrostatic pressure until a phase transition to cubic 𝑃𝑚3#𝑚 occurs at 14 GPa.34 This 

hydrostatic pressure corresponds to a compression of all lattice parameters of about 2 %, in good 

agreement with our calculated isostatic strain at the phase transition. 

To investigate the effect of strain on lattice distortions the phonon frequencies were calculated for 

cubic LAO under both (001)- and (111)-strain, focusing on the unstable modes with imaginary 

frequencies. For 0 % strain, three degenerate lattice instabilities were found at the R-point of the 5-

atom 𝑃𝑚3#𝑚 cell. These instabilities correspond to anti-phase rotations, as expected since LAO bulk 

displays an 𝑎F𝑎F𝑎F tilt pattern.  As illustrated in Fig. 2, when the structure is strained either in the 

(001)- or the (111)-pane, these rotational modes are split into orthogonal in-plane and out-of-plane 

modes. Figure 3 shows how the strain affects the phonon frequencies. As expected, compressive (001)-

strain favors rotations around the [001] out-of-plane axis, while tensile strain favors rotations around 

the in-plane [100] and [010] axes, as seen in Fig. 3 a).  Further, as shown in in Fig. 3b), (111)-strain 

splits the three degenerate modes at 0 % strain into out-of-plane [111]-rotations and in-plane [11#0] 

and [112#] rotations. However, we note that the splitting of in-plane and out-of-plane rotations is 

opposite with respect to (001)-strain. Under compressive (111)-strain in-plane rotations are favored, 

while for tensile (111)-strain out-of-plane rotations are favored. 

To identify which possible space groups are stable under applied strain, the effect of freezing in 

different rotational modes is investigated. For (001)-strain, this results in a tetragonal 𝐼4/

𝑚𝑐𝑚	symmetry for the out-of-plane mode with rotations around	[001], while the in-plane [100] and 

[010] rotations stabilized by tensile (001)-strain both result in an orthorhombic 𝐹𝑚𝑚𝑚 symmetry, 

while a superposition with equal amount of [100] and [010] rotations gives an Imma symmetry. For 

the out-of-plane [111]-rotations stabilized by tensile (111)-strain we find a rhombohedral 𝑅3#𝑐 

symmetry, similar to bulk LAO. While the rotations around the in-plane [11#0] and [112#] axes yield 

monoclinic 𝐶2/𝑚 and 𝐶2/𝑐 symmetry, respectively, an arbitrary combination of rotations about the 

[11#0] and [112#]  axes results in 𝑃1#  symmetry. 

From this we calculate the phase diagram as a function of (001)- and (111)-strain. The results are shown 

in Fig. 4. For (001)-strain, the results reported by Hatt and Spaldin are reproduced.9 For compressive 

(001)-strain the tetragonal 𝐼4/𝑚𝑐𝑚, with rotations around the [001] axis, Glazer tilt pattern 𝑎@𝑎@𝑐F, 

has the lowest energy, while for tensile strain the tetragonal	𝐼𝑚𝑚𝑎 structure, with tilt pattern 𝑎F𝑎F𝑐@, 

has the lowest energy. For small levels of (001)-strain (±0.25 %) LAO accommodates a monoclinic 
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𝐶2/𝑐 structure. This 𝐶2/𝑐 structure is similar to the 𝑅3#𝑐 space group but has tilt pattern 𝑎F𝑎F𝑐F 

instead of 𝑎F𝑎F𝑎F , as the out-of-plane lattice parameter is no longer equal to the in-plane lattice 

parameter and any perturbation from the unstrained system has to change the symmetry. However, 

as the deviation from the 𝑅3#𝑐	space group is small within the limited strain window where this 𝐶2/𝑐 

structure is stable, we will label it as 𝑅3#𝑐	for the rest of this paper. For (111)-strain, as shown in Fig. 4 

b), tensile strain preserves the bulk 𝑅3#𝑐	symmetry. In this case the rotation axes of the octahedra are 

now always perpendicular to the strain plane, i.e. the four 〈111〉-axes are no longer degenerate. Also 

in accordance with the phonon calculations, for compressive (111)-strain the three different 

monoclinic phases (𝐶2/𝑚, 𝐶2/𝑐 and 𝑃1# ) are degenerate. The energy differences between these three 

phases are calculated to be less than 0.1 meV/formula unit (f.u.). Also, these three monoclinic phases 

are lower in energy than the bulk 𝑅3#𝑐	phase for all compressive strain values considered.  The 

structural parameters from the different phases for representative values of strain are shown in Table 

I.  

Another difference between (001)- and (111)-strained LAO is the difference in out-of-plane lattice 

parameter response as shown in Fig. 5. Epitaxial thin films generally compensate for tensile 

(compressive) strain by reducing (increasing) the out-of-plane lattice parameter. We quantify this by 

estimating the Poissons ratio, and LAO strained in the (001)-plane have a significantly larger Poissons 

ratio, 0.265-0.305, as compared to LAO strained in the (111)-plane, 0.178-0.195. This value for (001)-

strain is closer to the experimental bulk value of 0.26.35 Hence, strain in the (001)-plane is more prone 

to preserve the volume.  

As shown in Fig. 3, the two in-plane modes have degenerate phonon frequencies, indicating that the 

2nd order terms in a harmonic approximation are equal.36 However, the 4th order terms does not need 

to be equal, which in turn could make certain in-plane rotation axes favored. Hence, to investigate if 

there are favored in-plane directions for the rotations, the two in-plane modes are simultaneously 

frozen to identify possible combinations giving an energy lowering.  Figure 6 depicts the energy 

landscape from such calculations of the degenerate modes for 1 % tensile (001)-strain and 1 % 

compressive (111)-strain. For tensile (001)-strain it is found that the global minimum is for an equal 

amount of [100]- and [010]-rotations, resulting in a tetragonal 𝐼𝑚𝑚𝑎 structure with rotations around 

[110] (Fig. 6c). In contrast, no single global minimum for combinations of [11#0] and [112#	]	rotations 

is found under compressive (111)-strain. Instead, a circle of continuous minima is obtained, resulting 

in a Mexican hat shaped energy surface. Any arbitrary point along the circle corresponds to the space 

group 𝑃1#, which is a subgroup of both 𝐶2/𝑐 and 𝐶2/𝑚. We note such a circular energy landscape as 

under (111)-compression is compatible with Goldstone-like modes.37 While such modes are common 

in isotropic materials, few experimentally observations are available for anisotropic crystals, with one 
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exception being superconducting Cd2Re2O7.38 Goldstone-like modes have been proposed to occur in 

carefully engineered ferroelectric Ruddlesden-Popper phases from DFT calculations.39 Further we note 

that under quadratic (111)-strain there is only 30° between symmetry equivalent axes of the 

orthogonal rotations (〈11#0〉 and 〈112#〉), while for (001)-strain these axes (〈100〉 and 〈010〉) are 

separated by 90°. Hence, it is possible that the underlying energy landscape is not a perfect circle, but 

instead a regular dodecagon where the energy differences between possible local minima and maxima 

are less than 0.1 meV/f.u., lower than the resolution of the DFT-calculations.  

From a thin film perspective, by relying on compressive (111)-strain, there is no apparent driving force 

for domain formation, e.g. it should be possible to synthesize compressively (111)-strained structurally 

monodomain LAO thin films. However, the choice of substrate could lift this degeneracy, either 

through imprinting the rotation pattern of the substrate, or through non-quadratic strain from e.g. an 

orthorhombic substrate. 

IV. OCTAHEDRAL ROTATIONS AND POLYHEDRAL VOLUME RATIO 

We now turn to how the strain is mitigated through octahedral rotations in the different phases by 

comparing the rotations projected on the pseudocubic axes. Figure 7 shows how the strain affects the 

rotations for the different symmetries as a function of (001)- and (111)-strain. For the (001)-strain, in 

Fig. 7 a), the tilt pattern switches from the bulk 𝑎F𝑎F𝑎F tilt pattern to 𝑎@𝑎@𝑐F for compressive strain, 

and to 𝑎F𝑎F𝑐@ outside the small window (±0.25	%) where the 𝑎F𝑎F𝑎F tilt is stable. We further 

confirm that the rotation amplitudes of the respective phase behaves approximately linear for 

increasing absolute value of strain, as reported by Hatt and Spaldin.9 However, for (111)-strain, in Fig. 

7 b-d) a different trend is observed. For tensile strain in the (111)-plane, which preserves the 𝑅3#𝑐 

symmetry, the rotations around the pseudocubic axes are almost constant at 2.65° each, 

corresponding closely to the bulk rotation value around the [111] axis of 4.75°. The small changes in 

the rotation angles can be attributed to the fact that none of the pseudocubic directions are 

perpendicular or parallel to the strain plane, effectively locking the rotations with (111)-strain. For 

compressive strain in the (111)-plane we find that as the rhombohedral symmetry is lifted, the crystal 

has larger possibilities to accommodate the strain through octahedral rotations. As seen in Fig. 7 b) 

and c), the 𝐶2/𝑚, 𝐶2/𝑐 structures have rotation patterns 𝑎F𝑎F𝑐@ and 𝑎F𝑎F𝑐F, corresponding to 

rotations around the in-plane [11#0] and [112#] axes, respectively (note that for the rotations around 

[112#]  in Fig. 7 c) the 𝛼 and 𝛽 rotations are ∼	half the 𝛾 rotations) .  The evolution of the pseudocubic 

rotation angles for of one of the arbitrary combinations of in-plane [11#0] and [112#] rotation with 𝑃1#  

symmetry is depicted in Fig 7 d), where this illustrated specific combination of rotations has an 𝑎F𝑏F𝑐F 

tilt pattern. Even though the rotation patterns are different, their response to strain is similar in the 
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sense that the largest rotation for all three tilt patterns is about 3° for -0.25 % (111)-strain and 

decreases to about 2° for -4 % strain. 

To better understand the anisotropic effects of strain a comparison to calculations with isostatic strain 

emulating hydrostatic pressure is performed, the results are shown in Fig. 7e). For the degenerate LAO 

phases, the rotation amplitude decreases monotonically with increasing compressive strain, Fig. 7 b-

d). This is qualitatively similar the response to hydrostatic pressure,34 and is attributed to the higher 

compressibility of the Al3+ octahedra than the La3+ dodecahedra, as is commonly found for III-III 

perovskites.40 We note that even though the rotation amplitudes are reduced for (111)-compression, 

a possible phase without any rotations such as 𝑅3#𝑚	or 𝑃𝑚3#𝑚 is never obtained for the range of strain 

range considered here This is in contrast with the response of hydrostatic pressure, Fig. 7 e), resulting 

in a 𝑃𝑚3#𝑚 phase for compressive strain larger than 2%.  

In order to better quantify how strain distorts the crystal we have calculated the polyhedral volume 

ratio 𝑉Y/𝑉Z, the volume of the A-site dodecahedron divided by the volume of the B-site octahedron. 

The ratio VA/VB is equal to 5.0 for the cubic structure without octahedral tilt, and the deviation from 

5.0 is proportional to the degree of structural distortion.41,42 The polyhedral volume ratio as a function 

of strain in the (001)- and (111)-planes is shown in Fig. 8, as well as how it changes for isostatic strain. 

For (001)- and (111)-strain, Fig. 8 a-b), a clear trend is seen that the phase with the most distorted 

crystal structure, the lowest VA/VB, also has the lowest energy. This trend is different from what is 

observed when the polyhedral volume ratio is studied experimentally as a function of temperature or 

pressure, for which the different space groups have different ranges of 𝑉Y/𝑉Z for where the different 

distortions are stable, giving rise to steps in the 𝑉Y/𝑉Z ratio.41,43 The reason why (001)-strain favors 

out-of-plane rotations under compression and in-plane rotations under tension, while it is opposite for 

(111)-strain, can now be explained as the structure minimizing the 𝑉Y/𝑉Z ratio. Considering that while 

the stacking sequence in the perovskite structure along the [001]-direction is 𝐴𝑂 → 𝐵𝑂7 → 𝐴𝑂 →

𝐵𝑂7 → ⋯	, along the [111]-direction it is	𝐴𝑂` → 𝐵 → 𝐴𝑂` → 𝐵 → ⋯. Hence, to optimize the 

coordination of the small A-cation under (111)-strain without increasing the  𝑉Y/𝑉Z ratio, the oxygen 

atoms are pushed up and down by the in-plane octahedral rotations under compressive strain. Under 

(111)-tensile strain there is a possibility to move in the strain plane, as illustrated by the black arrows 

in Fig. 2b). This differs from the situation under (001)-strain where the oxygen movements are in the 

same directions as the compression when the 𝑉Y/𝑉Z ratio is minimized. Finally we note that the 𝑅3#𝑐 

structure has a similar response to (111)-strain and hydrostatic pressure, see Fig. 8 b) and c). I.e. tensile 

strain in the (111) plane of perovskites gives the same distortions as under negative isostatic pressure, 

which is not easily accessible by experiments. 
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It is now possible to rationalize the increased energy cost for straining in the (111)-plane as compared 

to (001)-strain. The total energy as a function of strain, see Fig. 4, can be fitted to the equation	𝐸 =

𝐴𝜖∥7 + 𝐵𝜖∥ + 𝐶, where 	𝜖∥ is the in-plane strain and 𝐴, 𝐵 and 𝐶 are the fitting parameters. For (111)-

strain we find that 𝐴888 ≈ 	16 meV/%7-f.u.  while for (001) 𝐴@@8 ≈ 	12 meV/%7-f.u. is obtained. This 

can be understood by considering the fact that when strain is applied in the (001) plane, the structure 

can more easily compensate for changes in strain by rotating the oxygen octahedra as compared to 

strain in the (111)-plane, as the oxygen movements are in the same directions as the structure is 

compressed. This effect is also observed when taking into account the larger Poissons ratio for (001)-

strain, meaning that (001)-strain has smaller changes in volume for increasing compressive or tensile 

strain. 

V. ORBITAL SPLITTING AND BAND GAP 

Having established how (001)- and (111)-strain affects the symmetry and octahedral rotations of LAO  

we turn to how strain affects the electronic properties. The band gap in LAO is between the occupied 

O2p states in the valence band and empty La5d states in the conduction band27 (see supplementary info 

for the projected density of states of the hybrid functional calculations). It is known that the different 

strain planes affects the crystal field splitting of 𝑑-states. As shown for dodecahedral sites in Fig. 9, the 

cubic distortion from (001)-strain, splits both the top 𝑡7e  and the bottom 𝑒e levels, while the trigonal 

distortion from (111)-strain only splits the top 𝑡7e  states44 (for illustration of the dodecahedrally 

coordinated d states see supplementary information). This change in crystal field splitting does indeed 

affect the electronic properties. In Fig. 10 the PBE-sol band gap is plotted vs strain in the (001)- and 

(111)-plane, and compared to the results for isostatic strain. As seen, the band gap for (001)-strain is 

decreasing for both tensile and compressive strain, while for (111)-strain the band gap is decreasing 

for compressive strain and increasing for tensile strain, similar to the effect of hydrostatic pressure. 

Since the trend is opposite for tensile (001)- and (111)-strain, LAO has a significant different band gap 

for different strain planes, ∼ 0.8 eV at 4% tensile strain, corresponding to a change of 28 %. There is 

also a slight difference in band gap between the degenerate monoclinic phases, where 𝐶2/𝑐	has the 

highest band gap followed by 𝑃1#  and 𝐶2/𝑚. However, these differences are below 0.1 eV for 0.25 % 

compressive strain, and are further reduced for increasing compressive strain, due to all the rotation 

angles being reduced; thus the structures becoming more and more similar.  

The difference between (001)- and (111)-strain, as well as the reason why (111)-strain behaves as if 

under hydrostatic pressure can be understood by considering the orbital splitting differences between 

(001)- and (111)-strain. Under strain in the (001)- and (111)-plane the 5𝑑 states of the 12 coordinated 

La are split as shown in Fig. 9. As the (111)-strain only splits the top orbitals in the top of the conduction 
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band, the changes observed in the band gap are dominated by changes in interatomic distances, similar 

to what is seen for hydrostatic pressure. For (001)-strain the effect of change in interatomic distances 

is also present, but it is superimposed on the stronger effect of splitting of the 𝑒e orbitals; thus the 

band gap is reduced also for tensile (001)-strain, however less compared to compressive (001)-strain. 

This is all summarized in schematic density of states (DOS) shown in Fig. 11. A difference in calculated 

band gap between (001)- and (111)-strain were also reported for SrTiO3. However, for SrTiO3 the effect 

were attributed to suppression of ferroic distortions18 instead of different orbital splitting as we show 

here. 

VI. CONCLUSIONS 

Epitaxial strain in the (001)- and (111)-plane is non-equivalent. (001)-strain is known to favor 

tetragonal phases with out-of-plane rotations for compressive strain and in-plane rotations for tensile 

strain. As we have shown, this trend is opposite for LAO under (111)-strain where compressive strain 

favors in-plane rotations and tensile strain favors out-of-plane rotations. Further, we have shown that 

the in-plane rotation directions for (111)-strain are degenerate giving rise to Goldstone-like modes.  

The fact that strain in the (111)-plane can result in degenerate LAO phases having different octahedral 

tilt patterns has implications for other rhombohedral materials systems where the functional 

properties is strongly coupled to the octahedral rotations, such as (La,Sr)MnO3.45 Due to the different 

orbital splitting from (001)- and (111)-strain, the band gap of LAO depends on the strain plane, giving 

a change in PBE-sol band gap of 28 % for 4 % tensile strain depending on the strain plane. This 

significant difference in band gap needs be taken into account when designing functional [111] 

oriented superlattices based on effects such as charge transfer. Hence epitaxial (111)-oriented thin 

films is an exciting avenue for tailoring systems with different octahedral responses, and opens up new 

ways to tailor band gaps e.g. for optoelectronic devices.  
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Tables 

TABLE I, summary of the calculated structural parameters of different phases at representative values 
of strain. The rotations are given in the Glazer tilt notation.32 Note that the labels 𝑎, 𝑏	and 𝑐 are here 
the conventional lattice parameters of the given space groups, not the pseudocubic lattice parameters. 
Further, 𝛼, 𝛽 and 𝛾 are here the conventional cell angles, not the rotations of the oxygen octahedral 
around the different pseudocubic axes. 

 Rotat-
ions Strain 𝑎 

[Å] 
𝑏 

[Å] 
𝑐 

[Å] 
𝛼 
[°] 

𝛽 
[°] 

𝛾 
[°] 

Wyckoff 
pos. 𝑥 𝑦 𝑧 

𝑅3#𝑐 𝑎F𝑎F𝑎F Unstrained 5.385 5.385 13.146 90 90 120 La (6a) 0 0 0.25 

         Al (6b) 0 0 0 

         O (18e) 0.4760 0 0.25 

 𝐼4/𝑚𝑐𝑚 𝑎@𝑎@𝑐F -1 % (001) 5.325 5.325 7.677 90 90 90 La (4b) 0 0.5 0.25 

         Al (4c) 0 0 0 

         O (8h) 0.2709 0.7709 0 

         O (4a) 0 0 0.25 

	𝐼𝑚𝑚𝑎 𝑎F𝑎F𝑐@ +1 % (001) 7.544 5.433 5.433 90 90 90 La (4b) 0 0.25 0.74996 

         Al (4c) 0.25 0.25 0.25 

         O (8f) 0.2333 0 0 

         O (4e) 0 0.25 0.2829 

𝐶2/𝑚 𝑎F𝑎F𝑐@ -1 % (111) 9.235 5.332 5.380 90 124.905 90 La (4i) 0.7496 0 0.7494 

         Al (2b) 0 0.5 0 

         Al (2c) 0 0 0.5 

         O (8j) -0.0138 0.2502 0.7361 

         O (4i) 0.2500 0 0.7774 

𝐶2/𝑐 𝑎F𝑎F𝑐F -1 % (111) 9.235 5.332 7.574 90 144.375 90 La (4e) 0 0.0003 0.25 

         Al (4b) 0 0.5 0 

         O (8f) 0.7651 0.2349 0.7736 

         O (4e) 0 0.5166 0.25 

𝑃1# 𝑎F𝑏F𝑐F -1 % (111) 5.332 5.332 5.380 90 119.707 120 La (2i) -0.0005 0.2496 0.2498 

         Al (1f) 0.5 0 0.5 

         Al (1e) 0.5 0.5 0 

         O (2i) 0.4697 0.2285 0.2284 

         O (2i) -0.0001 0.2549 0.7247 

         O (2i) 0.4798 0.7338 0.2460 

𝑅3#𝑐 𝑎F𝑎F𝑎F +1 % (111) 5.439 5.439 13.086 90 90 120 La (6a) 0 0 0.25 

         Al (6b) 0 0 0 

         O (18e) 0.5299 0 0.25 

𝑃𝑚3#𝑚 𝑎@𝑎@𝑎@ 
-2 % 

isostatic 3.7272 3.7272 3.7272 90 90 90 La (1b) 0.5 0.5 0.5 

         Al (1a) 0 0 0 
         O (3d) 0.5 0 0 
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Figures 

 

FIG 1, a) and b) show the definition of the rotation axes for (001)- and (111)-strain respectively. For 
(001)-strain the 𝑥- and 𝑦-axes are parallel to the strain plane, while the 𝑧-axis is perpendicular to the 
strain plane. For (111)-strain, neither the 𝑥-, 𝑦-, or 𝑧-axes are parallel or perpendicular to the strain 
plane. Note that under the assumption of quadratic strain, the assignment of 𝑥, 𝑦	and 𝑧	 for (111) -
train is arbitrary. c) The 40-atom cell used for (001)-strain calculations.  d) The 30-atom unit cell used 
for (111)-strain calculations. For the cells in c) and d) the a-b plane spans the (001) and (111) 
pseudocubic planes respectively. For quadratic strain we have 𝑎 = 𝑏, which are the locked in-plane 
lattice parameters, while 𝑐 is the free to relax out-of-plane lattice parameter and 𝑎hi denotes the 
pseudocubic lattice parameter. 
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FIG 2, illustration of the in-plane and out-of-plane rotational modes under a) (001)-strain and b) (111)-
strain. For (001)-strain, [100]	and [010] are in-plane while [001] is out-of-plane. For (111)-strain [11#0] 
and [112#] are in-plane, while [111] is out-of-plane. 
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FIG 3, phonon frequencies for the different rotational modes as a function a) (001)-strain and b) (111)-
strain. Illustrations of the different rotational modes are shown in Fig. 2. The dashed lines are guides 
to they eye.  
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FIG 4, energy vs strain for the different phases. a) (001)-strain, b) (111)-strain. The solid lines 
correspond to fits to parabolic functions as described in the text. The data points correspond to the 
strain values where the respective phases were stable under geometry optimization. 
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FIG 5, out-of-plane vs in-plane strain for the (001)- and (111)-plane. The different Poisson’s ratios 𝜈 are 
calculated from the linear fits to the data. For (001)-strain the 0-percent strain point is from another 
space group, and hence is not included in any of the fitted lines. For tensile (111)-strain, the different 
degenerate phases relaxes to the same out-of-plane lattice parameter, thus the they have the same 𝜈. 
 

  



 19 

 

FIG 6, energy difference with respect to the global minimum as a function of mode amplitude for the 
in-plane rotational modes. a) 1 % tensile (001)-strain where the [100] in-plane rotation mode with 
𝐹𝑚𝑚𝑚 symmetry is frozen in (the [010] mode is degenerate for all amplitudes). b) 1 % compressive 
(111)-strain where the [11#0] phonon mode with symmetry 𝐶2/𝑚 is frozen in. (the [112#]-mode with 
𝐶2/𝑐 symmetry is degenerate for all amplitudes). c) Logarithmic energy difference for 1 % tensile 
(001)-strain when both the degenerate in-plane rotational modes, [100] and [010], are frozen in 
simultaneously. A global energy minimum is observed for a single point with equal amplitude of [100]- 
and [010]-rotations, giving 𝐼𝑚𝑚𝑎 symmetry. d) Logarithmic energy difference for 1 % compressive 
(111)-strain when both the degenerate in-plane rotational modes [11#0] and[112#], are frozen in 
simultaneously. The global energy minimum is no longer a single point but a circle with constant mode 
amplitude resembling a Mexican hat potential. For c) and d), each pixel represents the energy from 
one calculation, the black lines are contour plots of the energy landscape while the arrows show the 
relationship to other high symmetry directions. 
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FIG 7, a) pseudocubic octahedral rotation angles vs (001)-strain, b-d) (111)-strain. e) isostatic strain. 
𝛼, 𝛽 and 𝛾 are defined in Fig. 1. The colors and labels represent which space group has the lowest 
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energy in this strain range. b-d) shows the response for the three different space groups which are 
degenerate under compressive strain in the (111)-direction, note that the response is equal for tensile 
strain. For the 𝑃1#	symmetry in d) one arbitrary combination of [11#0]- and [112#]-rotation is shown. 
The dashed lines are guides to the eye. 
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FIG 8, polyhedral volume ratio as function of strain. a) (001)-strain, b) (111)-strain, c) isostatic strain. 
The colors and labels represents which space groups has the lowest energy in this strain range. 
𝑉Y/𝑉Z = 5 for the un-rotated cubic phase, and then decreases from this value as the distortions are 
increased. The dashed lines are guides to the eye. 
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FIG 9, splitting of d-states of dodecahedral coordinated sites for (001)- and (111)-strain. Note that 𝑒e 
and 𝑡7e	levels are reversed for dodecahedral sites compared to octahedral sites. The trigonal distortion 
from (111)-strain splits the 𝑡7e  levels into 𝑎8e and 𝑒e′ which are superpositions of the 𝑑lm, 𝑑mn	and 𝑑ln  
states.44   
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FIG 10, PBE-sol band gap of the different structures as a function of different strain. The colors and 
labels corresponds to which space groups are stable for (111)-strain in the given strain range. For (001)-
strain there is a change in symmetry at 0 % strain, while for isostatic strain there is a change in 
symmetry at -2 % strain.  For the 𝑃1#	symmetry we have selected the same arbitrary combination of 
[11#0]- and [112#]-rotation as in Fig. 7 d).  The dashed lines are guides to the eye. 
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FIG 11, Schematic density of states showing the splitting of the La5d states under (001)-, isostatic- and 
(111)-strain. It is further shown how the splitting are related to the changes in band gap when LAO is 
strained. 


