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ARTICLE INFO ABSTRACT

Article history: Epithelial to mesenchymal transition (EMT) has implications in tumor progression and metastasis.
Received 10 November 2016 Metabolic alterations have been described in cancer development but studies focused on the metabolic
Received in revised form re-wiring that takes place during EMT are still limited. We performed metabolomics profiling of a breast
?\c“él:;tc:dzlei/larch 2017 epithelial cell line and its EMT derived mesenchymal phenotype to create genome-scale metabolic

models descriptive of both cell lines. Glycolysis and OXPHOS were higher in the epithelial phenotype
while amino acid anaplerosis and fatty acid oxidation fueled the mesenchymal phenotype. Through

'E(E%V ords: comparative bioinformatics analysis, PPAR-y1, PPAR- y2 and AP-1 were found to be the most influential
Metabolism transcription factors associated with metabolic re-wiring. In silico gene essentiality analysis predicts that

Genome scale models the LAT1 neutral amino acid transporter is essential for mesenchymal cell survival. Our results define
Breast cancer metabolic traits that distinguish an EMT derived mesenchymal cell line from its epithelial progenitor and
may have implications in cancer progression and metastasis. Furthermore, the tools presented here can
aid in identifying critical metabolic nodes that may serve as therapeutic targets aiming to prevent EMT

and inhibit metastatic dissemination.
© 2017 The Author(s). Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction and change their phenotype to mesenchymal-like cells. EMT is a

fundamental process in embryonic development allowing cells to

Epithelial to mesenchymal transition (EMT) is a process where detach from the newly formed epithelium and migrate to other

cells of epithelial origin lose their polarity and cell—cell adhesion parts of the developing embryo [1,2]. Once they have reached their

destination, these epithelial-derived mesenchymal cells revert to

their original phenotype via mesenchymal to epithelial transition
(MET) and take part in establishing new tissues and organs.
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is believed to be an important initiating step in tumor metastasis
[3]. EMT also acts in tumor progression by providing increased
resistance to apoptotic agents [4], and by producing supporting
tissues that enhance the malignancy of the central tumor [5]. As
such, EMT confers on epithelial cells precisely the set of traits that
would empower them to disseminate from primary tumors and
seed metastases [6].

Metabolic alterations have been shown to play a role in deter-
mining cellular phenotypes. For example, knock-down of fructose-
1,6-bisphosphatase has been shown to induce EMT in basal-like
breast cancer cells [7], while knockdown of ATP citrate lyase has
been shown to revert the EMT phenotype in non-small cell lung
carcinoma cells [8]. Mutations or epigenetic changes that cause
accumulation of certain metabolites have also been shown to
induce EMT [9]. While these findings show that metabolic alter-
ations are important for induction and maintenance of a mesen-
chymal phenotype; studies of the global metabolic changes that
occur during EMT are still limited.

Genome scale metabolic models (GEMs) provide descriptions
of metabolic phenotypes that can be queried computationally
through constraint-based modeling [10]. The building of GEMs and
their application to the analysis of metabolism of diverse biological
processes is well established [11]. EMT metabolism has so far
mainly been investigated through more targeted cell- and molec-
ular biology based approaches. Previous efforts show that systems
based analysis, in particular constraint based modeling methods,
may provide important insights into EMT metabolism [9,12,13].

Here, we describe the metabolic phenotype of the immortal-
ized, breast epithelial cell line, D492. We compare the metabolic
phenotype of D492 to that of its mesenchymal “daughter” cell line,
D492M. D492M cells were isolated after a spontaneous EMT event
in D492 cells in 3D co-culture with endothelial cells [14]. Although
neither of these cell lines are tumorigenic in an in vivo setting, they
provide an interesting model system to investigate EMT without
the need for external stimulation or genetic manipulation. Ultra
performance liquid chromatography Mass Spectrometry (UPLC-
MS) on spent media was used to quantify uptake and secretion of
43 selected metabolites. These data, coupled with microarray and
RNA sequencing expression profiles, were used to build GEMs
descriptive of metabolism in the two cell lines. We validated the
computationally proposed metabolic phenotypes through enzy-
matic assays of intracellular ATP, NADH, and glutathione levels
together with mitochondrial functionality assays. The GEMs were
then used to predict enzymatic reactions and pathways of impor-
tance for the metabolic re-programming that occurs during EMT.
Some of these reactions, in particular the large neutral amino acid
transporter LAT1, appear important for cancer remission following
breast cancer treatment. The results represent the construction of
the first curated GEMs descriptive of metabolism pre- and post
EMT. As such they serve as tools for future investigation of EMT
metabolism. Furthermore, the results highlight how GEMs can be
applied to the integrated analysis of polyomics data and propose
metabolic biomarkers of importance for EMT and metastasis.

Materials and methods
Cell culture

D492 and D492M cells were cultured on collagen coated surfaces or in recon-
stituted basement membrane (Matrigel, Corning) in H14 serum-free medium as
previously described [14] at 37 °C, 5% CO,. H14 is a fully defined medium consisting
of a DMEM/F12 base with 250 ng/ml insulin, 10 mg/ml transferrin, 2.6 ng/ml sodium
selenite, 10719 M estradiol, 1.4 x 10~ M hydrocortisone, 5 mg/ml prolactin and
10 ng/ml EGE. Proliferation and ATP concentration was measured with a CellTiter
Glo™ assay (Promega). Cell volume was calculated based on diameter measure-
ments obtained from a Countess cell counting instrument (Invitrogen). For UPLC-
MS, cells were seeded in triplicates into 24-well plates in 400 uL H14 medium at
15,000 cells/cm?. Media was collected from cultures after 24 and 48 h along with

cell-free controls, centrifuged to remove cellular debris and stored at —80 °C until
further analysis.

Cell profiling

Total RNA sequence profiles were obtained for D492 and D492M as outlined in
supplementary methods (Additional file 2). Microarray expression profiles of D492
and D492M cells were obtained from [ 14]. Medium metabolites were measured using
an established metabolomics pipeline. Both the metabolite isolation procedure and
metabolomic pipeline analysis were adapted from Paglia et al., 2014 [ 15]. The methods
are explained in SI Materials and Methods. To account for differences in cell weight and
growth rate, the measured metabolite concentrations were normalized to cell weight
and growth rates as previously described [16]. Seahorse XFe-96 metabolic extracel-
lular flux analyzer (Seahorse Biosciences) was used to measure the oxygen con-
sumption rate (OCR) and the extracellular acidification rate (ECAR). See SI Materials
and methods for details. Intracellular NAD"/NADH and GSH/GSSG were assayed with
respective Glo™ kits from Promega. Additional glucose and lactate measurements
were performed in an ABL 90 blood gas analyzer (Radiometer, Brenshgj, Denmark).

Generation of a breast tissue specific metabolic model

RNA-seq data from the D492 and D492M cells were used to create a breast tissue
specific model from the human metabolic reconstruction RECON2 [17] as follows. All
genes with expression values exceeding a fixed cut-off value in either the D492 or
D492M data sets that were also present in RECON2 were identified. The gene-
protein-reaction rules (GPRs) of RECON2 were then used to identify the associated
metabolic reactions and the FASTCORE model building algorithm [ 18] used to build a
functional metabolic network from the list of reactions. The resulting network,
referred to as the EMT model, was manually curated in order to ensure that no major
pathways and metabolites were missing. Details of the model construction are
provided in SI Materials and methods.

Construction and analysis of the D492 and D492M GEMs

The EMT model was used to create models of the epithelial D492 cells and
mesenchymal D492M cells. Random sampling was first used to estimate flux ranges
of all the reactions in the EMT model. While the RNA-seq data had considerably
more coverage, it lacked the necessary replicates. Therefore, the microarray
expression data was used to constrain the EMT model to simulate the effects of up
and downregulated genes on reaction flux. This gave rise to models EPI (epithelial)
and MES (mesenchymal) once metabolomics constraints had been applied. The two
models generated in this manner therefore had the same stoichiometry but different
constraints on reaction fluxes as defined by differential expression of metabolic
genes and extracellular metabolomics measurements. Deriving the two models
from a common model was done because the D492M cells initially arose from D492
cells and this facilitated both model curation and subsequent model comparisons.
See SI Material and methods for details.

Analysis of the EPI and MES models

We used flux balance analysis (FBA) [19,20] and the generic biomass reaction
present in RECON2 to predict the maximum growth rates of the EPI and MES models.
Random sampling [21] was used to compare the two. An optimization algorithm was
used to identify targets for transforming the epithelial phenotype into the mesen-
chymal phenotype and vice-versa. The algorithm works by relaxing flux bounds for
reactions in one model in order to obtain a flux distribution that is as close as
possible to the flux distribution in the other [13]. The genes corresponding to these
reactions were identified via the GPRs and the associated transcription factors then
located in SABiosciences' proprietary database (http://www.sabiosciences.com/
chipgpcrsearch). Gene essentiality analysis was performed on the EPI and MES
models by simulating single gene knockouts with FBA.

Results

D492M cells show reduced size and growth rate compared to D492
cells

In order to accurately calculate metabolic uptake and secretion
rates morphological parameters including cell size and weight, and
proliferation rates were established. In 2D culture, D492 cells display
the typical cobblestone morphology of epithelial cells while D492M
cells have acquired the spindle-like phenotype of mesenchymal
cells, characterized by multiple membrane protrusions (Fig. 1A, top
row). In 3D culture, D492 cells form organized, branching structures
while D492M form colonies that have lost polarity and cell—cell
contact (Fig. 1A, bottom row). Growth rate measurements in 2D
indicated population doubling times of 25 h for D492 cells and


http://www.sabiosciences.com/chipqpcrsearch
http://www.sabiosciences.com/chipqpcrsearch

S. Halldorsson et al. / Cancer Letters 396 (2017) 117—129 119

3D

D492 (Epithelial) D492M (Mesenchymal)
Proliferation rate (h) 0,028 0,022
Dry weight (ng/cell) 1 0,53
Volume (pL/cell) 1,7 1,4

Fig. 1. Phenotypic characteristics of D492 and D492M cells (A) D492 cells (top left) have the typical almond morphology of epithelial cells when grown on culture plastic. When
cultured in rBM/matrigel, D492 form branching lobular-like structures reminiscent of terminal duct lobular unit in vivo (bottom left). In contrast, D492M cells form clusters of
disorganized mesenchymal like cells (bottom right). When isolated and re-grown on tissue culture plastic, these cells retain a mesenchymal phenotype (top right). Bar = 100 pm.

(B) Measured growth rates, dry weight and volume of D492 and D492M cells.

roughly 32 h for D492M cells, corresponding to growth rates of
0.028 h~! and 0.022 h™ L. We subsequently calculated the volume
and measured the dry-weight of D492 and D492M cells. D492 cells
are larger than D492M cells with an average volume of 1700 fL
compared to 1400 fL of D492M cells. Dry weights were measured at
1 ng and 0.53 ng, respectively (Fig. 1B). In summary, D492 and
D492M are isogenic cell lines with epithelial and mesenchymal
phenotypes, respectively. D492M show reduced size, mass and
proliferation rate compared to the parental D492 cell line.

Extracellular metabolomics changes are indicative of differences in
metabolism in D492 following EMT

In order to distinguish between the metabolic phenotypes
associated with D492 and D492M we carried out metabolic analysis
of spent media after 48 h of cell culture. Targeted metabolomic
analysis of a total of 43 metabolites in the growth medium afforded
quantitative consumption rates of 7 compounds in central carbon
metabolism, 23 amino acids or derivatives thereof, 6 nucleotide
derivatives, 5 vitamins and 2 choline derivatives. Metabolite uptake
of D492 epithelial cells was generally higher than that of D492M
mesenchymal cells, consistent with their increased proliferation
rate (SI Fig. 1).

During growth the two cell lines consumed and secreted
metabolites reflecting their nutritional requirements and active
metabolic pathways. D492 cells had higher glucose consumption and
lactate secretion rates, as compared to D492M cells. The calculated

glucose to lactate ratio of D492 cells was 1.48 mol of lactate per mole
glucose but only 0.8 mol of lactate per mole glucose in D492M cells,
suggestive of altered utilization of carbons originating from glucose.

Apart from glucose and lactate, the most prominent differences
were observed in the amino acids glutamine, threonine, lysine,
arginine, cystine, and (iso)-leucine (Fig. 2). While the altered pro-
files of these amino acids may reflect demand due to protein syn-
thesis, catabolism of amino acids also serves to fuel flux through the
TCA cycle. We therefore hypothesized that anaplerosis of amino
acids may contribute differently to TCA cycle flux between the two
cell lines. To explore this further, we turned to genome scale
metabolic modeling.

D492 and D492M metabolism captured in GEMs

In order to obtain a holistic description of D492 and D492M
metabolism, we built GEMs of both phenotypes based on the
generic human metabolic reconstruction RECON2 [17] using the
measured metabolite uptake and secretion rates and tran-
scriptomic data (Fig. 3A). The number of overlapping genes be-
tween the RNA-seq data set and RECON2 was 1284 but 338
additional genes were needed in order to make a functional
model representing both cell lines, referred to as the EMT metabolic
model (Fig. 3B). Cell specific models were obtained by mapping
microarray expression data to the EMT model. Based on the
selected cut-off value, a total of 74 genes were under-represented in
the D492M expression data and 65 in the D492 expression data.



120 S. Halldorsson et al. / Cancer Letters 396 (2017) 117—129

Glucose ABL
Glutamine
Lysine 1
Threonine -
Arginine
Lactate ABL

!
f

-400 2200

(=]

200 400
umol/gDW/hour

[=2]
o
o

5-oxoproline -
Cystine 5

(Iso)leucine 1
Histidine -

Valine

Asparagine 1
Phenylalanine -
Hypoxanthine 5
Tryptophan

Alanine 1
4-methyl-2-oxopentanoate
Glutamate
N,N-Dimethylglycine -

w

W

N
A

o
N
(3]

pumol/gDW/hour

Pantothenate -
Methionine
Aspartate 1
Taurine
Riboflavin -
Nicotinamide 4
Inosine
Folate -
Carnitine
Adenosine
Adenine -
Xanthine
Choline
Fumarate 1
Uridine 1
Proline 1
Malate 4
Succinate

(=
o

||1| rrl"J]Tﬁﬁilh

o
(3]
-
o

pmol/gDW/hour
o492 llpa92m

Fig. 2. Metabolite uptake and secretion rates in D492 and D492M cells. Mean metabolite uptake and secretion rates presented as umol per grams dry-weight per hour were
calculated as described in [16] based on the UPLC-MS results, ABL90 measurements, growth rates and dry-weight calculations. Uptake rates are represented as negative values,
secretion as positive values. D492 cells represented with blue bars, D492M cells represented with red bars. Bars represent mean values of 3 biological replicates of each phenotype
and 3 control samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

After restricting the corresponding fluxes and applying constraints
based on measured cell specific uptake and secretion rates, we
obtained the functional EPI and MES models. Comparison between
RECON2 and the EMT model is provided in Fig. 3C.

Altered mitochondrial activity and validation of predicted
differences in energy metabolism

In order to validate whether the computational models were
descriptive of D492 and D492M cell growth, we compared the
predicted maximum growth rates of the EPI and MES models ob-
tained with FBA to the measured growth rates of the cells (Fig. 1b).
The ratio between the growth rates of the EPI and MES models is
1.4, which is in agreement with the measured growth rates ratio of
1.3 between D492 and D492M cells. The predicted growth rates

were not expected to match the experimental values quantitatively
since the biomass function is not necessarily representative of
breast epithelial cells [22] and maximizing biomass may not be the
“true” cellular objective of the D492 and D492M cells.

The difference in predicted growth rates between the EPI and
MES models was traced to decreased activity of cardiolipin syn-
thase in MES model. A demand for mitochondrial ATP was added
to the EPI and MES models and FBA was used to estimate the
maximum ATP generation. According to these estimates, maximal
mitochondrial ATP production is 4.4 times higher in the EPI
model than in the MES model. Mitochondrial staining of D492 and
D492M did not reveal apparent differences in overall mitochondrial
abundance (Fig. 4a). This was further confirmed with flow cytom-
etry (data not shown). The D492 cells show a strong perinuclear
mitochondrial staining while D492M cells show mitochondria
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Fig. 3. EMT Model reconstruction: (A) An overview of the model reconstruction. Gene expression data and mass spectrometry data for epithelial (D492) and mesenchymal
(D492M) cells was combined with the human metabolic reconstruction (RECON2) to make a metabolic model of EMT. The EMT model was further constrained with differential
expression from microarray data and mass spectrometry data to afford two genome scale models descriptive of metabolism in D492 and D492M. (B) Details of the model
reconstruction. RECON2 was combined with an RNA-seq dataset containing 36,450 unique transcripts, of which 18,334 were protein coding. Transcripts with expression values
above a given cut-off value in either cell were included, leaving 1617 genes of which 1284 were present in RECON2. Microarray expression data was then used to define differentially
expressed genes between D492 and D492M cells. The fluxes in the EMT model were then constrained using this information together with cell specific metabolomics data to
generate phenotype specific models referred to as the EPI and MES models. The arcs in blue and red represent the number of genes over-represented in the microarray dataset for
D492 and D492M respectively. (C) Overlap of reactions, metabolites and subsystems between the generic RECON2 model and the EMT model. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

placement within the cytosol indicative of mesenchymal front-rear
polarity. These data suggest altered mitochondrial function in D492
vs. D492M as opposed to a quantitative effect. Differences in energy
metabolism were further confirmed through measurements of the
glycolytic vs. oxidative phosphorylation contribution to ATP gen-
eration. Both glycolytic and oxidative phosphorylation activity was
increased in D492 cells as compared to D492M cells (Fig. 4b).
Furthermore, these data showed that D492 cells have higher spare
capacity to perform oxidative phosphorylation as compared to the
D492M cells (Fig. 4c) and corroborate the metabolic phenotypes
captured by the EPI and MES models.

These measurements along with the metabolic phenotypes
predicted by the EPI and MES models suggest altered energy
metabolism in the two cell lines. In order to validate the proposed
metabolic phenotypes, we measured selected energy metabolites
using enzyme assays (Table 1). ATP concentration in D492 was
significantly higher than in D492M. Total NAD(H) concentration
and the ratio of NAD"/NADH were also higher in D492 as compared
to D492M (5.66 vs. 4.52). Glutathione was found to be primarily in
the non-oxidized form in both cell lines although the total con-
centration was considerably higher in D492.

TCA cycle flux and oxidative phosphorylation is altered following
EMT in D492

Random sampling was used to estimate flux distributions in the
EPI and MES models. Comparisons of flux distributions using two-

sample Kolmogorov—Smirnov test identified the metabolic re-
actions and pathways with altered activity between the two
models. The predicted global metabolic alterations that occur in
D492 following EMT are shown in SI Fig. 5. Reactions involved in
the N- and O-glycan metabolism as well as keratin sulfate meta-
bolism carry far higher flux in the MES model than the EPI model. In
contrast, all the reactions involved in purine synthesis and cysteine
metabolism carry higher flux in the EPI model than in the MES
model.

Fig. 5 shows specific differences in calculated flux distributions
through reactions in central carbon metabolism in the EPI and MES
models and illustrates predicted differences between D492 and
D492M. In the MES model, glycolytic flux is reversed through
phosphoglucomutase resulting in more 3-phosphoglycerate
diversion to one carbon metabolism, which is one of the contrib-
utors to the production of cytosolic NADPH. Triose phosphate
isomerase flux was also reversed in the MES model indicative of a
demand for the lipid precursor glycerol phosphate through dihy-
droxyacetone phosphate.

In the TCA cycle, citrate synthase activity was increased in the
MES model. This was due to increased oxidation of (iso)-leucine
forming acetyl-CoA equivalents to a greater degree in the MES
model. Glutamine was metabolized differently in the EPI and
MES models. In the EPI model, glutamine was utilized for purine
biosynthesis, while in MES model it contributed to alpha-
ketoglutarate in the TCA cycle. Increased activity of argininosucci-
nate lyase in the MES model provided anaplerotic carbons via
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Fig. 4. Respiratory rate and overall respiratory capacity is higher in D492 epithelial cells (A) Mitochondrial staining of D492 (epithelial) cells and D492M (mesenchymal) cells.
Although distribution and staining intensity of individual mitochondria appear different in the two cell lines, flow cytometry of stained cells did not indicate significant differences
in total mitochondrial staining. (B) Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of D492 (blue circle) and D492M cells (red circle) as measured in a
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proxy for glycolysis. Data represent 15 technical replicates in 4 separate experiments, error bars represent standard deviation, n = 4. (C) Maximum respiratory capacity in D492 and
D492M cells. OCR of D492 (blue line) and D492M (red line) presented over 80 min as percentage of baseline. The solid vertical line marks the time of oligomycin injection, a potent
inhibitor of ATP-synthase, and the subsequent drop in oxygen consumption indicates that a similar percentage of ATP is generated via OXPHOS in both cell lines. The dotted vertical
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references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Energy metabolite (ATP and NAD(H)) and glutathione (reduced (GSH) and oxidized (GSSG)) concentrations in D492 epithelial and D492M mesenchymal cells. Values rep-
resented as finol per cell and intracellular concentration in mM =+ standard deviation (n = 3).

D492 Epithelial

D492M Mesenchymal

fmol per cell concentration (mM) fmol per cell concentration (mM)
ATP 12.4 + 0.95 7.29 + 0.56 7.54 + 0.44 539 +0.31
NAD" 0.85 +0.16 0.503 + 0.096 0.303 + 0.020 0.216 + 0.014
NADH 0.15 + 0.01 0.089 + 0.004 0.067 + 0.009 0.048 + 0.006
GSH 25.42 + 0.41 14.952 + 0.239 15.15 + 0.54 10.82 +0.39
GSSG 1.26 + 0.32 0.740 + 0.190 0.70 + 0.38 0.50 + 0.27

fumarate. Combined, the predicted glycolytic and TCA cycle meta-
bolic phenotypes provide a description of TCA cycle flux rewiring
that occurs following EMT in D492 cells.

Identification of metabolic and regulatory genes required for EMT
and MET in D492

Having validated the proposed metabolic phenotypes in the EPI
and MES models we next identified specific reactions responsible
for the metabolic differences observed in the two models. To do
this, we calculated which reaction constraints needed to be regu-
lated in the EPI model in order to transform the epithelial pheno-
type to the mesenchymal phenotype and vice versa for MET. Fig. 6
shows the metabolic subsystems that required regulation, the
number of reactions within these subsystems and the number of
corresponding genes. The reactions along with their gene identi-
fiers are reported in Additional file 1. A total of 88 target reactions
required modification for EMT while this number was 335 to revert
the mesenchymal phenotype to epithelial. For EMT (Fig. 6A), the
highest number of reactions requiring regulation were involved in
N-glycan degradation, more specifically keratan sulfate degrada-
tion. Most genes requiring regulation were however associated
with complex III of the electron transport chain. Other subsystems
involved included valine, leucine and isoleucine metabolism and
fatty acid oxidation. Out of the 335 target reactions predicted by the
models to revert mesenchymal phenotype to epithelial, 288 rep-
resented extracellular transport reactions associated with only 5
genes (Fig. 6B). Other important subsystems with altered activity
following MET included nucleotide interconversion, glycine, serine,
alanine and threonine metabolism and arginine and proline
metabolism.

Regulation of transcription is of importance in EMT. We iden-
tified transcription factors (TFs) that have been associated with the
genes required for EMT and MET in the D492 models using
SABiosciences' proprietary database (http://www.sabiosciences.
com/chipgpcrsearch). The TFs associated with the genes for EMT
and MET overlapped with small differences (Additional File 1).
PPAR-gammal, PPAR-gamma2 and AP-1 were associated with the
highest number of genes required for both EMT and MET. Sp1 and
TFIID exhibited binding to genes associated with EMT only while C/
EBPbeta, Msx-1, N-Myc and HFH-1 were predicted to bind to genes
only associated with MET. While many of these transcription fac-
tors have been shown previously to be of importance in the context
of EMT [23,24] the results represent hypothesis of transcription
factors important for developmental regulation in the D492 cell
model.

Identification of essential genes in the EPI and MES models

Using gene essentiality analysis, we next identified specific
metabolic genes in the EPI and MES models that, when knocked
out, are likely to be lethal in one cell but not the other (Table 2).
Gene targets that are lethal for the EPI model are genes required for

reactions of the TCA cycle (fumarase) and oxidative phosphoryla-
tion (succinate dehydrogenase (complex II) and ATP synthase)
while the genes identified as lethal in the MES model fuel ana-
plerotic reactions for the TCA cycle. This included a sub-unit of the
large neutral amino acid transporter LAT1 and reactions involved
acetyl-CoA and fumarate production. These results predict that
D492M cells can bypass the electron transport chain by supplying
mitochondria with TCA cycle intermediates derived from branched
chain or other non-polar amino acids.

Based on the findings above, we argued that high expression of
genes predicted to be essential for a mesenchymal phenotype to
survive would contribute to cancer relapse or metastasis formation.
To investigate whether our predicted lethal genes had relevance to
cancer progression, we compared target gene expression in tumors
and risk of relapse or distant metastasis over a period of 10 years in
a cohort of 3557 breast cancer patients using the Kaplan—Meier
Plotter web-tool [25]. In particular, risk of relapse and distant
metastasis formation were found to be consistently higher in pa-
tients with high expression of the SLC7A5 sub-unit of the LAT1
transporter (Fig. 7).

Discussion

Here we set out to identify modulators of EMT through meta-
bolic systems analysis of the isogenic breast epithelial cell line D492
and its EMT-derivative daughter cell line D492M. Analysis of
transcriptomic data and measurements of nutrient uptake/secre-
tion rates were used to generate a GEM descriptive of D492
metabolism pre- and post EMT. The GEMs represent the integrated
analysis of 1304 genes and 43 extracellular metabolites and afford a
snapshot of D492 metabolism. GEM-based metabolic phenotypes
were validated and then used to identify reactions, genes and
associated transcription factors that discriminate between D492
epithelial and mesenchymal metabolism. Finally, we used the
GEMs to identify genes that when knocked down discriminate
between epithelial vs. mesenchymal cell growth. These represent
hypotheses of biomarkers or drug targets that could be pursued for
anti-metastatic therapy.

Measured uptake rates of metabolites from media were on
average higher in D492 and different nutrient distribution profiles
within the metabolic networks were observed (Figs. 2 and 5). In
particular, altered utilization of carbons originating from glucose,
glutamine, arginine and the branched chain amino acids was
apparent in the two cell lines on account of altered gene expression
in glycolysis and the TCA cycle. Calculation of the most likely carbon
flux through metabolic pathways thus indicates that D492 cells rely
more on aerobic glycolysis and that activity of anaplerotic reactions
associated with the TCA cycle is altered in D492M cells. Measure-
ments of energy metabolites and the measured respiration capacity
were consistent with the computed alterations in glycolysis, TCA
cycle and pentose phosphate pathway activity. A comparison of
reaction flux in the EPI and MES models through reactions corre-
sponding to the mesenchymal metabolic signature (MMS) gene set
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identified by Shaul et al. [9], showed that out of 19 reactions
encoded by the 28 MMS genes present in the two GEMs, 11 had
higher flux in the MES model (SI Fig. 6). D492 mesenchymal
metabolism thus adheres to the general mesenchymal phenotype
although deviations are observed. These deviations are to be ex-
pected due to the lack of measurements of metabolites in specific
metabolic pathways that contain the MMS encoding reactions and
the fact that MMS genes were identified based solely on expression
data.

Flux balance analysis of the EPI and MES models suggested
that lower proliferation rates of D492M vs. D492 is due to lower
cardiolipin synthase activity in the MES model. Cardiolipin is a

lipid exclusively found in the inner mitochondrial membrane and
is important for mitochondrial function with regard to the for-
mation and maintenance of cristae and formation and stabiliza-
tion of protein complexes comprising the electron transport
chain [26,27]. Although wary of this being a modeling artifact as
cardiolipin is part of the biomass function used to optimize
model flux, this finding focused our investigation on core energy
metabolism. Differences in D492 cell size, weight, mitochondrial
staining and respiratory capacity confirmed altered mitochon-
drial activity (that may or may not arise from altered cardiolipin
content), as opposed to a purely quantitative effect induced by
fewer mitochondria in D492M. The models therefore correctly

synthase; ACONT: aconitase; ICDH(NAD): isocitrate dehydrogenase (NAD dependent); ICDH(NADP): isocitrate dehydrogenase (NADP dependent); AKGD: alphaketoglutarate de-
hydrogenase; SUCOAS: succinyl-CoA synthetase; SUCD(fad): succinate dehydrogenase (FAD dependent); SUCD(q10): succinate dehydrogenase (ubiquinone dependent); FUM:
fumarase; MDH: malate dehydrogenase; LEUTA: leucine transaminase; MGHCrm: methylglutaconyl-CoA hydratase; GLUPRT: glutamine phosphoribosyldiphosphate amido-
transferase; GLUN: glutaminase; ARGSL: argininosuccinate lyase. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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Table 2

Genes essential for EPI and MES model: The 13 and 4 genes listed in the table are
exclusively essential for the biomass production of EPI model and MES model,
respectively.

Essential genes for EPI model growth

ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex,
beta polypeptide

ATP5I ATP synthase, H+ transporting, mitochondrial Fo complex
subunit E

FH fumarate hydratase

GCDH glutaryl-CoA dehydrogenase

GSS glutathione synthetase

HEXA hexosaminidase subunit alpha

NSF N-ethylmaleimide sensitive factor

SDHA succinate dehydrogenase complex flavoprotein subunit A

SDHB succinate dehydrogenase complex iron sulfur subunit B

SDHC succinate dehydrogenase complex subunit C

SDHD succinate dehydrogenase complex subunit D, integral
membrane protein

ATP5L ATP synthase, H+ transporting, mitochondrial Fo complex
subunit G

SLC16A10 solute carrier family 16 member 10

Essential genes for MES model growth

PDHX pyruvate dehydrogenase complex component X
ASL argininosuccinate lyase

SLC7A5 solute carrier family 7 member 5

OAT ornithine aminotransferase

account for differences in proliferation due to altered mitochon-
drial activity.

Sampling analysis of the flux space of the D492 GEMs high-
lighted changes in metabolic pathways (Fig. 6) that have previously
been attributed to increased invasiveness of cancer stem cells and
EMT including fatty acid oxidation [28], nucleotide in-
terconversions [9] and glycan metabolism [9]. Fatty acid oxidation
in particular has been shown to be altered upon loss of attachment
of the cells during EMT [28]. Fatty acids are however not equivalent
in their impact on cell proliferation [29,30] and more detailed lipid
analysis of D492 is required as the D492 models lack intracellular
flux measurements of fatty acid oxidation. Regardless, analysis of
gene expression data in the context of the models indicate that
D492M cells rely considerably more on fatty acid oxidation than
D492. Malonyl-CoA decarboxylase is important for breast cancer
invasiveness [31] and lipidomic analysis of EMT show vast reorga-
nization of the lipidome consistent with altered membrane fluidity
and function following EMT [32]. Expanding the understanding of
changes in the lipidome during and following EMT are thus
important.

We used the models to identify reactions of importance for EMT
and MET in D492 and D492M cells. For this purpose, reactions
who's flux requires regulation in order to switch between the EPI
and MES model phenotypes were proposed (Fig. 6). Inspection of
these reactions and the tracing of calculated metabolite flux values
affords mechanistic insight into altered metabolism into the D492
EMT model. For example, the altered activity of TCA anaplerosis
predicted by the models was traced to amino acid metabolism
arising from differential uptake rates of arginine, threonine, lysine
and leucine and/or isoleucine. Leucine/isoleucine and arginine
induce the activation of mTOR that is associated with enhanced
proliferation which we did not observe in D492M. In light of the
lower ATP concentration in D492M and lower proliferation rate we
conclude that increased uptake of leucine/isoleucine (and arginine)
in D492M reflects altered metabolism in D492 associated with
differentiation rather than proliferation. Indeed, the models predict
that these metabolites are metabolized differently within the two
cell lines. According to the model predictions, arginine was used to
generate fumarate and proline through citruline and ornithine
respectively. In the EPI model however, arginine fuels polyamine

synthesis through ornithine, consistent with enhanced polyamine
requirement for proliferation [33]. Lysine is oxidized in both models
to acetyl CoA in the mitochondria through 2-oxoadipate, however
only in the MES model was lysine utilized to generate allysine, a
component of elastin and collagen. Threonine was oxidized
through propanoyl-CoA in both models, but again appears to be
more important in the fueling of the TCA cycle in the MES model.
We also identified enzymatic reactions of interest outside cen-
tral carbon metabolism that have previously been associated with
EMT. Specifically, for glycan and keratan sulfate degradation we
identified FucAl. FucA1 is de-regulated in TGF-f induced EMT in
bladder epithelial cells [34] and fucosylation of E-cadherin has been
shown to impact cell migration in lung cancer cells [35] and is a
biomarker for cellular senescence [36]. The proposed increased flux
through glycan degradation pathways in D492M is consistent with
these results. Similarly, delta (14)sterol reductase, a key enzyme in
cholesterol synthesis, encoded by TM7SF2, previously identified as
a signature mesenchymal marker [9], was identified as important
for EMT reflecting the increased requirement for membrane fluidity
in mesenchymal cells. Prolonged statin therapy has previously been
shown to increase breast cancer incidence [37]. However, our re-
sults support epidemiologic evidence of the protective effect of
statins on breast cancer recurrence [38], presumably through in-
hibition of EMT. These findings require follow up molecular biology
based investigation. Interestingly, TM7SF2 was recently found to
correlate with NFKB and TNF-o. expression in mouse fibroblasts
[39]. TNF-a induces EMT through upregulation of TWIST via NFKB.
Reports on alterations in core energy metabolism in cells un-
dergoing EMT are conflicting and have been associated with both
increased and decreased anaerobic glycolysis and increased and
decreased proliferation [40,41]. Specifically, our results do not
agree with similar investigations of EMT using the HER2 positive
BT-474 and ER positive MCF7 EMT cell culture models that found
increased proliferation and a switch to aerobic glycolysis following
EMT [42]. This highlights the metabolic diversity of EMT cell models
that we have recently shown is influenced by heterogeneous
expression profiles in EGFR signaling and is consistent with the
inherent flexibility and variation characteristic of EMT [43]. The
D492/D492M model of EMT presents an alternative to commonly
used cell models of EMT such as HMLE, BT-474 and MCF7 [44]
[42,45]. This is important given the heterogeneity of cell models
used in EMT studies [13] and may contribute to the understanding
the metabolic diversity of EMT. Altered metabolism may also relate
to the breast cancer sub-type under study. D492 is representative of
basal like breast cancer that has similarities to triple negative breast
cancer [46]. Ultimately, because the D492 cell model allows
investigation of epithelial cells pre- and post EMT, our results
suggest that in the context of D492, enhanced glycolysis is not a
required for maintaining the mesenchymal phenotype.
Importantly, neither D492 nor D492M cells are tumorigenic.
D492 originates from reduction mammoplasty, immortalized with
E6/E7 viral transduction [47]. D492M has a distinct mesenchymal-
like phenotype and does not revert back to the original epithelial
phenotype. It should be kept in mind that although tumor devel-
opment is associated with increased cell proliferation and growth,
the change to an invasive, mesenchymal phenotype is not [48].
While EMT is believed to be a pre-requisite to tumor invasion and
metastasis, the reversion of mesenchymal cells back to epithelial
(MET) is thought to be a crucial step in the formation of secondary
tumors [49]. Another equally important role of EMT in cancer
progression may be its contribution to chemoresistance. A recent
publication by Fischer et al. elegantly demonstrated that EMT is in
fact not a prerequisite for secondary tumor formation in a mouse
breast cancer model [50]. However, treatment with cyclophos-
phamide produced a population of EMT derived mesenchymal cells
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that were resistant to treatment and could potentially initiate new
tumors after treatment. The D492/D492M cell model is therefore
an ideal system to explore the metabolic re-wiring that takes place
during EMT and should not be viewed as a tool to examine sec-
ondary tumor growth.

SLC7A5 was identified as one of the 4 genes essential for growth
of the MES model but not essential for the EPI model (Table 2).
SLC7A5 is one of two subunits of LAT1, a high affinity transport
system for large neutral amino. Inhibition of SLC7A5 would there-
fore be predicted to specifically inhibit the growth of D492M cells
and in effect, inhibit EMT in this cell system. The LAT1 transport
system has been implicated as a negative prognostic marker in a
number of cancers including prostate adenocarcinoma [51], biliary
tract cancer [52], multiple myeloma [53], hypopharyngeal squa-
mous cell carcinoma [54], adenoid cystic carcinoma [55], metastatic
lung cancer [56] and triple negative breast cancer [57]. Inhibition or
knockdown of LAT1 in KKU-M213 biliary tract carcinoma cells has
been shown to reduce migration and invasion in vitro [58]. We
show that higher SLC7A5 expression correlated with increased risk
of cancer relapse and distant metastasis formation (Fig. 7) in a
cohort of 3557 breast cancer patients. We believe that the results
presented here and by others warrant further investigation into the
potential therapeutic use of SLC7A5 or LAT1 inhibitors as inhibitors
of cancer growth or metastasis.

The curated GEMs of D492 are the first that are representative of
metabolism of EMT generated to date and serve to characterize the
metabolism of the D492 EMT cell model. Although the generation
of metabolic models is now commonplace using automated algo-
rithms [59], the model generated here was manually curated and
the computed metabolic phenotypes were experimentally vali-
dated. These GEMs therefore represent a foundation for future
constraint based analysis of epithelial and mesenchymal meta-
bolism within or outside the context of EMT. Furthermore, the
methodology used to generate the two models is novel and pre-
sents an alternative approach to building context-specific GEMs. As
opposed to directly constraining a generic reaction knowledgebase
such as RECON2 or the human metabolic atlas [60], we used a
combined transcriptomic dataset descriptive of metabolic reaction
content in both cell lines as a basis for model construction (the EMT
model) that we then further constrained to generate the GEMs
descriptive of D492 and D492M metabolism (the EPI and MES
models). The approach allows direct comparison of metabolic
phenotypes upon a curated context specific reconstruction that is
of value when modeling biological events such as EMT where
alternative expression off the same genetic background is being
investigated, for example during embryonic development and stem
cell differentiation.

Although our experimental setup was conducted in monolayer,
we acknowledge that tissue-context can be of great importance. By
performing studies such as this one in three dimensional recon-
stituted basement membrane (3DrBM) matrix, it is possible to re-
capture the phenotypic form of in vivo-like structures. In that re-
gard it has previously been shown that gene expression varies
significantly between monolayer and 3D culture [61] and glucose
metabolism is altered between 2D and 3D culture [62]. Experi-
mental conditions in general are of importance when designing
studies that combine multiple large datasets. All experiments used
for data generation should be conducted in the same manner; gene
expression profiling, enzymatic assays and metabolomics profiling
must capture the same state of cell culture [63]. Ideally, cell culture
medium should replicate in vivo conditions, providing cells with all
the necessary components to maintain and replicate without
providing excessive amounts of nutrients and/or growth factors.
However, cell culture often relies on mediums containing nutrients
and growth factors in excess that favor rapid, continuous growth of

cells, rather than biological representation. This in turn may lead to
biochemical activities within the cells that are not representative of
in vivo events [64]. Previous efforts have been made to tailor me-
dium composition to the specific needs of the cells in question
based in metabolic profiling, resulting in a culture medium that was
more biologically relevant and allowed increased sensitivity in drug
screening assays [64]. Studies such as this one, although performed
in rich medium, set a baseline for nutritional needs of breast
epithelial cell lines and may facilitate future development of more
biologically relevant culture medium.
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