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Abstract We conduct an empirical investigation of the logreturns on the futures prices of EU ETS emis-
sion certificates traded in the Nord Pool market from 2005-2013. Establishing stylized features such as
heaviness, skewness and high kurtosis in the logreturns, we suggest to model the futures logprices with the
Barndorff-Nielsen and Shephard (BNS) or the Heston stochastic volatility models. We carry out an empir-
ical comparison between the performances of these models and investigate their stationary autocorrelation
structure. In particular, as a consequence of allowing for skewness in the Heston model we find analyti-
cal expressions for the autocorrelation function of logreturns and their squares. Our analysis indicates the
presence of short-range dependence in observed futures logprice returns. We conclude that the BNS model
better describes the empirical features of observed futures prices than the Heston model. Our findings have
relevance for the real option modelling of fossil-fueled power plants when considering emission costs.

1 Introduction

The European Union Emission Trading System (EU ETS) is a system to reduce the emissions of greenhouse
gases in the European Union. EU ETS covers around 45% of EU’s greenhouse gas emissions. The partic-
ipants in the EU ETS can buy and sell emission allowances, called European Union Allowances (EUAs),
which permit their holders to emit a certain amount of CO2. There is a limit on the number of EUAs that
can be traded each year. This limit is reduced each year in order to meet desirable emission levels in the
future.

High-emitting industry players can buy allowances if needed or sell them if they judge that their current
stock is more than needed. In this way companies can cut their emissions in a cost-effective way as the
right to emit CO2 becomes a tradable commodity. For example, coal- or gas-fired power plants in Europe
have caps on the maximum amount of CO2 that they can emit. All the production exceeding the limit
must be covered by emission allowances. As production is stochastic, the managers of such power plants
face a risk that they can hedge by actively trading in EUAs. Emissions are thus a cost when operating
the fossil-fueled power plants, and their profitability depends both on the spread between the power and
fuel prices and the emission costs, as recognized in the real options literature. Specifically in the real
option modelling of these plants, the so-called clean spark (respectively dark) spread is of fundamental
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importance, being the difference between the power price, the natural gas (respectively coal) price and
the emission cost (see e.g. [11], [23], [6], [7], [13] and [15] for real option valuation and energy spark
spreads). Secomandi and Seppi [20, Sect. 7.6] briefly discuss the operation of a power plant as a timing
option where the plant produces when it is most profitable according to the spark (dark) spread. They view
the usage of emission rights as an inventory disposal asset, whereby the inventory level is reduced when
production takes place. Given a market for emission rights, the inventory of permits can vary over time due
to consumption, purchasing or selling.

We perform an empirical investigation with the goal of specifying a continuous time model for the fu-
tures price evolution of EUAs on the EU ETS market. Our analysis relies on futures price data collected
from Nord Pool between April 2005 until August 2013. From statistical analysis of the logreturns we ob-
serve skewness, heavy tails and leptokurtic behavior in the distribution, rejecting the normal distribution. To
capture these stylized features we consider logprice models with stochastic volatility. We choose stochastic
volatility models, rather than Lévy processes [4], since we observe volatility clustering in the time series
for the logreturns, a feature that Lévy models do not capture. Two commonly used models in commodity
markets with this property are the Barndorff-Nielsen and Shepard (BNS) model [1] and the Heston model
[16].

The main objective of this chapter is to compare the performance of the BNS and Heston models in
relation to observed data from the EU ETS market. That is, we focus on the calibration of these models
to data. Our comparison will focus on how well these models capture key features of our data regarding
distributional properties as well as autocorrelation functions.

We show that in the Heston model it is necessary to introduce an additional parameter in the drift for
the conditional price process to account for skewness. As a consequence the stationary autocorrelation
function for the logreturns is nonzero and shows a short-range dependence. We also find the stationary
autocorrelation function for squared returns in the Heston model. This is based on analytical expressions
for the autocorrelation function of logreturns and their squares, which are known for the BNS model and
derived in this paper for the Heston model.

The Heston model, which is a mixture of geometric Brownian motion with volatility modelled by the
square root of a Cox-Ingersoll-Ross (CIR) model [9], results in a stationary variance-gamma (VG) distribu-
tion for logreturns. This distribution is also obtained as a particular case in the BNS model. From the sample
distribution of our data we use maximum-likelihood estimation (MLE) to obtain values for the parameters
in the VG distribution and use them to estimate the parameters of the BNS and Heston models, respec-
tively. As the BNS model is more flexible, e.g., allowing for generalized-hyperbolic (GH) distributions,
we also investigate the fit of the normal inverse Gaussian (NIG) distribution with the sample distribution.
Both the aforementioned distributions possess key features of our data such as skewness, peakedness and
heavy tails, which the normal distribution cannot capture. However, a fundamental difference between the
BNS model and the Heston model is the structure of the respective stationary autocorrelation functions.
For the BNS model this function is zero, while it may not be zero for the Heston model. Since the sample
stationary autocorrelation function is close to zero and due to a slightly better distributional fit with the
NIG distribution compared with the VG distribution, we conclude that the BNS model is a better model of
EU ETS futures prices than the Heston model.

The EU ETS market was introduced in January 2005, and had its pilot phase (phase 1) between 2005-
2007. The second phase, the Kyoto commitment period, spans the years 2008-2012. Thereafter the post
Kyoto period is planned until 2020. Most of the existing empirical studies on EU ETS prices only involves
data from phase 1. Recent work investigating the CO2 allowance price dynamics includes [5], [21],[19]
and [10]. In [5] the authors propose Markov-switching and AR-GARCH models for stochastic modeling
of the logprice returns. They find that these models capture key observed features of the data as skewness,
excess kurtosis and non-constant volatility. In [19] the performance of different GARCH models is con-
sidered. These papers (and some of those that they cite) also give a description of the market mechanism
and empirical investigation based on the spot prices in the first phase. The three main markets for EUAs
within EU ETS, Powernext, Nord Pool and the European Climate Exchange (ECX), are studied in [10].
Banking of permits was prohibited during phase 1 and phase 2, which made emission allowances worthless
at the end of phase 1, and thus not tradable during the whole life of the underlying contract. This issue is
addressed in [10]. The authors of this paper also consider the cases of futures traded within a single phase
(intra-period futures) and futures traded across phases (inter-period futures). They investigate an augmented
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cost-of-carry relationship between futures and spot prices (see references therein for other research on EU
ETS futures prices). Furthermore, the authors examine the ability of various diffusion and jump diffusion
continuous-time processes in capturing the dynamics of EUA spot prices. In particular, they find that a geo-
metric Brownian motion augmented with jumps significantly improves on the performance of its diffusion
counterpart. The authors in the recent paper [14] use a nonlinear dynamics approach to analyze EUA price
volatility, based on data from April 2005 until February 2009.

Compared to the exisiting literature we perform an extensive and up to date empirical analysis of Nord
Pool futures prices, investigating the descriptive statistics of their logreturns. Moreover, we consider two
continuous stochastic volatility models, specifically the BNS and Heston models for the futures price lo-
greturns. This approach differs from [10], where a jump diffusion model is used to account for the overall
volatility. Furthermore, we introduce an additional parameter in the Heston model to capture skewness. As a
consequence we find a non-zero stationary autocorrelation function for the logreturns, having a short-range
dependence in this modified model. This result is, to the best of our knowledge, new to the literature.

This chapter is organized as follows: In Sect. 2 we present the findings of our statistical analysis of our
data set. In Sect. 3 we present the BNS and Heston models and their stationary autocorrelation functions. In
Sect. 4 we propose and investigate the fit of the VG and NIG distributions, and estimating their parameters
via MLE. We then compare the empirical performance of the BNS and Heston models. In Sect. 5 we
conduct a statistical analysis for each individual phase of the EU ETS market. We conclude in Sect. 6. We
give detailed proofs of Proposition 2 and 3 in Appendix 1 and 2, respectively. Appendix 3 includes the
proofs of some Lemmas in Appendix 2.

2 Statistical data analysis of EU ETS futures prices

We analyze five series of futures prices for EUAs observed at the Nordic power exchange Nord Pool. The
series represent successively the front contract, the second front and so on. The data is collected on a daily
basis (5 days a week) from 22.04.2005-27.08.2013, giving 2148 observed futures prices. Due to a similarity
in the data, our analysis and graphics will rely on the data from series 1. However, statistical characteristics
for all series are collected in the tables below. In this section we present statistics, giving the foundation
and motivation to investigate the BNS model and the Heston model for the futures logprice in upcoming
sections. Thereafter, a deeper analysis regarding parameter estimations for the respective models will be
made. We start to look at the time series for the futures price X(t) in series 1, shown in Fig. 1.

Fig. 1: Time series for the futures price X(t).

We observe a clear downward trend in the futures price. The futures prices do not show any seasonal
pattern, which is in line with the main finding in [21] for CO2 spot prices. The first four sample moments
of the futures price data series are collected in Table 1. The data are slightly skewed, and the significant
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Table 1: Sample Moments for futures prices

Mean Variance Skew (×10−2) Kurtosis
Serie 1 15.30 39.30 −2.28 2.31
Serie 2 15.55 41.83 −0.65 2.29
Serie 3 15.79 44.39 1.57 2.27
Serie 4 16.07 47.08 3.77 2.27
Serie 5 16.36 50.29 8.16 2.29

excessive kurtosis gives sign of a non-Gaussian distribution.
To proceed we investigate the logreturns L(t), defined as follows: define the normalized1 futures logprice

S as

S(t) := log
X(t)
X(0)

. (1)

The logreturn at time ti is defined as
L(ti) = S(ti+1)−S(ti). (2)

The partition will be such that ti+1− ti = 1, corresponding to one day in our data, i.e. we consider daily
logreturns. We define daily logreturns in continuous time as

L(t) = S(t +1)−S(t). (3)

A time series of the logreturns is showed in Fig. 2.

Fig. 2: Time series for the logreturns L(t).

The observed volatility clustering in Fig. 2, which seems to have a non-deterministic appearance, in-
dicates that a large (small) absolute change tend to be followed by a large (small) absolute change. In
particular, we can observe several absolute changes greater than 10% 2. This behavior is also consistent
with the autocorrelation of the absolute logreturns in Fig. 3(b). The fact that the absolute logreturns are
slowly decaying to zero, is considered as a typical indicator of volatility clustering, see [8]. The slow decay
to zero can also be seen in the autocorrelation function for squared logreturns (see Fig. 6), but it is more
apparent for the absolute logreturns. In Fig. 3(a) we plot the autocorrelation function of the logreturns,
which, not unexpectedly, shows a variation around zero.

1 Normalized in the sense that S(0) = 0.
2 Most of the extreme changes in the market prices are due to weather conditions, e.g. dry summers, cold winters etc. and
corresponding high or low prices of competing energy commodities such as oil and gas. However, in 2005 there was a surplus
of granted EUAs in the market, causing a crash in April 2006, see [5].
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(a) Autocorrelation function for logreturns.

(b) Autocorrelation function for absolute logreturns.

Fig. 3: Autocorrelation function for the logreturns (a) and the absolute logreturns (b).

In Fig. 3(a) we see that the correlation tends rapidly towards zero already for lag 1. From the sample
moments, presented in Table 2 we see that the logreturns are skewed to the left. Furthermore, the high
excessive kurtosis indicates a distribution of the returns that has a strong deviation away from normality.
Hence, the increments of S(t), i.e. the logreturns, are clearly not normally distributed. Thus, the absence
of autocorrelation does not necessarily indicate independence, we may still have nonlinear dependence.
However, this suggests a model having small or no-memory effects in the logreturns, i.e. a stationary
autocorrelation function close to zero for all lags. This excludes any long range dependence, even though
we may have a presence of short range dependence. That is, an autocorrelation function decreasing at a
geometric rate, see [8].

Table 2: Sample moments for the logreturns

Mean (×10−4) Variance (×10−4) Skew Kurtosis
Series 1 −6.2 11 −1.19 24.82
Series 2 −6.2 11 −1.16 24.59
Series 3 −6.2 10 −1.15 24.66
Series 4 −6.2 10 −1.14 24.48
Series 5 −6.2 10 −1.17 24.37

The non-normal behavior is very distinctive in the density plots in Fig. 4, visualizing the deficiency
of the normal distribution to describe the empirical distribution. In Sect. 5 we shall also investigate the
three phases separately to assess whether there have been significant differences among them, as well as a
comparison with the full times series spanning over 2005-2013.

3 BNS and Heston model

In this section we investigate distributional and stationary properties of the BNS model and the Heston
model. First we set up a stochastic modeling framework. Denote the square of the stochastic volatility
process by Y , and define the filtration FY

t := {Yu,u ≤ t}, i.e. the σ -algebra generated by Y , revealing all



6 Fred Espen Benth, Marcus Eriksson and Sjur Westgaard

(a) Distribution for the logreturns. (b) Distribution for the logreturns. Logarithmic
scale.

Fig. 4: The estimated distribution for logreturn, fitted with normal distribution N (µs,σs). Here, µs,σs are
the sample mean and variance, reported in Table 2.

information of the stochastic volatility up to time t. Similarly we define F B
t to be the σ -algebra generated

by the Brownian motion B. Let (Ω ,F ,F,P), where F= {Ft}t≥0, be a complete filtered probability space
satisfying the usual conditions. We define Ft to be the smallest σ -algebra containing all the information
generated by the Brownian motion B and the stochastic volatility Y up to time t, i.e.

Ft := F B
t ∨FY

t .

Our data analysis in the previous section encountered skewness and clustering in the logreturn. We
also saw that the empirical distribution had heavier tails than the normal distribution. As mentioned in [2]
this type of data rejects the assumptions in the Black-Scholes (BS) model. The statistical features and the
empirical autocorrelation indicate that we need to extend our model to incorporate stochastic volatility. We
investigate two models with this property: the model proposed by Barndorff-Nielsen and Shephard known
as the BNS model (see [2]), and the Heston model (see [16]). These models can explain stylized facts like
heavy tails, skewness and excessive returns as observed in the time series above.

In this section we give some main properties of these models. For a more detailed analysis, see [2], [1],
[3], [12] and [16].

3.1 The Barndorff-Nielsen and Shepard model

Instead of using the simple BS-model, we suggest to model the logarithmic futures price S(t) with the BNS
model, which incorporates stochastic volatility. The idea is to model the volatility σ2(t) as a superposition
of independent stationary positive Ornstein-Uhlenbeck (OU) processes, driven by a Background Driving
Lévy Process (BDLP), see [2]. To be more specific, we consider the logarithmic price

dS(t) = (µ +βσ
2(t))dt +σ(t)dB(t). (4)

We assume
σ

2(t) = Y (t), (5)

where
dY (t) =−λY (t)dt +dU(λ t). (6)

The process U is a subordinator, i.e. a Lévy process with positive drift and jumps, but no Brownian part.
This ensures that Y is a positive process, and the volatility σ(t) :=

√
Y (t) is well defined. The unusual

scaling by λ in U , U(λ t), ensures that the stationary distribution of U does not depend on λ . Thus, the speed
of mean reversion λ accounts only for the modeling of the autocorrelation function of squared returns. The
process U(t) is the BDLP of Y . In general, the process σ2(t) has the form
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σ
2(t) =

n

∑
i=1

wiYi(t),
n

∑
i=1

wi = 1 (7)

when using an n-factor model for the stochastic volatility. The empirical analysis of the futures price data
motivates the choice n = 1 to be sufficient for our purpose (see Sect. 4.1.1). In [2] it is shown that for
a self-decomposable distribution D, there exists a stationary OU-process such that Y ∼ D, satisfying (6)
where U is a Lévy process with positive increments and the cumulant generating function, defined as the
logarithm of the moment generating function, is

ψ(u) =−
∫

∞

0+
(1− e−ux)`(dx).

Here, ` is the Lévy measure of U(1), i.e. a subordinator. The only requirement of a self-decomposable
distribution D allows for a great flexibility in the choice of distributions for Y . In [2] and [1] the self-
decomposable class of generalized inverse Gaussian (GIG) distributions is treated. This is a three parameter
class, labeled GIG(ν ,δ ,γ), with density

pd fGIG(ν ,δ ,γ)(u) =
(γ/δ )ν

2Kν(δγ)
uν−1 exp

(
−1

2
(δ 2u−1 + γ

2u)
)
, u > 0,

where Kν is the Bessel function of third kind. For Y ∼GIG(ν ,δ ,γ) independent of the Brownian motion B,
the logreturns, L(t) := S(t+1)−S(t), will be generalized hyperbolic (GH) distributed. The GH distribution
is a five parameter family allowing us to control features such as skewness and kurtosis, which are desir-
able properties according to our previous data analysis. Define α :=

√
β 2 + γ2, then the GH(ν ,α,β ,δ ,µ)

density is given by

pd fGH(u) :=
(γ/δ )ν

√
2παν−1/2Kν(δγ)

(
δ

2 +(u−µ)2)(ν−1/2)/2
(8)

×Kν−1/2

[
α

√
δ 2 +(u−µ)2

]
exp(β (u−µ)) .

For our purpose we will consider two special cases: ν = − 1
2 leading to Y ∼ IG(δ ,γ) (inverse-Gaussian

distribution) and δ = 0,ν > 0 leading to Y ∼ Γ (ν ,γ) (Gamma distribution), with densities

pd fIG(δ ,γ)(u) =
δ√
(2π)

exp(δγ)u−3/2 exp
(
−1

2
(δ 2u−1 + γ

2u)
)
, u > 0,

where δ > 0 and γ ≥ 0 and

pd fΓ (ν ,γ)(u) =
(γ2/2)ν

Γ (ν)
uν−1 exp(−uγ

2/2), u > 0.

Using Y ∼ IG(δ ,γ) or Y ∼ Γ (ν ,γ) results in a NIG or Γ distributed logreturns respectively, which are
both special cases of the GH distribution. In Sect. 4 we will estimate and analyze these distributions to our
data series. From our discussions, we see that the BNS model is rather flexible in capturing distributional
properties needed for empirical fitting. We remark that in [2] it is proposed to start with a model for the
stationary distribution of Y , and shown how one can construct a BDLP U which gives this desired distribu-
tion. Such a BDLP exists whenever Y has a self-decomposable distribution. We end this first discussion of
the BNS model with a known fact of the autocorrelation function, a result which will become useful in the
parameter estimations.

Proposition 1. The stationary autocorrelation of the logreturns and for squared logreturns, defined as in
(2) with logprice given by (4), are

AutoCorr(L(t),L(t + k)) = 0, (9)
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AutoCorr(L2(t),L2(t + k)) = e−λk, (10)

for k = 0,1,2 . . .

Proof. See [2].

As we saw in Fig. 3(a), the autocorrelation function for the logreturns is close to zero for all lags. Since
the driving Brownian motion in (4) and U are independent, this is the case for the BNS model, as is seen
in (9).

3.2 The Heston model

Introduce a stochastic volatility given by the process Y (t), where Y (t) is

dY (t) =−γ(Y (t)−λ )dt +κ
√

Y (t)dW (t). (11)

The long-time mean of Y is here given by λ > 0, γ > 0 is the rate of relaxation to this mean, κ > 0 is
the variance noise (the volatility of the volatility) and W (t) is a standard Brownian motion, assumed to be
independent of B(t) (the independence is not a necessary requirement in general, however our investigation
will rely on this assumption). In what follows we assume that the futures price X(t) of the allowances is
modeled by

dX(t) = (µ +(
1
2
−β )σ2(t))X(t)dt +σ(t)X(t)dB(t) , (12)

with stochastic volatility σ(t) defined by σ2(t) = Y (t). Here µ and β are constants. The bivariate process
(X ,Y ) is known as the Heston model (see [16] and [12]), therefore we will also refer to the process Y in (11)
as Heston type volatility model. Also, the introduction of the constant β in the dynamics (12) is necessary
for obtaining the distributional characteristics, see Remark 1.

By Itô’s Formula we get
dS(t) = (µ−βσ

2(t))dt +σ(t)dB(t), (13)

for the logprice defined in (1). The daily logreturns L(t) is then, expressed in terms of Y , given by

L(t) := S(t +1)−S(t) =
∫ t+1

t
(µ−βY (s))ds+

∫ t+1

t

√
Y (s)dB(s), (14)

or approximately as
L(t)≈ (µ−βY (t))+

√
Y (t)∆B(t).

Let us investigate the characteristics of L(t) a bit closer. By conditioning on Y (t) = y, L(t) is normally
distributed with mean µ−βy and variance y. It is shown in [12] that the probability density function (pdf)
for Y in stationarity is given by

Π(y) =
α

Γ (α)

y(α−1)

λ α
exp(
−αy

λ
), α =

2γλ

κ2 .

The characteristic function φL(u) for L can now be calculated as



Stochastic volatility modelling of emission allowances futures prices in the EU ETS market 9

φL(u) =E
[
eiuL(t)

]
=E
[
E
[
eiuL(t)|Y (t)

]]
=E
[
eiu(µ−βY (t))− 1

2 u2Y (t)
]

=E
[
eiuµ+i(−βu+i 1

2 u2)Y (t)
]

=eiuµE
[
eiξY (t)

]
= eiuµ

φY (ξ ),

where ξ = −βu+ i 1
2 u2. The characteristic function φY (ξ ) for Y is obtained via the density Π(y). The

following calculation also shows that there is no problem of extending to complex-valued parameters ξ in
the Lévy-Khintchine formula:

φY (ξ ) =
∫

∞

0
eiξ y α

Γ (α)

y(α−1)

λ α
exp(
−αy

λ
)dy

=
αα

Γ (α)λ α

∫
∞

0
yα−1e−(

α

λ
−iξ )ydy

=(1− i
λ

α
ξ )−α ,

where we in the last step used the integral identity∫
∞

0
xme−qxn

dx =
Γ (p)
nqp , p =

m+1
n

for Re(n) > 0, Re(m) > −1 and Re(q) > 0. By identification we have Re(n) = 1, Re(m) = α − 1 and
Re(q) = α

λ
+ 1

2 u2. Hence, the conditions for the integral identity are clearly satisfied. The characteristic
function φL(u) then becomes, after inserting the expressions for ξ and α ,

φL(u) = eiuµ

[
1+ i

βκ2

2γ
u+

κ2

4γ
u2
]− 2γλ

κ2

(15)

The conditional distribution of the CIR-model is non-centered chi-squared. Since γ,λ > 0 the CIR-
model approaches a gamma distribution in stationarity. In this way the Heston model will have VG dis-
tributed logreturns. In the next section we shall obtain the parameters in the Heston model via MLE. How-
ever, rather than making a MLE for the parameters (µ,β ,γ,λ ,κ) in the Heston model directly, we make
the parameter estimation for a process possessing the same key features observed in the statistical data
analysis. Furthermore, since we know the characteristic function for the logreturns of the Heston model in
stationary, we consider a process having a VG distribution, with known characteristic function. A natural
process to choose with these properties is the variance-gamma process.

The variance-gamma process was introduced in [18] as a model for stock market logreturns, then as
a two-parameter process. To account for skewness the model was extended in [17] to a three parameter
model, and in [22] it was extended to a four parameter model for the logreturns of an underlying. The
process is obtained by evaluating a Brownian motion with drift at a Γ -distributed random time, leading to
a variance mixture model via subordination. By conditioning the underlying process on the random time
we get a normally distributed process with two parameters that account for drift and (constant) volatility.
The pdf of the VG-distribution is given by

pd fV G(u) :=
2exp

(
θ(u−c)

σ2
vg

)
σvg
√

2πν

1
νvg

vg Γ ( 1
νvg

)

 |u− c|√
2σ2

vg
νvg

+θ 2


1

νvg−
1
2

K 1
νvg−

1
2

 |u− c|
√

2σ2
vg

νvg
+θ 2

σ2
vg

 (16)
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where Kη is the modified Bessel function of third kind with index η (see [22]). Here, c describes the long-
time mean of the process, σvg is the volatility of the Brownian motion, νvg the variance rate of the gamma
time change and θ the drift in the Brownian motion with drift, responsible for introducing skewness. In
the next section we estimate the VG distribution to the logreturns of the futures price series we have at
hand, and relate the VG parameters to the Heston model. To do that we need the following results for the
autocorrelation of the logreturns and squared logreturns. This is needed in order to make the characteristic
function (15) consistent with the pdf (16).

Proposition 2. The stationary autocorrelation function of lag k > 0 for the logreturns, defined as in (14),
is of the form

AutoCorr(L(t + k),L(t)) =Ce−γk. (17)

The constant C is given by
β 2κ2

(β 2κ2 +2γ)γ2 (e
γ + e−γ −2). (18)

Proof. See Appendix 1. Note that from the proof, the calculation of the non-stationary autocorrelation
function is straightforward as well.

We see that the autocorrelation does not depend on the mean of the stochastic volatility, however it depends
on the rate of relaxation γ to this mean and the volatility of the stochastic volatility κ . Furthermore, since
γ > 0 the autocorrelation decays at a geometric rate, indicating short-range dependence (see [8]).

Proposition 3. The stationary autocorrelation function of lag k > 0 for squared logreturns, defined as in
(14), is of the form

AutoCorr(L2(t + k),L2(t)) = A0 +A1e−γk +A2e−2γk. (19)

Here the constants Ai depend on the parameters of the distribution of L.

Proof. See Appendix 2.

The characteristic function φL and the autocorrelation in Proposition 3 give us a bridge to connect the
parameters in the Heston model with the four parameters (c,σvg,θ ,νvg) in the VG process, which are the
ones obtained via the estimation in R.

4 Estimation of the stochastic volatility models for EU ETS futures prices

The deficiency of the normal distribution was already established in the Sect. 2, as it is unable to capture
established key features in the EU ETS logprice. In the previous section we saw that a class of distributions
possessing these properties is the GH-distributions. We consider two special cases, the VG distribution and
the NIG distribution. To proceed, we analyze the BNS model and Heston model. The aim is to establish the
best distributional fit of the Heston model and the BNS model as well as determine the parameters in the
respective models. As stated, the Heston model gives us VG distributed returns. For the BNS model, the
possible distributional properties are more flexible. We focus on two cases for the BNS model. First, when
Y is IG distributed, resulting in NIG distributed returns. As a “fair” comparison with the Heston model we
also derive the model parameters in the BNS model when Y is Γ -distributed, resulting in VG distributed
returns. Both the Heston and the BNS model require the estimation of five parameters. In order to specify
all parameters in the two models we also need, in addition to the sample distributional fit3, to consider the
autocorrelation of squared returns.

3 The estimation of parameters in the distributions below has been made via maximum-likelihood estimation in R, using
appropiate packages (“VarianceGamma“ and ”fBasics”). All figures and numerical calculations are generated in Matlab, and
for symbolic calculation Maple has been used.
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Before we proceed, we remark that the density functions that are used for the distributional fit in the
maximum-likelihood estimation are given by (16) for the VG distribution and by (27) for the NIG distri-
bution. We need to relate the parameters in the Heston model and the VG distributed BNS model to the
parameters in (16). We relate the parameters in the NIG distributed BNS model to (27).

4.1 Variance-gamma distribution

Let us start to investigate the distributional fit of the VG distribution with the sample distribution. Density
plots are shown in Fig. 5 4. We see that the VG distribution with pdf given in (16) capture the key features
well, however there are minor shortcomings in both the tail and center. The estimated parameters in the VG
distribution are displayed in Table 3.

(a) Distribution for the logreturns. (b) Distribution for the logreturns. Logarithmic
scale.

Fig. 5: The estimated distribution for logreturns fitted with the VG distribution.

Table 3: VG parameters for logreturns

ĉ σ̂vg θ̂ ν̂vg

Series 1 0.00379 0.0282 −0.00441 0.387
Series 2 0.0144 0.0786 −0.0180 0.118
Series 3 0.00732 0.0307 −0.00758 0.118
Series 4 0.0111 0.0296 −0.0116 0.118
Series 5 0.0690 0.0723 −0.0727 0.118

We obtain the VG distribution of the logreturns in stationarity by either using the Heston model or the
BNS model.

4.1.1 Variance-gamma via the BNS model

To obtain the VG distribution via the BNS model we take Y to be Γ (ν ,γ)-distributed with γ =
√

α2−β 2.
The logreturns will then be GH(ν ,α,β ,0,µ) distributed, i.e. have the VG-distribution. The corresponding
pdf is obtained as the limit δ → 0 from (8),

pd fBNSV G(u) =
γ2ν |u−µ|ν−1/2Kν−1/2 (α|u−µ|)

√
πΓ (ν)(2α)ν−1/2 exp(β (u−µ)) . (20)

4 Figures with logarithmic scale are truncated due to a few number of data outliers, making the kernel density estimator in
Matlab inaccurate.
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The construction of such a process Y can be found in [2] using series representation. The parameters we
need to specify in the BNS model is now (µ,β ,λ ,ν ,γ :=

√
α2−β 2). To estimate the parameters, let us

first consider the autocorrelation function for squared returns. The fitted exponential function (solid curve)

Fig. 6: Autocorrelation function for squared logreturns. The solid curve is fitted with the function
exp(−λ̂k), where λ̂ = 0.526.

is shown in Fig. 6 where the estimated mean-reversion coefficient is λ̂ = 0.5260. Except for some peaks
around 15 and 50 lags we see that there is a nice decay tending to zero. The fit is far from perfect, but
captures at least the main feature of a fast decaying autocorrelation function. Instead of using a multi-
factor stochastic volatility model, that would require a much more sophisticated estimation procedure, we
are confident with the first-order approximative model using a one-factor BNS model. The mean-reverting
coefficient for the other series were the same up to three decimals of accuracy. By (10) in Proposition 1,
we obtain the λ parameter as the decay coefficient in the autocorrelation for the squared returns. The other
BNS parameters in (20) can be related to the estimated VG parameters in Table 3 via the pdf (16). By
identification, to get equality between (16) and (20), we find the BNS parameters to be

(µ,β ,λ ,ν ,γ) =

(
c,

θ

σ2
vg
,λ ,

1
νvg

,

√
2

σ2
vgνvg

)
, (21)

where γ :=
√

α2−β 2 and α = 1
σ2

vg

√
2σ2

vg
νvg

+θ 2. This completely specifies the BNS model (4)− (6) with

Y ∼ Γ (ν ,γ). Numerically, using the estimated parameters (ĉ, σ̂vg, θ̂ , ν̂vg) in Table 3 and λ = λ̂ in (21) we
find the VG distributed BNS model parameters to be

(µ̂, β̂ , λ̂ , ν̂ , γ̂) = (0.00379,−5.56,0.526,2.59,80.8). (22)

4.1.2 Variance-gamma via the Heston model

To obtain the parameters in the Heston model we make use of the characteristic function (15). It is shown
in [17] (see also [22]) that the characteristic function φLvg(u) for the logreturns is given by

φLvg(u) = eiuc

[
1− iθνvgu+

σ2
vgνvg

2
u2

]− 1
νvg

(23)
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Fig. 7: Autocorrelation function for squared logreturn, fitted with the curve in Proposition 3 and using
[γ̂, Â0, Â1, Â2] = [1.62,0.0281,1.31,18.4].

By comparing the characteristic functions (15) and (23) we can identify the parameters (µ,β ,γ,λ ,κ) of
our model (12) (with Heston type volatility (11)) with the parameters (c,σvg,θ ,νvg) of the VG distribution.
We find the system of equations

µ = c, −βκ2

2γ
= θνvg. (24)

κ2

4γ
=

σ2
vgνvg

2
,

2γλ

κ2 =
1

νvg
. (25)

Note that we have more unknowns than equations, making the system under-determined. Let α̃ := κ2

γ
, the

above system (24)− (25) can then be solved for α̃ , β and λ with the solution

(α̃,β ,λ ) = (2σ
2
vgνvg,−

θ

σ2
vg
,σ2

vg).

To solve this under-determined system, we can obtain the parameter γ from the autocorrelation func-
tion. The red curve in Fig. 7 is fitted with the function A0 + A1e−γk + A2e−2γk. The estimation yields
[γ̂, Â0, Â1, Â2] = [1.62,0.0281,1.31,18.4]. We obtain the corresponding parameters for the Heston model to
be

(µ,β ,γ,λ ,κ) = (c,− θ

σ2
vg
, γ̂,σ2

vg,
√

2σ2
vgνvgγ̂). (26)

This completely specifies the Heston model (12) with Heston type volatility (11). Numerically, again using
the estimated parameters (ĉ, σ̂vg, θ̂ , ν̂vg) in Table 3 and γ = γ̂ in (26) we find the Heston model parameters
to be

(µ̂, β̂ , γ̂, λ̂ , κ̂) = (0.00379,5.56,1.62,0.0008,0.0316).

We see that the first two parameters in (21) and (26) are the same (in absolute value for β ) for the VG-
distributed BNS model and the Heston model. This is clear since, conditionally on the volatility in (4) and
(13), they have the same dynamics. Note that the different signs on the β parameter is just a consequence
of the different choices of sign in (4) and (13) for the BNS and Heston model respectively.

Remark 1. It is evident that β = 0 if and only if θ = 0. Note that θ is the drift parameter in the VG process
responsible for skewness. Hence, the introduction of the parameter β is necessary to account for skewness.
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4.2 Normal inverse Gausssian distribution

We now turn to the NIG distribution. A density plot of the NIG distribution is shown in Fig. 8. The pdf for
the NIG(α,β ,µ,δ ) distribution is given by (see [1]),

pd fNIG(u) :=
δα

π
√

δ 2 +(u−µ)2
exp
(

δ

√
α2−β 2 +β (u−µ)

)
K1(α

√
δ 2 +(u−µ)2) (27)

where K1 is the modified Bessel function of third order and index 1. Here α > 0 controls the behavior of the
tails. The steepness of the NIG distribution increases with increasing α . Hence, large values of α implies
light tails and vice versa. The parameter β , 0 < |β | < α , controls the skewness of the distribution. µ is
the location parameter and δ is the scale parameter. We see that stylized features such as tail and center
behavior is well captured by the NIG distribution. The estimated parameters are displayed in Table 4.

(a) Distribution for the logreturns. (b) Distribution for the logreturns. Logarithmic
scale.

Fig. 8: The estimated distribution for logreturns fitted with NIG distribution, NIG(α,β ,µ,δ ). The param-
eters are given in Series 1 in Table 4. The heavy tails are seen to be well captured by the NIG distribution.

Table 4: NIG parameters for logreturns

α̂NIG β̂NIG µ̂NIG(×10−3) δ̂NIG(×10−2)

Series 1 21.58 −2.59 1.90 2.10
Series 2 21.24 −2.44 1.75 2.05
Series 3 20.94 −2.54 1.83 2.02
Series 4 20.88 −2.56 1.85 2.01
Series 5 21.20 −2.63 1.92 2.04

By the flexibility of the BNS model, a NIG(α,β ,µ,δ ) distribution is obtained by taking Y to be
IG(δ ,

√
α2−β 2) distributed, i.e. ν = − 1

2 in (8). One method of how to construct and simulate such an
IG-process Y is described in [24].

Note that the NIG distribution (27) is defined as the distribution of the BNS model when Y is IG dis-
tributed with parameters (δ ,

√
α2−β 2) and the parameters in the NIG distribution exactly correspond

to the parameters in that BNS model. Hence, the parameters in the BNS model are obtained by fitting
the NIG density (27) to the sample density. As before, λ is estimated via the autocorrelation function
(10) for squared logreturns. This completely specifies all the parameters in the BNS model (4)− (6) with
Y ∼ IG(δ ,γ). We directly obtain the BNS parameters to be

(µ,β ,λ ,δ ,γ) = (µ̂NIG, β̂NIG, λ̂ , δ̂NIG,

√
α̂2

NIG− β̂ 2
NIG). (28)

Numerically, the NIG-distributed BNS model has parameters
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(µ̂, β̂ , λ̂ , δ̂ , γ̂) = (0.0019,−2.59,0.526,0.0210,21.4).

Having investigated the distributional fit of the VG and NIG distribution, it is evident from Fig. 9 that the
NIG distribution has a better fit with the sample distribution regarding the tails and center. Furthermore, we
have tested the equality of the distribution for the logreturns with the VG and NIG distributions respectively,
using the Kolmogorov-Smirnov test (KS-test). The p-values of the KS-test, presented in Table 5, indicates
that the null hypothesis5 for the VG distribution6 can be rejected, whereas the KS-test fails to reject the
null hypothesis for the NIG distribution.

Fig. 9: Logarithmic sample distribution for logreturns. A comparison between the VG and the NIG distri-
bution.

Table 5: Kolmogorov-Smirnov test: p-values.

VG NIG
Series 1 0.00155 0.318
Series 2 < 0.001 0.402
Series 3 NA 0.337
Series 4 < 0.001 0.231
Series 5 < 0.001 0.267

5 Empirical investigation for the individual phases

The three phases have been subjected to different regulations. Due to that we are motivated to analyze the
prices for each phase separately. In this section we assess whether there have been significant differences

5 The KS-test was conducted in R. Here, the null hypothesis states that the logreturns sample distribution comes from a VG
distribution or a NIG distribution respectively. A low p-value indicates presumption against the null hypothesis.
6 R was unable to calculate the p-value for the VG distribution in Series 3.
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between the phases as well as between each phase and the total time span. In our analysis, we consider the
time series from futures 1 only.

Phase 1 took place between 2005-2007, phase 2 between 2008-2012, and phase 3 from 2013 on. This
corresponds to 690, 1289 and 169 futures logprices respectively in each phase. The sample moments for the
logreturns are collected in Table 6. For each phase we observe skewness (most apparent in phase 1 and 3)

Table 6: Partial sample moments for the logreturns: Series 1.

Mean (×10−4) Variance (×10−4) Skew Kurtosis
Full series −6.2 11 −1.19 24.82

Phase 1 4.0 9.1 −1.47 19.43
Phase 2 −10 7.3 0.0733 6.97
Phase 3 −20 43 −1.30 14.62

and high excessive kurtosis. This is in line with the time series in Fig. 2, and the deviation from normality
is apparent in Fig. 10.

(a) Phase 1. (b) Phase 1.

(c) Phase 2. (d) Phase 2.

(e) Phase 3. (f) Phase 3.

Fig. 10: The estimated distribution for logreturns fitted with the normal distribution. Logarithmic scale to
the right.

The absolute autocorrelation function in Fig. 11 also indicate volatility clustering, as observed in the
times series. For phase 1 and 2 the autocorrelation for logreturns are close to zero, however, for phase 3 we
observe a modest autocorrelation (see Fig. 11( f )). We also see that the excessive kurtosis is significantly
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higher in phase 1 and 3, however all phases have lower excessive kurtosis than the full series. It is also
notable that the variance of phase 3 is greater than the other phases, as well as the full time series. As we
shall see, these observations are consistent with the parameter estimations below.

(a) Phase 1. (b) Phase 1.

(c) Phase 2. (d) Phase 2.

(e) Phase 3. (f) Phase 3.

Fig. 11: Autocorrelation function for absolute logreturns (left) and logreturns (right).

5.1 Variance-gamma distribution

We now investigate the distributional fit of the VG distribution with the sample distribution of the three
phases. Density plots are shown in Fig. 12. It is clear that the VG-distribution fails to make a good fit for
the induvidual phases. In particular, it is deficient in the center for all phases. Also, in Fig. 12, it is seen
that the the tails are too heavy in phase 1 and 2, but the tail behavior in phase 3 is better. This is in line
with the lower excessive kurtosis for the individual phases compared to the full time series. Based on these
observed distributional properties, the Heston model seems more appropriate to model the full time series
rather than as a model for the individual phases. The estimated VG parameters are displayed in Table 7.
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(a) Phase 1. (b) Phase 1.

(c) Phase 2. (d) Phase 2.

(e) Phase 3. (f) Phase 3.

Fig. 12: The estimated distribution for logreturns fitted with the VG distribution. Logarithmic scale to the
right.

Table 7: VG parameters for series 1 for logreturns. Phase 1-3.

ĉ σ̂vg θ̂ ν̂vg

Full series 0.00379 0.0282 −0.00441 0.387
Phase 1 0.0183 0.0392 −0.0212 0.118
Phase 2 0.00983 0.0340 −0.00910 0.118
Phase 3 0.00232 0.0615 −0.00421 1.19

5.2 NIG distribution

We now turn to the NIG distribution. The estimated parameters in the NIG distribution are displayed in
Table 8, and density plots are shown in Fig. 13.

Table 8: NIG parameters for series 1 for logreturns. Phase 1-3.

α̂NIG β̂NIG µ̂NIG (×10−3) δ̂NIG (×10−2)

Full series 21.58 −2.59 1.90 2.10
Phase 1 23.75 −4.82 4.34 1.89
Phase 2 33.85 −2.56 0.83 2.46
Phase 3 10.14 −1.14 2.73 4.06
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(a) Phase 1. (b) Phase 1.

(c) Phase 2. (d) Phase 2.

(e) Phase 3. (f) Phase 3.

Fig. 13: Estimated distribution for logreturns fitted with the NIG distribution, NIG(α,β ,µ,δ ). The param-
eters are given in Table 8. Logarithmic scale to the right.

It is clear that the distributional fit with the NIG distribution is better than the VG distribution. In
particular, the peak behavior is better captured for all phases. A comparison between the NIG and VG
distribution is shown in Fig. 14, from which the NIG distribution seems most eligible for each phase as
well as for the full time series (recall Fig. 9). Furthermore, we note that the main distributional difference
between the phases is the heaviness of the tails. This is seen from the value of the α parameter in Table 8.
The significantly higher (lower) value of α in phase 2 (phase 3) is consistent with the observed time series
and the statistics in Table 6. Based on these distributional properties, the BNS model seems appropriate as
a model for each individual phase as well as for the full time series.

By using the autocorrelation functions the parameters for the BNS model (as well as the Heston model)
can be estimated as in Sect. 4.

6 Discussion and Conclusion

The BNS model and the Heston model can both explain the key empirical features of EU ETS futures prices
observed at Nord Pool, such as skewness and heavy tails in the distribution. We noted that the introduction
of β in the Heston model is necessary in order to obtain a model that could incorporate skewness. As a
consequence the Heston model has a non-zero autocorrelation function. The zero autocorrelation function,
obtained in the BNS model is more consistent with the empirical autocorrelation. Furthermore, the NIG
distribution obtained from the BNS model by taking the stochastic volatility Y to be IG clearly fits the data
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(a) Phase 1.

(b) Phase 2.

(c) Phase 3.

Fig. 14: A comparison between the VG and the NIG estimated distributions for logreturns. Logarithmic
scale.

better in comparison with the VG distribution from the Heston model. Also, the BNS model is clearly more
flexible as we can obtain different distributions for the returns by choosing a suitable self-decomposable
distribution for the stochastic volatility process.

Furthermore, we noted in Sect. 5 that the major differences between the phases was the autocorrelation
structure in phase 3 and the significant higher excessive kurtosis in phase 1 and 3. We also noted that the
distributional properties of the Heston model had better alignment with the full time series rather than with
the individual phases. In addition, the NIG distributed BNS model seemed to be eligible for modeling each
phase as well.

Based on the autocorrelation structure and distributional properties, we conclude that the NIG distributed
BNS model seems to offer the most adequate model for EU ETS allowance futures prices.
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Appendix 1: Proof of Proposition 2

The covariance at lag k is defined by cov(L(t + k),L(t)) := E[L(t + k)L(t)]−E[L(t + k)]E[L(t)]. We start
to calculate E[L(t + k)L(t)] for k > 0.

E[L(t + k)L(t)] = E
[(∫ t+k+1

t+k
(µ−βY (s))ds+

∫ t+k+1

t+k

√
Y (s)dB(s)

)
(29)

×
(∫ t+1

t
(µ−βY (s))ds+

∫ t+1

t

√
Y (s)dB(s)

)]
= E

[∫ t+k+1

t+k
(µ−βY (s))ds

∫ t+1

t
(µ−βY (u))du

]
+E

[∫ t+k+1

t+k
(µ−βY (s))ds

∫ t+1

t

√
Y (u)dB(u)

+
∫ t+1

t
(µ−βY (u))du

∫ t+k+1

t+k

√
Y (s)dB(s)

]
+E

[∫ t+k+1

t+k

√
Y (s)dB(s)

∫ t+1

t

√
Y (u)dB(u)

]
.

Recall the filtration FY
t := {Yu,u ≤ t}, i.e. the σ -algebra generated by Y , revealing all information of

the stochastic volatility up to time t. By Fubini’s Theorem and iterated expectations we obtain for the
ds×dB-integrals, for k > 0,

E
[∫ t+k+1

t+k
(µ−βY (s))ds

∫ t+1

t

√
Y (u)dB(u)

]
= E

[∫ t+k+1

t+k

[
(µ−βY (s))

∫ t+1

t

√
Y (u)dB(u)

]
ds
]

=
∫ t+k+1

t+k
E
(
E
[
(µ−βY (s))

∫ t+1

t

√
Y (u)dB(u)|FY

s

])
ds

=
∫ t+k+1

t+k
E
(
(µ−βY (s))E

[∫ t+1

t

√
Y (u)dB(u)|FY

s

])
ds = 0.

The last line follows since µ−βY (s) is FY
s -measurable and E

[∫ t+1
t

√
Y (u)dB(u)|FY

s

]
= 0. Similarly we

obtain

E
[∫ t+1

t
(µ−βY (s))ds

∫ t+k+1

t+k

√
Y (u)dB(u)

]
=
∫ t+1

t
E
(
(µ−βY (s))E

[∫ t+k+1

t+k

√
Y (u)dB(u)|FY

s

])
ds = 0.

For the product of the Itô integrals we obtain by the Itô isometry

E
[∫ t+k+1

t+k

√
Y (s)dB(s)

∫ t+1

t

√
Y (u)dB(u)

]
= E

[∫ T

0
1(t + k ≤ s≤ t + k+1)

√
Y (s)dB(s)

×
∫ T

0
1(t ≤ s≤ t +1)

√
Y (s)dB(s)

]
= E

[∫ T

0
1(t + k ≤ s≤ t + k+1)1(t ≤ s≤ t +1)Y (s)ds

]
= 0.
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for T large enough and k > 0.
Let us now consider the remaining term in (29).

E
[∫ t+k+1

t+k
(µ−βY (s))ds

∫ t+1

t
(µ−βY (u))du

]
= E

[∫ t+k+1

t+k

∫ t+1

t
(µ−βY (s))(µ−βY (u))duds

]
=
∫ t+k+1

t+k

∫ t+1

t
E [(µ−βY (s))(µ−βY (u))]duds,

where we used Fubini’s theorem in the last step. The expectation expands to

E [(µ−βY (s))(µ−βY (u))] = µ
2−µβ (E [Y (s)]+E [Y (u)])+β

2E [Y (s)Y (u)] .

Note that we may write Y in explicit form by applying Itô’s Formula to the function f (y, t) = yeγt ;

d f (Y (t), t) = γY (t)eγtdt + eγtdY (t)

= γY (t)eγtdt + eγt(−γ(Y (t)−λ )dt +κ
√

Y (t)dW (t))

= γλeγtdt +κeγt
√

Y (t)dW (t).

Integrating from 0 to t with Y (t) = y at t = 0, we obtain

Y (t) = ye−γt +λ (1− e−γt)+κ

∫ t

0
eγ(s−t)

√
Y (s)dW (s). (30)

Hence,
E [Y (t)] = y0e−γt +λ

(
1− e−γt) . (31)

From (30) and (31) we get

Y (u)Y (s) =
(
E [Y (u)]+κ

∫ u

0
eγ(v−u)

√
Y (v)dW (v)

)
×
(
E [Y (s)]+κ

∫ s

0
eγ(v−s)

√
Y (v)dW (v)

)
.

(32)

Upon taking expectation after multiplying, the Brownian integrals vanish. The Itô isometry yields

E
[∫ u

0
eγ(v−u)

√
Y (v)dW (v)

∫ s

0
eγ(v−s)

√
Y (v)dW (v)

]
= e−γ(u+s)E

[∫ min(s,u)

0
e2γvY (v)dv

]
= e−γ(u+s)

∫ min(s,u)

0
e2γvE [Y (v)]dv,

where we used Fubini’s theorem in the last step. We obtain

E[Y (u)Y (s)] = E[Y (u)]E[Y (s)]+κ
2e−γ(u+s)

∫ min(s,u)

0
e2γvE [Y (v)]dv

and thus,
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E [(µ−βY (s))(µ−βY (u))] = µ
2−µβ (E [Y (s)]+E [Y (u)])

+β
2E[Y (u)]E[Y (s)]+β

2
κ

2e−γ(u+s)
∫ min(s,u)

0
e2γvE [Y (v)]dv.

It follows that, for k > 0

E[L(t)L(t + k)] =
∫ t+k+1

t+k

∫ t+1

t
µ

2−µβ (E [Y (s)]+E [Y (u)])+β
2E[Y (u)]E[Y (s)]duds

+β
2
κ

2
∫ t+k+1

t+k

∫ t+1

t
(e−γ(u+s)

∫ u

0
e2γvE [Y (v)]dv)duds (33)

since u < s. To calculate (33), we plug in the expression (31) for the expectation of Y and

E[Y (u)]E[Y (s)] = e−γ(s+u)(y0−λ )2 +λ (y0−λ )(e−γs + e−γu)+λ
2.

Also,

e−γ(u+s)
∫ u

0
e2γvE [Y (v)]dv =

1
2γ

[
e−γ(s+u)(λ −2y0)+2e−γs(y0−λ )+λe−γ(s−u)

]
yielding,

E[L(t)L(t + k)] =
∫ t+k+1

t+k

∫ t+1

t
µ

2−µβy0(e−γs + e−γu)−2µβλ +µβλ (e−γs + e−γu)duds (34)

+β
2
∫ t+k+1

t+k

∫ t+1

t
e−γ(s+u)(y0−λ )2 +λ (y0−λ )(e−γs + e−γu)+λ

2duds

+
β 2κ2

2γ

∫ t+k+1

t+k

∫ t+1

t
e−γ(s+u)(λ −2y0)+2e−γs(y0−λ )+λe−γ(s−u)duds

= µ
2−µβy0(

∫ t+k+1

t+k
e−γsds+

∫ t+1

t
e−γudu)−2µβλ +µβλ (

∫ t+k+1

t+k
e−γsds+

∫ t+1

t
e−γudu)

+β
2(y0−λ )2

∫ t+k+1

t+k

∫ t+1

t
e−γ(s+u)duds

+λ (y0−λ )β 2(
∫ t+k+1

t+k
e−γsds+

∫ t+1

t
e−γudu)+λ

2
β

2

+
β 2κ2

2γ

[
(λ −2y0)

∫ t+k+1

t+k

∫ t+1

t
e−γ(s+u)duds

+2(y0−λ )
∫ t+k+1

t+k
e−γsds+λ

∫ t+k+1

t+k

∫ t+1

t
e−γ(s−u)duds

]
.

for min(s,u) = u.
Calculation of the integrals in (34):

For any s > 0 we have ∫ t+k+1

t+k
e−γsds =

(
1− e−γ

) 1
γ

e−γ(t+k), (35)

∫ t+k+1

t+k

∫ t+1

t
e−γ(s+u)duds =

1−2e−γ + e−2γ

γ2 e−γ(2t+k), (36)

∫ t+k+1

t+k

∫ t+1

t
e−γ(s−u)duds =

1
γ2 (e

γ + e−γ −2)e−γk. (37)

In the limit we see that (37) is the only term contributing. Hence, in stationary we get

E[L(t)L(t + k)] = (µ−λβ )2 +
β 2κ2λ

2γ3 e−γk(eγ + e−γ −2).
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The stationary covariance becomes

cov(L(t + k),L(t)) =
β 2κ2λ

2γ3 e−γk(eγ + e−γ −2)

since E[L(t)] = E[L(t + k)] = µ − λβ in stationary. Clearly, this tends to zero as k becomes large. The
stationary autocorrelation Autocorr becomes

Autocorr(L(t + k),L(t)) :=
cov(L(t + k),L(t))√

var(L(t + k))
√

var(L(t))
=

β 2κ2

(β 2κ +2γ)γ2 e−γk(eγ + e−γ −2).

Appendix 2: Proof of Proposition 3

To start, we need some intermediate results and lemmas. The lemmas are of technical nature and their
detailed proofs can be found in Appendix 3. Define the processes X and Z as

X(s) :=
∫ s

t
Φ1(u)du+

∫ s

t
Ψ1(u)dB(u), (38)

Z(s) :=
∫ s

t
Φ2(u)du+

∫ s

t
Ψ2(u)dB(u), (39)

where Φ and Ψ will be defined below. Apply Itô formula to f (x,z) = x2z2:

d f (X(u),Z(u)) =
[
2X(u)Z2(u)Φ1(u)+2X2(u)Z(u)Φ2(u)

+Z2
Ψ

2
1 (u)+2X(u)Z(u)Ψ1(u)Ψ2(u)+X2(u)Ψ 2

2 (u)
]

du

+
[
2X(u)Z2(u)Ψ1(u)+2X2(u)Z(u)Ψ2(u)

]
dB(u).

Taking expectation yields,

E[X2(s)Z2(s)]

= E
[∫ s

t

(
2X(u)Z2(u)Φ1(u)+2X2(u)Z(u)Φ2(u)

+Z2
Ψ

2
1 (u)+2X(u)Z(u)Ψ1(u)Ψ2(u)+X2(u)Ψ 2

2 (u)
)

du
]
. (40)

Let s = t + k+1 and define

Φ1(u) := 1(t ≤ u≤ t +1)(µ−βY (u)) (41)

Ψ1(u) := 1(t ≤ u≤ t +1)
√

Y (u)

Φ2(u) := 1(t + k ≤ u≤ t + k+1)(µ−βY (u))

Ψ2(u) := 1(t + k ≤ u≤ t + k+1)
√

Y (u).

The covariance is given by cov(L2(t+k),L2(t)) = E[L2(t+k)L2(t)]−E[L2(t+k)]E[L2(t)]. To find this we
will make frequent use of Fubini’s Theorem, the tower property and the Markov property of the process Y .
Furthermore, we will end up with expressions involving conditional expectations of powers of Y . We start
to find formulas to calculate the conditional expectation that will also simplify the notation. To begin, by
the Markov property we have for t < s

E[Y n(s)|FY
t ] = E[(Y t,y)n(s)]y=Y (t), (42)

where E[(Y t,y)n(s)]y=Y (t) is the expectation of the process Y n starting at y = Y (t) at time t for an integer
n = 1,2.. indicating the nth power of Y . The nth moment is given by
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E[Y n(s)] = E[(Y 0,y0)n(s)]y0=Y (0).

Let
ξ (t) := Y n(t).

We have the following result.

Lemma 1. The conditional expectation for the process Y defined in (30) is given by

E[(Y t,y)n(s)]y=Y (t) = Y n(t)e−nγ(s−t)

+n
(

λγ +
1
2
(n−1)κ2

)∫ s

t
e−nγ(s−u)E[(Y t,y)n−1(u)]y=Y (t)du.

The explicit expressions for E[(Y t,y)n(s)]y=Y (t) for n = 1,2,3,4 are given by (54)− (60) in Appendix 3. Let
x ∈ R+ and define

Ck := k
(

λγ +
1
2
(k−1)κ2

)
, k = 1,2 . . . (43)

Fn
θ (x) :=

n

∑
m=0

f n
m(θ)x

m, (44)

where

f n
m(θ) :=

(1− e−γθ )(n−m)e−mγθ

(n−m)!γn−m

n−m

∏
k=0

Ck (45)

and C0 := 1. Since γ ≥ 0 clearly f n
m(θ) are finite for all m,n and θ ≥ 0, and hence Fn

θ
(x) is finite.

Lemma 2. Let Y (0) = y0 and for s > u > v > t ≥ 0. Then

E[Y n(s)|FY
t ] = Fn

s−t(Y (t)). (46)

In particular,
E[Y n(s)|FY

0 ] := E[Y n(s)] = Fn
s (y0). (47)

Also,

E
[
Fn

s−t(Y (t))]
]
= f n

0 (s− t)+
n

∑
m=1

f n
m(s− t)

m

∑
i=0

f m
i (t)yi

0, (48)

E
[
Y k(v)Fn

s−u(Y (u))
]
= f n

0 (s−u)
k

∑
c=0

f k
c (v)y

c
0 +

n

∑
m=1

f n
m(s−u)

m

∑
i=0

f m
i (u− v)

k+i

∑
j=0

f k+i
j (v)y j

0, (49)

E
[
Y l(u)Y k(v)Fn

s−u(Y (u))
]
=

n

∑
m=0

f n
m(s−u)

m+l

∑
i=0

f m+l
i (u− v)

k+i

∑
j=0

f k+i
j (v)y j

0 (50)

and

E
[
Y k(u)Fn

s−u(Y (u))
]
=

n

∑
m=0

f n
m(s−u)

m+k

∑
i=0

f m+k
i (u)yi

0. (51)

Furthermore, all expectations above are finite for all m,n,k, l and s > u > v > t ≥ 0.

Lemma 3. The expectation E[L2(t)L2(t + k)] is given by

E[L2(t)L2(t + k)] = D0(t,k)E[L2(t)]+D1(t,k)E[L2(t)Y (t +1)]+D2(t,k)E[L2(t)Y 2(t +1)],

for some finite deterministic functions Dn(t,k).

The functions Dn(t,k), for n = 0,1,2, are given by (65)− (67) in Appendix 3.
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Lemma 4. The expectation E[L2(t)Y n(t +1)] is given by

E[L2(t)Y n(t +1)]

= 2
∫ t+1

t

∫ u

t

[
µ

2E
[
Fn

t+1−u(Y (u))
]
−µβE

[
(Y (v)+Y (u))Fn

t+1−u(Y (u))
]

+β
2E
[
Y (u)Y (v)Fn

t+1−u(Y (u))
]]

dvdu+
∫ t+1

t
E
[
Y (u)Fn

t+1−u(Y (u))
]

du,

for n > 0. Furthermore, E[L2(t)Y n(t +1)]≤ ∞.

Proof of Proposition 3

We now have the necessary tools to prove Proposition 3. The stationary autocorrelation of squared logre-
turns is given by

lim
t→∞

Autocorr(L2(t),L2(t + k)) = lim
t→∞

E[L2(t)L2(t + k)]−E[L2(t)]E[L2(t + k)]√
var(L2(t + k))

√
var(L2(t))

.

Since the the expectations and the functions Dn(t,k) are finite, it follows that E[L2(t)L2(t + k)] is finite.
Furthermore, since L has finite moments of all orders we can write

lim
t→∞

Autocorr(L2(t),L2(t + k))

=
limt→∞E[L2(t)L2(t + k)]− limt→∞E[L2(t)] limt→∞E[L2(t + k)]√

limt→∞E[L4(t + k)]− (limt→∞E[L2(t + k)])2
√

limt→∞E[L4(t)]− (limt→∞E[L2(t)])2
.

But, for all n≥ 0

lim
t→∞

E[Ln(t + k)] = lim
t→∞

E[Ln(t)] = (−i)n ∂ nφ

∂un (0) := E[Ln],

where φ(u) is the stationary characteristic function for L defined in (15). It follows that E[Ln] is a constant
only depending on the parameters in the distribution of L. Thus,

lim
t→∞

Autocorr(L2(t),L2(t + k)) =
limt→∞E[L2(t)L2(t + k)]− (E[L2])2

E[L4]− (E[L2])2 .

Combining Lemma 3 and Lemma 4 we get

E[L2(t)L2(t + k) = D0(t,k)E[L2(t)] (52)

+2D1(t,k)
(∫ t+1

t

∫ u

t

[
µ

2E
[
F1

t+1−u(Y (u))
]
−µβE

[
(Y (v)+Y (u))F1

t+1−u(Y (u))
]

+β
2E
[
Y (u)Y (v)F1

t+1−u(Y (u))
]]

dvdu+
1
2

∫ t+1

t
E
[
Y (u)F1

t+1−u(Y (u))
]

du
)

+2D2(t,k)
(∫ t+1

t

∫ u

t

[
µ

2E
[
F2

t+1−u(Y (u))
]
−µβE

[
(Y (v)+Y (u))F2

t+1−u(Y (u))
]

+β
2E
[
Y (u)Y (v)F2

t+1−u(Y (u))
]]

dvdu+
1
2

∫ t+1

t
E
[
Y (u)F2

t+1−u(Y (u))
]

du
)
.

Applying Lemma 2 and the expressions for Dn(t,k) given by (65)− (67) in Appendix 3, the expectation
(52) can be calculated by elementary calculus. Passing to the limit, yields
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lim
t→∞

E[L2(t),L2(t + k)] = Ã0 + Ã1e−γk + Ã2e−2γk,

for constants Ã depending on the parameters of the distribution of L. Hence

lim
t→∞

Autocorr(L2(t),L2(t + k)) = A0 +A1e−γk +A2e−2γk.

Note that the calculation of the squared autocorrelation function is straightforward via (52).

Appendix 3: Proof of Lemmas in Appendix 2

Proof of Lemma 1

By Itô’s Formula we get

dξ (t) = nY n−1(−γ(Y (t)−λ ))dt +nY (t)n−1
κ
√

Y (t)dW (t)+
1
2

n(n−1)Y n−2(t)κ2Y (t)dt

=

[
−nγY n(t)+Y n−1(t)

(
nλγ +

1
2

n(n−1)κ2
)]

dt +nY (t)n−1
κ
√

Y (t)dW (t). (53)

To find an explicit solution for ξ , we apply Itô’s Formula to the function f (ξ (t), t) := ξ (t)enγt ,

d f (ξ (u),u) = nγξ enγudu+ enγudξ (u)

=

[
nY n−1(u)enγu

(
λγ +

1
2
(n−1)κ2

)]
du+nY (u)n−1

κ
√

Y (u)enγudW (u).

Integrating from t to s yields

Y n(s) = Y n(t)e−nγ(s−t)+n
(

λγ +
1
2
(n−1)κ2

)∫ s

t
e−nγ(s−u)Y n−1(u)du

+nκ

∫ s

t
e−nγ(s−u)Y n−1(u)

√
Y (u)dW (u).

Taking expectation and using Fubini’s Theorem we obtain

E[Y n,t,y(s)]y=Y (t) = Y n(t)e−nγ(s−t)+n
(

λγ +
1
2
(n−1)κ2

)∫ s

t
e−nγ(s−u)E[Y n−1,t,y(u)]y=Y (t)du.

This completes the proof of Lemma 1.

The explicit expression for E[Y n,t,y(s)]y=Y (t) for n = 1,2,3,4 is calculated as;
For n = 1:

E[Y t,y(s)]y=Y (t) = Y (t)e−γ(s−t)+C1

∫ s

t
e−γ(s−u)du

= Y (t)e−γ(s−t)+
C1

γ

(
1− e−γ(s−t)

)
:= Y (t) f 1

1 (s− t)+ f 1
0 (s− t). (54)

In particular,
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E[Y (s)] =y0e−γ(s)+
C1

γ

(
1− e−γ(s)

)
:= Y (s) f 1

1 (s)+ f 1
0 (s). (55)

For n = 2:

E[Y 2,t,y(s)]y=Y (t) = Y 2(t)e−2γ(s−t)+
(
2λγ +κ

2)∫ s

t
e−2γ(s−u)E[Y t,y(u)]y=Y (t)du

= e−2γs
[
Y 2(t)e2γt +C2

∫ s

t
e2γu

(
e−γu

[
Y (t)eγt +

C1

γ
(eγu− eγt)

])
du
]

= Y 2(t)e−2γ(s−t)+Y (t)
C2

γ
(1− e−γ(s−t))e−γ(s−t)+

C1C2

2γ2 (1− e−γ(s−t))2

:= Y 2(t) f 2
2 (s− t)+Y (t) f 2

1 (s− t)+ f 2
0 (s− t). (56)

In particular,

E[Y 2(s)] = y2
0e−2γs + y0C2(1− e−γs)e−γs +

C1C2

2γ2 (1− e−γs)2

:= Y 2(s) f 2
2 (s)+Y (s) f 2

1 (s)+ f 2
0 (s). (57)

For n = 3:

E[Y 3,t,y(s)]y=Y (t) = Y 3(t)e−3γ(s−t)+3
(
λγ +κ

2)∫ s

t
e−3γ(s−u)E[Y 2,t,y(u)]y=Y (t)du

= e−3γs
[
Y 3(t)e3γt +C3

∫ s

t
e3γu

(
e−2γu

[
Y 2(t)e2γt +Y (t)eγt C2

γ
(eγu− eγt)

+
C1C2

2γ2 (e2γu−2eγ(u+t)+ e2γt)

])
du
]

= Y 3(t)e−3γ(s−t)+Y 2(t)
C3

γ
(1− e−γ(s−t))e−2γ(s−t)

+Y (t)
C2C3

2γ2 (1− e−γ(s−t))2e−γ(s−t)+
C1C2C3

6γ3 (1− e−γ(s−t))3

:= Y 3(t) f 3
3 (s− t)+Y 2(t) f 3

2 (s− t)+Y (t) f 3
1 (s− t)+ f 3

0 (s− t). (58)

In particular,

E[Y 3(s)] = y3
0e−3γs + y2

0
C3

γ
(1− e−γs)e−2γs

+ y0
C2C3

2γ2 (1− e−γs)2e−γs +
C1C2C3

6γ3 (1− e−γs)3

:= Y 3(s) f 3
3 (s)+Y 2(s) f 3

2 (s)+Y (s) f 3
1 (s)+ f 3

0 (s). (59)

For n = 4:
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E[Y 4,t,y(s)]y=Y (t) = Y 4(t)e−4γ(s−t)+2
(
2λγ +3κ

2)∫ s

t
e−4γ(s−u)E[Y 3,t,y(u)]y=Y (t)du

= e−4γs
[
Y 4(t)e4γt)+C4

∫ s

t
e4γue−3γuY 3(t)e3γtdu

+ C4

∫ s

t
e4γue−3γuY 2(t)e2γt C3

γ
(eγu− eγt)du

+ C4

∫ s

t
e4γue−3γu C2C3

2γ2 Y (t)eγt(e2γu−2eγ(u+t)+ e2γt)du

+ C4

∫ s

t
e4γue−3γu C1C2C3

6γ3

(
e3γu−3eγ(2u+t)+3eγ(u+2t)+ eγt

)
du
]

= Y 4(t)e−4γ(s−t)+Y 3(t)
C4

γ
(1− e−γ(s−t))e−3γ(s−t)

+Y 2(t)
C3C4

2γ2 (1− e−γ(s−t))2e−2γ(s−t)

+Y (t)
C2C3C4

6γ3 (1− e−γ(s−t))3e−γ(s−t)

+
C1C2C3C4

24γ4 (1− e−γ(s−t))4

:= Y 4(t) f 4
4 (s− t)+Y 3(t) f 4

3 (s− t)

+Y 2(t) f 4
2 (s− t)+Y (t) f 4

1 (s− t)+ f 4
0 (s− t). (60)

In particular,

E[Y 4(s)] = y4
0e−4γs + y3

0
C4

γ
(1− e−γs)e−3γs

+ y2
0
C3C4

2γ2 (1− e−γs)2e−2γs + y0
C2C3C4

6γ3 (1− e−γs)3e−γs

+
C1C2C3C4

24γ4 (1− e−γs)4

:= Y 4(s) f 4
4 (s)+Y 3(s) f 4

3 (s)+Y 2(s) f 4
2 (s)+Y (s) f 4

1 (s)+ f 4
0 (s). (61)

Proof of Lemma 2

First, since Fn
s−t is finite, the relation (46) is well defined. Clearly, the first part of the Lemma holds for

n = 1,2,3,4 from the calculations above. The result for a general n > 0 follows directly by induction,
proving (46). For the formulas we have, using (46),

E
[
E[Y n(s)|FY

t ]
]
=

n

∑
m=0

f n
m(s− t)E[Y m(t)]

= f n
0 (s− t)+

n

∑
m=1

f n
m(s− t)E[Y m(t)].

Since m > 0 in the second term we can apply the first part of the Lemma again, i.e.

E[Y m(t)] = Fm
t−0(Y (0)) =

m

∑
i=0

f m
i (t)yi

0.

Hence,
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E
[
E[Y n(s)|FY

t ]
]
= f n

0 (s− t)+
n

∑
m=1

f n
m(s− t)

m

∑
i=0

f m
i (t)yi

0.

Proving (48). The remaining formulas are obtained as follows: Let s > u > v > 0 and k > 0:

E
[
Y k(v)Fn

s−u(Y (u))
]

= E

[
Y k(v)

n

∑
m=0

f n
m(s−u)Y m(u)

]
=

n

∑
m=0

f n
m(s−u)E

[
Y k(v)Y m(u)

]
=

n

∑
m=0

f n
m(s−u)E

[
Y k(v)E[Y m(u)|FY

v ]
]
= f n

0 (s−u)E[Y k(v)]

+
n

∑
m=1

f n
m(s−u)E

[
Y k(v)E[Y m(u)|FY

v ]
]

= f n
0 (s−u)Fk

v (Y (0))+
n

∑
m=1

f n
m(s−u)E

[
Y k(v)Fm

u−v(Y (v))
]

= f n
0 (s−u)

k

∑
c=0

f k
c (v)y

c
0 +

n

∑
m=1

f n
m(s−u)E

[
Y k(v)

m

∑
i=0

f m
i (u− v)Y i(v)

]

= f n
0 (s−u)

k

∑
c=0

f k
c (v)y

c
0 +

n

∑
m=1

f n
m(s−u)

m

∑
i=0

f m
i (u− v)E

[
Y k+i(v)

]
= f n

0 (s−u)
k

∑
c=0

f k
c (v)y

c
0 +

n

∑
m=1

f n
m(s−u)

m

∑
i=0

f m
i (u− v)

k+i

∑
j=0

f k+i
j (v)y j

0.

Similarly, it follows that, for l > 0,

E
[
Y l(u)Y k(v)Fn

s−u(Y (u))
]
=

n

∑
m=0

f n
m(s−u)

m+l

∑
i=0

f m+l
i (u− v)

k+i

∑
j=0

f k+i
j (v)y j

0

and

E
[
Y k(u)Fn

s−u(Y (u))
]
=

n

∑
m=0

f n
m(s−u)

m+k

∑
i=0

f m+k
i (u)yi

0,

proving (50) and (51). The finiteness of these formulas follows from the fact that f n
m(θ), for θ ≥ 0, is finite.

Proof of Lemma 3

Take θ ≥ t + k+1. Then, by definition of L, we get from (40) and (41)

E[L2(t)L2(t + k)] = E[X2(θ)Z2(θ)]

= 2
∫ t+1

t
E
[
X(u)Z2(u)(µ−βY (u))

]
du+2

∫ t+k+1

t+k
E
[
X2(u)Z(u)(µ−βY (u))

]
du

+
∫ t+1

t
E
[
Y (u)Z2(u)

]
du+4 ·0+

∫ t+k+1

t+k
E
[
Y (u)X2(u)

]
du

= 2
∫ t+k+1

t+k
E
[
X2(u)Z(u)(µ−βY (u))

]
du+

∫ t+k+1

t+k
E
[
Y (u)X2(u)

]
du,

where the last equality follows since Z(u) = 0 for u ∈ [t, t +1] by definition of Z in equation (39). We have,
for s ∈ [t + k, t + k+1]:
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E[L2(t)L2(t + k)] = 2
∫ t+k+1

t+k
E
[
X2(s)Z(s)(µ−βY (s))

]
ds (62)

+
∫ t+k+1

t+k
E
[
Y (s)X2(s)

]
ds,

We start to calculate the last expectation. Note that by the definition of (41) it follows that X(s), defined in
(38) is Ft+1-measurable. Whence,

E
[
Y (s)X2(s)

]
= E

[
X2E [Y (s)|Ft+1]

]
= f 1

1 (s− t−1)E[X2(s)Y (t +1)]+λ (1− f 1
1 (s− t−1)E[X2(s)]). (63)

The last equality follows from (42) and (54). Now for the first term in (62) we have by the tower property

E
[
X2(s)Z(s)(µ−βY (s))

]
= E

[
X2(s)E [Z(s)(µ−βY (s))|Ft+1]

]
,

since X(s) is Ft+1-measurable for s ∈ [t + k, t + k+1]. The conditional expectation

E [Z(s)(µ−βY (s))|Ft+1]

is calculated as,

E [Z(s)(µ−βY (s))|Ft+1]

= E
[
(µ−βY (s))

(∫ s

t+k
(µ−βY (u))du+

∫ s

t+k

√
Y (u)dB(u)

)
|Ft+1

]
=
∫ s

t+k
E [(µ−βY (u))E [(µ−βY (s))|Fu] |Ft+1]du

+E
[
(µ−βY (s))E

[∫ s

t+k

√
Y (u)dB(u)|Ft+1∨FY

]
|Ft+1

]
.

The last conditional expectation is zero. The remaining part yields,

E [Z(s)(µ−βY (s))|Ft+1]

=
∫ s

t+k
E
[
(µ−βY (u))

(
µ−β f 1

1 (s−u)Y (u)−βλ (1− f 1
1 (s−u))

)
|Ft+1

]
du

=
∫ s

t+k
E
[
µ

2−µβλ (1− f 1
1 (s−u))+β

2 f 1
1 (s−u)Y 2(u)

+Y (u)
(
β

2
λ (1− f 1

1 (s−u))−µβ f 1
1 (s−u)−µβ

)
|Ft+1

]
du

= µ
2(s− t− k)−

∫ s

t+k
µβλ (1− f 1

1 (s−u))du

+β
2
∫ s

t+k
f 1
1 (s−u)

[
Y 2(t +1) f 2

2 (s− t−1)+Y (t +1) f 2
1 (u− t−1)+ f 2

0 (u− t−1)
]

du

+
∫ s

t+k

[(
β

2
λ (1− f 1

1 (s−u))−µβ f 1
1 (s−u)−µβ

)
×
(

f 1
1 (u− t−1)Y (t +1)+λ (1− f 1

1 (u− t−1))
)]

du,

by using (54) and (56). The expectation E
[
X2(s)Z(s)(µ−βY (s))

]
becomes



32 Fred Espen Benth, Marcus Eriksson and Sjur Westgaard

E
[
X2(s)Z(s)(µ−βY (s))

]
= E

[
X2(s)

(
µ

2(s− t− k)−
∫ s

t+k
µβλ (1− f 1

1 (s−u))du
)

+β
2
∫ s

t+k
X2(s) f 1

1 (s−u)
[
Y 2(t +1) f 2

2 (u− t−1)+Y (t +1) f 2
1 (u− t−1)+ f 2

0 (u− t−1)
]

du

+
∫ s

t+k
X2(s)

(
β

2
λ (1− f 1

1 (s−u))−µβ f 1
1 (s−u)−µβ

)
×
[

f 1
1 (u− t−1)Y (t +1)+λ (1− f 1

1 (u− t−1))
]

du
]
.

Applying Fubini’s Theorem yields,

E
[
X2(s)Z(s)(µ−βY (s))

]
(64)

= E[X2(s)]
(

µ
2(s− t− k)−

∫ s

t+k
µβλ (1− f 1

1 (s−u))du
)

+β
2
∫ s

t+k
f 1
1 (s−u)E[X2(s)Y 2(t +1)] f 2

2 (u− t−1)du

+β
2
∫ s

t+k
f 1
1 (s−u)

[
E[X2(s)Y (t +1)] f 2

1 (u− t−1)+E[X2(s)] f 2
0 (u− t−1)

]
du

+
∫ s

t+k

(
β

2
λ (1− f 1

1 (s−u))−µβ f 1
1 (s−u)−µβ

)
×
[

f 1
1 (u− t−1)E[X2(s)Y (t +1)]+E[X2(s)]λ (1− f 1

1 (u− t−1))
]

du.

Since, for s∈ [t+k, t+k+1], E[X2(s)Y n(t+1)] is independent of s by definition of X . From the expressions
(64) and (63) we get,

E[L2(t)L2(t + k)]

= 2E[X2(s)]
(∫ t+k+1

t+k

[
µ

2(s− t− k)+
1
2

f 1
0 (s− t−1)

+
∫ s

t+k
β

2 f 2
0 (u− t−1)+(β 2 f 1

0 (s−u)−µβ f 1
1 (s−u)−µβ ) f 1

0 (u− t−1)du
]

ds
)

+2E[X2(s)Y (t +1)]
(∫ t+k+1

t+k

[1
2

f 1
1 (s− t−1)

+
∫ s

t+k
β

2 f 2
1 (u− t−1)+(β 2 f 1

0 (s−u)−µβ f 1
1 (s−u)−µβ ) f 1

1 (u− t−1)du
]
ds
)

+2E[X2(s)Y 2(t +1)]
(∫ t+k+1

t+k

∫ s

t+k
β

2 f 2
2 (t +1,u) f 1

1 (s−u)duds
)

:= D0(t,k)E[X2(s)]+D1(t,k)E[X2(s)Y (t +1)]+D2(t,k)E[X2(s)Y 2(t +1)]

:= D0(t,k)E[L2(t)]+D1(t,k)E[L2(t)Y (t +1)]+D2(t,k)E[L2(t)Y 2(t +1)],

where Dn(t,k), n = 0,1,2 are deterministic functions of t and the time lag k. The last equality follows from
the definition of X . The expressions for Dn(t,k) are given by

D0(t,k) :=2
∫ t+k+1

t+k

[
µ

2(s− t− k)+
1
2

f 1
0 (s− t−1)

+
∫ s

t+k
β

2 f 2
0 (u− t−1)+(β 2 f 1

0 (s−u)−µβ f 1
1 (s−u)−µβ ) f 1

0 (u− t−1)du
]

ds, (65)
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D1(t,k) :=2
∫ t+k+1

t+k

[1
2

f 1
1 (s− t−1)

+
∫ s

t+k
β

2 f 2
1 (u− t−1)+(β 2 f 1

0 (s−u)−µβ f 1
1 (s−u)−µβ ) f 1

1 (u− t−1)du
]
ds, (66)

D2(t,k) :=2
∫ t+k+1

t+k

∫ s

t+k
β

2 f 2
2 (t +1,u) f 1

1 (s−u)duds. (67)

Since f n
m are all finite, clearly Dn(t,k) is well defined. The claim of the Lemma follows.

Proof of Lemma 4

For n > 0 we have

E[L2(t)Y n(t +1)] = E[X2(s)Y n(t +1)]

= E

[
Y n(t +1)

(∫ t+1

t
(µ−βY (u))du+

∫ t+1

t

√
Y (u)dB(u)

)2
]

= E

[
Y n(t +1)

(∫ t+1

t
(µ−βY (u))du

)2
]

+2E
[
Y n(t +1)

∫ t+1

t
(µ−βY (u))du

∫ t+1

t

√
Y (u)dB(u)

]
+E

[
Y n(t +1)

(∫ t+1

t

√
Y (u)dB(u)

)2
]

= 2
∫ t+1

t

∫ u

t
E
[
(µ−βY (u))(µ−βY (v))E

[
Y n(t +1)|FY

u
]]

dvdu

+2E
[
Y n(t +1)

∫ t+1

t
(µ−βY (u))duE

[∫ t+1

t

√
Y (u)dB(u)|FY

t+1

]]
+E

[
E

[
Y n(t +1)

(∫ t+1

t

√
Y (u)dB(u)

)2

|FY
t+1

]]

= 2
∫ t+1

t

∫ u

t
E
[
(µ−βY (u))(µ−βY (v))E

[
Y n(t +1)|FY

u
]]

dvdu

+
∫ t+1

t
E
[
Y (u)E

[
Y n(t +1)|FY

u
]]

du.

Applying Lemma 2 we get

E[L2(t)Y n(t +1)] = 2
∫ t+1

t

∫ u

t
E
[
(µ2−µβ (Y (v)+Y (u))+β

2Y (u)Y (v))Fn
t+1−u(Y (u))

]
dvdu

+
∫ t+1

t
E
[
Y (u)Fn

t+1−u(Y (u))
]

du

= 2
∫ t+1

t

∫ u

t

[
µ

2E
[
Fn

t+1−u(Y (u))
]
−µβE

[
(Y (v)+Y (u))Fn

t+1−u(Y (u))
]

+β
2E
[
Y (u)Y (v)Fn

t+1−u(Y (u))
]]

dvdu+
∫ t+1

t
E
[
Y (u)Fn

t+1−u(Y (u))
]

du.
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By Lemma 2, E[L2(t)Y n(t +1)] is finite.
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