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Abstract: Al2O3-10TiC composites were fabricated through the powder metallurgical process
(mechanical milling combined with spark plasma sintering) with the addition of Ni/Nb as metallic
binders. The effect of binder addition (Ni/Nb) on the processing, microstructure, and mechanical and
tribological properties of the bulk-sintered composite samples was investigated. The microstructure
of the composite reveals a homogeneous distribution of the TiC particles in the Al2O3 matrix.
However, the presence of Ni/Nb was not traceable, owing to the small amounts of Ni/Nb addition.
Hardness and density of the composite samples increase with the increasing addition of Nb (up to
2 wt. % Nb). Any further increase in the Nb content (3 wt. %) decreases both the hardness and the
wear resistance. However, in case of Ni as binder, both the hardness and wear resistance increases
with the increase in the Ni content from 1 wt. % to 3 wt. %. However, the composite samples with
Nb as binder show improved hardness and wear resistance compared to the composites with Ni
as binder.

Keywords: mechanical properties; spark plasma sintering; microstructure; composites; abrasion test

1. Introduction

Ceramic materials are the preferred choice of materials for high temperature, wear resistance and
high speed cutting applications because of their high melting points and remarkable hardness [1–3].
Al2O3-based ceramic matrix composites are widely used in wear, corrosive, and high temperature
environments due to their excellent properties such as high hardness, chemical stability, excellent
wear resistance, and high temperature oxidation resistance [4–6]. However, the wide applications of
alumina are limited by their intrinsic brittleness. Hence, enough research has been devoted on ceramic
materials to improve their flexural strength and fracture toughness in order to maximize their industrial
applications [7–10]. Studies have indicated that the addition of 10 wt. % TiC as a reinforcement to
the Al2O3 matrix can improve the hardness, fracture toughness, and thermal shock resistance of
the composites [11,12]. In addition, introducing ductile reinforcement into the ceramic matrix may
effectively improve both the ductility and toughness of the ceramic matrix composites.
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Reports have shown that ductile metallic particles such as Ni, Fe, Al, Cu, Mo, and Nb have been
added to the alumina matrix to improve its ductility [11–15]. Considerable efforts have been devoted
to improve the mechanical properties of TiC-based cermets with Co as a binder. Although such
efforts have shown some promise, this technique (of Co binder addition) exhibits several limitations,
including high costs and environmental pollution [16,17]. Thus, researchers have been attempting
to address these issues by replacing Co with other transition elements, such as Ni, Mo, and Ni-Mo.
Ni is one of the prominent candidates as a binder, which can be widely utilized in various types of
cermets [18,19]. The addition of transition and relatively soft material like Ni may have a significant
influence in reducing the crack growth during the sintering process, due to its excellent oxidation
resistance [20,21]. Furthermore, Ni as a binder is responsible for better toughness and ductility in the
ceramic matrix composites [22,23]. Moreover, available literature shows that addition of Ni as binder
in cermets can effectively improve the wear resistance of the composites [24–26].

Recent reports have demonstrated that the addition of Mo as binder in TiC-based cermets can
improve its mechanical properties [27,28], which may be explained by the following mechanism:
Mo increases the wettability between the binder and the ceramic phase by forming a Mo-rich shell
around the TiC particles, which in turn helps in improving the properties of the cermets [29,30].
The mixing of additives with the matrix is generally carried out by manual mixing (hand mixing or
agate mortar). However, mixing by mechanical milling (MM) has shown significant improvement
in the strength and ductility of the composite materials due to the uniform distribution of the
reinforcement/foreign particles [31–37]. Even though several studies have focused on the improvement
of flexural strength and fracture toughness of the Al2O3-based ceramic composites, a systematic study
dealing with the microstructural evolution and structure-property correlation is lacking. Therefore,
this work focuses on the fabrication of Al2O3-TiC composites with different percentage of Ni and Nb
addition (as additive) via MM combined with spark plasma sintering (SPS). The effect of additives
content on the microstructure, hardness, and tribological properties of the composites was investigated
in detail. The influence of both Ni and Nb addition on the relative density, hardness, and abrasive
wear resistance is compared systematically.

2. Materials and Methods

Al2O3-10TiC composites were fabricated by SPS process using commercially available α-Al2O3 as
matrix (from Alfa Aesar with 99.99% purity), with an average particle size of ~24 µm. TiC particles
(from Alfa Aesar with 99.97% purity) with an average particle size of ~7 µm were used as the
reinforcement (10 vol.%). In order to improve the bonding between the matrix and reinforcement,
Ni & Nb additives (from Himedia, Mumbai, India, 99.99% purity), both with a particle size of ~3 µm,
were added with different weight percentages (from 1 to 3 wt. %). The composite powder mixture
was prepared by mechanical milling (MM) in a PM-400 planetary ball mill for 30 h in dry condition
with a ball to powder ratio of 10:1 and at a set speed of 150 rpm. Phase analysis of the milled
powders was carried out using powder diffraction technique with the help of X’Pert PRO PANalytical
Diffractometer (from PANalytical, Kassel, Germany) with Cu-kα radiation (λ = 1.54184 Å), and the
particle size was analyzed using the particle size analyzer (Malvern 2000, New Delhi, India), which is
a laser based diffraction technique with water as dispersant. The particle morphologies were observed
using field emission scanning electron microscope (FESEM) from JEOL (Freising, Germany) fitted
with energy dispersive X-ray spectroscopy (EDX from Oxford Instruments plc, Oxfordshire, UK).
The milled powders were loaded inside the SPS system (SPS Syntex, 725, New Delhi, India) with
15 mm diameter top and bottom punches. The sintering was carried out under vacuum with pressure
less than 10−4 MPa. The composite powder was heated to 1673 K at a constant heating rate of 50 K/min
and was held for 3 min at a pressure of 60 MPa.

After sintering, the samples were removed from the die to evaluate both the both physical and
mechanical properties. The sintered samples were subjected to X-ray diffraction (XRD) after both
the surfaces were ground to remove any residual graphite layer present in the sample. The density
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of the sintered samples was measured using Archimedes principle. Microstructural observation
was conducted using the optical microscope (OM from HITACHI, Feldkirchen, Germany) and
FESEM. Hardness measurements were carried out using micro-indentation technique with the
help of a computer-controlled LECO (AMH43 from LECO, Mönchengladbach, Germany) Vicker’s
microhardness tester. The micro-hardness device was equipped with a typical diamond indenter in
the form of a pyramid with square base and an angle of 136◦ between the opposite faces. Indentations
were carried out with an applied load of 1 g and a dwell time of 13 s. The abrasion test was performed
using a high temperature abrasion tester—CM-9101 (according to ASTM G65 standards) at 873 K for
5 min cycling time under the applied load of 5 kg. These tests were carried out to analyze the weight
loss and abrasion rate at given temperature and cycling time.

The CM-9101 abrasion tester set-up has a rotating metallic (Ni-based Inconel alloy) wheel of
100 mm diameter, which acts as a counter face against abrasive sample surface. The specimens were
weighed initially on an electronic weighing machine, with an accuracy of 0.1 mg. They were then fixed
in the specimen holder, which is located at one end of the lever, and the door was closed. The samples
were heated to 873 K inside the chamber as per the working requirement of the cutting tool insert. 5 kg
load was applied on the other end of the hydraulic arm with a rotation speed of 200 rpm, which is
maintained by adjusting the knob. White alumina sand AFS 50/70 (with a hardness of 2000 Hv) as
abrasive media was loaded in the hopper of the machine. The abrasive medium falls at a rate of
350 g/min between the specimen and the counter face during the entire run time of the experiment.
The applied load presses the specimen against the counter face, while there is a continuous flow of
abrasive medium between the specimen and the counter face. All the experiments were conducted for
a constant time of 5 min. After completion of the experiment, the samples were again weighed and
weight loss was recorded. The abrasion wear rate was calculated using the formula [38],

Wa =

(
∆G
d

)
× M × S (1)

where Wa is the abrasion wear rate (mm3/Nm), ∆G is mass loss (g), d is density (g/mm3), M is the
applied load (N), and S is the sliding distance (m) [39,40].

3. Results

3.1. Power Characterization

XRD patterns of the milled Al2O3-10TiC powder samples with and without the addition of binder
are shown in Figure 1. The XRD patterns show the presence of only two phases with no new phases
formed, indicating that no reaction has taken place between the matrix, reinforcement, and the binder
during MM. In addition, the patterns do not show the presence of Ni/Nb peaks, which may be due
to the low contents of Ni/Nb (<5 wt. %), which are below the detection limit of the XRD device.
Hence, all the identified peaks correspond to the two phases Al2O3 and TiC. Figure 2a,c shows the
FESEM micrograph of the Al2O3-10TiC milled powder (with 3 wt. % nickel) and their size distribution.
It show two types of particles, big polygon-shaped Al2O3 particles (8–10 µm) and small equiaxed TiC
particles (1–2 µm), distributed uniformly throughout the matrix. The presence of Ni/Nb was hard to
identify due to the low amount of binder addition in the composite. Figure 2b,d reveals the Gaussian
distribution function of the powder particles before and after MM. It shows that the particle size is
reduced after MM and most of the particles fall between the range 1–10 µm after MM, as compared
to 1–20 µm in the un-milled condition. The results are representative, since the size of the particles
remain similar irrespective of the amount and type (Ni/Nb) of binder added and hence not shown
here. This may be that Ni/Nb does not react with the matrix and/or the reinforcement. In addition,
both these elements (Ni/Nb) have similar hardness levels (between 4.0 and 6.0) on Mohs scale.
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Figure 1. XRD (Cu-Kα) patterns of the Al2O3-10TiC-milled powder with the different binder content 
with (a) Ni and (b) Nb addition. 

 
Figure 2. FESEM micrograph of Al2O3-10TiC powder with 3 wt. % Nb addition in (a) un-milled and 
(c) milled conditions along with their particle size distribution (b,d), respectively. 

3.2. Microstructure and Mechanical Property of Bulk Sample 

The FESEM micrographs of the bulk composite samples with and without the addition of 
different weight percentage (1–3 wt. %) binder (Ni/Nb) are shown in Figure 3a–g. The micrograph 
revels that the composite samples consist of two phases (bright and dark) distributed homogeneously 
in all the measured samples. It has been observed from the EDX analysis that the bright phase 
corresponds to TiC particles and the dark phases represents Al2O3 particles (see Figure 4). Traces of 
Ni/Nb are hard to be observed because of the low contents and the size of the particles. The 
micrographs does not show the presence of defects like porosity in the sample, suggesting these 
samples have a very high density. In addition, the microstructures also reveal the presence of an 
excellent interfacial bonding between the matrix (Al2O3) and the reinforcement (TiC) without the 
presence of any interfacial defects between the matrix and the reinforcement.  
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Figure 2. FESEM micrograph of Al2O3-10TiC powder with 3 wt. % Nb addition in (a) un-milled and
(c) milled conditions along with their particle size distribution (b,d), respectively.

3.2. Microstructure and Mechanical Property of Bulk Sample

The FESEM micrographs of the bulk composite samples with and without the addition of different
weight percentage (1–3 wt. %) binder (Ni/Nb) are shown in Figure 3a–g. The micrograph revels that
the composite samples consist of two phases (bright and dark) distributed homogeneously in all the
measured samples. It has been observed from the EDX analysis that the bright phase corresponds to
TiC particles and the dark phases represents Al2O3 particles (see Figure 4). Traces of Ni/Nb are hard
to be observed because of the low contents and the size of the particles. The micrographs does not
show the presence of defects like porosity in the sample, suggesting these samples have a very high
density. In addition, the microstructures also reveal the presence of an excellent interfacial bonding
between the matrix (Al2O3) and the reinforcement (TiC) without the presence of any interfacial defects
between the matrix and the reinforcement.
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The densification and hardness of the composites with the binder addition (Ni/Nb) are shown 
in Figure 5. The density of the composites increase from 3.9820 g/cc to 4.0713 g/cc, when the amount 
of Nb addition is increased from 1 wt. % to 2 wt. %, which amount to an increase in the relative 
density from ~96.5% to ~98%. The relative density shows a marginal decline (decreases to ~97.5%), 
when the Nb addition is increased to 3 wt. %. This marginal decrease in the relative density of the 3 
wt. % Nb added composite may be attributed to the difference in wettability levels. Nb does not have 
a good wettability with the Al2O3 matrix as compared to Ni, and any increase in the Nb content 
beyond 2 wt. % does not help to improve the density of the Al2O3-10TiC composites. Similar trend is 
observed with the hardness data as well. The hardness levels of the composites increase with 
increasing addition of Nb from ~1410 MPa (without Nb addition) to ~1680 MPa for 1 wt. % addition 
of Nb. With further addition of Nb to 2 wt. %, the hardness on the composite increases to ~1870 MPa 
and then marginally decreases to 1770 MPa with 3 wt. % Nb addition. This decline in the hardness is 
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Figure 3. FESEM micrographs of the sintered Al2O3-TiC composite without binder (a) and with
different contents (wt. %) of binder addition: Nb (b–d) and Ni (e–g).

The densification and hardness of the composites with the binder addition (Ni/Nb) are shown in
Figure 5. The density of the composites increase from 3.9820 g/cc to 4.0713 g/cc, when the amount
of Nb addition is increased from 1 wt. % to 2 wt. %, which amount to an increase in the relative
density from ~96.5% to ~98%. The relative density shows a marginal decline (decreases to ~97.5%),
when the Nb addition is increased to 3 wt. %. This marginal decrease in the relative density of the
3 wt. % Nb added composite may be attributed to the difference in wettability levels. Nb does not
have a good wettability with the Al2O3 matrix as compared to Ni, and any increase in the Nb content
beyond 2 wt. % does not help to improve the density of the Al2O3-10TiC composites. Similar trend
is observed with the hardness data as well. The hardness levels of the composites increase with
increasing addition of Nb from ~1410 MPa (without Nb addition) to ~1680 MPa for 1 wt. % addition of
Nb. With further addition of Nb to 2 wt. %, the hardness on the composite increases to ~1870 MPa
and then marginally decreases to 1770 MPa with 3 wt. % Nb addition. This decline in the hardness
is attributed to the decrease in the relative density of the composite, which again is related to the
wettability of Nb with Al2O3.
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On the other hand, with the addition of Ni, both the density and the relative densities increase
linearly. For instance, the relative density of the composites increases from ~96% (1 wt. % Ni addition)
to ~96.5 wt. % (2 wt. % Ni) and finally to ~97% for 3 wt. % Ni addition. Similar trend has been observed
also for the hardness values, where the hardness increases from ~1410 MPa without Ni addition to
~1625 MPa, ~1780 MPa, and ~1800 MPa for the addition of 1 wt. %, 2 wt. %, and 3 wt. % Ni, respectively.
Such consistent increase in both relative densities and hardness of the composites with the addition of
Ni is attributed to the complete wettability of Ni with the matrix Al2O3. It has been observed that the
complete wettability provides better bonding strength with matrix and helps to reduce the amount of
porosity, which results in the enhanced densities, flexural strength, and fracture toughness [41–43].
A highest hardness of ~1870 MPa is observed for the composites with 2 wt. % Nb addition and a least
hardness of ~1625 MPa is observed for the composite with 1 wt. % Ni addition. In general, the samples
with the addition of Nb shows better strength levels (hardness) than the composites with Ni addition.
This may be attributed to the strength of Nb, which is slightly higher (Mohs scale 6.0) compared to Ni
(Mohs scale 4.0).
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3.3. Abrasive Wear Study

Ceramic materials possess high hardness and relative low fracture toughness [44,45], and hence
brittle micro-cutting wear mechanisms will predominate. However, sometimes plastic deformation
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may also be observed during an abrasion wear process [46]. Figures 6 and 7 show the microstructure
of the surfaces before and after abrasion test with the addition of Nb and Ni binders, respectively.
Generally, from these images, it can be observed that the abrasive surfaces do not show any deep cutting
mark, which is due to the presence of hard particles on the moving path of abradants. These hard
particles are capable of resisting the abradant, resulting either in the rolling of abradants or the pulling
out of particles themselves. Locally, some surfaces become uneven and even show the erosion of some
fine particles. However, a uniform wear throughout the sample surface is observed in most of the
samples. In the Nb added composites, some micro-cracks and detachment of the particles are observed
in samples especially at higher amounts of Nb (3 wt. % Nb) addition, as marked by arrows in the
Figure 6h. However, the presence of micro-cracks and detachment of particles is comparatively less in
the samples with 1 wt. % and 2 wt. % addition of Nb. This effect is attributed to the decrease in the
relative density and, in turn, hardness in the composites with 3 wt. % Nb addition, compared to the
other two samples with 1 wt. % and 2 wt. % Nb addition, respectively. In case of the composites with
Ni as binder, samples surface changes show a uniform trend, which is in accordance with the increase
in the addition of Ni content.
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The weight loss and the wear rate data of the composites with the addition of Nb and Ni are
shown in Figure 8. Both the weight loss and wear rate data show that the addition of both Nb and
Ni in general improves the wear resistance of the material, due to improved relative densities and,
in turn, the hardness of the composites. However, the lone exception is the composite sample with
3 wt. % Nb addition, where weight loss increases compared to the sample with 2 wt. % Nb addition,
suggestion poor wear resistance. The results are in compliance with the FESEM images and also with
the relative density and hardness data. From these experimental data, the following observations
can be made: both the hardness (strength) and the wear resistance increases with increase in the Nb
addition until 2 wt. %. Addition of Nb content beyond 2 wt. % decreases both the hardness and wear
resistance, due to issues with the wettability, and hence there is a decrease in the relative density of
the composites. However, with the addition of Ni, both the hardness and wear resistance increases
with increase in the Ni content. In general, the hardness and wear resistance of the composites are
superior when Nb is added as a binder rather than Ni. This may be attributed to the marginal increase
in hardness of Nb compared to Ni.
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4. Summary

Al2O3-10TiC bulk ceramic matrix composites were successfully prepared by powder metallurgical
route (mechanical milling combined with spark plasma sintering) with the addition of Ni/Nb as
metallic additives.

â XRD data shows the presence of two phases Al2O3 and TiC, confirming no reaction between
the matrix, reinforcement, and metallic binders during the mechanical milling and subsequent
spark plasma sintering processes. However, no peaks of Ni/Nb are observed owing to the small
amounts of Ni/Nb addition, which is below the deductible limits of the XRD setup.

â The microstructure of the composite reveals homogeneous distribution of the TiC particles
within the Al2O3 matrix. The relative density, hardness, and the wear resistance of the
composites increase with the addition of Nb until 2 wt. %. Any addition of Nb beyond
2 wt. % (3 wt. % addition of Nb) hampers their properties, due to relatively poor wettability of
Nb with the Al2O3 matrix. Nevertheless, the properties of composites with 3 wt. % addition of
Nb are better than the samples without the addition of Nb.

â On the other hand, with the addition of Ni, the relative density, hardness, and wear resistance
increases with increase in the Ni content. In general, the samples with the addition of Nb as
binder show more improved properties than the composites with Ni addition, which is attributed
to the marginal increase in the hardness of Nb compared to Ni.

â Overall results show that the addition of metallic binders improve the relative density, hardness,
and wear resistance of the Al2O3-10TiC composite samples.
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