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Abstract—In this paper, we investigate the delay and delay-
constrained throughput performance of a point-to-point wireless-
powered communication system, where one node, e.g. a user
equipment (UE), is powered by the wireless energy transferred
from the other node, e.g. an access point (AP), and uses the har-
vested wireless energy to send data to the other node. Our focus is
on the delay performance of sending data over the uplink from the
UE node to the AP node, and on its throughput performance when
a delay constraint is enforced. Two representative time allocation
schemes in using the link for the AP node to transfer energy
(maybe together with data) and for the UE node to send data
are considered. In particular, a lower bound on the cumulative
capacity of the uplink is derived. In addition, an upper bound on
the delay distribution is obtained for stochastic traffic arrivals,
based on which, the delay-constrained throughput performance
is further analyzed. Moreover, the accuracy of the analysis is
validated by comparison with extensive simulation results. The
analysis and results shed new light on the performance of such
a wireless-powered communication system.

I. INTRODUCTION

With the advance of wireless energy transfer technology,
a newly emerging topic is wireless powered communication
(WPC) [1] [2], which has recently attracted growing interest
from both academia and industry. WPC has a great potential
for use in a wide range of applications particularly in wireless
sensor networks (WSNs) and Internet of Things/Everything
(IoT/IoE) [2]. In a WPC system, a node, e.g. a user equipment
(UE), harvests energy from the ambient radio signal, which
may be purposely radiated by another node, e.g. an access
point (AP), in its downlink (DL) to the UE node, and the UE
node may then use the harvested energy to transmit data in the
uplink (UL) to the AP node, as shown in Fig. 1.

Typically, in a WPC system, the UL and the DL share the
same frequency band, which implies the system works in half-
duplex mode. A fundamental issue of the WPC system is to
decide how frequently the energy transfer should be conducted
and how long each time the energy transfer should last. To
provide answers to these questions, one has to investigate how
much data needs to be sent by the UE node to the AP node,
or equivalently what data throughput or capacity the system is
intended to achieve. In addition, if there is delay requirement
on the data, the investigation also should take it into account.
These constitute the objective of this paper.

In the literature, several studies on the throughput perfor-
mance of WPC systems can be found. In [3], the authors
studied two types of throughput under a harvest-then-transmit
protocol, which are the maximum system capacity and the
throughput guaranteed for all devices at the same time. In [4],

the focus was on spatial throughput maximization of a WPC
network, by finding the optimal tradeoff between the energy
transfer and information transfer. In [5], an optimization al-
gorithm was proposed to maximize the system throughput in
a multiuser multi-input-multi-output (MIMO) system through
jointly optimizing the energy beamforming, receive beamform-
ing and time slot allocation. In [6], under the requirement of a
minimum throughput, the focus was on the energy efficiency
through performing power control and time allocation jointly.

All these existing works [3]–[6] focus mostly on through-
put studies with fluid traffic, where, delay, though a key per-
formance metric, receives little attention. The-state-of-the-art
study of delay performance in WPC systems is rather limited.
Weakly related, in [7], a method to control the power-delay
performance on demand in a WPC system was proposed, but
its aim is to minimize the time-averaged power consumption
with little touch on maximizing the throughput or capacity
performance as in [3]–[6]. Actually, due to the limitation of
hardware and energy transfer loss, the amount of harvested
energy in a WPC system may be highly limited compared
with the conventional systems powered through circuit [8].
Consequently, it is crucial to study the delay and throughput
performance together for WPC systems.

In this paper, we investigate the delay and delay-
constrained throughput performance of a point-to-point WPC
system. Specifically, our focus is on the delay performance of
sending data in the UL from the UE to the AP, and on its
maximum throughput performance when a delay constraint is
enforced. Two representative time allocation schemes to share
the link for the AP to transfer energy and for the UE to send
data are considered with one static and the other dynamic. A
concise but tight lower bound is derived to characterize the
complex cumulative service capacity process of the uplink un-
der the two schemes. In addition, an upper bound on the delay
distribution is obtained for stochastic traffic arrivals, based on
which, the traffic delay performance and the delay-constrained
throughput performance are further analyzed. It is found that,
when there is requirement on the delay performance, the
consequent delay-constrained throughput performance under
stochastic traffic may differ significantly from that under fluid
traffic. This sheds new light on the performance of WPC
systems. Moreover, the accuracy of the analysis is validated
by comparison with extensive simulation results.

The remainder is organized as follows. In Section II, the
system model is presented. In Section III, detailed analysis
of the WPC system is conducted. In Section IV, analytical
and simulation results are presented, compared and discussed.
Finally, we conclude the paper in Section V.



II. SYSTEM MODEL

A. System Model

As shown in Fig. 1, we consider a point to point wireless
powered communication system with an AP and a UE (e.g., a
sensor). It is assumed that the AP and UE are equipped with
one single antenna each. In the DL, the AP transfers wireless
energy to the UE and the UE harvests the energy with a battery.
In the UL, the harvested energy is used to send data from the
UE to the AP. The DL and UL are assumed to share the same
frequency band, i.e., the system works in half-duplex mode.

We focus on the data performance of the UE in the UL.
The data traffic arrives at the UE randomly and is FIFO-served.
A buffer is equipped at the UE to store the data packets that
cannot be served immediately. The capacity of the battery and
that of the buffer are assumed to be sufficiently large such that
no battery overflow or buffer overflow would happen.

The time model consists of multiple consecutive time
blocks (TBs) which are indexed by 1, 2, · · ·. The time duration
of each TB is fixed as T . The system adopts a harvest-then-
transmit protocol, as depicted in Fig. 2. Specifically, in the ith
TB, i ∈ N∗ where N∗ denotes the set of positive integers,
the first τiT amount of time (0 ≤ τi ≤ 1) is assigned to the
AP to transfer wireless energy to the UE, while the remaining
time (1 − τi)T is assigned to the UE to send data to the AP
as long as the UE is backlogged, i.e., having data to send. As
used in the literature, we assume that the DL and UL channels
are reciprocity and static with flat-fading, where in each TB,
the complex channel gains of the DL and UL channels are
both equal to a fixed value denoted by h̃, i.e. the power gain
is constant h = |h̃|2. In addition, we further assume that the
channel state information (CSI) is perfectly known by the AP
and UE at the beginning of each TB.

B. Data Transmission Capacity from UE to AP

Throughout this paper, the cumulative amount of traffic
arrivals and that of the UE’s data transmission service are
expressed in the form of Y (t) during time [0, t) and Y (s, t)
during time [s, t), i.e., Y (s, t) = Y (t) − Y (s). Besides, the
buffer and the battery are assumed to be empty at time 0.

The average transmission power of the AP, denoted by pA,
holds as pA = E[|xA|2], where E[·] is the expectation function
and xA is the radio signal. It is assumed that pA is constant
and sufficiently large over time, such that the wireless energy
harvested due to the noise is negligible. Thus, the amount of
energy harvested by the UE in the ith TB can be expressed as

Pi = ζpAhτiT,

where 0 < ζ ≤ 1 is the energy harvesting efficiency. Further,
since the traffic arrives randomly over time, energy may not
be depleted in some TBs. Let Ei denote the amount of energy
left at the beginning of the ith TB, there holds

Ei+1 = Ei + Pi − piui, (1)

where pi and ui denote the transmission power of the UE and
the total transmission time in the ith TB respectively. Here,
we assume, at the UE, its energy is mainly consumed by its
data transmission, ignoring the other part of its functionalities.
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Fig. 1. System model with wireless energy transfer in the downlink and
wireless information transmission in the uplink
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Fig. 2. The time (allocation) model

During the UL phase of the ith TB, the transmission rate
of the UE holds as

Ri = W log2(1 +
pih

N0W
), (2)

where N0 denotes the power spectral density of background
noise and W denotes the bandwidth.

The cumulative data transmission capacity of the UE from
time s to time t, denoted by C(s, t), can then be expressed as

C(s, t) = R� s
T � min{(1− τ� s

T �)T, � s
T
�T − s)}

+

� t
T �−1∑

i=� s
T �+1

Ri(1− τi)T +R� t
T � max{t− � t

T
�T − τ� t

T �T, 0}
.

(3)

C. Time Allocation

As indicated by (2) and (3), the data transmission service
capacity of the UE is determined by the time allocation
proportion {τi : i ∈ N∗} and the transmission power at the
UE {pi : i ∈ N∗}. In other words, the time allocation scheme
for the AP to transfer wireless energy and for the UE to send
data dominates the data transmission service capacity of the
UE. We consider two time allocation schemes as follows.

Scheme 1. (Static Time Allocation) The time allocation
proportion is fixed as τ0 during the overall communications.
The transmission power at the UE is determined as

pi =
Ei + Pi

(1− τ0)T
=

Ei + ζpAhτ0T

(1− τ0)T
.

Scheme 2. (Dynamic Time Allocation) Choosing τi to max-
imize the cumulative service capacity C((i − 1)T, iT ) in the
ith TB, i.e.,

max{Ri(1− τi)T} = max{W log2(1 +
pih

N0W
)(1− τi)T},

with the transmission power

pi =
Ei + Pi

(1− τi)T
=

Ei + ζpAhτiT

(1− τi)T
.



The intuition behind Scheme 1 is to maximize the transmis-
sion power to use up the remaining energy and the harvested
energy at the end of the TB, such that the total amount data
that can be transmitted in this TB, or in other words the data
transmission capacity in this TB, is maximized. In Scheme
2, with the same objective, it further exploits the potential
of adapting τi, i.e., to find the optimal value for it through
calculation at the beginning of each TB such that the data
transmission capacity in this TB is maximized.

It is worth highlighting that the two schemes are intuitive
and representative: They, particularly Scheme 2, are similar
to the time allocation schemes in the existing works [3]–[6].
However, the analysis in [3]–[6] is limited to one TB only,
which is therefore intractable to study the delay performance
for stochastic traffic arrivals. Additionally, compared with
Scheme 2, the communication in Scheme 1 only determines τ
at the beginning of the first TB. Consequently, the calculation
of Scheme 1 is far less than that of Scheme 2 in the long run.

D. Performance Metrics of Interest

We assume the traffic arrival process A(t) to the UE is
independent identically distributed (i.i.d). We use A(s, t) to
denote the cumulative amount of the traffic arrivals during time
[s, t). The departure process of A(t) from the UL to the AP is
denoted by A∗(t). It is easily verified that, for such a system
with input A(t) and output A∗(t), there holds [9]

A∗(t) = inf
0≤s≤t

{A(s) + C(s, t)}. (4)

The objective of this paper is to study the delay and delay-
constrained throughput performance for sending data from the
UE to AP in the UL. The delay D(t) is defined as [9]:

D(t) = inf{d : A(t) ≤ A∗(t+ d)}. (5)

Note that D(t) represents the delay of the last data packet
arriving at t. If the arriving times of all packets are different,
D(t) is actually the real packet delay. The delay-constrained
throughput is defined as the maximum traffic rate that the
system can support for which the delay constraint is met [10]:

rmax = sup{r : Pr{D(t) > d} ≤ ε}, (6)

where r denotes the traffic arrival rate, and Pr{D(t) > d} ≤ ε
the delay constraint, which says the probability that the delay
exceeds the requirement d should not be higher than ε.

E. Remarks

In the system model described above, several assumptions
have been made to simplify the analysis and the representation
of the analytical results. They include: battery and buffer
capacities are sufficiently large, harvested energy is mainly
consumed by data transmission, the Shannon capacity is used
as the (maximum achievable) data transmission rate, that there
is no data loss, and the energy harvesting efficiency is constant.
Here we provide some remarks on these assumptions.

First, many of these assumptions have been commonly
adopted in the literature (see, e.g., [3]–[6]). Second, the analy-
sis presented in this paper can be extended to cases where the
assumptions are relaxed, which we leave as future work. Third,
though these assumptions have led to simplified analysis, the

analytical approach itself is not affected. In addition, the most
appealing phenomenon, i.e., the delay-constrained throughput
may significantly differ from the throughput without delay
consideration, is sufficiently revealed by the obtained results,
as later clearly seen from Fig. 6. Finally, we remark that the AP
may transfer information to the UE together with the energy
transfer in some WPC systems [11], and our analysis can be
easily extended to study the data delay performance in the DL,
but due to space limitation, we in this paper only focus on the
data performance in the UL.

III. PERFORMANCE ANALYSIS

A. Bound on Cumulative Data Transmission Capacity

From (3), the form of the cumulative data transmission
capacity is complex for application in performance analysis.
The following theorem provides a lower bound on (3) to
characterize the capacity which will be used in later analysis.

Theorem 1. For any t > 0, the cumulative data transmission
capacity in the time interval [0, t) has a lower bound β(t)
regardless of using Scheme 1 or Scheme 2:

β(t) = R0(1− τ0)(t− τ0
1− τ0

),

where R0 = W log2(1 + ζpAh2

N0W
τ0

1−τ0
) and τ0 is a fixed time

allocation proportion over all the TBs.

Proof: Without loss of generality, we choose any one
TB (indexed i) for analysis. Under Scheme 1, the cumulative
capacity during the ith TB holds as

W log2(1 +

Ei+ζpAhτ0T
(1−τ0)T

h

N0W
)(1− τ0)T

≥W log2(1 +

ζpAhτ0
(1−τ0)

h

N0W
)(1− τ0)T

=R0(1− τ0)T

.

Under Scheme 2, since τi is the optimal value to maximize
Ri(1− τi)T . We have

Ri(1− τi)T

≥W log2(1 +

Ei+ζpAhτ0T
(1−τ0)T

N0W
)(1− τ0)T

≥R0(1− τ0)T

.

From (3), for both two schemes, the following holds

C(t) ≥ R0(� t
T
�(1− τ0)T +max{t− � t

T
�T − τ0T, 0})

≥ R0(� t
T
�(1− τ0)T + t− � t

T
�T − τ0T )

≥ R0(t− τ0t− τ0T )

= R0(1− τ0)(t− τ0
1− τ0

) = β(t)

.



B. Delay Bound

The following theorem presents a delay bound for i.i.d
traffic arrivals.

Theorem 2. Consider a stable wireless powered communica-
tion system as depicted in Fig. 1, where the data transmission
capacity of the UE is lower bounded by β(t), and the traffic
arrival process A(t) is i.i.d distributed. Then the delay distri-
bution of D(t) is upper bounded by

Pr{D(t) > d} ≤ e−θ(inf0≤s≤t{β(s,t+d)−αθ(s,t)}),

for any θ > 0 that is a free parameter and αθ(t) ≥
1
θ log(E[e

θA(t)]) that denotes the statistical envelop of A(t)
[9] [12], where β(s, t) ≡ β(t− s) and αθ(s, t) ≡ αθ(t− s).

Proof: Since event {D(t) > d} implies event A(t) >
A∗(t+d), we have {D(t) > d} ⊆ A(t) > A∗(t+d). Therefore
[9],

Pr{D(t) > d}
≤Pr{A(t)−A∗(t+ d) > 0}
(a)
=Pr{A(t)− inf

0≤s≤t+d
{A(s) + C(s, t+ d)} > 0}

(b)
=Pr{ sup

0≤s≤t
{A(s, t)− C(s, t+ d)} > 0}

(c)

≤Pr{ sup
0≤s≤t

{A(s, t)− αθ(s, t) + αθ(s, t)− β(s, t+ d)} > 0}
≤Pr{ sup

0≤s≤t
{A(s, t)− αθ(s, t)}

> inf
0≤s≤t

{β(s, t+ d)− αθ(s, t)}}

Here, step (a) is according to (4). In step (b), we adopt the
time range 0 ≤ s ≤ t instead of 0 ≤ s ≤ t+ d since if s > t,
A(t) < A∗(t+ d). In step (c), we apply Theorem 1.

Let Vs = eθ(A(t−s,t)−αθ(t−s,t)) and Xk = A(k − 1, k).
Since A(t) is i.i.d traffic, we have

E[Vs+1|V1, V2, ...Vn]

=E[Vs+1|Xt, Xt−1, ...Xt−s+1]

=E[Vse
θ(Xt−s−αθ(t−s−1,t−s))|Xt, Xt−1, ...Xt−s+1]

=E[Vs|Xt, Xt−1, ...Xt−s+1]E[e
θ(Xt−s−αθ(t−s−1,t−s))]

=Vs(E[e
θA(1)]− E[eθαθ(1)])

≤Vs

.

Hence, Vs is non-increasing with s. For the delay distribution,
we have

Pr{D(t) > d}
≤Pr{ sup

1≤s≤t
{Vt−s} > inf

0≤s≤t
{β(s, t+ d)− αθ(s, t)}}

=Pr{ sup
1≤m≤t

{Vm} > inf
0≤s≤t

{β(s, t+ d)− αθ(s, t)}}
≤Pr{V1 > inf

0≤s≤t
{β(s, t+ d)− αθ(s, t)}}

(a)

≤ e−θ(inf0≤s≤t{β(s,t+d)−αθ(s,t)})(E[eθA(1)]− E[eθαθ(1)])

≤e−θ(inf0≤s≤t{β(s,t+d)−αθ(s,t)})

.

In step (a), we use the Chernoff bound. Therefore, Theorem 2
is proved.
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Fig. 3. Cumulative service capacity and service curve for different τ

As indicated by Theorem 2, the delay performance depends
on both the cumulative capacity of the UL and the arrival
traffic. In the rest of the paper, we consider two types of traffic
for specific analysis.

Traffic 1. The arrival interval between two packets are expo-
nentially distributed with parameter 1/λ. The packet size L is
assumed to be constant. The statistical envelop of Traffic 1 as
introduced in Theorem 2 can be found as

αθ(t) =
1

θ
log(E[eθA(t)]) =

λt

θ
(eθL − 1). (7)

Traffic 2. The traffic is fluid (i.e., the packet size is infinites-
imal) with constant arrival rate r2 = λL.

According to Theorem 2, the delay distribution bound
decreases with θ, i.e., a larger θ would achieve a tighter bound.
However, θ should satisfy the following stability condition [9]

lim
t→∞

αθ(t)

t
≤ lim

t→∞
β(t)

t
, (8)

since otherwise the right hand of the delay bound in Theorem 2
would be larger than one, which is meaningless for probability.

Hence, for Traffic 1, the optimal θ can be found as

θopt = max{θ :
λ

θ
(eθL − 1) ≤ R0(1− τ0)}. (9)

Applying Theorem 2, the delay bound for Traffic 1 holds as

Pr{D1(t) > d} ≤ e−θoptR0(1−τ0)(d− τ0
1−τ0

T ). (10)

Conversely, for constrained delay violation probability ε, the
corresponding packet delay is bounded by

D1(t) ≤ − ln ε

θoptR0(1− τ0)
+

τ0
1− τ0

T . (11)

For Traffic 2, the arrival process is deterministic, based on
which, the delay is always bounded as D2(t) ≤ τ0T on the
condition that r2 ≤ R0(1− τ0) for system stability.
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Fig. 4. Delay distribution under different parameters, where the blue line represents the simulation under Scheme 1, the red line represents the simulation
under Scheme 2, the black line represents the analytical bound.

C. Delay-Constrained Throughput

In the following, we study the delay-constrained throughput
defined in (6), and adopt τ0 to be the solution of maximizing
β(t) obtained in Theorem 1 (see Fig. 3).

For deterministic traffic arrivals (Traffic 2), the delay-
constrained throughput holds as

rmax,2 = R0(1− τ0), (12)

as long as the delay requirement d ≥ τ0T . Note that the ob-
tained delay-constrained throughput agrees with the maximum
throughput derived in [3] under one UE scenario. Interestingly,
if the requirement is d < τ0T , then the delay-constrained
throughput is zero, i.e., the requirement cannot be met.

For stochastic traffic arrivals (Traffic 1), the delay con-
straint is represented by two parameters: the delay requirement
d ≥ τ0

1−τ0
T and the violation probability ε. With Theorem 2

and (8), the optimal θ can be solved from (9) as

θ = − ln ε

R0(1− τ0)(d− τ0
1−τ0

)
.

In addition, according to the stability condition (8) and the
expression of the statistical envelop of Traffic 2 in Theorem
2, the delay-constrained throughput holds as

rmax,1 = λmaxL =
R0(1− τ0)θL

eθL − 1
. (13)

It is worth highlighting that by loosening the delay constraint,
the delay-constrained throughput under stochastic traffic con-
verges to that of the fluid traffic, i.e.,

lim
ε→1 and d→∞

rmax,1 = R0(1− τ0). (14)

IV. RESULTS

In this section, we present numerical results from the
analysis and compare with simulation results. The adopted
values of the various involved parameters are as follows: the
bandwidth W = 100kHz, the power spectral density of the
background noise N0 = −160dBm, the channel power gain
h = 1 and the energy harvesting efficiency ζ=1. Besides,
without special statement, it is assumed that pA = 10mW,
T = 1s, τ = 0.087, λ = 10 packets/s, L = 100kbits.

Fig. 3 depicts the cumulative capacity and the correspond-
ing lower bound from Theorem 1, assuming that the traffic
is saturated and the harvested energy is depleted in each TB.
The sub-fig illustrates different τ would yield different average
service rates, which exhibits an optimal point to maximize the
average rate in one TB. In addition, the optimal τ minimizes
the gap between the cumulative capacity and the lower bound.
In other words, choosing optimal τ to allocation time for
energy harvesting and data transmission improves not only the
service capacity but also the accuracy of the lower bound.

In Fig. 4, the delay performance with Scheme 1 and
Scheme 2 under Traffic 1 is depicted. The impacts of three
system parameters are shown, i.e., τ, T and pA. In each
simulation experiment, 106 packets are generated. Scheme
1 and Scheme 2 are respectively applied to perform time
allocation between energy harvesting and data transmission
in each TB until all the packets are served. Each scheme is
simulated for 10 times.

In Fig. 4(a), the delay performance is depicted with differ-
ent τ . For Scheme 1 where τ is statically allocated, serving
traffic with optimal τ achieves the best delay performance.
Scheme 2, with dynamic adjustment of time allocation, is
supposed to perform better than Scheme 1. Interestingly, the
delay performance of Scheme 1 with optimal τ is actually close
to that of Scheme 2. Additionally, the validity of the delay
upper bound is also observed as expected from Theorem 2.
Moreover, choosing optimal τ gains a significant improvement
on the delay distribution bound for both schemes.

Fig. 4(b) depicts the impact of TB length T on the
delay performance. The delay performance of Scheme 2 is
remarkably better than Scheme 1 when T is large. However, as
T decreases, the delay performance under both Scheme 1 and
Scheme 2 is improved, and the performance difference between
them becomes indistinguishable. In addition, the accuracy
of the analytical bound is also significantly improved with
reduced but more likely practical T . Specifically, when T = 1s,
the analytical bound is tight. Actually, the parameter T cannot
be too large in a practical system, since otherwise it would
result in a high delay and need a large battery capacity to
store the harvested energy.

Fig. 4(c) depicts the delay performance under different pA.
The delay performance is improved more significantly through
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increasing pA when pA is low. Additionally, in all the three
sub-figs of Fig. 4, all the simulation curves contain low delay
points where the corresponding analytical curves cannot reach.
This is because the packet arrival time is stochastic, which
results in zero waiting time for some packets when the traffic
load is not heavy. However, the analytical bound has a worst
delay due to that it contains a time offset τ

1−τ T . Nevertheless,
the validity of the analytical bound is observed from the figure.

In Fig. 5, the traffic delay is depicted as a function of
system utilization defined as λL/R(1 − τ). The traffic delay
under both Scheme 1 and Scheme 2 is illustrated. The figure
shows that the analytical bound is tight, especially when the
utilization is high. The reason is that the energy left at the
end of each TB decreases as the utilization increases, which
reduces the gap between the simulation and analytical results.

In Fig. 6, the delay-constrained throughput is depicted for
different delay constraints. The maximum throughput with
fluid traffic is independent of the delay constraint, which equals
the system capacity for data transmission. Differently, the
maximum throughput with stochastic traffic highly depends

on both the delay requirement and the allowed delay violation
probability. The higher delay or the higher delay violation
probability the system can tolerate, the higher traffic rate the
system can support or the higher throughput the traffic can
acquire. Implied by the figure, with stochastic traffic arrivals,
if there is delay requirement, using the capacity found from
the fluid traffic model would easily lead to overestimation due
to obvious gap between the capacity under fluid traffic and
the delay-constrained throughput under stochastic traffic. This
observation sheds new light on the performance of the system.
However, when the delay constraint is loosened sufficiently,
e.g., d = 10, ε = 0.1, the delay-constrained throughput even
with stochastic traffic arrivals converges to the conventional
throughput without delay consideration under fluid traffic.

V. CONCLUSION

In this paper we presented an analytical approach to study
the delay and delay-constrained throughput performance of a
wireless powered communication system under two represen-
tative time allocation schemes: a static allocation scheme and
a dynamic allocation scheme. Specifically, a lower bound on
the cumulative data transmission capacity was first derived.
In addition, based on the lower bound characterization of
the capacity, an upper bound on the delay distribution was
derived and elaborated with two types of traffic. Furthermore,
the delay-constrained throughput was obtained for both types
of traffic. The simulation results conform the validity and
accuracy of the analytical results. The analysis and results shed
new insights on the performance of a WPC system.
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