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Abstract. In this paper we present an arc routing problem with prece-
dence constraints, with a focus on its application to snow plowing opera-
tions in Norway. The problem studied considers the clearing of snow from
a network of roads, where there exists precedence relations between the
driving lanes and the sidewalks. The goal is to minimize the total time it
takes for a heterogeneous fleet of vehicles to clear all the snow from the
road network. We describe a mathematical model of the problem and
present symmetry breaking constraints to improve the computational
performance. We present a computational study where the performance
of the model is tested. Further, we study the effect of forbidding or pe-
nalizing U-turns along the route, something the snow plowing vehicles
struggle to do. The computational experiments show that it is possible
to generate solutions without U-turns with only a marginal increase in
the objective value.
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1 Introduction

In this paper we study an extension of the capacitated arc routing problem ([3]),
where there exist precedence constraints on the traversal of given pairs of arcs,
and where U-turns are undesirable. The problem is inspired by the planning of
snow plowing operations in urban areas of Norway, during, or immediately after,
a snowfall.

The problem under consideration can be described as clearing all the snow
from a network of roads. This network consists of a set of road segments, where
each segment consists of one or more lanes, in one or two directions, and/or one
or more sidewalks. Whenever the characteristics of the road changes, such as
at intersections, places where two lanes merge into one, or one splits into two,
ramps on or off a highway, and so on, we assume that one road segment ends
and another begins. We define the term lane for each driving lane on a road
segment, and sidewalk for a sidewalk associated with the road segment. A map
showing a small area of downtown Trondheim together with the corresponding
road network is shown in Figure 1.
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Fig. 1: Map and the corresponding road network from a small part of downtown
Trondheim. Arrows and numbers indicate the driving direction and the number
of lanes in each direction, respectively. Sidewalks and pedestrian pathways are
not included.

To service the road network, two types of vehicles are available: heavy trucks
for plowing the lanes, and smaller vehicles for clearing the sidewalks. All vehicles
are associated with one depot where they begin and end their route. Each heavy
truck has a large plow attached to the front, capable of clearing one lane at a
time. However, when clearing a lane, the snow is pushed to the right hand side
of the vehicle, pushing it from the middle toward the side of the road segment.
Therefore, if there are multiple lanes in the same direction, a general require-
ment is the need to service the innermost lane first. Where there is a sidewalk
beside a lane, some, or all, of the snow may be shoved on to it, and therefore the
sidewalk must be serviced after the corresponding lane(s). This creates a prece-
dence relation, all lanes must be cleared before the sidewalk can be cleared. The
vehicles plowing the sidewalks are smaller and cannot be used to plow the lanes.
However, the smaller vehicles can traverse the lanes without plowing. This is
often a necessity, as the network of sidewalks may not be connected. Sometimes
the only way to make sure that the sidewalks are serviced after the lanes, is for
the vehicles to wait for the truck to plow the specific lane. It is therefore allowed
for vehicles to wait at intersections.

Due to the large size of the heavy trucks plowing the lanes, U-turns is a rather
problematic, time consuming, and often impossible maneuver for them in urban
areas. For the smaller vehicles clearings the sidewalk, U-turns are possible, but
time consuming since it has to cross all the driving lanes to reach the sidewalk
on the opposite side of the road. Information regarding extra time spent at an
intersection when taking a U-turn, and which intersections where U-turns are
prohibited, is assumed to be known to the planner.
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The goal is to determine one route for each vehicle so that the total time
it takes to clear the snow from the entire road network is minimized, i.e. mini-
mizing the makespan, while adhering to the precedence constraints between the
sidewalks and the lanes, and trying to avoid U-turns. A route for a given vehicle
is a sequence of road segments, and information of whether the road segment
is plowed or deadheaded (driving a road segment without plowing). Note that
since the vehicles clearing the lanes cannot clear the sidewalks and vice versa,
the route only needs to keep track of which road segments are traversed for each
vehicle. In addition, we need to know the time each lane and sidewalk is plowed,
to ensure that the precedence constrains are respected at each road segment.

A similar problem to the one studied in this paper was introduced in [11]
which studies an arc routing problem for snow plowing operations, where mul-
tiple lanes going in the same direction have to be serviced at the same time.
The problem consists set of homogeneous vehicles, where each vehicle has a
maximum number of arcs it can traverse, and the objective is to minimize the
makespan. The problem is solved by a two-phase Adaptive Large Neighborhood
Search heuristic (ALNS). Another similar snow plowing problem is studied in
[2], where the time it takes to deadhead an arc before plowing it is longer than
after it has been serviced. The problem is defined for a single vehicle, and the
objective is to minimize costs associated with the route. To solve the problem
they introduce a local search heuristic. In contrast to the problem studied in this
paper, [11] and [2] consider a homogeneous fleet of vehicles, and a single vehicle,
respectively.

In [4] a vehicle routing problem for snow plowing operations that considers
heterogeneous vehicle fleets is introduced. The presented model is designed to
consider both plowing and salt-spreading operations. The problem is defined on
a mixed multigraph representing unidirectional and bidirectional plow jobs. Un-
like the problem studied in this paper they consider replenishment of consumed
resources such as fuel and salt along a route. However, they do not consider
any type of temporal dependencies, such as precedence, between the different
vehicles. They compare a MIP model, a constraint programming model, and a
two-phase heuristic procedure for solving the problem.

Another paper that considers a heterogeneous fleet for snow plowing opera-
tions is [6], which studies a problem where the set of arcs is divided into non-
overlapping subsets called priority classes, and each class can only be serviced
by a subset of the available vehicles. The vehicles can vary both with respect
to size, and service- and deadheading speed. The problem includes penalties on
U-turns, and synchronization of plowing operations. A mathematical model, and
two constructive methods are presented to solve the problems. A difference be-
tween [6] and this paper is that the model in [6] assumes that all arcs in one
priority set is serviced before the first arc in a lowered priority set (though the
model allows arcs to be upgraded to a higher priority class), while the problem
studied in this paper has precedence relations between pairs of arcs. Thus, the
mathematical formulation presented below explicitly models the service time of
each arc, and allows waiting times before an arc is serviced, while in [6] they
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compare the completion time of the last arc in one priority set to the first arc in
another set.

For a complete overview of earlier papers studying optimization of the routing
of snow plowing vehicles, we refer to the survey presented in [10], while for a
thorough review of other winter road maintenance operations we refer to [7, 8, 9].
For a comprehensive discussion of the capacitated arc routing problem and its
variants, we refer to [1].

The purpose of this paper is to study a new variant of the capacitated arc
routing problem, where there is precedence between when pairs of arcs may
be serviced. We present a new mathematical formulation of the problem, and
several ways in which the computational efficiency of the model may be improved.
Further, we conduct a computational study to inspect the effect of the suggested
improvements to the model, and to study the effect of U-turns on the solution
quality of the problem.

The remainder of the paper is organized as follows: In Section 2 we present
a mathematical model of the problem, before conducting a computational study
of this model in Section 3. Finally, we give some concluding remarks in Section
4.

2 Mathematical Model

The most intuitive way of formulating the arc routing problem with precedence
relations is to extend the capacitated arc routing problem presented by [3], with
the necessary sets and constraints needed for plowing operations. The formula-
tion is a mixed integer program (MIP).

Let G = (V,A) be a directed multigraph where the vertex set V represents
the nodes in the road network (geographic locations with changes in service
criteria), and the arc set A represents the lanes and sidewalks. If there is a lane
and a sidewalk between the same two nodes, this is represented with two separate
arcs. If there are two lanes in one direction, this is represented by just one arc.
Figure 2 illustrates an example of such a directed multigraph.

We have a set of vehicles K, which is separated into two fleets. Let KL ⊂ K
be the set of plowing trucks for the lanes, and KS ⊂ K be the set of vehicles that
service the sidewalks. The trucks can only drive on and service lanes, while the
vehicles for sidewalks can drive on both lanes and sidewalks, but only service
the sidewalks. Let AS ⊆ A represent the arcs that the vehicles for sidewalks can
traverse, and ÂS ⊆ AS be the set of arcs that have sidewalks with service needs.
Similarly, let AL ⊆ AS represent the arcs that can be traversed by the plowing
trucks, and ÂL ⊆ AL be the set of lanes which have to be serviced.

To fulfill the service demands on different arcs, each vehicle k ∈ K has to
drive a defined route. Each route starts and ends at the depot, and each traversal
of an arc corresponds to a leg, numbered by n, in a route. Since a route can pass
through the depot, D, several times, we define the vertices o(k) and d(k) as the
artificial origin and destination of vehicle k, which are only connected to the
original depot D. An upper bound on the number of legs included in a route
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Fig. 2: An illustration of a directed multigraph. The black dots represent the
nodes, while the blue and green arrows represent the lanes and sidewalks, re-
spectively. The number on each arrow indicates how many lanes and sidewalks
there are on that arc.

is given by n, and we define the set of possible legs, N = {1, ..., n}. As seen in
Figure 2 an arc can have a number of lanes or sidewalks in the same direction.
Let RLij and RSij be the number of lanes and sidewalks on arc (i, j), respectively.

Further, let Tkij be the time vehicle k uses to service arc (i, j), and TDkij be
the time vehicle k uses to deadhead arc (i, j). In general, the plowing trucks
use shorter time to service an arc (i, j), compared with the smaller vehicles for
service the corresponding sidewalk, therefore Tkij ≤ Tk̂ij , given k ∈ KL and

k̂ ∈ KS . This means that we only need to consider the start of service a lane and
the corresponding sidewalk in the precedence relation. Let TMax be an upper
bound on the maximum time a vehicle can use on its route.

To penalize U-turns, TUkij is the time it takes to do a U-turn from arc (j, i)
to arc (i, j) for vehicle k, and ukijn is a binary variable that states whether
vehicle k made a U-turn before it traversed arc (i, j) as leg n, or not. Let the
binary variable xkijn be 1 if vehicle k service arc (i, j) as the nth of its route,
and 0 otherwise. Similarly, let ykijn be 1 if arc (i, j) is traversed by vehicle k
and appears as the nth leg of the route while deadheading, and 0 otherwise.
The variable τkn tracks the end time of service or traversal of leg n in the route
of vehicle k, while tLij and tSij tracks the end time of service of the lanes and

sidewalks on arc (i, j), respectively. Finally, the variable tMS defines the total
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makespan of the solution. For shorthand notation, we denoteAk as the set of arcs
vehicle k can traverse, and for a given vehicle k the sets δ+k (i) = {j|(i, j) ∈ Ak},
and δ−k (i) = {j|(j, i) ∈ Ak}. Using this notation the mathematical model of the
problem can be described as follows:

min tMS (1)

s.t.

xko(k)D1 + yko(k)D1 = 1 k ∈ K (2)∑
n∈N

(
xkDd(k)n + ykDd(k)n

)
= 1 k ∈ K (3)∑

k∈KL

∑
n∈N

xkijn = RLij (i, j) ∈ ÂL (4)

∑
k∈KS

∑
n∈N

xkijn = RSij (i, j) ∈ ÂS (5)

∑
i∈δ−k (j)

(
xkijn + ykijn

)
−

∑
i∈δ+k (j)

(
xkji(n+1) + ykji(n+1)

)
= 0

k ∈ K, j ∈ V\{o(k), d(k)},
n ∈ N

∣∣n < n
(6)

∑
(i,j)∈Ak

(
xkijn + ykijn

)
≤ 1 k ∈ K, n ∈ N (7)

xkij(n−1) + ykij(n−1)+

xkjin + ykjin ≤ ukjin + 1
k ∈ K, (i, j) ∈ Ak,

n ∈ N
∣∣(j, i) ∈ Ak, n > 1 (8)

τkn − τk(n−1) ≥∑
(i,j)∈Ak

(
Tkijxkijn + TDkijykijn + TUkijukijn

)
k ∈ K, n ∈ N|n > 1 (9)

τkn − TMax
(

1− xkijn
)
≤ tLij k ∈ K, (i, j) ∈ ÂL, n ∈ N

(10)

τkn − TMax
(

1− xkijn
)
≤ tSij k ∈ K, (i, j) ∈ ÂS , n ∈ N (11)

τkn ≤ TMax k ∈ K, n ∈ N (12)

tLij − Tkij ≤ tSij − Tk̂ij k ∈ KL, k̂ ∈ KS , (13)

(i, j) ∈ ÂL|(i, j) ∈ ÂS

τkn ≤ tMS k ∈ K, n ∈ N (14)

xkijn ∈ {0, 1} k ∈ K, (i, j) ∈ Ak, n ∈ N (15)

ykijn ∈ {0, 1} k ∈ K, (i, j) ∈ Ak, n ∈ N (16)
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ukijn ∈ {0, 1} k ∈ K, (i, j) ∈ Ak, n ∈ N (17)

τkn ≥ 0 k ∈ K, n ∈ N (18)

tLij ≥ 0 (i, j) ∈ ÂL (19)

tSij ≥ 0 (i, j) ∈ ÂS (20)

The objective function (1) is to minimize the total makespan of the solution.
Constraints (2) and (3) state that each route starts and ends in each vehicle’s
depot, while constraints (4) and (5) ensure that all arcs with demands are ser-
viced. Further, constraints (6) make sure that the plowing routes are connected.
Each vehicle can only traverse one arc in each leg of its route; this is taken
care of by constraints (7). Constraints (8) ensure the U-turn variable to be 1 if a
vehicle take a U-turn, while constraints (9) provide that the vehicles behave con-
sistent according to time. Constraints (10) and (11) connect the time variables,
and constraints (12) ensure that the time of a route does not exceed the upper
bound. Constraints (13) assure that the precedence requirements between the
corresponding lanes and sidewalks hold. Finally, constraints (14) ensure that no
traversal time of a given leg for a given vehicle can be larger than the makespan
of the solution, while constraints (15)–(20) define the domain of the variables in
the model.

2.1 Improvements to the model

As the MIP model described has two homogeneous vehicle fleets, the model can
produce several mathematically different solutions which are practically equiva-
lent by altering which vehicle drives which route in a solution. E.g. given a fleet
of three homogeneous vehicles, and a solution of three vehicle routes, there exist
six ways to assign routes to vehicles which are all practically equivalent (since the
vehicles are identical). To reduce the number of symmetric solutions we intro-
duce two sets of symmetry breaking constraints based on lexicographic ordering
of the vehicle routes based on the consumption of some resource accumulated
along the route. Given that the resource consumption along each route is unique,
this will remove all permutations except for one, while in the case where the re-
source consumption along two or more routes are equal, the lexicographic order
is arbitrary, and some (or all) symmetry may remain in the problem. However,
ffor both sets of constraints there exist (at least one) lexicographic ordering of
the routes, and thus we are ensured that all practically different routing solu-
tions are still present in the model. For more details on lexicographic symmetry
breaking constraints we refer to [5].

The first set of symmetry breaking constraints proposed are based on the
number of arcs traversed by each vehicle along its route. We here formulate
constraints to force the vehicle with the lowest index number to service at least as
many arcs as the vehicle with the second lowest index and so on. The constraints
are given in constraints (21) and (22).
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∑
n∈N

∑
(i,j)∈ÂL

xkijn ≥
∑
n∈N

∑
(i,j)∈ÂL

x(k+1)ijn k ∈ KL
∣∣k < |KL| (21)

∑
n∈N

∑
(i,j)∈ÂS

xkijn ≥
∑
n∈N

∑
(i,j)∈ÂS

x(k+1)ijn k ∈ KS
∣∣k < |KS | (22)

The second set of symmetry breaking constraints proposed are based on the
total duration of the route of each vehicle. We here formulate constraints to force
the vehicle with the lowest index number to drive a route with at least the same
duration as the vehicle with the second lowest index and so on. The constraints
are given in constraints (23) and (24).

∑
n∈N

∑
(i,j)∈ÂL

(
Tkijxkijn − T(k+1)ijx(k+1)ijn

)
≥ 0 k ∈ KL

∣∣k < |KL| (23)

∑
n∈N

∑
(i,j)∈ÂS

(
Tkijxkijn − T(k+1)ijx(k+1)ijn

)
≥ 0 k ∈ KS

∣∣k < |KS | (24)

Note that these two sets of lexicographic ordered constraints cannot be im-
plemented at the same time in the model, and still guarantee optimality. It is
hard to say which symmetry breaking constraints are the best and how well they
will perform. This is further studied in Section 3.

To reduce the solution time when the MIP model is solved by a commercial
software, we may tighten the range of the variables, thus improving the lower
bound - and thereby decrease the solution space for the relaxed formulation.
We know that the earliest time an arc is serviced is the shortest time it takes
to travel from the depot to the start of the arc, plus the service time of the
arc. We therefore introduce the parameters αLj and αSj , which state the shortest

travel time from the depot to node j for vehicles in KL and KS , and obtain the
following constraints:

tLij ≥ mink∈KL{αLi + Tkij} (i, j) ∈ AL (25)

tSij ≥ mink∈KS{αSi + Tkij} (i, j) ∈ AS (26)

Constraints (19) and (20) in the initial formulation can now be replaced with
constraints (25) and (26), which improves the lower bound of the time variables,
and likely reduce the solution time.

3 Computational Study

In this section we present a computational study of the mathematical model de-
scribed in Section 2. We first present the set of test instances used, before testing
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the computational effect of adding the different improvements of the model sug-
gested in Section 2.1. Finally, we study the impact of adding U-turn penalties or
forbidding U-turns in the model, both when it comes to computational efficiency
and solution quality.

The model has been implemented in the commercial optimization software
Xpress Optimization Suite and run on a computer with a 3.4 GHz Intel Core i7
processor and 32 GB of RAM, running Windows 10 Education. Version 1.24.08 of
Xpress IVE was used, with version 3.10.0 of Xpress Mosel, and version 28.01.04
of Xpress Optimizer.

3.1 Test instances

The test instances are based on fictitious road networks that are set to mimic
those found in urban areas. These generally involve road segments with one lane
in each direction, and 4-way intersections where two perpendicular roads meet.
Additionally, there often exists a sidewalk on one or both sides of the traffic
lanes. The numerical values of the traversing times are based on proportionality,
such that there is a difference between road segments, while they all lie in the
same order of magnitude. All instances have an average traversal time of 5 − 6
time units per arc. Equally, the service time for a sidewalk is longer than that
of the associated lane, if such a lane exist.

A set of 25 test instances have been generated to test the model. These are
grouped into test instances 1 – 10, presented in Table 1, and 11 – 25, presented
in Table 2. For each instance, Table 1 and 2 presents the number of trucks (|KL|)
and smaller vehicles (|KS |) in each instance, as well as the number of nodes (#
Nodes), lanes (# Lanes) and sidewalks (# SW) in the graph representing the
road network. All arcs need to be serviced only once. Further, the number of
arcs with precedence constraints (# Prec), the upper bound on the number of
legs used (# Legs) and the maximum time a vehicle can use on its route (TMax)
is given. Test set 1 is smaller and only used to test the symmetry breaking
constraints and improved bounds, while test set 2 is larger, and used to test the
capabilities of the model.

3.2 Testing the effect of the suggested improvements to the model

To compare the different variations of the models, we have run each of the test
instances in Table 1, without considering U-turn penalties, for a maximum of
1, 000 seconds. The results can be found in Table 3. The column Original model is
the mathematical model with none of the suggested improvements from Section
2.1. In Symmetry Breaking 1 (SB1) we have included constraints (21) and (22)
to the model, while Symmetry Breaking 2 (SB2) includes constraints (23) and
(24). In Increased Bound (IB), the lower bound of the time variables have been
increased. That is, we have replaced constraints (19) – (20) with (25) – (26). In
addition we have tested combining each of the symmetry breaking constraints
with the increased bound. For each variant of the model we report the computing
time (Time) in seconds and the optimality gap (Gap) in percent.
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Table 1: Characteristics of the test instances in Test set 1.

Instance |KL| |KS | # Nodes # Lanes # SW # Prec # Legs TMax

1 1 1 6 10 3 3 17 50
2 2 1 6 10 3 3 17 50
3 2 1 8 18 5 5 17 50
4 3 2 13 32 16 14 17 90
5 2 2 17 42 24 18 28 150
6 3 2 17 42 24 18 28 150
7 3 2 20 48 29 21 35 150
8 4 2 20 48 29 21 35 150
9 3 3 30 78 42 30 45 250
10 4 3 30 78 42 30 45 250

Table 2: Characteristics of the test instances in Test set 2.

Instance |KL| |KS | # Nodes # Lanes # SW # Prec # Legs TMax

11 1 1 7 14 3 3 17 50
12 2 1 7 14 3 3 17 50
13 2 1 11 24 8 6 17 90
14 2 2 11 24 8 6 17 90
15 2 2 15 36 24 18 22 90
16 3 2 15 36 24 18 22 90
17 2 2 20 48 29 21 35 150
18 3 3 20 48 29 21 35 150
19 2 2 30 78 42 30 45 250
20 3 2 30 78 42 30 45 250
21 4 2 30 78 42 30 45 250
22 3 2 40 112 60 46 65 350
23 3 3 40 112 60 46 65 350
24 4 2 40 112 60 46 65 350
25 4 3 40 112 60 46 65 350
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On average, Symmetry Breaking 1 yields the best results, with respect to
computational time, and the second best with respect to the optimality gap. It
is also the only improved model that solves 8 out of 10 instances to optimality
within 1, 000 seconds. The Increased Bound model has the lowest gap on average
and although not performing better than the original model in all test instances,
we conclude that the initial bound on the time variables in general contribute
positively to better bounds on the obtained solutions. It shall be noted, that
when merging Increased Bound and Symmetry Breaking 1, this constitutes a
model that, on average, perform worse than each of them applied separately.
The original model, which, on average, perform among the worst models with
respect to solution time, was the only model to prove optimality on instance 9
within the 1, 000 seconds limit.

We conclude that the Symmetry Breaking 1 model is the best performing, and
have chosen to continue with these lexicographically ordered symmetry breaking
constraints. In the analysis that follows we refer to the Symmetry Breaking 1
model as the Basic model. try to minimize the fleet size, it is not clever to say
that we have an infinite fleet size in the initiate state. It is better to start with
a realistic amount of vehicles, and increase iterative if it should not exist any
feasible solution for the given size within the maximum time for a schedule.

3.3 Effect of penalizing or forbidding U-turns

We now study how forbidding or penalizing U-turns affect the computational
performance and the solution quality of the test instances. When penalizing a
U-turn the cost is given in time units, which in this case is set to 2, a bit less
than half of the average service time for a lane. In the case where U-turns are
forbidden, they are only forbidden for the plowing trucks. Since the vehicles
plowing the sidewalks are smaller, they are allowed to make U-turns, which
corresponds to crossing a lane after plowing a sidewalk, to reach the sidewalk on
the other side. Although allowed, a penalty cost of 2 time units is given for this
maneuver. The results, and a comparison with the Basic model are presented in
Table 4 where all instances have been run for 1, 000 seconds. For each version of
the model, the computational time (Time) in seconds as well as the optimality
gap (Gap) in percent, is given. For the instances with an n/a in the Gap column,
no feasible solution was found within the time limit.

The results show that the computational time is roughly the same for all
three versions of the problem. However, while the Basic model is able to provide
a feasible solution within the time limit on all but one instance (24), penalizing
and forbidding U-turns do not provide a feasible solution within the time limit on
3 and 4 instances, respectively. Forbidding U-turns reduce the number of feasible
solutions to the problem which may explain why Xpress struggles more to find
feasible solutions in this case. In case of U-turn penalties the explanation may
be related to increased fractionality in the solutions, since the u-variables now
indirectly affect the objective value. It is also interesting to note that for instance
24, Xpress is able to find a feasible solution when adding U-turn penalties to the
model, while no feasible solution is found for the two other versions.



Arc routing with precedence constraints 13

Table 4: Comparison of the computational performance of forbidding U-turns
and penalizing U-turns to the Basic model.

Basic model With U-turn penalty U-turns forbidden

Instance Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

11 0 0.00 0 0.00 0 0.00
12 0 0.00 1 0.00 1 0.00
13 1 0.00 2 0.00 1 0.00
14 3 0.00 11 0.00 9 0.00
15 10 0.00 32 0.00 102 0.00
16 13 0.00 102 0.00 43 0.00
17 397 0.00 1000 3.00 219 0.00
18 1000 3.48 1000 11.42 1000 34.01
19 1000 0.29 1000 4.14 1000 10.62
20 1000 4.55 1000 19.36 1000 22.50
21 1000 1.09 1000 25.40 1000 1.76
22 1000 21.89 1000 n/a 1000 n/a
23 1000 49.12 1000 n/a 1000 n/a
24 1000 n/a 1000 42.08 1000 n/a
25 1000 55.13 1000 n/a 1000 n/a

Average 562 9.68 610 8.78 558 6.26

Table 5 compares the optimal solution of the Basic model on instance 11–21
to the optimal solutions of the model when forbidding and penalizing U-turns,
respectively. For each instance and version of the model we give the change in
the number of U-turns performed by trucks (∆ lanes), by small vehicles (∆ SW),
and the change in the makespan (∆ Makespan). The optimal solutions to each
instance was obtained by running the model for several days, however, for the
instances marked with a * and **, we only managed to obtain results within 2
% and 6 % of optimum, respectively.

As shown in Table 5, on average, the number of U-turns performed by the two
vehicle fleets is reduced quite significantly both when penalizing and forbidding
U-turns. This comes at an average increase in the total makespan of less than
three time units. Even in the worst case, the increase in the makespan is only six
time units (instance 18), equal to the maximum traversal time of a single arc. An
interesting anomaly in the results in the case of penalizing U-turns is instance 16,
where the number of U-turns performed by the larger trucks increase. This may
be explained by the fact that any vehicle that drives a route that is significantly
shorter than the route defining the makespan, may perform U-turns without
it affecting the objective value. However, the total makespan of the instance is
increased by 5, indicating that the route defining the makespan has changed
from the Basic model.

The results presented in Table 5 indicate that it is possible to design vehi-
cle routes for the plowing trucks that does not perform any U-turns, without
significantly increasing the total time it takes to clear the road network of snow.
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Table 5: Comparing how the U-turn constraints influence the makespan and the
number and U-turns in the different models.

Time penalty for U-turns U-turns forbidden

Instance ∆ lanes ∆ SW ∆ Makespan ∆ lanes ∆ SW ∆ Makespan

11 -2 0 0 -2 -2 0
12 -1 0 2 -4 0 2
13 -2 0 4 -6 0 4
14 -7 0 0 -7 2 0
15 3 -7 5 -8 -7 5
16 1 -4 5 -11 -4 5
17 -7 -1 0 -7 -3 0
18 -3 0 4** -5 -1 6**
19 -16 -10 1 -16 -3 1
20 -14 0 3 -28 0 4*
21 -13 -2 3* -27 -2 3*

Average -5.55 -2.18 2.45 -11.00 -1.82 2.73

4 Concluding remarks

In this paper we have studied an arc routing problem inspired by a snow plowing
problem faced by planners in Norway. The objective is to minimize the total
time of clearing a road network of snow, but it is complicated by the fact that
there is precedence between pairs of arcs in the network. To solve the problem
we have introduced a mathematical model, and suggested symmetry breaking
constraints to improve the computational performance when solving the model
using commercial software. In addition, we have tested the effect of penalizing
or forbidding U-turns in the model, something which is difficult for the snow
plowing vehicles to do in many urban areas. The results of these tests show that
we can eliminate the need for U-turns in the vehicle routes, with only a marginal
increase in the total time it takes to clear the road network.

Since the mathematical model presented in this paper is unable to solve real-
istic instances of the problem, future research should look into heuristic solution
methods for the problem. In addition, it would be interesting to test the model
presented in this paper on graphs generated from real road networks to cor-
roborate the findings regarding the influence of U-turns on the makespan of a
solution.
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