
Doctoral thesis
for the degree of doktor ingeniør

Trondheim, July 2006

Norwegian University of
Science and Technology
Faculty of Natural Sciences and Technology
Department of Chemical Engineering

Volker Siepmann

Process modelling on a canonical
basis

NTNU
Norwegian University of Science and Technology

Doctoral thesis
for the degree of doktor ingeniør

Faculty of Natural Sciences and Technology
Department of Chemical Engineering

©Volker Siepmann

ISBN 82-471-7892-3 (printed ver.)
ISBN 82-471-7891-5 (electronic ver.)
ISSN 1503-8181

Doctoral Theses at NTNU, 2006:71

Printed by Tapir Uttrykk

Process modelling on a
canonical basis

by

V S

Thesis submitted for partial fulfilment

of the requirements for the degree of

Doktor Ingeniør

July 2006

Faculty of Natural Sciences and Technology

Department of Chemical Engineering

N-7491 Trondheim

Dr. ing. thesis 2006:71

ISBN 82-471-7892-3 (printed version)

ISBN 82-471-7891-5 (electronic version)

Preface

When I graduated at the University of Dortmund, Germany, I had favoured fluid

dynamics and process control during my course of study. I clearly preferred these

subjects, as their problems are well-structured and formulated logically in a clean

mathematical manner.

During a summer job in 1998 at Norsk Hydro ASA in Porsgrunn, Norway, I

came in contact with Tore Haug-Warberg, who later became my main doctoral advi-

sor. Impressed by his well structured view towards equilibrium thermodynamics, I

began to understand the background of what was so difficult to assimilate during my

undergraduate study.

I liked the challenge of utilising this structure in practical problems, and to com-

bine this effort with my affection for software development. Being a student on a

Norwegian university, I spent my first semester as a ’foreign’ student at Lehrstuhl für

Proßesstechnik, RWTH Aachen, Germany. There, I was introduced to the European

CAPE-OPEN project. With insight into the software design of process modelling

tools, it was a good starting point for my investigations.

The initial objective was to develop methods and tools for the energy and ex-

ergy efficiency analysis of industrial processes. Although this direction disclosed a

different aspect of process modelling to me, the focus on second law thermodynam-

ics moved increasingly into the background, while process modelling on a canonical

basis became the main subject of my research. Having developed a fully functional

process simulator called Yasim, a consistent and natural exergy analysis method falls

naturally into place, easy to integrate into this environment.

i

ii

Acknowledgement

I would like to thank my supervisors Associate Prof. Dr. Ing. Tore Haug-Warberg

(NTNU) and Dr. Ing. Knut Wiig Mathisen (Yara International). Whenever needed, I

received technical and administrative support from both of them. They furthermore

involved me into a number of attractive industrial projects, which often served as an

opportunity to apply my theoretical insight from this work.

Furthermore, I would like to thank my colleague Dipl. Ing. Geir Arne Evjen, not

only for numerous technical discussions, but also for outstanding cooperation, which

made it possible to offer some functionality of methods derived in this work through

a user-friendly graphical user interface in Microsoft Visio.

Financial support for this project was provided through Norsk Hydro ASA, for-

mer section for Modelling and Process Safety at the Corporate Research Centre in

Porsgrunn. I spent the first years of the project at Telemark University College, Fac-

ulty of Technology in Porsgrunn, before moving my office location to the research

centre.

It is my pleasure to thank Prof. Dr. Dipl. Ing. Wolfgang Marquardt and his group

of phd students, in particular Dr. Dipl. Ing. Lars v. Wedel for their hospitality and

cooperation during my stay at LPT, RWTH Aachen, Germany.

iii

iv

Abstract

Based on an equation oriented solving strategy, this thesis investigates a new ap-

proach to process modelling. Homogeneous thermodynamic state functions represent

consistent mathematical models of thermodynamic properties. Such state functions

of solely extensive canonical state variables are the basis of this work, as they are

natural objective functions in optimisation nodes to calculate thermodynamic equi-

librium regarding phase-interaction and chemical reactions. Analytical state function

derivatives are utilised within the solution process as well as interpreted as physical

properties.

By this approach, only a limited range of imaginable process constraints are con-

sidered, namely linear balance equations of state variables. A second-order update

of source contributions to these balance equations is obtained by an additional con-

stitutive equation system. These equations are general dependent on state variables

and first-order sensitivities, and cover therefore practically all potential process con-

straints. Symbolic computation technology efficiently provides sparsity and deriva-

tive information of active equations to avoid performance problems regarding robust-

ness and computational effort.

A benefit of detaching the constitutive equation system is that the structure of the

main equation system remains unaffected by these constraints, and a priori informa-

tion allows to implement an efficient solving strategy and a concise error diagnosis.

A tailor-made linear algebra library handles the sparse recursive block structures ef-

ficiently.

The optimisation principle for single modules of thermodynamic equilibrium is

extended to host entire process models. State variables of different modules interact

through balance equations, representing material flows from one module to the other.

To account for reusability and encapsulation of process module details, modular pro-

cess modelling is supported by a recursive module structure.

The second-order solving algorithm makes it possible to retrieve symbolically

obtained derivatives of arbitrary process properties with respect to process param-

eters efficiently as a post calculation. The approach is therefore perfectly suitable

to perform advanced process systems engineering tasks, such as sensitivity analysis,

process optimisation, and data reconciliation.

The concept of canonical modelling yields a natural definition of a general exergy

state function for second law analysis. By partitioning of exergy into latent, mechani-

v

vi

cal, and chemical contributions, irreversible effects can be identified specifically, even

for black-box models.

The calculation core of a new process simulator called Yasim is developed and

implemented. The software design follows the concepts described in the theoretical

part of this thesis. Numerous exemplary process models are presented to address

various subtopics of canonical modelling.

Contents

Preface i

Abstract v

Nomenclature xi

1 Introduction 1

1.1 Basics of process modelling . 1

1.2 Fundamental solving strategies . 2

1.3 Concept of canonical modelling 4

1.4 Thesis overview . 5

1.5 Contribution of this work . 6

2 Process systems engineering 9

2.1 Introduction . 9

2.1.1 Hierarchical modelling approach 9

2.1.2 Paradigms in process modelling 10

2.2 Process systems engineering disciplines 11

2.2.1 Process simulation . 13

2.2.2 Sensitivity analysis . 13

2.2.3 Data reconciliation . 13

2.2.4 Fit of thermodynamic parameters 14

2.2.5 Process optimisation . 15

2.3 Concept of process models . 15

2.3.1 Process topology . 16

2.4 Steady-state process simulation solvers 18

2.4.1 Sequential-modular approach 19

2.4.2 Equation-based approach 20

2.5 Representation of thermodynamic models 21

2.5.1 Thermodynamic state functions 21

2.5.2 State function transformations 22

vii

viii CONTENTS

3 Canonical process modelling 25

3.1 Introduction . 25

3.2 Building blocks . 26

3.2.1 Calculation of phase equilibria 26

3.2.2 Calculation of chemical equilibria 29

3.3 Non-canonical specifications . 30

3.3.1 Direct substitution of Lagrange multipliers 31

3.3.2 Constitutive equation system 31

3.3.3 Augmented equation system 33

3.4 Process modelling . 35

3.4.1 Mathematical framework for process models 35

3.4.2 Process model topology 36

3.4.3 Material couplings . 38

3.5 Atomic flowsheet modules . 39

3.5.1 One-phase module . 39

3.5.2 Two-phase equilibrium flash 40

3.5.3 Reactor modules . 40

3.5.4 Chemical species separator 46

3.5.5 Flow splitter . 47

3.5.6 Saturation node . 48

3.6 Specialised composite flowsheet modules 49

3.6.1 Limited heat and mass transfer 50

3.6.2 Rotating process equipment 51

3.6.3 Valves . 52

3.6.4 Sub-cooled and super-heated fluids in heat exchangers . . . 54

3.7 Initialisation . 55

3.7.1 Approach for sequential-modular solvers 55

3.7.2 Equation of state thermodynamic models 56

3.7.3 Approach for the canonical flowsheet solver 56

3.8 Relaxation scheme . 57

3.9 Error reporting . 59

3.9.1 Potential points of failure in the solving algorithm 60

3.9.2 Problem of circulations . 62

3.9.3 Consistent stoichiometry in chemical reactors 65

4 Advanced process systems engineering disciplines 67

4.1 Introduction . 67

4.2 Process model derivatives . 68

4.2.1 Computational methods 68

4.2.2 Symbolic derivatives from the canonical solver 69

4.2.3 Derivatives with respect to process parameters 72

4.2.4 Derivatives with respect to thermodynamic parameters . . . 73

4.3 Sensitivity Analysis . 75

CONTENTS ix

4.3.1 Motivation . 75

4.3.2 Sensitivity analysis of an air compression process 75

4.4 Process optimisation . 76

4.4.1 Comparison to data reconciliation 76

4.4.2 Selection of independent variables 76

4.4.3 Substitution of independent variables 77

4.4.4 Optimisation of compressor intake temperature 77

4.5 Data reconciliation . 78

4.5.1 Weighted least-squares method 78

4.5.2 Data reconciliation of a compressor stage model 79

4.6 Exergy analysis . 81

4.6.1 Concepts of second law analysis 81

4.6.2 Definition of exergy . 82

4.6.3 Selection of an ambient state 84

4.6.4 Processes of multiple ambient states 85

4.6.5 Relative exergy efficiency 85

5 Yasim 89

5.1 Introduction . 89

5.2 General process modelling approach 91

5.3 Software design . 91

5.3.1 Handler for thermodynamic groups 93

5.3.2 Handler for process properties and parameters 94

5.3.3 Handler for equations and degrees of freedom 95

5.3.4 Handler for input and output ports 96

5.3.5 Handler for reactions . 97

5.3.6 Handler for composite flowsheet modules and optimisation . 99

5.4 A configuration example . 100

5.5 Software architecture of Yasim . 102

6 Performance characteristics 103

6.1 Introduction . 103

6.2 Solver characteristics . 103

6.2.1 Convergence rate . 103

6.2.2 Convergence regions . 104

6.3 Computational effort . 106

6.4 Comparison of derivation methods 108

6.5 Properties of the coefficient matrix 111

7 Discussion and Conclusions 113

x CONTENTS

A Software utilities 117

A.1 Lazy evaluation datatype . 117

A.1.1 General Software Design 117

A.1.2 Algorithms . 118

A.2 Linear algebra package . 121

A.2.1 Requirements . 121

A.2.2 General software design 121

A.2.3 Transposed and negated linear algebra objects 123

A.3 Remarks . 123

B Thermodynamic models 125

B.1 Implemented contributions of thermodynamic models 125

B.2 Schwartzentruber-Renon-Watanasiri equation of state 126

B.2.1 Pure species contributions 126

B.2.2 Helmholtz ideal gas state function 126

B.2.3 Schwartzentruber-Renon-Watanasiri residual contribution . 126

B.3 Constant compressibility model contribution 128

C State functions and transformations 129

C.1 Properties of homogeneous state functions 129

C.2 State function transformations . 130

C.2.1 Preservation of homogeneity 130

C.2.2 Jacobian matrices . 131

C.3 State functions and thermodynamic properties 131

D Dynamic simulation 135

D.1 Transition from steady-state to dynamic simulation 136

D.2 A sketch example . 137

E Numerical methods and matrix computations 139

E.1 Block LU-decomposition . 139

E.2 Solution strategies for non-blockinvertible systems 140

E.2.1 One-phase systems of chemical equilibrium 140

E.3 Domain restrictions in a relaxation object 141

E.4 A suggestion for an initialisation algorithm 141

E.4.1 Obtaining a minimal structural invertible sub-system 142

E.4.2 Assignment Problem Algorithm for Square Systems 143

F Notation 145

F.1 Landau symbols . 145

F.2 Unified modelling language . 145

F.3 Graph theory . 147

Bibliography 149

Nomenclature

Syntax

symbol description (page of first occurence) unit of measurement

Latin symbols

A H energy (22) J

A≈ Constraint matrix in a reacting system (29) -

B≈ Coefficient matrix of a canonical equation system (26)

C≈ Coupling matrix between two FMs (36)

D≈ Diagonal matrix of child FM coefficient matrices B≈ i (63)

E≈ Selection matrix (permutation matrix with removed columns) (32) -

E Exergy (82) W

F Area (surface or cross-section) (12) m2

G G free energy (22) J

H Enthalpy (12) J

H≈ H matrix (26)

I≈ Identity matrix I≈ =
∑

i e∼ i e∼ i (26) -

J≈ J matrix (20)

L≈ Lower triangular decomposition matrix (27)

N≈ Stoichiometric matrix, null space of formula matrix R≈ (44) -

N Total molar quantity: N =
∑

i ni (54) mol

O, o Landau symbols (145)

Ō, ō Inverse Landau symbols (145)

P Thermodynamic state function (21)

P≈ Permutation matrix (27) -

Q Heat flow (12) W

R≈ Formula matrix as part of the constraint matrix of reactor FMs (41) -

R Universal gas constant (71) J/molK

S Entropy (22) J/K

S≈ Scaling matrix (112)

T Temperature (12) K

U Internal energy (22) J

xi

xii NOMENCLATURE

U≈ Upper triangular decomposition matrix (27)

V Volume (12) m3

W Work duty (12) W

W≈ Weight matrix (14)

VV State function VV(H,V/T, n∼) = S + pV/T (23) J/K

a∼ Constraint vector (48)

b∼ Righthand side of a canonical equation system (27)

c Thermodynamic parameter (11)

cp, cV Molar heat capacity at constant pressure (cp) or volume (cV) (35) J/molK

e∼ i Unity vector in direction i (22) -

f Safety factor (57) -

g Gradient of state function with respect to a canonical variable (26)

h∼ (x∼ , λ∼) Set of constitutive equations (31)

∆fh
ref Molar reference state enthalpy of formation (71) J/mol

k Heat transfer coefficient (54) W/m2K

l∼ Gradient of objective function Λ (26)

m Mass (12) kg

n Molar quantity of a chemical species (12) mol

p Pressure (12) Pa

q Number of iterations (20) -

r Residual equation of a process model (11)

sref Molar reference state entropy (71) J/molK

t Time (135) s

u Process model parameter (11)

v Velocity (53) m/s

x Canonical state variable (11)

y Calculated property (11)

z Valve opening (12) -

Greek symbols

Ω Number of equilibrium phases (28) -

α∼ Modification of righthand side to obey constitutive equations (32)

β Vapour fraction (59) -

δ Residual of constraint equation (26)

εT Thermal expansion coefficient (54) 1/K

εp Compressibility (54) 1/Pa

η Efficiency or efficiency-like value (51) -

γ Relaxation factor for step size restriction (57) -

κ Adiabatic exponent: κ = cp/cV (52) -

λ L-multiplier in constrained optimisation (26)

µ Chemical potential (27) J/mol

ν Stoichiometric coefficient (41) -

ψ Arbitrary function or variable (22)

NOMENCLATURE xiii

% Density (12) kg/m3

ξ General function argument (68)

ζ
∼

ζ
∼
= (x∼ , λ∼) (70)

Objects

C A coupling between two flowsheet modules (17)

M A flowsheet module (FM) (17)

R Relaxation object (57)

Sets

C Domain of thermodynamic parameters (11)

C
→

A set of couplings (17)

E Set of extensive canonical variables (22)

Ē Set of intensive canonical variables (22)

M Set of flowsheet modules (17)

P A path in the directed graph representing a process model (18)

R A circle in the directed graph representing a process model (17)

U Set of possible process model parameterisations (11)

X Domain of feasible states (11)

Accents, sub- and superscripts supplementing an arbitrary quantity Ψ

∆ψ Discrete change of a quantity (12)

ψ̇ Flow of an extensive quantity (11)

ψeq Property at thermodynamic equilibrium (71)

ψexp Experimental value (14)

ψ[g] Hierarchy level of flowsheet modules (17)

ψ̂ Altered or modified variable (22)

ψi, ψ j Index of elements in a set (17)

ψin Symbol related to the input of a FM (40)

ψinitial Initial quantity (26)

ψ(k) A quantity calculated in iteration k (27)

ψ(∞) A quantity calculated in the solution point (in theoretically∞ iterations) (35)

ψ(l) A quantity regarding the liquid phase (26)

ψmain A symbol related to a main phase in a saturation node (49)

ψmax Quantity at maximised conditions (58)

ψmeas Measured value (13)

ψopen Quantity related to an open valve (53)

ψopt Optimised quantity (78)

ψout Symbol related to the output of a FM (53)

ψpoly Quantity related to the definition of polytropic efficiency (52)

ψraw Object prior to further treatment (42)

ψref Reference state of a thermodynamic model (84)

ψrev Reversible contribution (51)

xiv NOMENCLATURE

ψrow Symbol related to rows of a matrix (27)

ψcol Symbol related to columns of a matrix (27)

ψsonic A quantity related to sonic conditions, i.e. a fluid moving at sonic speed (53)

ψspec Specified quantity, instance of a process parameter u (31)

ψsplit Symbol related to flow splitter DOF to determine split behaviour (48)

ψsub Subset (14)

ψtrial A symbol related to a trial phase in a saturation node (48)

ψ(v) A quantity regarding the vapour phase (26)

ψ
∼

Vector of variables ψi, ψ∼
∈ �d with d = dimψ

∼
(18)

Transformations

L j[ψ(x∼)] L transformation of ψ with respect to x j (22)

M j[ψ(x∼)] M transformation of ψ with respect to x j (23)

Abbreviations
CAS Computer Algebra System (69)

DOF Degree of freedom (2)

FM Flowsheet module (15)

NRTL Non-Random-Two-Liquid – G excess model for polar liquid phases (94)

PID Proportional-Integral-Derivative (controller) (138)

PSE Process Systems Engineering (67)

RPN Reverse polish notation (21)

SRK S-R-K equation of state (127)

UML Unified Modelling Language (16)

s.t. Subject to (14)

Chapter 1

Introduction

1.1 Basics of process modelling

During the last four decades, computer aided process modelling has evolved into a

broad, indispensable and ever extending discipline of process engineering. The range

of applications has expanded into process design, control, optimisation and safety.

Each of them is of significant importance to industry, and increasingly sophisticated

models must be developed to be competitive in process plant operation. Today’s

process engineering software must provide the engineer with a wide range of func-

tionality, but at the same time enable an efficient work flow. Berger and Perris (1979)

have formulated the following criterion for the design of a process simulator:

The minimum total expenditure of manpower and computing resources to de-

rive a satisfactory solution to the problem, within the timescale dictated by the

project.

This criterion involves three main aspects to guide the development of process mod-

elling tools, namely technology, scope and paradigm.

1. The technological aspect covers the user interface and data handling, but most

importantly the way of solving the mathematical model of the process. Differ-

ent solution strategies are discussed in Section 1.2.

2. The scope defines the range of applications that is handled or addressed. The

solution of a problem must be within scope of the software tool used. The

scopes of all existing tools are limited, and these limits must be accepted by

both users and developers. The challenge is to cover a wide scope, but provide

the functionality as efficiently as it would be possible within tailor-made tools.

In many cases, flexibility is hard to combine with usability and computational

efficiency.

3. The paradigm defines the structural mapping of the real or hypothetical pro-

cess equipment towards a computer model. Early models were hard-coded in

1

2 Chapter 1. Introduction

existing programming languages, such as FORTRAN, and hence followed a

procedural paradigm. Before graphical interfaces became available, input lan-

guages were invented to describe process models. For MASSBAL (Shewchuk,

1987), this language is mainly logic-based, i.e. the user defines a set of rules,

which define the problem. A rule can be an equation, but also a topological

specification, such as a material coupling. At the same time, the MASSBAL

input language includes aspects of a module-based paradigm. Parallel to the

evolution of software design paradigms, process modelling paradigms are fur-

ther developed. Marquardt (1996) identifies the challenge of modelling non-

standard process equipment and maintenance of models. His object oriented

paradigm of modelling methodology yields a clean hierarchically defined topo-

logical structure and a breakdown of mathematical models into reusable build-

ing blocks.

Object oriented modelling tools must define an interface language, which defines

the functionality and available information of user-defined objects. If the elements of

this language are mainly equations and variables as in gPROMS (Oh and Pantelides,

1996), the tool offers a very flexible scope, and virtually any physical system can

be described. With a more specialised interface language, including thermodynamic

models and material ports as basic data types, process models can be established

more effectively. A process model can be understood as a mathematical model of a

chemical process. Terms are introduced more precisely in Section 2.3. Additional

structural knowledge can then be utilised for efficient solving and informative error

diagnosis.

1.2 Fundamental solving strategies

There are two fundamental strategies to solve process model equations (Biegler et al.,

1997): (i) sequential modular, and (ii) equation-based. In the sequential modular

approach, each unit operation is solved sequentially, based on given input streams.

Outer iterations are inevitable to handle process models with recycle streams. Most

common equation-based solvers collect the linearised equations of each unit opera-

tion and the connecting streams. These equations are then solved simultaneously, and

iterations are performed for non-linear process models.

As indicated in Table 1.1, both methods have their advantages and drawbacks. It

needs to be noted that this table is a general comparison, and that individual software

tools might overcome some of the drawbacks of the applied solution method. The

term coupled equation is used to describe equations that cause state variables of a

calculation unit to be influenced by changes (e.g. of specifications) downstream to

this unit. The effect of such a coupled equation is similar to that of a recycle stream.

As early as 1979, Evans et al. recognised the potential of equation-based meth-

ods, but followed the sequential modular approach in their tool ASPEN (Advanced

1.2. Fundamental solving strategies 3

Table 1.1: General comparison of sequential modular and equation-based solving

strategies.

Sequential modular solver Equation-based solver

+ The calculation path follows material

streams.

→ An intuitive error analysis is possible.

The failing calculation unit is often

clearly identified. Tailor-made solu-

tion methods for individual calculation

units allow for a detailed error diagnostics.

+ The solution method is efficient with few

recycles and coupled equations.

+ Initial values are only required for a small

fraction of all state variables.

+ Tailor-made calculation methods for each

unit operation can be applied.

+ The solution method is robust with

recycles and coupled equations.

+ Second-order equation solvers converge

quadratically close to the solution.

→ The approach is more suitable for

dynamic simulation.

→ The approach is more suitable for all

kinds of optimisation.

+ A linearly specified model is solved

exactly if it contains recycle streams or

coupled equations.

– The approach is inefficient for strongly

coupled process models.

– Process optimisation is dependent on

derivatives that, using this approach, are

not analytically available. The common

use of numerical approximations reduces

the usability of sequential-modular solvers

for such tasks.

– A linearly specified model is not solved

exactly, if it contains recycles or coupled

equations.

– A global DOF (degree of freedom)

analysis creates more problems to balance

equations and variables.

– A general equation solver is inefficient for

large process models

– The initialisation of every state variable is

essential.

– Highly non-linear thermodynamic

equations cause problems, if solved

simultaneously with the process model

equations. For instance, a sequential-

modular approach uses specialised

solution methods to calculate phase

equilibrium.

– An error analysis difficult to carry out, if

the solving step is performed by a gen-

eral equation solver that either fails or suc-

ceeds.

4 Chapter 1. Introduction

System for Process Engineering) for legacy reasons and a general lack of expe-

rience with equation-based solvers regarding industrial systems. Still today, the

disadvantages of equation-based solvers inhibit their range of application. Aspen

Plus R© (Evans et al., 1979) and Hysys R© (Mahoney and Santollani, 1994), the most

successful commercial process systems engineering tools, are based on the sequential

modular approach.

1.3 Concept of canonical modelling

The concept of canonical variables is defined by the natural variable set of a ther-

modynamic state function. Primarily, this is temperature and mole-numbers, fur-

thermore volume for H-models (or residual models), or pressure for G-

models (or excess models). Transformations can be utilised to reach other sets of

canonical variables, such as entropy, volume and mole numbers. The canonical mod-

elling approach is based on thermodynamic models transformed to state functions

with suitable sets of canonical variables. The entire process model can then be based

on constrained optimisation programs for thermodynamic state functions.

The flexibility of this method applied to single-stage flash calculations was

discovered by Dluzniewski and Adler (1972), but restricted to G coordinates,

hence restricted to material balance at constant temperature and pressure. By use

of L and M state function transformations (Callen, 1985), Brendsdal

(1999) extended the set of possible constraints.

Balance equation sets describe the constraints for energy, volume, and material

flow between and within the unit operations. By selecting transformations towards

a set of solely extensive canonical variables, these constraints form a well defined

structure, which can be exploited efficiently in a canonical flowsheet solver.

This way of solving process models has certain technical advantages compared to

the traditional approaches of sequential modular and equation-based solution strate-

gies:

• Though basically equation-based, this approach allows for a priori partitioning

of equations according to process topology, thus allowing for more specific

error diagnostics and in many cases a better performance of the solver.

• The thermodynamic state function represents a common framework for all

thermodynamic models. This allows for a clean interface between a process

model and underlying thermodynamic models. There is no problem to ex-

change the thermodynamic model used by a process model, or to reuse a ther-

modynamic model for different process models.

• Complex thermodynamic models do not affect the size or structure of the equa-

tion system. The state function and its derivatives are evaluated at given state

variables, and the result serves as input to the equation system of the process

1.4. Thesis overview 5

model. The computational effort to evaluate the thermodynamic model is sub-

ject to its complexity, but in general small compared to the necessary effort to

solve the process model.

While the most dominant available process modelling software today has already

existed for many decades, the opportunity to build a prototype for a new tool from

scratch raises further topics regarding scope and paradigm:

• How to account for the wide range of requirements to a modern process mod-

elling tool, i.e. how to minimise the effort and maintenance to provide the func-

tionality required by modern engineering problems, such as optimisation, data

reconciliation and parameter fitting in a steady-state or dynamic context.

• How to achieve maximal reusability of the developed process models to avoid

redundant modelling efforts.

• How to preserve the amount of knowledge for increased performance, but –

even more importantly – for an engineer to pick up previously started work

or a project of a colleague. In particular, equation-based models tend to be

difficult to maintain, since equations and variables are defined in one large

system without or with little human-readable meta information.

The canonical approach in its pure form yields a large equation system, and solv-

ing this with conventional methods would require excessive computational effort.

Identification of various matrix types within the sparse block-structure of the coeffi-

cient matrix, as well as an advanced block-pivoting algorithm can clearly enhance

performance towards a level that is comparable with available process modelling

tools.

1.4 Thesis overview

This work explores the potential of canonical modelling to a wide range of process

modelling applications. The approach is to combine the use of topological infor-

mation as in sequential modular methods within an equation-based solving strategy.

The objective is to combine the advantages of both of the standard methods, while

eliminating their drawbacks. The main focus is placed on steady-state process sim-

ulation, but aspects of optimisation, data reconciliation, model parameterisation, and

dynamic simulation and control are addressed as well.

Chapter 2 is an introduction to the field of process modelling. In particular, a

number of terms are defined as a basis for subsequent chapters. Following a short

overview over various process systems engineering disciplines, the concept of pro-

cess models and the two most common solving strategies for such models are de-

scribed. This work is strongly based on a uniform representation of thermodynamic

models. A section about thermodynamic state functions and mathematical transfor-

mations on these state functions completes this chapter.

6 Chapter 1. Introduction

Chapter 3 explains the mathematical models for the smallest possible building

blocks, which then are assembled into composite modules and entire process models.

Various combinations of the canonical and well structured equation system with a

second system of constitutive equations are discussed.

In Chapter 4, the scope is extended from steady-state process simulation to ad-

vanced process systems engineering disciplines. With the help of symbolically ob-

tained derivatives of constitutive equations, the subjects of sensitivity analysis, pro-

cess optimisation and data reconciliation are addressed. Exergy analysis is another

discipline, which is easily embraced in terms of the canonical modelling approach.

The process simulation tool Yasim has been developed and implemented in this

work. The main aspects of software design are described in Chapter 5. The subse-

quent chapter discusses performance issues, such as convergence properties, quality

of symbolically obtained derivatives, and the condition number of coefficient matri-

ces.

1.5 Contribution of this work

In many cases, a research project is based directly on the results of recent advances in

the particular field. The basis of such work is somehow naturally limited in scope, and

there is often a well-defined goal to achieve. However, that kind of foundation was

not available as such in this case, even though Haug-Warberg (1988) and Brendsdal

(1999) provided a solid basis from a thermodynamic viewpoint.

The subject of steady-state process modelling received no particular attention for

the last 20 years, and no specific goal guided the direction of research in this work.

The abstract goal however is to develop and investigate the potential of canonical

modelling in various fields of process systems engineering.

Basis for this work is the previously known approach to perform calculations

on phase equilibria and equilibrium reactions by optimisation on the basis of exten-

sive canonical thermodynamic state variables. An algorithm is developed to extend

this concept to handle arbitrary process constraint equations. The solution scheme is

based on the N-R method, and second-order convergence is preserved

in the overall algorithm. Two equation systems are used, namely a well-structured

canonical equation system to perform the original optimisation, and an equation sys-

tem consisting of constitutive equations, which defines the source contributions of

selected constraint equations in the canonical system. Such modified constraint equa-

tions are from now on denoted as released.

The concept is then extended to be applied on entire process models. A process

model is defined by a hierarchical structure of local optimisation nodes, which are

linked by balance equations. A library of basic optimisation nodes is defined in the

framework of canonical modelling. These nodes describe the most common oper-

ations in chemical engineering and build therefore a solid basis to establish a wide

range of process models.

1.5. Contribution of this work 7

This approach provides clear advantages to the existing process modelling tech-

niques known by the author:

• The structure of the coefficient matrix of the canonical equation system is a

direct mapping of the process topology. Each diagonal block in the matrix is

associated with one module in the process model, and each off-diagonal block

represents one material stream.

• All diagonal blocks of the canonical coefficient matrix are invertible and, on

the lowest hierarchical level, minimal in size. With the available structural

information, a new tailor-made equation solver can be developed. Such a solver

will potentially be more efficient than any other solver, which does not use this

a priori structural input.

• The non-ambiguous association between constitutive equations and released

constraint equations eliminates the common user problems regarding degree of

freedom analysis. The number of active equations is always balanced to the

number of independent variables, and the interconnection between a particu-

lar constitutive equation and a released constraint equation conserves valuable

information to maintain larger process models.

• The association between constitutive equations and released constraint equa-

tions is observed to initiate a gain of thermodynamic understanding to the users

of the prototype implementation (Yasim) of this concept. This educational as-

pect allows a novice user to work efficiently with the process modelling tool

after a short period of familiarisation.

It is shown that the canonical process modelling approach is a solid basis for

advanced process system engineering disciplines, such as sensitivity analysis, pro-

cess optimisation, and data reconciliation. Reliable derivative information can easily

be generated on the basis of symbolic algebra. A detailed exergy analysis can be

performed and combined with the previously named tasks. A brief study of the fea-

sibility to calculate on dynamic process models is carried out with positive results.

The concept of process modelling on a canonical basis is easily extensible towards

dynamic process simulation.

A software implementation of the concept is completed, resulting in the prototype

of a new steady-state process modelling tool: Yasim. Yasim provides the functionality

to nearly all concepts described in this work, and has been tested by conducting

process simulation, optimisation, and data reconciliation of several medium-sized

processes.

8 Chapter 1. Introduction

Chapter 2

Process systems engineering

2.1 Introduction

2.1.1 Hierarchical modelling approach

In order to establish a detailed process model of an entire plant, it is a strong require-

ment to structure this model into smaller units. Process models based on an entirely

flat approach are not maintainable, and reuse of model parts in other process mod-

els is virtually impossible. Traditional tools, like e.g. Aspen Plus R© (Evans et al.,

1979) define one layer of pre-defined process units, which then can be instantiated

and supplemented by process topology information into a process model.

Pipe segment (theoretical tray)

Steam Wall Process side

Liquid film Vapour

Boundary layer Bulk

CO2 stripper

Fertiliser chain

MP recovery Dry section

Compressor Reactor Condenser

LP recovery

Ammonia Urea Nitric acid NPK

HP Synthesis

Top Pipe Bottom

L
ev

el
 o

f
d

et
ai

l

S
co

p
e

Figure 2.1: The fertiliser process chain represented in the context of hierarchical

process modelling.

A more flexible approach is described by Marquardt (1996). A process flowsheet

model can be decomposed into modules and interconnections. As shown in Fig-

ure 2.1, a module can be a part of a unit operation (e.g. column tray, heat exchanger

9

10 Chapter 2. Process systems engineering

shell side or a discrete volume in a plug-flow reactor), a unit operation itself, or a

collection of interconnected unit operations (e.g. a plant section or an entire plant),

hence a sub process flowsheet. An interconnection can be a flow of material, or any

other physical interaction such as heat exchange, or a pure mathematical dependency

such as product quality specifications.

A process model can be defined as the stand-alone flowsheet module on the top-

level. Any flowsheet module shown in Figure 2.1 can assume this role. The CO2

stripper interacts with other flowsheet modules within the high pressure synthesis

part of the urea process. As a stand-alone module with fixed input flows and given

environmental conditions, it represents a process model in itself, and can be used to

investigate the stripping process in detail. The bulk phase of the vapour is a primi-

tive, but valid process model. Its purpose can be to determine the properties of the

stripping gas at a given state.

2.1.2 Paradigms in process modelling

A flowsheet solver is the executive instance to generate results of a given problem.

On this level, the process model, as part of the problem definition, is represented

by sets of equations. But a process model is established at a more abstract level by

the engineer. For example, a flowsheet module is defined as a reacting two-phase

equilibrium between given sets of chemical species in both phases. Predefined ther-

modynamic models are applied for the calculation of properties in each phase. The

process modelling tool must translate these specifications into a suitable mathemati-

cal model to be taken care of by the solver. Figure 2.2 shows a possible categorisation

TransportEquilibrium Stoichiometry

Phase transition Chemical reaction

species split
stoichiometric

reaction
equilibrium reaction

phase equilib
riu

m

kinetic

reactio
n

diffusion

predictive

Characterisation

Phenomenon

descriptive

Figure 2.2: Building blocks as a basis for atomic flowsheet modules.

of suitable building blocks, which describe a flowsheet module. The physical phe-

nomena phase transition and chemical reaction can be characterised by three main

approaches, namely equilibrium, transport and stoichiometry. In general, stoichio-

metric characterisations tend to be of descriptive nature, while equilibrium and trans-

port based characterisations are predictive, with a wide field of research dedicated to

each of them.

Numerous methods to calculate phase equilibrium properties have been devel-

oped with emphasis on isothermal and isobaric conditions, reviewed recently by

2.2. Process systems engineering disciplines 11

(Wakeham and Stateva, 2004). The main approaches are the direct substitution

method by Boston and Britt (1978), improved by Michelsen (1982), and minimisation

of G energy, first utilised by White et al. (1958). Michelsen (1994) formulates a

minimisation approach, which also considers chemical reactions.

Constraints other than isothermal and isobaric are addressed by Michelsen in

1987 and 1999. Methods to exploit the mathematical structure of thermodynamic

state functions are investigated by Haug-Warberg (1988) and Brendsdal (1999). In

this work, the basis for process modelling is the utilisation of L and M

transformations (Callen, 1985) in order to obtain a suitable set of canonical variables.

2.2 Process systems engineering disciplines

The scope of process systems engineering disciplines increases proportionally to the

available calculation capacity of modern computers. This section gives a definition of

the main branches. Sensitivity analysis, data reconciliation, fit of thermodynamic pa-

rameters, and process optimisation are disciplines, which built on process simulation.

Process simulation is the task of solving a mathematical model of a process.

A vector of state variables x∼ is an unambiguous description of the state. In gen-

eral, two classes of state variables are distinguished: Accumulated states x∼ (e.g. as

the content of a tank), and flows ẋ∼ (e.g. the water flow rate through a heat exchanger).

More specifically, only extensive state variables are subdivided into flows and accu-

mulated states. A similar grouping of intensive variables, like pressure, temperature,

or concentration, is not preferable.

The objective in this work is to examine the principles and potentials of canonical

modelling, and emphasis is put on steady-state problems, for which no accumulated

states are considered.

Let X be the domain of feasible states ẋ∼ ∈ X of a steady-state process model.

The state vector ẋ∼ represents a unique description of the state, for instance in terms

of molar flows, enthalpies, and pressures. U is the set of possible model parameters

u∼ ∈ U, typically a specified valve position, compressor heat duty, or a heat exchanger

surface. C is the domain of thermodynamic parameters c∼ ∈ C, as for example a critical

temperature or heat of formation of a pure species, or binary interaction coefficients.

Generally, the mathematical representation of a steady-state process model can be

described as

r∼(ẋ∼ , u∼ , c∼) = 0∼ and y∼ = y∼ (ẋ∼ , u∼), (2.1)

where y∼ represents process properties as a function of ẋ∼ and u∼ . Examples are a phase

split fraction in a thermal separator, a heat transfer value in a heat exchanger, or

the calculated isentropic efficiency of a turbine. The following sections describe

process system engineering disciplines in a steady-state context with small examples

illustrated in Figure 2.3.

12 Chapter 2. Process systems engineering

TI TI PIPI

FIC

1

2

(a) descriptive simulation (b) predictive simulation (c) sensitivity analysis

(d) data reconciliation (e) parameter fit (f) process optimisation

T1, p1, ṅ1 ∆p T2 T1, p1T1, p1
∆Ḣ = 0∆Ḣ = 0

∆Ḣ = 0

z2F2
0
∆p = 1

2
ṁ V̇z2F2

0
∆p = 1

2
ṁ V̇

z2F2
0
∆p = 1

2
ṁ V̇

p2p2

ṁ =?

ṁ =? ∂ṁ/∂z =?

σṁ =?

Ti, pi, ṅ∼ i

%i

c =?

Q

W

min
T1

W + ψ(Q)

Figure 2.3: Concise overview of applications of various process modelling disciplines

in a steady-state context.

At this point, a number of symbols are introduced: Here, the intensive variables

pressure p and temperature T are flow properties. The differences of enthalpy flows

∆Ḣ and pressures ∆p are derived flow properties. As they are in this case defined

on input and output flows of a specific FM (the valve), these variables can as well be

interpreted as flowsheet module properties. Flows are defined on the basis of molar

quantities (ṅ), mass (ṁ), or volume (V̇). F0 is the cross-section of an open valve, and

z the valve position, here defined as a linear characteristics to determine the cross-

section at valve position z: F = z F0. Because work W and heat Q are always defined

as flows, the dotted notation is omitted in this case.

All the disciplines invoke the sub-task to obtain one or more solutions of the

process simulation problem. Therefore, solving r∼ (ẋ∼ , u∼ , c∼) = 0∼ efficiently is essential

for all disciplines.

Though there is no sharp definition, it is possible to characterise process models

as descriptive (Figure 2.3a) or predictive (Figure 2.3b). The purpose of a purely

descriptive process model is to back-calculate an observed state with a minimum of

process knowledge included into the model. Typically, one would formulate the mass

balance equations, and directly specify pressures, temperatures, and enough streams

to obtain a unique solution. As a rule of thumb, the calculated state is not affected

by thermodynamic models. The process parameters u∼ do not reflect the degrees of

freedom (DOFs) and process constraints of the real process. As shown in Figure 2.3a,

the molar flow is specified, though in the real process, the amount is the consequence

of the valve equation (cf. Figure 2.3b).

A predictive process model contains a maximum amount of process knowledge.

Suitable thermodynamic models are applied to determine fluid properties, phase equi-

libria, and the extent of chemical reactions. Detailed performance characteristics of

process equipment are included, such as compressor curves, valve equations, and

heat transfer laws. The process parameters u∼ reflect the actual parameters of the real

2.2. Process systems engineering disciplines 13

process.

In practice, a process model is never completely predictive, but always includes

descriptive parts.

A descriptive process model can be the starting point for the refinement towards

a predictive process model.

2.2.1 Process simulation

r∼ (ẋ∼ , u∼ , c∼) = 0∼ is solved for ẋ∼ at constant thermodynamic parameters c∼ and constant

process parameters u∼ . With regard to the different types of process models, the at-

tributes descriptive and predictive can be assigned to the simulation as well. De-

scriptive process models contain fewer or none non-linear equations, such that a

descriptive process simulation is robust, and a solution can be obtained efficiently.

Predictive process models contain a high number of non-linear equations, potentially

even non-differentiable or discontinuous. Subsequently, there might exist multiple or

no solutions of Equation (2.1), or it can be difficult to obtain the desired solution nu-

merically. Results of a descriptive simulation are suitable starting values to simulate

a predictive version of the process model.

2.2.2 Sensitivity analysis

Equation (2.1) can formally be written as a function y∼ = y∼ (u∼ , c∼), i.e. each vector of

process parameters and thermodynamic parameters is assigned a vector of calculated

properties. Sensitivity analysis describes the process of discussing the effect of pro-

cess parameters u∼ on the process properties y∼ , in particular the derivative ∂y∼/∂u∼ at

constant c. The effect of the valve opening z to the mass flow ṁ is the question of

interest in Figure 2.3c.

Sensitivity analysis is an excellent tool to align the results of a predictive process

model qualitatively with the results expected by the engineer. The explanation of any

discrepancy either improves the understanding of the process, or it reveals a weakness

of the process model, if the predicted effect was not physical.

An alternative to focus on process parameters is to investigate the effect of ther-

modynamic parameters c∼ to process properties y∼ at constant u∼ . The limitation of ac-

curacy of process simulation results due to uncertainty of thermodynamic parameters

can be revealed through such a study.

2.2.3 Data reconciliation

The purpose of data reconciliation is to minimise a defined norm of deviation be-

tween redundant measurements y∼meas and calculated properties y∼ . One approach is

to remove some the constraints represented by Equation (2.1), such that some state

variables represent the independent variables in the minimisation problem.

14 Chapter 2. Process systems engineering

A more concise approach is to include the entire process model represented by

Equation (2.1), but select a subset of process parameters u∼ ∈ Usub ⊆ U as indepen-

dent variables, hence solve the program

min
u∼
Λ(y∼ , y∼meas) s.t. r∼ (ẋ∼ , u∼ , c∼) = 0∼ . (2.2)

Here, Λ is a general objective function, approaching its global minimum at y∼ =

y∼meas. The most common definition of Λ yields the least squares method:

Λ(y∼ , y∼meas) = (y∼ − y∼meas) W≈ (y∼ − y∼meas) . (2.3)

The diagonal matrix W≈ contains weight factors to compensate for different scaling

of elements of y∼ , and to give room to incorporate the expected standard deviations of

individual measurements.

The advantages and drawbacks of various objective functions are described by

Özyurt and Pike (2004). A main aspect here is gross error detection, the process of

filtering out faulty measurement values of non-statistical distribution, such as defect

measuring equipment or interrupted signals.

The example of Figure 2.3d provides like the base case (b) 5 DOFs, of which

only 2 (namely ∆H = 0 and the pressure-flow relation) are to be fulfilled exactly. The

deviation of 5 measurements plus valve position z to calculated process properties is

minimised on the three remaining DOFs. The independent process parameters u∼ in

equation (2.2) can be selected e.g. as ṁ, T1, and p1.

2.2.4 Fit of thermodynamic parameters

A common task in the field of thermodynamic modelling is to determine the set of

thermodynamic parameters c∼ to obtain an optimal agreement between experimental

data yexp and calculated properties y∼ of a process model. One part of the experimental

data is used as process parameters u∼ exp, the other to be compared with calculated

properties y∼exp. The problem can be formulated as

min
c∼
Λ(y∼ , y∼ exp) subject to (s.t.) r∼(ẋ∼ , u∼ exp, c∼) = 0∼ with c∼ ∈ Csub ⊆ C . (2.4)

As for data reconciliation, the most common objective function Λ(y∼ , y∼ exp) is the

geometric sum as given in Equation (2.3).

Typically, a large number of experimental data sets are utilised, and each set adds

a contribution to the overall objective function. The process model itself is kept sim-

ple, as e.g. shown in Figure 2.3e with a single material flow from a reservoir. For

each data set, the density % is measured for a given T , p, and ṅ∼ . Thermodynamic pa-

rameters related to the prediction of molar volumes might represent the independent

variables to minimise the deviation of measured and calculated density.

2.3. Concept of process models 15

2.2.5 Process optimisation

Given a predictive process model, the task of finding an optimal set of process pa-

rameters u∼ by minimising an objective function Λ(y∼), here solely as a function of

calculated properties y∼ , is called process optimisation:

min
u∼
Λ(y∼) s.t. r∼ (ẋ∼ , u∼ , c∼) = 0∼ with u∼ ∈ Usub ⊆ U . (2.5)

In Figure 2.3f, the temperature of stream 1, T1, represents the independent variable

in the optimisation of the total energy required to achieve a specified outlet pressure

p2. The lower T1, the more cooling effort is necessary to reach this temperature, but

the less energy is required to compress the gas to p2.

In practice, the result of a process optimisation is often influenced or even de-

termined by additional inequality constraints ψ
∼

(u∼ , y∼) ≥ 0∼ . In the example above, T1

might have a lower constraint to avoid icing problems. In other cases, the material

properties of process equipment pose upper constraints in temperature and pressure.

Inequality constraints represent a major challenge in process optimisation, and

the development of general and tailor-made methods to solve specific problems rep-

resent a major field of research today. An introduction to this field is given by No-

cedal and Wright (1999). With focus on the subject of canonical modelling, however,

the scope of this work regarding process optimisation is limited to the discussion of

Equation (2.5).

2.3 Concept of process models

The structure of mathematical models in process systems engineering can be defined

in many ways with respect to various aspects. So long in this work, the concept

of a process model has been used on a rather abstract level (cf. Equation (2.1)). The

following terms and collaborations give a refined definition of a process model within

the scope of this work.

Terms and definitions 2.1

Flowsheet module (FM) A self-contained mathematical model of a process or a part

of a process. Self-contained means in this context that given all incoming material

flows, there is a configuration and parameterisation of the model, which is sufficient

to calculate the outgoing material flows.

Composite flowsheet module A FM, which can be further decomposed into a set of

child FMs. The CO2-stripper as shown in Figure 2.1 is an example, as it can be

decomposed into the pipes, the top, and the bottom, each represented by another

FM.

Atomic flowsheet module Any FM, which is not a composite FM. Assuming the bot-

tom of the CO2-stripper to be represented by an ordinary two-phase flash, this is an

example for an atomic flowsheet module.

16 Chapter 2. Process systems engineering

Input port The interface of a FM representing a distinguishable incoming material

flow. Examples of different input ports of a FM are feed flows to a column on

different trays. Multiple flows into one common control volume (e.g. a tank) are

regarded as entering through one single input port.

Output port The interface of a FM representing an outgoing material flow.

Coupling A material flow between two FMs. The start-point is the output port of

the upstream FM, and the end-point is the input port of the downstream FM. From

a composite FM point of view, couplings represent the topology of the described

process. Next to child FMs, couplings are therefore a part of a composite FM.

Process model A composite FM, which is no child of another composite FM in the

current context. The FM called HP Synthesis in Figure 2.1 is a process model, if

the high pressure synthesis part of the urea production is investigated as an isolated

model. Any process model can be degraded to a composite FM, if it is used within

a wider context (in the given example the complete urea production process).

Figure 2.4 gives an overview over the concepts introduced at this point. A short

introduction to UML (Unified Modelling Language) according to OMG (2003) is

given in Appendix F.2.

Flowsheet module Input port

Atomic flowsheet module

Process model

Output port

Composite flowsheet module Coupling

is not aggregated in another

composite flowsheet module

Constitutive equation

1 1

1

1*1..*

*

1..* 1

1 1
*

0..1

*

Figure 2.4: UML static structure diagram of the general flowsheeting concept.

2.3.1 Process topology

A process model consist of FMs and couplings, and can be represented by a directed

graph1. LetM be a set of FMs representing the vertices of the graph, and C
→

the set

of couplings representing the edges. The edge Ci j is part of the graph, if there is a

material flow from Mi ∈ M to M j ∈ M.

In the context of the hierarchical modelling approach, the entire graph represents

not necessarily the process model, but possibly a FM in the parent context, hence a

1For an introduction in graph theory see Appendix F.3 and the book by Trudeau (1993)

2.3. Concept of process models 17

single vertex in a super graph. On the hierarchy level [g], This vertex is then defined

as

M[g] = (M[g], C
→

[g]). (2.6)

Here,M[g] is the set of child FMs M
[h<g]

i
, and C

→
[g] the set of couplings C

→[g]

i j
.

Condenser

Stripper

Pipe

reactor

Compressor

trainU
re

a
sy

n
th

es
is

 (
en

ti
re

 p
ro

ce
ss

 m
o
d
el

)

M[2]

M
[1]
1

M
[1]
2

M
[1]
3

M
[1]
4

M
[0]
1,1

M
[0]
1,2

M
[0]
1,3

M
[0]
2,1

M
[0]
2,2

M
[0]
2,3

C
[2]
12

C
[2]
23

C
[2]
34

C
[2]
42

C
[1]

1,12

C
[1]
1,23

C
[1]
2,12

C
[1]
2,23

Figure 2.5: Hierarchical topology graph of a simplified urea synthesis process.

Figure 2.5 shows an example of such a topology graph. In this case:

M[2] =
{

M
[1]

1
, M

[1]

2
, M

[1]

3
, M

[1]

4

}

,

M[1]
1
=

{

M
[0]
1,1
, M

[0]
1,2
, M

[0]
1,3

}

, and M[1]
2
=

{

M
[0]
2,1

M
[0]
2,2
, M

[0]
2,3

}

. (2.7)

Furthermore

C
→

[2] =
{

C
[2]
12
,C

[2]
23
,C

[2]
34
,C

[2]
42

}

,

C
→

[1]

1
=

{

C
[1]

1,12
,C

[1]

1,23

}

, and C
→

[1]

2
=

{

C
[1]

2,12
,C

[1]

2,23

}

. (2.8)

Two important phenomena can be described on the basis of this type of graph:

Terms and definitions 2.2

Recycle Any circle2 R ⊆ M[g]. Physically, a recycle allows material to flow in a

circle.

2In terms of graph theory. See Appendix F.3

18 Chapter 2. Process systems engineering

Circulation A recycle R ∈ M[g], such that no path P = {Mi, . . . , M j} exists with

Mi < R, M j < R, but P ∩ R , ∅. Physically, a circulation forces material to flow

in a circle.

The effects of recycles on the complexity of process models is a crucial decision

factor when selecting the solving strategy. Basically, a recycle prevents the system

from being partitioned, yielding bigger sub-systems to solve simultaneously.

Little attention, in particular related to steady-state

21 VP

Figure 2.6: Common case

of a circulation.

process models, has been paid to the numerical treat-

ment of a circulation, which can be desired e.g. in

cooling systems, but as well occur as part of a design

or modelling fault, e.g. if material is locked in a cir-

cle. In both cases, the engineer and the program ought

to identify the phenomenon. Engineers often prefer dynamic process models in this

case. A hold-up volume combined with a bleed stream avoids the linear dependency

of the balance equations. However, if the process dynamics are not of major interest,

the effort to establish and maintain a dynamic process model is hardly justified.

The simple case of interconnected valve and pump shown in Figure 2.6 repre-

sents a typical case of a circulation. Both the pump and the valve provide the same

balance equations, namely ṅ∼ 1 = ṅ∼ 2 and ṅ∼ 2 = ṅ∼ 1, which are obviously linear de-

pendent. Furthermore, there are no DOFs left to define the actual flow conditions,

such as composition. The approach chosen for the canonical solver is described in

Section 3.9.2.

2.4 Steady-state process simulation solvers

To solve a process model efficiently, one has to exploit the structural information of

the equation system. There are two distinct approaches to do this: (i) partitioning

of the system on the basis of topological information, and sequentially to solve each

partition (Biegler et al., 1997), or (ii) application of methods for solving sparse ma-

trices on the linear algebra level (Stadtherr and Wood, 1984; Zitney and Stadtherr,

1988). These approaches correspond to the sequential-modular and equation-based

solution strategies respectively.

There are numerous approaches to enhance robustness and performance of the

solution process, some of them on a higher level, such that they can be applied to

both strategies. As an example, material balance equations can be relaxed during

the first iterations. This yields a pseudo-dynamic simulation, iterating along a phys-

ically meaningful path, which is more likely to stay within the domain of involved

equations.

2.4. Steady-state process simulation solvers 19

2.4.1 Sequential-modular approach

The sequential-modular approach is strongly based on the topology graph M[k] de-

fined in Equation (2.6). Hernandez and Sargent (1979) describe the strategy of parti-

tioning and tearing:

Terms and definitions 2.3

Partitioning The program to determine a sorted list of the k smallest possible disjoint

subsetsMi ⊆ M, i ∈ {1, . . . , k}, with i1 > i2 ⇒ (Mi1 ×Mi2) ∩ C
→
= ∅. The result

of this operation is a set of sub-graphs M
[k]
i
= (Mi, C

→

i) with C
→

i = C
→
∩ (Mi ×Mi).

Tearing The program to determine a subset C
→

t ⊂ C
→

i for each Partition i, such that

the modified graph M′
i
[k]
= (Mi, C

→

i \C
→

t) is free of circles, and an objective Λ(C
→

t) is

minimised. A common choice is Λ(C
→

t) := |C
→

t |. The couplings in C
→

t are commonly

referred to as tear streams.

The partitioning step splits the tearing problem into smaller sub-problems, which

practically removes the problem due to the complexity of the subsequent tearing al-

gorithm, which is exponential in problem size. The result of these two algorithms is

a recursive structuring as shown in Figure 2.7. After M
[k]
−1

is pre-calculated, the tear

streams are estimated, and an iteration is conducted on the calculation of M
[k]
0

, before

M
[k]
1

can be treated in a post-calculation. M
[k+1]
i

might be the process model itself, or

it is part of the same structure on level k + 1 with i ∈ {−1, 0, 1}. The representation of

the structure shown in Figure 2.7 allows for a straightforward complexity analysis.

Let the complexity denoted by
tear streams

M
[k+1]
i

M
[k]
−1

M
[k]

0
M

[k]
1

Figure 2.7: A Process model structured for se-

quential solving.

cmp(M[0]) represent a metric for

the effort to evaluate M
[0]
i

with

M
[0]
i
∼ cmp(M[0]) ∀i according to

Appendix F.1.

The number of necessary iter-

ations to converge a group of tear

streams at level k is assumed to be

constant and described by the symbol q. The recursion

cmp(M[k+1]) ∼ (2 + q) cmp(M[k]) (2.9)

then yields the explicite equation

cmp(M[k]) ∼ (2 + q)k cmp(M[0]) (2.10)

for a process model of size |M[k]| ∼ 3k |M[0]|. Hence

cmp(M[k]) ∼
(

2 + q

3

)k
cmp(M[0])

|M[0]|
|M[k]|. (2.11)

20 Chapter 2. Process systems engineering

Thus, a major advantage of the sequential modular approach is that the computational

effort grows only linearly3 in problem size |M[k]|. But in particular for the common

case q > 1, the computational effort is exponential to the number of nested recycles,

which is the main drawback of this approach. External constitutive equations add

further complexity to the model, but Perkins (1979) developed a method to solve

those equations simultaneously with the tear stream equations, so that the effective

overhead is minimised.

2.4.2 Equation-based approach

The pure equation-based approach is solely based on the mathematical solution of

Equation system (2.1). This is a very efficient approach for linear systems described

by

r∼ (ẋ∼ , u∼ , c∼) = J≈ (u∼ , c∼) ẋ∼ + r∼0(u∼ , c∼) = 0∼ ⇒ ẋ∼ = −J≈
−1(u∼ , c∼) r∼0(u∼ , c∼) . (2.12)

Solving the general equation system representing a process model M is of complex-

ity O(|M|3) (Golub and Loan, 1996), even though recycles and external constitutive

equations have no further impact. The essential need to utilise the sparse structure of

J≈ was soon recognised. Markowitz (1957) presented a pivoting sequence to obtain a

kind of LU-decomposition under the objective to preserve sparsity in this operation.

Various improvements have been developed regarding different objectives:

• Integration of stability criteria into the objective to find an optimal pivoting

sequence (Zlatev, 1980)

• Guarantee to not let the pivoting problem dominate the computational ef-

fort (Gilbert and Peierls, 1988)

• Prevention of time-consuming dynamic memory allocation (George and Ng,

1985)

• Utilisation particular hardware architectures, like e.g. vector processing (Zit-

ney and Stadtherr, 1993)

• Handling of model hierarchy to presort variables and equations (Abbott et al.,

1997)

Today’s process models are rarely linear. Non-linear equations result from even prim-

itive thermodynamic models such as the ideal gas law, and constitutive equations

such as even the simplest description of heat transfer. With Equation (2.12) no longer

valid, a linearisation can be conducted as follows:

r∼ (ẋ∼ , u∼ , c∼) = J≈ (x∼ 0, u∼ , c∼) (ẋ∼ − ẋ0∼) + r∼0(x∼ 0, u∼ , c∼) + O((ẋ∼ − ẋ0∼)2) = 0∼ . (2.13)

This results in three new challenges in process simulation arise:

3This is optimal, as no program can exhaustively process data in less time than proportional to its

size.

2.5. Representation of thermodynamic models 21

Terms and definitions 2.4

Initialisation A scheme to provide a feasible state x0 ∈ X as close to the solution as

possible. Zitney and Stadtherr (1988) review schemes of different complexity.

Differentiation A method to obtain the non-zero elements of J≈ (x∼ 0, u∼ , c∼). The dif-

ferent approaches such as hand-coded derivatives, finite-difference approximation

of derivatives, symbolic differentiation, reverse polish notation (RPN) evaluation

of derivatives and automatic differentiation are exemplified by Tolsma and Barton

(1998). Appendix A.1 describes the design of a slim data type, utilised among other

things for symbolic differentiation in this work. Another aspect discussed by Tolsma

et al. (2002) and Li et al. (2004) is the smooth integration of external models into a

simulation environment.

Solving Strategy An iteration scheme to improve the state vector towards the fulfil-

ment of Equation (2.1). Zitney and Stadtherr (1988) point out three aspects, namely

the correction step formulation (Chen and Stadtherr, 1981; Bogle and Perkins, 1988;

Cofer and Stadtherr, 1996), sparse J evaluation, and hybrid J meth-

ods. Wilhelm and Swaney (1994) present a robust algorithm that prevents violation

of domain boundaries and implements a back-tracking mechanism.

The following chapter addresses these items in the context of canonical process mod-

elling, but rather than accepting the equation system (2.1) as is, the main focus is

put on the formulation of the mathematical model. The objective is to reduce the re-

quired effort on the items above. For instance, a major part of the required derivatives

can be provided by the implementation of the thermodynamic models. Furthermore,

the equation system is generated with a large amount of a priori structural informa-

tion. This reduces the problems in the solution process encountered by less structured

model equations.

This work deliberately does not engage in the research of robust methods for the

solution of general equation systems. The application of algorithms, such as that

by Wilhelm and Swaney (1994), is likely to improve the robustness significantly, but,

at this stage, it is important to use a straightforward solution method in order to judge

the properties of the equation system.

2.5 Representation of thermodynamic models

2.5.1 Thermodynamic state functions

A thermodynamic state function P is a property of a system, which depends only on

the current state of the system. The synonym thermodynamic potential for energy

functions emphasises the attribute of path-independence and the necessity of a refer-

ence state for each independent argument. This work utilises homogeneous first-order

state functions of the extensive parameters xE and intensive parameters xĒ (Callen,

1985). As shown in Appendix C.1, the property of first-order homogeneity expressed

22 Chapter 2. Process systems engineering

by

P(ψ x∼ E, x∼ Ē) = ψ P(x∼E, x∼ Ē) , ψ ∈ � (2.14)

yields E’s 1st and 2nd theorem:

P(x∼ E, x∼ Ē) =
∂P

∂x∼E
x∼ E , and subsequently

∂2P

∂x∼E ∂x∼E
x∼ E = 0∼ . (2.15)

The homogeneity of thermodynamic state functions has never been proven4, but

observed and postulated. The further work is therefore based on the following postu-

late (Callen, 1985; Brendsdal, 1999):

The internal energy U of a homogeneous phase is a first-order homogeneous

function of its entropy S , volume V and mole numbers n∼ .

Note the unrelated concepts of homogeneity regarding mathematical functions as de-

fined in Equation (2.14), and physical phases. Both concepts appear in this postulate.

2.5.2 State function transformations

The approach in canonical modelling in general is to utilise a state function with

canonical variables natural to the constraints of the given system. For instance the

G energy G(T, p, n∼) is suitable to describe configurations at specified T and p,

while a dynamic tank constrained in U and V is described by the entropy function:

S (U,V, n∼).

A typical thermodynamic model can be represented analytically by one, at most

by two different state functions, namely H energy A(T,V, n∼) and G en-

ergy G(T, p, n∼). Other state functions are obtained applying two transformations,

namely the L and the M transformations, which both are described by

Callen (1985) and Brendsdal (1999). The L transformation of a state function

P with respect to the variable x j is defined as

P̂(x̂∼) = L j[P(x∼)] := P(x∼)−
∂P(x∼)

∂x j

∣
∣
∣
∣
∣
∣
xi, j

x j with x̂∼ =
∑

i, j

xi e∼ i +
∂P(x∼)

∂x j

e∼ j. (2.16)

Hence, the L transformation exchanges information between the state and the

gradient vector. The variables x j and x̂ j are called conjugated variables.

In terms of group theory, the L transformation is a permutation of fourth

order:

L j[L j[P(x∼)]] = P(x̂∼) with x̂ j = −x j and L j[L j[L j[L j[P(x∼)]]]] = P(x∼) . (2.17)

4A disproof however would invalidate the first law of thermodynamics with all its conclusions,

therefore solving all world’s energy problems

2.5. Representation of thermodynamic models 23

It is therefore practical to define the inverse L-transformation

P(x∼) = L−1
j [P̂(x̂∼)] := P̂(x̂∼)−

∂P̂(x̂∼)

∂x̂ j

∣
∣
∣
∣
∣
∣
∣
x̂i, j

x̂ j with x∼ =
∑

i, j

x̂i e∼ i−
∂P̂(x̂∼)

∂x̂ j

e∼ j (2.18)

instead of applying P(x∼) = L j[L j[L j[P̂(x̂∼)]]].

The M transformation swaps an extensive canonical variable x j and the

state function. With the subspace E ⊆ �dim x∼ containing the extensive components

of x∼ , the definition is given as

x j = M j[P(x∼)] :=




P(x∼) −

∑

i∈E\{ j}

∂P(x∼)

∂xi

xi





/∂P(x∼)

∂x j

with x̂∼ =
∑

i∈E\{ j}
xi e∼ i+P(x∼) e∼ j. (2.19)

The M transformation is self-inverse, i.e. M j[M j[P(x∼)]] = P(x∼) or

M
−1
j
= M j.

All state functions used in this work can be obtained through (inverse) L

and M transformations originating in U(S ,V, n∼) as follows:

U(S ,V, n∼) H(S , p, n∼) G(T, p, n∼) A(T,V, n∼)

S (U,V, n∼) S (H, p, n∼) VV(H,V/T, n∼)

-
L
−1
V

?
MS

?
MS

-
LS

-
Lp

-
L
−1
p

(2.20)

Postulated only for U, a simple proof for the preservation of homogeneity through

these transformations is given in Appendix C.2. The property of homogeneity is

therefore ensured for all state functions used in this work. Furthermore, Callen (1985)

and Tester and Modell (1997) prove the preservation of the extremum principle for

selected systems and state functions.

State functions with only extensive canonical variables (U(S ,V, n∼), S (U,V, n∼) and

VV(H,V/T, n∼)) are of special interest in this work, as they allow one to map the topo-

logical structure of the model towards the structure of the equation system. Two basic

examples are given at the beginning of the next chapter.

The equations of thermodynamic models are originally represented in H

or G coordinates. The transformations are then used to obtain the desired state

functions. This approach plays an essential role in the implementation of the canoni-

cal process modelling tool Yasim, which is described in detail in Chapter 5.

24 Chapter 2. Process systems engineering

Chapter 3

Canonical process modelling

3.1 Introduction

The concept of canonical process modelling is to base the mathematical description

of a process model on the natural state variables of thermodynamic state functions

as introduced in Section 2.5.1. Each flowsheet module (FM) consists of building

blocks. These blocks are formulated as local optimisation nodes, and sets of bal-

ance equations represent couplings between these blocks. The well defined structure

of the resulting equation system directly reflects the process topology. This way, a

priori structural knowledge can be exploited to achieve efficient equation solving.

Furthermore, this equation system only contains stoichiometric constraints and ther-

modynamic information, but no coefficients that depend on geometric information or

any other process parameter. From now on, this will be referred to as the canonical

equation system.

In practice, some canonical balance equations are not actually used in the actual

process model, as for instance the enthalpy balance over an isothermal storage tank.

These balance equations are therefore released, in other words: a constitutive equa-

tion provides a source term to this balance equation. The modified balance equation

then yields a solution, which fulfils the constitutive equation. This additional consti-

tutive equation system is rather unstructured. All process parameters are part of this

equation system. Additionally, the L multipliers of the optimisation nodes

can be interpreted as canonical conjugated variables, and therefore be included.

The overall problem formulation is large in size and can easily exceed 1000 vari-

ables for a process model with 30 FM and 10 chemical species in each flow. But

the well-structured canonical system can be solved efficiently, while the unstructured

constitutive equation system is typically by a factor of 10 smaller, and therefore does

not require significant calculation time. Several ways to formulate an algorithm to

solve these two systems are discussed in Section 3.3.

A priori process topology knowledge is used to gain performance of the solu-

tion process. The framework also gives full control to associate degrees of freedom

25

26 Chapter 3. Canonical process modelling

(DOFs) and constitutive equations for maintainability of process models. This hap-

pens automatically by releasing canonical constraints in favour of constitutive equa-

tions in a one-to-one relationship. The occurrence of singular matrices can at any

point be assigned to one particular FM for efficient error diagnosis (see Section 3.9).

The concept of canonical modelling applies to both material flows and accumu-

lated states. The description of building blocks in the following section is based on

accumulated states. Material flows are introduced in Section 3.4. However, this work

focuses on steady-state process models, and the interaction between flows and ac-

cumulated states is therefore not considered. In a dynamic context however, most

dynamic behaviour is contained within the modelling of this kind of interaction. A

brief discussion of the extension to dynamic simulation is given in Appendix D.

3.2 Building blocks

3.2.1 Calculation of phase equilibria

Consider an insulated storage tank, constrained by U, V and n∼ , the contained medium

being split in a liquid (l) and a vapour (v) phase. With x∼ = (U,V, n∼) as the canonical

state vector of the entropy function, the program to solve is

max
x∼ (l),x∼ (v)

S = S (l)(x∼ (l)) + S (v)(x∼ (v)) s.t. δ∼ = x∼ initial − (x∼ (l) + x∼ (v)) = 0∼ . (3.1)

The residual expression δ∼ vanishes, if the total tank content x∼ (l) + x∼ (v) is equal to the

initial feed x∼ initial.

A standard solving method described by Jungnickel (1999) and Biegler et al.

(1997) is to formulate a L function

Λ(x∼ (l), x∼ (v), λ∼) = S (l) + S (v) − λ∼ · δ∼ (3.2)

and find the stationary point of Λ. With

g
∼ (i) =

∂S (i)

∂x∼ (i)

and H≈ (i) =
∂2S (i)

∂x∼ (i)∂x∼ (i)

, i ∈ {l, v} , (3.3)

further symbols can be defined, namely the gradient l∼ and the Hmatrix B≈ of the

L function:

l∼ =
∂Λ

∂(x∼ (l), x∼ (v), λ∼)
=





g
∼ (l) + λ∼
g
∼ (v) + λ∼
−δ∼





and B≈ =
∂2Λ

∂(x∼ (l), x∼ (v), λ∼)2
=





H≈ (l) 0≈ I≈
0≈ H≈ (v) I≈
I≈ I≈ 0≈




. (3.4)

Note that a stationary point is found, if δ∼ = 0∼ and g
∼ (l) = g

∼ (v) = −λ∼ . The condition g
∼ (l) =

g
∼ (v) can be interpreted physically as the equality of the intensive state (temperature

T , pressure p, and chemical potential µ∼):

T(l) = T(v), p(l) = p(v), and µ∼ (l) = µ∼ (v) . (3.5)

3.2. Building blocks 27

In an updating scheme, the update-vector ∆̂∼ at iteration k is introduced as follows:

∆̂∼ =





∆x∼ (l)

∆x∼ (v)

∆λ∼




with

∆x∼ (l) = x∼
(k+1)

(l)
− x∼

(k)

(l)

∆x∼ (v) = x∼
(k+1)

(v)
− x∼

(k)

(v)

∆λ∼ = λ∼
(k+1) − λ∼

(k)

. (3.6)

The N-R method suggests B≈ ∆̂∼ = −l:





H≈ (l) I≈
H≈ (v) I≈

I≈ I≈









∆x∼ (l)

∆x∼ (v)

∆λ∼




= −





g
∼ (l) + λ∼
g
∼ (v) + λ∼
−δ∼





. (3.7)

By adding λ∼ to the first and second block-rows of the equation system, the result is

(zero-blocks 0≈ omitted)





H≈ (l) I≈
2

H≈ (v)
3

I≈

I≈
1

I≈









∆x∼ (l)

∆x∼ (v)

λ∼
(k+1)





=





−g
∼ (l)

−g
∼ (v)

δ∼





, (3.8)

or, after introducing ∆∼ and b∼ as abbreviations,

B≈ ·∆∼ = b∼ . (3.9)

The matrix B≈ is block-invertible, i.e. for a given block-structure, there is at least one

complete sequence of invertible pivoting blocks, which can be utilised in a block-

inversion by G elimination.

A row and column pivoted LU-decomposition of B≈ with pivot elements as marked

in Equation (3.9) yields

B≈ = (P≈ row L≈) (U≈ P≈ col) =





H≈ (l) I≈
I≈ I≈

I≈




·





I≈ I≈
−H≈ (l) I≈

H≈ (l) + H≈ (v)




. (3.10)

Hence, identity pivot blocks can be found almost through the whole solution process.

The only exception is the block H≈ (l) + H≈ (v) that requires the solution of a non-trivial

subsystem. The update ∆∼ is therefore obtainable, iff H≈ (l) + H≈ (v) is non-singular.

A trivial solution emerges, if the state vectors of the two phases differ only by

a scaling factor: x∼ (l) = ψ x∼ (v). As a consequence of Equation (2.15), the singular

directions of H≈ (l) and H≈ (v) fall together, and H≈ (l) + H≈ (v) becomes singular.

From this point of view, critical points are special cases of trivial solutions, be-

cause only one phase actually exists at the critical point. The attempt to solve for

28 Chapter 3. Canonical process modelling

the conditions of a critical point by a phase equilibrium calculation can not succeed.

Specialised techniques have been developed to solve the task of critical point calcu-

lations (Michelsen and Mollerup, 2004).

Azeotropic conditions do not yield a singular coefficient matrix. Even though the

chemical composition is equal in both phases, entropy and volume assume distinct

values. The calculation of phase equilibria for an azeotropic mixture is similar to an

equilibrium calculation of a pure substance. The equation system becomes singular,

if only intensive variables are specified (e.g. temperature and pressure).

Multiphase equilibria

for a system of Ω phases, Equation (3.1) can be generalised to

max
x∼ (i)

S =

Ω∑

i=1

S (i) s.t. δ∼ = x∼ initial −
Ω∑

i=1

x∼ (i) = 0∼ , (3.11)

and the L function takes the form

Λ(x∼ (1), . . . , x∼ (i), . . . , x∼ (Ω)) =

Ω∑

i=1

S i − λ∼ · δ∼ . (3.12)

The equation system B≈ ·∆∼ = b∼ results to

B≈ =





. . .
...

H≈ (i) I≈
. . .

...
· · · I≈ · · · 0≈









...

∆x∼ (i)

...

λ∼





=





...

g
∼ (i)

...

δ∼





. (3.13)

Again, it is possible to decompose B≈ as (P≈ row L≈) (U≈ P≈ col), using the boxed blocks as

pivot elements for back-substitution:

B≈ =





H≈ (1) I≈
... I≈
...

. . .

I≈ I≈

I≈





·





I≈ I≈ I≈ · · · I≈

−H≈ (1) I≈ −H≈ (1) · · · −H≈ (1)

H≈ (1)+H≈ (2)
. . .

H≈ (1)+H≈ (Ω−1)

H≈ (1)+H≈ (Ω)





.

(3.14)

The solution of the total system (3.9) is obtained by solving Ω − 1 subsystems of the

size of one phase each. The computation time of a multiphase-flash is therefore linear

3.2. Building blocks 29

in the number of phases. For the special case Ω = 1, the system becomes linear and

the solution x∼ = x∼ initial and λ∼ = −g
∼

.

A necessary requirement for a converged solution of Equation (3.9) is that ∆x∼ (i) =

0∼ , ∀i. Hence g
∼ (i) = −λ∼ ∀i demonstrates that the conjugated variables at the converged

solution are represented by the L-multipliers.

3.2.2 Calculation of chemical equilibria

Consider the same storage tank as in the previous section, but this time filled with a

reacting phase, for instance a mixture of NO2 and N2O4. The complete set of species

balance equations would disallow any chemical reaction, but a chemical reaction still

fulfils the balance equations of energy, volume, and chemical elements. In a reacting

system, the number of elements is lower than the number of species, such that the

constraint matrix A≈ is no longer square and invertible. For one phase, the program is

max
x∼

S (x∼) s.t. δ∼ = A≈ (x∼ initial − x∼) = 0∼ . (3.15)

For the system NO2 – N2O4, the state vector is given as x∼ = (U, V, nNO2
, nN2O4

).

The balance equations for oxygen and nitrogen are linear dependent in this case. The

row-reduced constraint matrix becomes

A≈ =





1

1

1 2





← U-balance

← V-balance

← N/O-balance

. (3.16)

Equation (3.9) now is modified to

(

H≈ A≈
T

A≈

) (

∆x∼
λ∼

)

=

(

−g
∼
δ∼

)

. (3.17)

At the converged solution, the condition ∆x∼ = 0∼ yields g
∼
= −A≈

T λ∼ , implying that the

equilibrium condition for the chemical potentials is µNO2
= 2µN2O4

.

Chemical equilibrium in a multi-phase system

The generalisation to reactive systems with many phases does not require a common

A≈ over all phases, since different species sets might occur in different phases. The

program is

max
x∼ (i)

∑

i

S (i) s.t. δ∼ = A≈ initial x∼ initial −
∑

i

A≈ (i) x∼ (i) = 0∼ . (3.18)

30 Chapter 3. Canonical process modelling

The matrix A≈ initial projects the set of initial species into the space of elements. The

equation system becomes




. . .
...

H≈ (i) A≈
T
(i)

. . .
...

· · · A≈ (i) · · · 0≈





·





...

∆x∼ (i)

...

λ∼





=





...

−g
∼ (i)

...

δ∼





. (3.19)

In spite of each single A≈ (i), the total balance equation system (. . . , A≈ (i), . . .) must be

reduced to full row rank in order to obtain a non-singular matrix B≈ and therefore a

solvable system.

Unfortunately, B≈ is not block-invertible for a general reacting system, since it

contains no single invertible block. Naturally, the computational effort is high in

the general case, in which no structural information can be utilised directly, but B≈
must be decomposed on a scalar level, at least considering the a priori information

about the location of zero-blocks. More efficient approaches for particular systems

are discussed in Appendix E.2.

3.3 Non-canonical specifications

In practical cases, there is often no state function with canonical state variables avail-

able, so that the constraints are only linear combinations of these variables. This is for

instance the case, if intensive variables are constrained (T , p). Let us consider a stor-

age tank filled with pure vapour at a fixed temperature, but allowing energy exchange

with the environment. One obvious approach would be to obtain the H en-

ergy by L transformation LS of U, namely A(T,V, n∼). The canonical deriva-

tives of A contain all thermodynamical obtainable properties, see Appendix C.3.

This approach is convenient for an isolated calculation, but as there is no con-

servation equation for the intensive variable T , the structure of the coefficient matrix

would be destroyed in real applications, namely the integration into a process model.

Without the balance equation, the canonical equation system is reduced in size, and

the temperature needs to be determined externally, for instance by direct specifica-

tion. However, the state vector x∼ of the canonical system no longer contains T , and

many thermodynamic properties, such as entropy, heat capacity, and expansitivity

(see Appendix C.3), would require add-on calculations.

It is therefore most generic to formulate the canonical equation system in solely

extensive coordinates, as for instance Equations (3.8) and (3.17). The modelling tool

Modeller (Westerweele et al., 1999) is based on balance equations as well, and as in

this case, extensive state variables help to structure the equation system.

The scope of the methods described in the following subsections are actually not

limited to the single equilibrium nodes introduced in the last section, but are equally

applicable for entire process models including material streams between different

FMs, as described in Section 3.4.

3.3. Non-canonical specifications 31

3.3.1 Direct substitution of Lagrange multipliers

A special case occurs, if the non-canonical constraints are direct specifications of

conjugated variables, namely the gradient of the state function with respect to its

canonical state variables. Such constraints can be interpreted as specifications of

parts of λ∼ . In order to specify the temperature instead of fulfilling the internal energy

balance, the first column of the second block column in Equation (3.17) is removed.

The missing term λU in the first row of the left hand side is accounted for on the

right hand side according to λU = −gU = −1/T with T = Tspec. Simultaneously, the

first row of the second block row is removed, since conservation of U is no longer

desired:





H≈ ÂT
≈

Â≈









∆x∼

λ̂∼





=





−g
∼
− A≈

T

(

−1/Tspec

0∼

)

δ̂∼





with

Â≈ =
(

0∼ I≈

)

A≈

λ̂∼ =
(

0∼ I≈

)

λ∼

δ̂∼ =
(

0∼ I≈

)

δ∼

. (3.20)

The advantage of this method is the reduction of system size, but again at the expense

of structure. Â≈ is not invertible even for non-reacting systems, and methods described

in Appendix E.2 must be applied. The restriction to specifications of conjugated vari-

ables only requires combination with other methods, if arbitrary constraint equations

should be applicable. For this reason, the direct substitution of L multipliers

cannot be applied practically in a flexible process modelling tool.

3.3.2 Constitutive equation system

The concept of this approach is to substitute selected balance equations of canonical

state variables by arbitrary equations depending on x∼ , λ∼ , and the process parameters

u∼ :

h∼ (x∼ , λ∼ , u∼) = 0∼ . (3.21)

The equations of this system are called constitutive equations, as they constitute the

behaviour of a particular FM or the entire process model. Examples are not only

direct specifications, such as T − Tspec = 0, but as well heat transfer laws, pressure-

flow equations, and characterisation of kinetic reactions.

Each balance equation of the canonical equation system (3.9), which is selected

to be replaced by a constitutive equation, represents one DOF. The use of any con-

stitutive equation requires one such DOF, so that the number of state variables is

balanced with the number of active equations. From now on, such selected balance

equations are referred to as released.

Integrating the constitutive equations in a linearised form into the canonical equa-

tion system is not an attractive approach, as the block structure would be negatively

affected.

32 Chapter 3. Canonical process modelling

Therefore, each released balance equation remains as is in the equation system,

but its right hand side δ is replaced by a new variable α.

The objective is to obtain a value for α∼ , such that the solution of the modified

canonical equation system (3.9) fulfils also the constitutive equation system (3.21).

Substituting the energy balance by a temperature specification, the right hand side of

Equation (3.17) is supplemented by α∼ = α e∼ 1 to

(

H≈ A≈
T

A≈

) (

∆x∼
λ∼

)

=

(

−g
∼

δ̂∼ + ∆α∼

)

(3.22)

with δ̂∼ =
∑

i,1 δi e∼ i and ∆α∼ = α∼
(k+1) − α∼

(k). As B≈ is calculated at x∼
(k), the homogeneity

Equation (2.15) allows to substitute ∆x∼ by x∼
(k+1). Hence, it follows that

(

x∼
λ∼

)(k+1)

= B≈
−1

(

−g
∼
α∼

)

⇒
∂(x∼ , λ∼)(k+1)

∂α∼

∣
∣
∣
∣
∣
∣
∣
(x∼ ,λ∼)(k)

= B≈
−1 E≈ α . (3.23)

The matrix E≈ α represents a set of unity column vectors. Multiplied from the right,

it selects the columns of B≈
−1, which correspond to the released balance equations.

Considering x∼ and λ∼ as a function of α∼ , the derivative of h∼ can be obtained by chain-

rule. Typically, only a small subset of canonical variables are used in any constitutive

equation. The J matrix ∂h∼ /∂(x∼ , λ∼) therefore contains only a few columns with

non-zero elements, and it becomes practical to introduce also a selection matrix E≈ x,

consisting of unity row vectors. Multiplied from the left, it selects rows in B≈
−1 ac-

cording to the canonical variables that appear in the constitutive equations (x̂∼ , λ̂∼):

∂h∼ (x∼ , λ∼ , u∼)

∂α∼

∣
∣
∣
∣
∣
∣
(x∼ ,λ∼)(k)

=
∂h∼

∂(x∼ , λ∼)
B≈
−1 E≈ α =

∂h∼

∂(x̂∼ , λ̂∼)
E≈ x B≈

−1 E≈ α . (3.24)

Application of the N-R method suggests an update ∆α∼ as

∂h∼

∂α∼
∆α = −h∼ ⇒

∂h∼

∂(x̂∼ , λ̂∼)
E≈ x B≈

−1 E≈ α ∆α = −h∼ . (3.25)

Equation (3.22) can be decomposed as

(

∆x∼
λ∼

)

=

(

∆x∼ 1

λ∼ 1

)

+

(

∆x∼ 2

∆λ∼

)

= B≈
−1

(

−g
∼
δ̂∼

)

+ B≈
−1

(

0∼
∆α∼

)

. (3.26)

The partial solution (x∼ 1, λ∼ 1) is the solution of the canonical constrained optimisation

problem (3.17), but assuming the released balance equations to be fulfilled at x∼
(k).

Hence, the L-multipliers λ∼ 1 can be interpreted physically as the canonical

conjugated variable set at x∼
(k+ 1

2
) = x∼

(k) + ∆x∼ 1. The determination of ∆α∼ is therefore

based on this pair. Subsequently, B≈ should be updated based on x∼
(k+ 1

2
), but the high

3.3. Non-canonical specifications 33

computational effort to obtain B≈
(k+ 1

2
)
−1

is not justified, as B≈
(k+ 1

2
) ≈ B≈

(k). The complete

solution scheme including a relaxation γ becomes as follows:

1 k := 0

2 while not converged

3 determine B≈ , g
∼

and δ̂∼ at x∼
(k) by state function evaluations

4 solve B≈

(∆x∼ 1

λ∼ 1

)

=
(−g
∼

δ̂∼

)

5 (x∼
(k+ 1

2
), λ∼

(k+ 1
2

)) := (x∼
(k) + ∆x∼ 1, λ∼ 1)

6 determine h∼
(k+ 1

2
) and [∂h∼ /∂(x∼ , λ∼)](k+ 1

2
)

7 solve [∂h∼ /∂(x∼ , λ∼) E≈ x B≈
−1 E≈ α]∆α∼ = −h∼

8 solve B≈

(∆x∼ 2

∆λ∼ 2

)

=
(0∼
∆α∼

)

9 ∆x∼ := γ (∆x∼ 1 + ∆x∼ 2) with γ ∈]0 : 1]

10 x∼
(k+1) := x∼

(k) + ∆x∼
11 k := k + 1

12 end while

This concept of alternating updates is complementary to the concept of nested iter-

ations in an outer and an inner loop. There is no need to converge an inner system

in order to perform one step in the outer loop. Instead, this approach is more simi-

lar to using a predictor-corrector step when integrating ordinary differential-algebraic

systems. The relaxation strategy to obtain γ is further described in Section 3.8.

The simulation tool Yasim, as described in Chapter 5, implements this algorithm,

and performance characteristics are discussed in Chapter 6.

Though this approach incorporates the use of a structured B≈ and additionally

requires only the solution of a rather small equation system of constitutive equa-

tions, the main disadvantage is the demand for the explicit evaluation of B≈
−1, which

causes numerical problems and performance loss for larger systems, compared to

solution strategies based on decomposition and back-substitution only (Golub and

Loan, 1996). The next section therefore introduces a method that avoids the use of

B≈
−1.

3.3.3 Augmented equation system

The algorithm described in the previous section can be modified to avoid an explicit

evaluation of B≈
−1. Lines 1–6 are left unchanged, while Equation (3.25) can be com-

bined with the canonical equation system to calculate (∆x∼ 2,∆λ∼ 2) as follows:





H≈ A≈
T

A≈ −E≈ α
∂h∼ /∂x∼ ∂h∼ /∂λ∼ ∂h∼ /∂α∼









∆x∼ 2

∆λ∼ 2

∆α∼




=





0∼
0∼
−h∼




. (3.27)

In this case, E≈ α is defined more narrowly in order to select specific balance equations

from the entire canonical system. The algorithm continues at line 9, and only ∆x∼ 2

34 Chapter 3. Canonical process modelling

is actually used further on. A disadvantage of this method is that two large equation

systems need to be solved in each iteration. Still, the total numerical effort to solve

the canonical system and the augmented system can be expected to be lower than

the explicit evaluation of B≈
−1. A row and column pivoted LU-decomposition of the

augmented coefficient matrix is conducted in analogy to Section 3.2.

Furthermore, it is now natural to consider a direct dependency of h∼ on α∼ , i.e. con-

stitutive equations can contain source-terms for canonical balance equations directly:

h∼ = h∼ (x∼ , λ∼ , α∼). With regards to advanced process engineering disciplines described

in Chapter 4, it is suitable to express all process model parameters u∼ in constitu-

tive equations rather than using x∼ initial as in Equation (3.1). For stand-alone building

blocks, all balance equations are released, hence E≈ α = I≈ .

Example

Consider a temperature controlled storage tank of an unknown quantity gaseous am-

monia, but with specified volume and pressure. Let the current set (x∼ , λ∼) be a solution

of the canonical system based on entropy S (U,V, n):

(

H≈ I≈
I≈

) (

∆x∼
λ∼

)

=

(

−g
∼

0∼

)

. (3.28)

In this case, all balance equations are released, such that δ̂∼ = 0. For any choice of

the state x∼ , the update ∆x∼ is a zero-vector. x∼ can therefore be chosen arbitrary, while

λ∼ = −g
∼

. Given specifications of temperature Tspec, pressure pspec, and volume Vspec

as process parameters, the constitutive equation system is

h∼ =

(

λ1 +
1

Tspec

, λ2 − pspec λ1, α2 − Vspec

)

with α2 = V (k+ 1
2

) . (3.29)

The physical interpretation of λ1 = −g1 and λ2 = −g2 is developed in Appendix C.3.

The last line in Table C.1 describes the gradient of the used entropy function as g1 =

T−1 and g2 = p/T . Subsequently

∂h∼

∂x∼
= 0≈ ,

∂h∼

∂λ∼
=





1 0 0

−pspec 1 0

0 0 0




,

∂h∼

∂α∼
=





0 0 0

0 0 0

0 1 0




and E≈ α = I≈ . (3.30)

Evaluation of Equation (3.27) with A≈ = I≈ gives

[(

∂h∼
∂λ∼
,
∂h∼
∂α∼

) (

H≈
−I≈

)]

∆x∼ 2 = h∼ , hence





H11 H12 H13

H12−pspecH11 H22−pspecH12 H23−pspecH13

0 −1 0




∆x∼ 2 =





λ1 +
1

Tspec

λ2 − pspec λ1

α2 − Vspec





. (3.31)

It can be seen that the volume correction ∆x2,2 is independent of the thermodynamic

model: ∆V = Vspec−V (k+ 1
2

), while the temperature and the pressure specifications are

3.4. Process modelling 35

coupled and therfore model dependent. For an ideal gas with constant heat capacity

cp, and a convenient reference state ∆fH
0 = cp T 0, the H matrix is

H≈ =
∂2S

∂(U,V, n)2
=





− 1
T 2 cV n

0 1
T n

0 − p

T V
R
V

1
T n

R
V

− cV+R
n





. (3.32)

The updates ∆n and ∆U are calculated as follows:

∆n =

(
Vspec

V
+

pspec T

p Tspec

− 2

)

n ∆U = cV T

[(

1 − T

Tspec

)

n + ∆n

]

. (3.33)

Table 3.1: Calculation of an ideal gas storage tank by evaluation of the augmented

equation system.

Starting point Initialisation Specification After 1st step After 2nd step

T0 = 298.15 K U0 = n0 cV T0 Tspec = 400 K T (1) = 302.8 K T (2) = 319.0 K

V0 = 0.1 m3 V0 =V0 Vspec = 1 m3 V (1) = 1 m3 V (2) = 1 m3

p0 = 1 bar n0 =
p0 V0

R T0
pspec = 10 bar p(1) = 1.67 bar p(2) = 8.0 bar

= 4.03 mol n(∞) = 300.7 mol n(1) = 66.4 mol n(2) = 300.7 mol

Table 3.1 shows the result of a numerical experiment. Obviously, the solution can

easily be obtained analytically, but the example shows the capabilities of this generic

method.

As expected, the correct volume is calculated in one step. Subsequently, the

update ∆n reduces to ∆n = pspec Vspec/(R Tspec) − n, such that n2 = n∞. Due to the

ideal gas law, temperature and pressure consequently assume the same relative error.

According to the definition given by Nocedal and Wright (1999), the convergence

rate is quadratic, that is, with ψ(k) as the numerical value of pressure or temperature

after step k,

ln
∥
∥
∥ψ(k+1)/ψspec − 1

∥
∥
∥ = 2 ln

∥
∥
∥ψ(k)/ψspec − 1

∥
∥
∥ + const. with ψ ∈ {T, p} . (3.34)

3.4 Process modelling

The previous section concentrated on the mathematical description of atomic building

blocks in canonical process modelling. This section focuses on the interconnection of

these blocks by balance equations of canonical variables and constitutive equations.

3.4.1 Mathematical framework for process models

Referring to Section 2.3, and in particular Figure 2.4, the introduced concepts can

now be substantiated by a mathematical framework.

36 Chapter 3. Canonical process modelling

Terms and definitions 3.1

Atomic flowsheet module An assembly of at least one phase in restricted physical

and chemical equilibrium, represented by a suitable building block described in

Section 3.2. An atomic FM has exactly one set of constraint equations, consisting

of balance equations supplemented by additional constraints. The coefficient matrix

B≈ of any FM is square and is generally invertible.

Input port A frame for one set of constrained equations in a FM. An Input port de-

fines one constraint vector for each flow of a canonical quantity from an upstream

FM. This vector defines the contribution to the constraint equations.

Output port A complete set of canonical variables of one physical phase within a

FM. Not all phases within a flowsheet module represent output ports, although at

least one phase in each atomic flowsheet module does.

Coupling A set of constraint vectors defined by the downstream FM input port ac-

cording to the canonical variables of the upstream FM output port agglomerated

into a coupling matrix. Coupling matrices are in general of rectangular shape and

sparse.

Constitutive equation One equation of h∼ = 0∼ as hi(x∼ , λ∼ , α∼) = 0. In particular, mass-

less transfer of heat or work between two flowsheet modules are represented by

constitutive equations, not couplings.

The coefficient matrix B≈
[k+1] of a composite flowsheet module couples the blocks

B≈
[k]
i

of child flowsheet modules with coupling matrices C≈
[k+1]
i j

. With B≈
[k]
i

arranged on

the block-diagonal, C≈
[k+1]
i j

is positioned in block-column i and block-row j, indicating

a coupling between module Mi and M j.

3.4.2 Process model topology

The left side of Figure 3.1 shows the flowsheet representation of a simplified urea

synthesis process, the so-called Snamprogetti process (UNIDO and IFDC, 1988). As

illustrated in the right side of the figure, the adjacency matrix of the process topology

graph directly reflects the block-structure of the coefficient matrix. It also becomes

clear that material sinks (stream 8 and 12) are not explicit flowsheet modules, but

only representations of otherwise non-coupled output ports.

The sequence of FMs in the coefficient matrix is arbitrary. When sorted by list-

ing upstream FMs before downstream FMs, process models without recycles yield a

lower triangular block matrix. It becomes evident how an efficient solver can exploit

the topological information. By block elimination, the process model can be solved

in linear time regarding the number of FMs.

For each recycle introduced into the process, one coupling block is necessary to

be positioned on the other side of the diagonal, as stream 5 in the example of Fig-

ure 3.1. These recycle streams are conforming with the tear-streams in sequential-

modular approaches (see Section 2.4.1), and as they require iterations in that ap-

3.4. Process modelling 37

Carbon dioxide

Ammonia

Passivation air

Carbamate recycle

Urea solution

Excess ammonia

Ejector

Carbamate condenser

reactor

Separator

Stripper

compressors

CO2−

Synthesis

FM coefficient matrix Coupling block

2

4

5

6

7

8

10

11

3

1

12

9

7

4

31

2

5

6

9 10

11

812

Carbon dioxide

Ammonia

Passivation air

Carbamate recycle

Carbamate
condenser

Stripper

Ejector

Synthesis reactor

Compressors

Carbamate recycle

Passivation air

Ammonia

Carbon dioxide

Separator

Figure 3.1: Snamprogetti urea synthesis process and structure of process model co-

efficient matrix.

proach, they also require a non-trivial matrix decomposition in the canonical solution

strategy. As shown in Section 3.9.2, the increase in model complexity due to occur-

rence of recycles is inevitable.

Hierarchical process model structure

A large number of process modelling tools implement the concept of hierarchical

model structures, such as Modeller (Westerweele et al., 1999), MK (Bogusch

et al., 2001), gPROMS (Pantelides and Barton, 1992), Modelica (Mattsson et al.,

1998), and MODEL.LA (Stephanopoulos et al., 1990).

Consider the reactor model in Figure 3.1 to be a composite FM representing 50

vertically arranged discrete volumes. Furthermore, the compressors are arranged

in three stages with inter-cooling. The complete reactor model and the complete

compressor train are still represented by only one main diagonal block each, and the

coupling blocks still remain in the same position. However, it is possible to open the

compressor train diagonal block and find a similar structure on lower level. In this

context, the compressor train represents an independent process model in itself.

This approach of encapsulation allows one to exchange FMs of same functional-

ity, but at different levels of detail. Using first principle models for process equipment

or entire process sections, a process model can quickly be developed on a high level.

In order to enhance model predictivity, more detailed FMs can later be substituted in.

38 Chapter 3. Canonical process modelling

3.4.3 Material couplings

A coupling represents a material flow from an output port of an upstream FM M1 to

an input port of a downstream FM M2. Let ẋ∼ 1 be the state vector representing the

outlet stream of M1, and ẋ∼ 2,i the state vectors representing the outlet streams of M2.

The canonical balance equations to conserve the state variables are

A≈ 1 ẋ∼ 1 =
∑

i

A≈ 2,i ẋ∼ 2,i . (3.35)

The constraint matrices are determined by the downstream FM with regard to the

actual species set of ẋ∼ 1. The building blocks introduced in Section 3.2 only contain

the right hand side of Equation 3.35, and the left hand side adds a further contribution.

This contribution substitutes the source term ẋ∼ initial in the particular definitions of δ∼ .

Without a coupling in between, the canonical equation systems of two FMs are

completely independent, and can be arranged as square blocks in the overall coeffi-

cient matrix. The left hand side of Equation (3.35) generates an off-diagonal element.

The canonical equation system is





. . .

B≈ 1

. . .

C≈ 12 B≈ 2

. . .





·





...

∆∼ 1

...

∆∼ 2

...





=





...

l∼1

...

l∼2

...





. (3.36)

The coupling block C≈ 12 is sparse and well-structured, since there is no direct link

from either L-multipliers or downstream equilibrium equations.

Example

Figure 3.2 shows a small process model. The reser-
1

M1

M2

Figure 3.2: Example pro-

cess model with a single

coupling.

voir M1 is coupled to a two-phase flash M2. Assuming

equal sets of chemical species in both FMs, the coupling

matrix C≈ 12 contains only one none-zero block:

C≈ 12 =





0≈ 0≈
0≈ 0≈
−I≈ 0≈




. (3.37)

The complete canonical equation system is (δ∼ 1 = −ẋ∼ 1 and δ∼ 2 = ẋ∼ 1 − ẋ∼ 2,(l) − ẋ∼ 2,(v))





H≈ 1 I≈
I≈

H≈ 2,(l) I≈
H≈ 2,(v) I≈

−I≈ I≈ I≈









∆ẋ∼ 1

λ∼ 1

∆ẋ∼ 2,(l)

∆ẋ∼ 2,(v)

λ∼ 2





=





−g
∼ 1

δ̂∼ 1 + α∼ 1

−g
∼ 2,(l)

−g
∼ 2,(v)

δ̂∼ 2 + α∼ 2





. (3.38)

3.5. Atomic flowsheet modules 39

Coupling equations are balance equations of canonical variables and can be released

as described in Section 3.3.2. The contributions δ̂∼ i therefore only contain the right

hand side of non-released canonical balance equations.

As applied in Equation (3.38), the initial state vector ẋ∼ initial can be omitted even

for M1. The reservoir flow is then given by α∼ 1 that is determined by constitutive

equations. As a consequence of releasing all balance equations in M1, δ̂∼ = 0∼ .

3.5 Atomic flowsheet modules

An interesting idea is to design one generic atomic FM that can serve as a basis for all

possible combinations of physical and chemical equilibrium. This FM would always

perform a full phase stability test and allow for chemical reactions as well. Output

ports of FMs are defined at runtime, and a clever distribution feature defines how

to distribute phases to these output ports. Rules define which chemical species they

include and how constraints are dependent on the current set of phases.

Apart from the complexity of the task to implement such a general FM, there

are incompatible requirements for different FMs. Trusting the thermodynamic model

and equilibrium conditions in a phase separation can be desirable in one FM, but

have negative side effects in a first principle phase separation if the stability of phases

is better known by the user than the thermodynamic model. Therefore, a small set

of atomic FMs is suggested in the following subsections. This set can easily be ex-

tended, for instance towards multiphase equilibrium calculations, but is still sufficient

for most practical applications in steady-state process modelling.

3.5.1 One-phase module

The most primitive FM is that with one physical phase and no reactions enabled. The

canonical equation system
(

H≈ I≈
I≈

) (

∆ẋ∼
λ∼

)

=

(

−g
∼

δ̂∼ + α∼

)

with δ̂∼ = −ẋ∼ (3.39)

is linear in ẋ∼ , which means that ∆ẋ∼ = α∼ − ẋ∼
(k) yields the exact canonical update x∼

(k+1)

in each iteration. Furthermore, the decomposition B≈ = (P≈ row L≈) (P≈ col U≈) is trivial with

P≈ row L≈ = B≈ and P≈ col U≈ = I≈ . In other words, the inverse matrix B≈
−1 can be obtained

without any numerical effort:

(

H≈ I≈
I≈

)−1

=

(

I≈
I≈ −H≈

)

. (3.40)

The dim(ẋ∼) canonical balance equations can be released and serve as DOFs for

constitutive equations.

This module can be applied to: (i) collect multiple streams under mass-balance

and two further constraints and obtain a uniform set of canonical conjugated vari-

ables, if it is certain that only one phase exists, (ii) implement a material source,

40 Chapter 3. Canonical process modelling

which exactly requires all dim(ẋ∼) DOFs to be specified by constitutive equations, and

(iii) represent any one-phase calculation, such as pumps and simplified models of

compressors and valves. A source module to represent a two-phase flow or a flow

at chemical equilibrium is obtained by combining a one-phase source module with a

subsequent flash or reactor module into a composite FM. The canonical variables of

that particular module can be used in constitutive equations to specify the DOFs of

the source module.

At least one input stream is expected if the one-phase module is not used as a

source module. In this case, the state vector of every input stream is added to the

residual vector, thus δ̂∼ = −ẋ∼ +
∑

i ẋ∼ in,i. From now on, the sum of all input streams is

combined to the total input stream ẋ∼ in =
∑

i ẋ∼ in,i.

3.5.2 Two-phase equilibrium flash

The case of a stream splitting into two physical phases with equal chemical species

sets without reaction is worth being considered as a distinct FM, because it represents

a very common operation in practical cases, and as derived in Section 3.3.2, the

equation system





H≈ (1) I≈
H≈ (2) I≈

I≈ I≈









∆ẋ∼ (1)

∆ẋ∼ (2)

λ∼




=





−g
∼ (1)

−g
∼ (2)

δ̂∼ + α∼





(3.41)

provides valuable structural information. Under conservation of material flow, there

are two potential DOFs left for constitutive equations. Among most common spec-

ifications used for this are those of temperature, pressure, heat duty, vapour fraction

and target concentration of species in one of the phases.

Stand-alone, this module can be used to represent a flash tank or a simple model

of partial evaporators and condensers. Applications in a composite context are trays

of non-reactive columns and heat exchangers with phase transition.

3.5.3 Reactor modules

To find an intuitive and consistent modelling approach of chemical reactions is a chal-

lenge in process modelling, in particular in the combination of equilibrium, stoichio-

metric and kinetic reactions. Conventional software often requires distinct modules

for each type, thus combined reactions are not easily mapped into a process model.

As a motivation, consider the conditions in a urea synthesis reactor. To begin

with, the following equilibrium reaction is considered:

CO2 + 2 NH3 � NH2COONH4 (ammonium carbamate) . (3.42)

The actual synthesis reaction is approaching equilibrium inhibited by kinetic effects:

NH2COONH4 → NH2CONH2 (urea) + H2O . (3.43)

3.5. Atomic flowsheet modules 41

Furthermore, a stoichiometric relation describes the formation of the undesired by-

product biuret:

2 NH2CONH2 → NH2CONHCONH2 (biuret) + NH3 . (3.44)

In a conventional approach, the equilibrium reactions would probably be described by

fast kinetics, and the biuret formation would be performed in a subsequent stoichio-

metric reactor. The consequence is increased numerical effort due to the additional ki-

netic reactions. Furthermore it is difficult to incorporate the effect of biuret-formation

on the main reactions.

Description of chemical reactions

There are two basic approaches to describe chemical reactions, both of them de-

scribed by Michelsen and Mollerup (2004). A common approach is to define each

possible reaction through a vector ν∼ i of stoichiometric coefficients. Starting from

an initial molar vector n∼ initial, each reaction represents a dimension of the space of

possible states n∼ :

n∼ = n∼ initial +
∑

i

ψiν∼ i with ψi ∈ � and ni ≥ 0 . (3.45)

This approach seems to be a good choice for large sets of species with few reactions,

and it reflects the traditional way to describe chemical reactions as reaction equations,

such as (3.42), (3.43), and (3.44). However, the user, who defines the reactions, is

required to provide consistent stoichiometric coefficients, which conform to the bal-

ance equations of chemical elements. A subsequent validation is required to ensure a

consistent mathematical model. Only stoichiometric vectors ν∼ i in the right null space

of the formula matrix R≈ are allowed: R≈ ν∼ i = 0∼ . The formula matrix is the chemical

part of the constraint matrix A≈ in reactor FMs:

A≈ =





1

1

R≈




. (3.46)

The direct creation of the formula matrix is a much more intuitive approach. The

element balance equations represents the immutable basis for the description of any

reacting system. Hence the starting point is to describe a reactive system at complete

chemical equilibrium.

To obtain R≈ , the element balance equations based on the chemical formulae of the

involved species are established and row-reduced to a linearly independent set. For

a simplified urea-synthesis system (CO2, NH3, H2O, NH2COONH4, NH2CONH2),

the balance equations for C, N, O and H yield

R≈ raw =





1 1 1

1 2 2

2 1 2 1

3 2 6 4





.

← C

← N

← O

← H

(3.47)

42 Chapter 3. Canonical process modelling

In this case, the element balance equations yield a rank-deficient matrix R≈ raw. Using

this matrix directly in Equation (3.46) and subsequently in Equation (3.22) yields a

singular equation system.

The row-reduced matrix R≈ indicates that only inert groups CO2, NH3 and H2O

are recombining, not the four elements in general:

R≈ =





1 1 1

1 2 2

1 −1




.

← CO2

← NH3

← H2O

(3.48)

Section 3.2.2 describes the general calculation of chemical equilibria. Depending

on the number of phases, Equation (3.17) or Equation (3.19) is used. The following

paragraphs describe the approach to obtain suitable formula matrices R≈ (i) considering

inert and restricted species, and phases with different sets of species.

Multi-phase reactor

The simplest multi-phase reactor considers equal sets of species in all phases. The

balance equations can be formulated with one common formula matrix R≈ for all

phases:

R≈ in ṅ∼ in − R≈

∑

i

ṅ∼ i = 0∼ . (3.49)

In practice, being able to assign different sets of chemical species to individual

phases can drastically improve the robustness of the solution method and avoid phase

stability problems. If the balance equations force a certain species into a particular

phase, the existence of this phase is assured. Furthermore, most likely, there might

not be a thermodynamic model for all species in all phases. Ions and species with high

molecular weight will not occur in the vapour phase, and no considerable amounts of

light gases might be dissolved in the liquid phase. Eliminating species from particular

phases also decreases the size of the canonical equation system.

As an example, consider the set of balance equations for the urea synthesis as

in the previous section, but including N2 to represent the passivation air (see Fig-

ure 3.1). During the vapour liquid equilibrium calculations, N2 is only considered

in the vapour phase, while ammonium carbamate (subscripted as ψcarb) and urea are

restricted to the liquid phase. In order to apply Equation (3.19) for this system, the

matrices R≈ (l) and R≈ (v) are defined through the balance equations of elements. For a

feed consisting of CO2, NH3, H2O, and N2, the element balances are





ṅC

ṅN

ṅH

ṅO





in

=





1 1 1

1 2 2

3 2 6 4

2 1 2 1









ṅCO2

ṅNH3

ṅH2O

ṅcarb

ṅurea





(l)

+





1

1 2

3 2

2 1





·





ṅCO2

ṅNH3

ṅH2O

ṅN2





(v)

. (3.50)

3.5. Atomic flowsheet modules 43

Note that these constraints not only force N2 into the vapour phase, but also disal-

low any chemical reaction including this species. As a consequence of the element

balance equations, N2 is an inert species in this system.

Inert and stoichiometrically restricted chemical species

Reacting systems often contain inert chemical species. In some cases, as for nitrogen

in the previous example, this is a consequence of element balance equations.

In other cases, the inertness of a species is a consequence of thermodynamic

prohibition, and it needs to be specified by an explicit modification of the formula

matrix. This is performed by adding a balance equation to conserve the quantity of

the inert species to the reaction matrix.

Considering only element balance constraints, a gas phase containing CO2, NH3,

H2O, N2, and O2 allows for the oxidation of ammonia:

2 NH3 + 3 O2 � 2 N2 + 6 H2O . (3.51)

To exclude this reaction, an additional constraint equation to conserve N2 is added to

the formula matrix, represented by the last row of R≈ .





ṅC

ṅN

ṅH

ṅO

ṅN2





in

=





1

1 2

3 2

2 1 2

1





·





ṅCO2

ṅNH3

ṅH2O

ṅN2

ṅO2





. (3.52)

The same modification is done to the formula matrix R≈ , if a species is reactive,

but not supposed to achieve chemical equilibrium. In this case, the species balance

equation is added to the formula matrix, but subsequently released (see Section 3.3.2).

The DOF can be used for any kind of constitutive equation, specifying for instance

the extent of reaction as a direct specification or as an empirical correlation, such as

a description of the reaction kinetics.

To complete the urea synthesis example, the byproduct biuret is included into

the reaction system (see Equation (3.44)). A species balance equation is added and

released, such that a constitutive equation to describe the reaction kinetics can be

applied. Equation (3.50) is extended to





ṅC

ṅN

ṅH

ṅO

ṅN2

ṅbiuret





in

=





1 1 1 2

1 2 2 3

3 2 6 4 5

2 1 2 1 2

1









ṅCO2

ṅNH3

ṅH2O

ṅcarb

ṅurea

ṅbiuret





(l)

+





1

1 2

3 2

2 1 2

1





·





ṅCO2

ṅNH3

ṅH2O

ṅN2

ṅO2





(v)

+





0

0

0

0

0

α





.

(3.53)

44 Chapter 3. Canonical process modelling

The constitutive equation to determine the extent of biuret formation can be defined

by a temperature and concentration dependent reaction rate:

ṅbiuret,(l) − ṅbiuret,in = ψ

(

T,
ṅ∼ (l)

V̇(l)

)

. (3.54)

This example illustrates the canonical approach to define a consistent reactive system

including species in chemical and phase equilibrium, inert species, and kinetically

restricted reactions. The required input to define such a system is minimal and in

particular not redundant to the material conservation constraints.

Species categories in a reactive system

Considering the element balance equations and additional constraints to the reactive

system, all species involved can easily be categorised into different groups as indi-

cated in Figure 3.3. The arrows indicate the possible transitions of the species from

one group into another. Transitions along solid arrows are triggered by the modelling

engineer, while transitions along dashed arrows are a consequence of this. Figure 3.3

N2

Inert species

Equilibrium species

Restricted species
O2, H2O

CO2, NH3 = explicit assignment

= consequenceurea, biuret

Locked species

ammonium carbamate,

Figure 3.3: Groups of chemical species in a reactive system.

includes the species of the urea synthesis example in the previous section. In this

configuration, the urea synthesis reaction (3.43) is restricted by a kinetic expression,

as it is suitable to describe the chemistry of the carbamate condenser (see Figure 3.1).

The formula matrix R≈ determines the affiliation of each species to a specific

group. This is done by analysis of the null space N≈ of R≈ . N≈ is the stoichiometric

matrix of the system, as the rows of N≈ are a set of linear independent stoichiometric

vectors ν∼ i of all enabled reactions.

The following definitions ensure a consistent description of any reacting system.

No input information redundant to the element balance equations is required.

Terms and definitions 3.2

Equilibrium species are species i with N≈ e∼ i , 0∼ , thus species i is included into at

least one reaction. Species of this group can be explicitly changed to inert or re-

stricted species. Doing this will possibly trigger other species of this group to be

stoichiometrically locked.

Inert species are defined by a particular species balance equation in A≈ . If Â≈ is a

system containing an equilibrium species i, the species balance will not be linearly

3.5. Atomic flowsheet modules 45

dependent on the original rows in Â≈ , as the null space is definitely reduced by one

dimension.

Restricted species are generated in the same way as the inert species, just that the

species balance equation is released in favour of a constitutive equation as described

in section 3.3.2. This constitutive equation describes the relationship between the

formation of a key species and operation conditions in terms of canonical and con-

jugated state variables.

Specifications of kinetic reactions also belong to this class, as the reaction rate is

not more than a function of operating conditions.

Locked species are species i with N≈ e∼ i = 0∼ , which are not key species in definitions

of inert or restricted species. These species cannot actively be reassigned to another

group. The affiliation to this group is a consequence of other balance equations.

Figure 3.3 contains the assignment for the urea synthesis example. To define the

reactions as introduced in the beginning of this section, N2 is defined as inert, biuret

and urea as restricted. With this, ammonium carbamate is still in equilibrium with

NH3 and CO2, but O2 and H2O are locked. Here, O2 happens to be inert, while the

amount of H2O follows the synthesis reaction defined with urea as key component,

influenced by the formation of biuret.

Complete conversion reactor

In some cases, one would like to disregard some of the reactants in the product

stream. These species are assumed to disintegrate to full extent. Though thermo-

dynamically not motivated, this approach is practical for avoiding large species sets

in the downstream sections. A typical example is the combustion of hydrocarbon

fuel. In ordinary cases, only CO2, H2O, excess O2, and maybe CO (and CH4 for very

precise calculations or reducing conditions) are considered as product species. The

concentrations of heavier hydrocarbons in the tail-gas are negligible. Any number of

non-product input species can be included, if the constraint vector a∼ in, which maps

this species to the set of balance equations, does not increase the rank of R≈ . Consider

H2 and O2 reacting to H2O, leaving excess O2 but no H2. The element balances yield

the formula matrices for the incoming stream R≈ in and the reactor outlet R≈ :

R≈ in =

(

2 0

0 2

)

and R≈ =

(

2 0

1 2

)

. (3.55)

If the excess oxygen is of a negative amount, the molar flow vector with positive

and negative entries is most likely not covered by the mathematical domain of the

thermodynamic model. In this case, the system is generally not solvable.

However, considering only H2O in the product stream causes structural prob-

lems. In this case, A≈ cannot be row-reduced without disregarding information in A≈ in,

hence the remaining A≈ is not of full rank and the FM is not solvable. If an exact stoi-

chiometric match is desired, this represents an additional constraint, which has to be

46 Chapter 3. Canonical process modelling

associated with a DOF elsewhere in the process model. To achieve this, inconsistent

rows of the balance equation set can be removed from A≈ and provided as an ordinary

constitutive equation. However, use of this equation might still be redundant to other

material balance equations.

Water

Water

Oxygen

Hydrogen

Oxygen

Hydrogen

Water

(a) Stoichiometry must determine

inlet flow ratio by material balance

(b) Stoichiometry is already determined

Figure 3.4: Process with and without redundant stoichiometric constitutive equation.

Figure 3.4 shows the two different cases. In (a), the reactor module can only

ensure the preservation of either hydrogen or oxygen. A constitutive equation repre-

senting the other element balance must be used to determine the flow ratio between

the inlet streams. Case (b), however, provides hydrogen and oxygen at the correct

stoichiometric ratio. One of the element balances determines the outlet flow of water,

while the other is linearly dependent on the material balance equations of the first

reactor.

3.5.4 Chemical species separator

A first principle separator is a general FM for separating the incoming material stream

into two individual outlet streams, only constrained by the total material balance

equations.

The modelling approach is based on a restricted two-phase equilibrium calcula-

tion. By adding one more constraint for each species that is common to both phases,

the phase split can be fully controlled independently of the thermodynamic model.

Subsequently, there are four groups of constraints: (i) balance equations for canonical

variables common to both phases, (ii) + (iii) balance equations for canonical variables

occurring only in the first or second phase respectively, and (iv) constraints on split-

ting behaviour for canonical variables common to both phases. The constraints of

group (iv) serve as DOFs for constitutive equations.

Instead of distinguishing the four groups as such, and handling the combinatorial

number of combinations, the categorisation can be simplified: (i) all canonical vari-

ables of one phase, and (ii) all canonical variables of the other phase. A constraint

3.5. Atomic flowsheet modules 47

matrix A≈ completes the formulation of balance equations:

(

ẋ∼ 1

ẋ∼ 2

)

in

=

(

I≈ A≈
I≈

)

·
(

ẋ∼ 1

ẋ∼ 2

)

+

(

0∼
α∼

)

with ai j =






1 variable i in phase 1 is

same as j in phase 2;

0 variables are not identical.

(3.56)

Note that a molar flow of an incoming species occurs twice on the left hand side if

that species is considered in both outlet streams. For each non-zero ai j, the equation

in the first row represents a real balance equation. The corresponding equation in the

fourth row is therefore released by α j to represent a DOF. The belonging constitutive

equation specifies the split factor of the state variable j between both output ports.

Such state variables include the first two elements of x∼ , for instance S and V . These

two DOFs are typically used to specify a correlation between the temperatures and

pressures in the outlet streams.

A local optimisation node is defined to obtain the intensive properties through the

canonical equation system. The objective function

Λ(ẋ∼ 1, ẋ∼ 2) = P1(ẋ∼ 1) + P2(ẋ∼ 2) −
(

λ∼ 1

λ∼ 2

) [(

ẋ∼ 1

ẋ∼ 2

)

in

−
(

I≈ A≈
I≈

)

·
(

ẋ∼ 1

ẋ∼ 2

)

+

(

0∼
α∼

)]

(3.57)

yields the following canonical system:





H≈ 1 I≈
H≈ 2 A≈

T I≈
I≈ A≈

I≈









∆ẋ∼ 1

∆ẋ∼ 2

λ∼ 1

λ∼ 2





=





−g
∼ 1

−g
∼ 2

δ∼ 1

δ∼ 2 + α∼





(3.58)

There are sufficient identity matrix blocks to solve this system by back-substitution:

ẋ∼ 2 = ẋ∼ 2,in + α∼ , ẋ∼ 1 = ẋ∼ 1,in − A≈ ẋ∼ 2 λ∼ 1 = −g
∼ 1 , and λ∼ 2 = A≈

T g
∼ 1 − g

∼ 2 . (3.59)

3.5.5 Flow splitter

A flow splitter is a special case of the first principle separator. The outlet flows con-

tain identical sets of chemical species and are described by the same thermodynamic

model. Their intensive states are equal, and their extensive states only differ by a

scaling factor. As with the two-phase non-reacting equilibrium (see Section 3.5.2),

the L-multipliers are shared between both phases. However, the flow splitter

seeks the trivial solution, such that H(1)+H(2) is singular. To solve the system, one ad-

ditional constraint, which provides the DOF to hold one more constitutive equation,

is necessary. This DOF is used to determine the split ratio of the outlet flows.

The L function given in Equation (3.2) for a two-phase flash is modified

to

Λ(ẋ∼ (1), ẋ∼ (2), λ∼ , λsplit) = P(1)+P(2)−λ∼ (ẋ∼ in− ẋ∼ (1)− ẋ∼ (2))−λsplit a∼ (ẋ∼ (1)− ẋ∼ (2)) . (3.60)

48 Chapter 3. Canonical process modelling

The constraint vector a∼ can be an arbitrary non-zero vector, but in order to avoid

rank loss not orthogonal to any feasible state ẋ∼ . Application of the N-R

method yields the following equation system:





H≈ (1) −a∼ I≈
H≈ (2) a∼ I≈

−a∼ a∼ 0∼
I≈ I≈ 0∼









∆ẋ∼ (1)

∆ẋ∼ (2)

λsplit

λ∼





=





−g
∼ (1)

−g
∼ (2)

δsplit + αsplit

δ∼ + α∼





. (3.61)

At the solution point, λsplit is zero due to the homogeneity of state functions. Still,

with suitable starting values, the flow splitter can be triggered to predict a restricted

actual phase equilibrium and solve for a non-trivial solution. In this case, λsplit , 0,

and a∼ defines the direction, in which the equilibrium constraints are violated in order

to fulfil the third constraint. This case is of little practical value and can easily be

avoided by choosing starting values suitable to favour the trivial solution. Possible

applications like membranes and partial equilibria are better implemented using the

first principle separator described in the previous section.

3.5.6 Saturation node

The calculation of a state vector at the exact phase boundary, namely the boiling point

or the saturation point, is often desirable. Experimental data as a basis to adjust and

validate thermodynamic models is often available at such saturated conditions. A

process model of a heat exchanger needs to identify the saturation point in order to

consider changes in the heat transfer characteristics. An ordinary flash calculation

with a specified vapour fraction close to 0 or 1 is practically feasible, but not appeal-

ing for numerical reasons caused by extremely different scales of the state vectors.

The saturation node contains a main phase and a trial phase. The main phase is

constrained by a complete set of canonical constraints, of which one must be made

available as a DOF to find the saturation point. Figure 3.5 shows an intersection plane

of the multidimensional state space with the state functions of the trial and the main

phase. Due to the homogeneity of thermodynamic state functions (see Section 2.5.1),

the tangent plane to the state function is in any point ẋ0∼ defined as the scalar product

ẋ∼ g
∼ 0. As necessary requirement for equilibrium, the tangent planes must coincide.

The distance between the tangent planes is defined as

∆P = P(ẋ∼ trial) − ẋ∼ trial g
∼ main = (g

∼ trial − g
∼ main) ẋ∼ trial . (3.62)

The minimisation of ∆P at constant g
∼ main must be subject to at least one constraint in

extensive variables to determine the trial phase size: a∼ ẋ∼ = b. The formulation of the

L-function is

Λ = P(ẋ∼ trial) − ẋ∼ trial g
∼ main − λtrial(b − a∼ ẋ∼ trial) (3.63)

3.6. Specialised composite flowsheet modules 49

ẋi

ẋ j,i

P

P(ẋ∼main)

P(ẋ∼ trial)

ẋ∼ g
∼ trial

ẋ∼ g
∼ main

g
∼

main
= g
∼

trial

phase equilibrium

Figure 3.5: Tangent planes of the state functions of two phases in an intersecting

plane (ẋ j,i = const.).

with

∂Λ

∂ẋ∼ trial

= g
∼ trial − g

∼ main − λtrial a∼ . (3.64)

Thus at the solution point, the difference of the gradient vectors points into the direc-

tion of a∼ , and λtrial is a measure for the distance. A constitutive equation to specify

λtrial = 0 is required to obtain the equilibrium condition g
∼ trial = g

∼ main. The DOF to

host this equation is provided by the main node.

The canonical equation system to obtain a N update is





H≈ main I≈
I≈

I≈ H≈ trial a∼
−a∼ a∼





·





∆ẋ∼main

λ∼main

∆ẋ∼ trial

λtrial





=





−g
∼ main

δ∼main + α∼
−g
∼ trial

δtrial





. (3.65)

In this case, the constraint vector a∼ ensures a similar size of the main and trial phases.

In order to avoid a singularity caused by the homogeneity property of the state func-

tion in the trial system, a∼ must not be orthogonal to any feasible state vector.

3.6 Specialised composite flowsheet modules

To minimise low-level maintenance work, a main objective of the modelling concept

is to keep the number of atomic flowsheet modules as small as possible. The set intro-

duced in the previous section serves as the basis for a more extensive set of composite

flowsheet modules to represent heat exchangers, membranes, turbines, columns and

other more complex process equipment.

50 Chapter 3. Canonical process modelling

3.6.1 Limited heat and mass transfer

Process equipment is commonly operated on the edge of its capacity limits.

It is therefore rarely possible to obtain an accurate model by assuming complete

phase equilibrium. Furthermore, modern process designs apply membranes more

frequently as an alternative to thermal separation. The exchange of heat and material

is described by gradients of the intensive variables, such as temperature, concentra-

tion, and chemical potential.

The approach uses a first princi-

Chemical species

separator

V2

V1

?
O

ut
pu

t 1

O
ut

pu
t 2

In
pu

t 1

In
pu

t 2
1

2 4

3

Figure 3.6: Layout of a general diffusion

module as a composite FM.

ple separator as shown in Figure 3.6.

The valves V1 and V2 represent triv-

ial modules, which conserve the state

and provide the composite flowsheet

module with extensive and inten-

sive properties of the two distinct

input streams. The separator pro-

vides all the properties of the outgo-

ing streams and a sufficient number

of DOFs to redistribute each exten-

sive state variable independently. The heat and mass transfer can be described as a

set of constitutive equations including the extensive and intensive properties of the

incoming and outgoing streams.

The canonical equation system represents the FM as a very general composite

implementation:





H≈ 1 I≈
I≈

H≈ 2 I≈
I≈

H≈ 3 I≈

H≈ 4 A≈
T I≈

−I≈ −A≈ I≈ A≈
−I≈ I≈





·





∆ẋ1∼

λ∼ 1

∆ẋ2∼

λ∼ 2

∆ẋ3∼

∆ẋ4∼

λ∼ 3

λ∼ 4





=





−g
∼ 1

δ∼ 1

−g
∼ 2

δ∼ 2

−g
∼ 3

−g
∼ 4

δ̂∼ 3 + α∼ 3

δ̂∼ 4 + α∼ 4





. (3.66)

This equation system is composed of the atomic FMs described in Section 3.5.1

(one-phase module) and Section 3.5.4 (chemical species separator). The off-diagonal

blocks represent the material couplings as described in Section 3.4.3. The indices of

state vectors are consistent with the stream numbers in Figure 3.6.

An identity matrix can be found for every pivot element, such that the canonical

system is a set of explicit equations to determine the state. It provides thermody-

namic properties and their derivatives in order to formulate and solve the constitutive

equations. These freely configurable constitutive equations determine the entire heat

3.6. Specialised composite flowsheet modules 51

and mass transfer.

3.6.2 Rotating process equipment

Isentropic efficiency modules

The performance of rotating process equipment, such as turbines and compressors,

is often characterised by reference to a reversible change in state, like the isentropic

efficiency. The ideal module is constrained by an entropy conservation equation and

yields the reversible work Wrev. The actual work duty or delivery is obtained by

multiplication with (turbine) or division by (compressor) a specified efficiency η.

The surplus energy is added as process heat at constant pressure. Figure 3.7 shows

Compressor Turbine

HE HE

RE RE1

2 3

1

2 3

∆S = 0∆S = 0

∆p = 0 ∆p = 0

WrevWrev

W = 1
η

Wrev W = ηWrev

QQ

∆p > 0 ∆p < 0

∆S > 0 ∆S > 0

Figure 3.7: Process models of rotation equipment with isentropic efficiency.

the approach to incorporate isentropic efficiency into a composite FM. The split into

a reversible and an irreversible part is directly reflected in the process topology. As

indicated in Figure 3.7, constitutive equations describe the relationship between the

reversible and the irreversible processes. With W = ηWrev, ∆pHE = 0, and ∆S RE =

0, the remaining of four DOFs can be used to specify outlet pressure, work load,

delivery, or outlet temperature. The canonical system for both FMs is again just

a framework to provide thermodynamic properties for the three states, namely the

inlet, the reversible state, and the outlet state, each of them calculated by a one-phase

module as described in Section 3.5.1. The indices of the state vectors are consistent

with the stream numbers in Figure 3.7. The equation system is





H≈ 1 I≈
I≈

H≈ 2 I≈
−I≈ I≈

H≈ 3 I≈
−I≈ I≈





·





∆ẋ1∼

λ∼ 1

∆ẋ2∼

λ∼ 2

∆ẋ3∼

λ∼ 3





=





−g
∼ 1

δ∼ 1

−g
∼ 2

δ̂∼ 2 + α∼ 2

−g
∼ 3

δ̂∼ 3 + α∼ 3





. (3.67)

52 Chapter 3. Canonical process modelling

Identity blocks can be found for each pivot block in the coefficient matrix of the

following equation system:

A precarious issue is the definition of η. Theoretically, the efficiency is defined

as above, but practically this makes η depend on the thermodynamic model used to

calculate on the equipment. Performance data of compressors is often reported in

terms of an efficiency under the assumption of an ideal gas. The process model will

therefore give deviating results, if the the simulation is carried out based on a more

sophisticated thermodynamic model, such as a cubic equation of state. Even more

significant discrepancies might occur, if the saturation line is crossed within a turbine.

Polytropic efficiency

The efficiency of compressors is often reported in terms of a polytropic effi-

ciency (Campbell, 1984):

ηpoly =
κ − 1

κ

ln pout/pin

ln Tout/Tin

with κ =
cp

cV

. (3.68)

Clearly, this formulation is based on the assumption of ideal gas behaviour and con-

stant heat capacity. Therefore, ηpoly = 1 is not equivalent to the reversible process

in general. Furthermore, the adiabatic exponent κ is not the actual property of the

gas within the compressor, but the value for κ published together with the efficiency

data, related to the medium the compressor is designed for. In spite of its inconsistent

definition, the polytropic efficiency is widely used to characterise rotating equipment.

This justifies the integration of this property as a constitutive equation, but clearly as

an empirical measure, in particular not coupled with respect to the adiabatic exponent

calculated by the underlying thermodynamic model.

3.6.3 Valves

A valve in this context is defined as a general isenthalpic process equipment. Without

exchange of heat and work with the environment, irreversible effects generally cause

a pressure drop. Purely descriptive valve models directly specify the outlet pressure

or a constant pressure drop throughout the valve. The following paragraphs describe

predictive approaches for incompressible and compressible fluids. In both cases,

only full turbulent flows are considered, and effects due to variable flow pattern at

low R numbers are not discussed. However, the constitutive equations can

be refined to describe the dependency of effective cross-section with respect to the

R number.

Incompressible fluids

If the fluid density does not change significantly, the assumption of an ideal diffuser

yields a single constitutive equation, which can be used in combination with enthalpy

3.6. Specialised composite flowsheet modules 53

conservation within a one-phase non-reacting module (cf. Section 3.5.1):

pin − pout =
1

2
% v2 . (3.69)

The velocity v at the most narrow cross-section F is given by the linear relation

F v = V̇ . The cross-section might be modelled as a function of the valve position z:

F = Fopen ψ(z) with z, ψ ∈ [0, 1].

Compressible fluids

As a basis for a valve model with compressible fluids, the canonical system is identi-

cal to those of compressors and turbines, shown in Equation (3.67). The decomposi-

tion is trivial, and calculated properties serve as input for constitutive equations.

With increasing pressure drop, the compressibility of the gas has an increasing

impact on the decrease of density in the the most narrow cross-section (Smith et al.,

2001). Furthermore, the fluid’s change of kinetic energy causes a temporary decrease

of thermodynamic enthalpy, lowering the fluid temperature in the nozzle. More pre-

cise pressure flow relations are obtained by introducing a node to represent the nozzle.

Assuming isentropic flow up to this point, the four DOFs are specified by those equa-

tions marked by ? in Figure 3.8. As in the simplified incompressible model, velocity

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

1

Ṡ 1

Ḣ1

p1

2

? Ṡ 2=Ṡ 1

? Ḣ2=Ḣ1 − 1
2

ṁ v2

p2<p1

3

Ṡ 3>Ṡ 2

? Ḣ3=Ḣ1

? p3=p3,spec

Figure 3.8: Detailed model of a valve containing a compressible medium.

is a function of volume flow and cross-section. However, a pressure-flow relation is

not yet established, and two cases have to be distinguished. For moderate pressure

drop, v is below sonic velocity vsonic, in which case p2 = p3 is an active constraint. A

compression shock takes place, if the assumption of equal pressures roughly yields

a velocity v > vsonic. In such a case, p2 and p3 are uncorrelated with p2 > p3. The

constraint p2 = p3 is replaced by v = vsonic to describe the sonic flow.

Speed of sound is a thermodynamic property and more precisely a function

of some second-order derivatives of the canonical state function (Perry and Green,

1997):

v2
sonic =

∂p

∂%

∣
∣
∣
∣
∣
S

=
∂p

∂V̇

∣
∣
∣
∣
∣
Ṡ

·
(

∂%

∂V̇

∣
∣
∣
∣
∣
Ṡ

)−1

= − V̇

%

∂p

∂V̇

∣
∣
∣
∣
∣
S

. (3.70)

54 Chapter 3. Canonical process modelling

The partial derivative can be substituted by the total molar flow Ṅ =
∑

i ṅi, adiabatic

exponent κ, thermal expansitivity εT , and compressibility εp (see Appendix C.3):

v2
sonic = −

V̇

%

∂p

∂V̇

∣
∣
∣
∣
∣
Ṡ

=
V̇

%

∂2U̇

∂V̇2

∣
∣
∣
∣
∣
∣
Ṡ

=
κ

% εp





cV

cp

+
ε2

T
V̇ T

εp Ṅ cp



 =
κ

% εp

. (3.71)

Here, the last calculation step utilises the relation between the heat capacities as

cV = cp −
ε2

T
V̇ T

Ṅ εp

. (3.72)

Thus, the speed of sound can easily be calculated, but it can not be used directly in

the constitutive equations without the loss of the quadratic convergence properties or

alternatively the necessity of third derivatives of thermodynamic state functions.

3.6.4 Sub-cooled and super-heated fluids in heat exchangers

If the stable phases change within a heat exchanger, a common approach is to estab-

lish a distributed model and conduct stability tests in each volume element. This is

probably a necessary choice, if the heat transfer is strongly coupled with the local

stream properties. However, a lumped heat exchanger model can be used in some

cases and still support distinct regions for different phase sets. Figure 3.9 shows a

1

7

2

4

3

56
HE1a

HE1b

shell

tube

HE2b

HE2a

saturated

Process properties

∆p = 0

∆p = 0

∆p = 0

∆p = 0

∆Q̇a = ∆Q̇b(= Q̇1) ∆Q̇a = ∆Q̇b(= Q̇2)

F1 + F2 = Fspec

Q̇1 Q̇2

∆T1 = f (T1, T2, T6, T7)

∆T2 = f (T2, T3/4, T5, T6)

k1 = f (ẋ∼ 1, ẋ∼ 2, ẋ∼ 6, ẋ∼ 7)

k2 = f (ẋ∼ 2, ẋ∼ 3, ẋ∼ 4, ẋ∼ 5, ẋ∼ 6)

F1 = Q̇1/(k1 ∆T1)

F2 = Q̇2/(k2 ∆T2)

Figure 3.9: Heat exchanger to condense from super-heated vapour.

composite FM to describe the process of partially condensing a super-heated vapour

in a tube-shell counter-current heat exchanger. The process unit is divided into two

sections HE1 and HE2, which describe the super-heated and the two-phase region.

The distribution of physical surface area to these regions is a result of the computa-

tion. HE1b is a saturation node (see Section 3.5.6) that, constrained by a pressure

specification, does not offer further DOFs. HE1a and HE2a also are fully specified

by pressure equations and one equation each to conserve heat flow in the systems

3.7. Initialisation 55

(HE1a, HE1b) and (HE2a, HE2b). The only DOF remains in HE2b, used to specify

the total surface Fspec = F1 + F2.

The canonical equation system is trivial on the shell-side (first two blocks), while

the tube-side (last two blocks) contains equilibrium calculations:





H≈ 6 I≈
I≈

H≈ 7 I≈
−I≈ I≈

H≈ 2,main I≈
I≈

I≈ H≈ 2,trial a∼
−a∼ a∼

H≈ 3 I≈
H≈ 4 I≈

−I≈ I≈ I≈





·





∆ẋ∼ 6

λ∼ 6

∆ẋ7∼

λ∼ 7

∆ẋ∼ 2,main

λ∼ 2,main

∆ẋ∼ 2,trial

λ2,trial

∆ẋ∼ 3

∆ẋ4∼

λ∼ 3,4





=





−g
∼ 6

δ̂∼ 6 + α∼ 6

−g
∼ 7

δ̂∼ 7 + α∼ 7

−g
∼ 2,main

δ̂∼ 2,main + α∼ 2,main

−g
∼ 2,trial

α2,trial

−g
∼ 3

−g
∼ 4

δ̂∼ 3,4 + α∼ 3,4





.

(3.73)

Note that only two streams indicated in Figure 3.9 are represented as couplings in

the coefficient matrix, namely stream 2 and 6. Stream 1 and 5 are input streams,

contributing to the balance equations of the first (1) and the third (5) block. Streams

3, 4, and 7 are material sinks in this context. They are represented by the first column

of the second block (7), and the first two columns of the fourth block (3, 4). The shell

and tube sides do not exchange material and appear therefore completely decoupled

in the canonical equation system. Interaction only takes place through constitutive

equations.

3.7 Initialisation

3.7.1 Approach for sequential-modular solvers

The initialisation of an arbitrary equation system to assure convergence to the correct

solution – if there is any – is an unsolved problem. In general, there is a compromise

between using a set of robust estimation equations, which solve the system rather

inaccurately, and using the set of original equations of non-linear nature with limited

mathematical domain and convergence radius. Furthermore, starting values of only

a subset of variables have to be obtained, as the remaining ones can subsequently be

calculated by the original system. This effect can be exploited in sequential-modular

approaches, such that only tear streams and variables specified through implicit con-

stitutive equations need to be initialised. A possible strategy to initialise an equation

based process model is therefore to perform a sequential pre-execution, that is to

56 Chapter 3. Canonical process modelling

exploit the process topology and to find a suitable calculation sequence for initialisa-

tion (Zitney and Stadtherr, 1988). In general, a suitable set of robust model equations

and estimation equations are solved in a proper sequence.

3.7.2 Equation of state thermodynamic models

The most common equations of state, as for instance the SRK equation by Soave

(1972), often predict a rather inaccurate liquid density at given pressure. Due to the

low compressibility, starting volumes far from the predicted density are likely within

a non-physical region or entirely outside the domain of the model. Therefore, a robust

and precise density correlation used to calculate a liquid volume, which later is to be

predicted by an equation of state, is likely to fail despite (actually caused by) its high

accuracy. The calculation of a starting value for the volume as an input to equation

of state models must therefore be performed by a model-specific function outside the

actual initialisation process.

Therefore, nodes calculated by equation of state models are to be initialised by

ẋ∼ initial = (T, p, n∼), even though volume, not pressure, is the canonical state variable.

Once, ẋ∼ initial ∈ X, the model is able to calculate the complete set of thermodynamic

properties (cf. Appendix C.3), and the ordinary solving process can be launched.

The development and testing of initialisation methods is not included in the main

scope of this work, but a general approach suitable for the canonical solving approach

is described in the next section.

3.7.3 Approach for the canonical flowsheet solver

This approach is based on the ideas of Zitney and Stadtherr (1988) and is referred to

as the evolutionary approach. A large number of robust equations is collected from

all calculating instances. For instance, a flash module might provide equations to

estimate separation factors, and linear constitutive equations and balance equations

can be utilised directly. A previously obtained solution or a linear approximation,

taking into account the changes in model parameterisation u∼ , represents a valuable

set of initialisation equations. As a fallback, global default values for all (T, p, ṅ∼) are

available, for example as (298.15 K, 1 bar, 1∼ mol).

The objective of using the most reliable relationships for initialisation can be

represented by a cost matrix, which maps equations to variables in a bipartite graph

(see Appendix F.3). The solutions of assignment problems result in the optimal set

of equations used to determine the required set of variables.

However, a simple example shows the devastating effects of an unfavourable

combination of otherwise robust equations. Consider a mixture of three species with

the molar flow vector ṅ∼ = (ṅ1, ṅ2, ṅ3). Let ṅ1 = 0.7 (1∼ · ṅ∼) and (1∼ · ṅ∼) = 1 mol/s be

specification equations, which obviously are suitable for initialisation. A robust and

therefore seemingly harmless estimation equation ṅ1 = ṅ2 yields the infeasible solu-

tion ṅ1 = ṅ2 = 0.7 mol/s, and ṅ3 = −0.4 mol/s. Therefore, inequality constraints

3.8. Relaxation scheme 57

(ṅi > 0) have to be incorporated into the initialiser, whose task is to find the optimal

and most robust and reliable set of equations with a solution within given constraints.

A suggestion for an initialisation algorithm is given in Appendix E.4.

3.8 Relaxation scheme

An iterative solving method, as suggested in Section 3.3.2, calculates an update ∆x∼
of state variables in each step. Since this update does not yield the solution directly

for a general non-linear equation system, the updated state x∼
(k+1) = x∼

(k) + ∆x∼ is not

necessarily within the domain X of the process model. In particular, the equations

of thermodynamic models might require a positive temperature, pressure or volume,

and a mole-vector n∼ , for which each element is of the same sign.

Wilhelm and Swaney (1994) recommend the relaxation γ ∈ (0, 1] of each itera-

tion step to ensure x∼
(k+1) = x∼

(k) + γ∆x∼ ∈ X by means of linear programming. For

process models on a canonical basis, however, all state variables of the process model

are state variables of thermodynamic models, and these thermodynamic models can

be equipped with the functionality to restrict γ for a given search direction ∆x∼ .

This section describes a systematic scheme to collect restrictions of γ within a

relaxation object R. This object is a representation of the feasible domain of γ. Dur-

ing the solving process, every thermodynamic model is given opportunity to restrict

R based on the current state x∼
(k) and the suggested direction ∆x∼ .

A sorted sequence of values γi is sufficient to describe the domain of feasible

relaxation factors R, provided that γ0 ≡ 0 is a permitted step length, since x∼
(k) ∈ X.

Then,

R = (γ0, γ1)∪ · · · ∪ (γi, γi+1)∪ · · · ∪ (γN−1, γN) with i even and N odd. (3.74)

The solver defines a safety factor fγ > 1 that defines the minimum distance between

any selected relaxation factor γ ∈ R and the domain boundary values γi, such that

γ ∈
⋃

i even

[fγ γi, γi+1/ fγ] . (3.75)

The solver then initiates the relaxation object as R = (0, fγ), such that, if no further

restrictions are contributed, the maximal γ ∈ [0, 1] is selected. With γ = 1, this

permits a full N step with quadratic convergence (Nocedal and Wright, 1999).

A good choice for the safety factor fγ ≈ 1.1, such that a certain distance to the

domain boundaries is maintained, but the solution scheme converges still reasonable

fast. If the solution really is close to the boundary, the convergence is linear, and the

convergence factor (Nocedal and Wright, 1999) is:

||x∼
(k+1) − x∼

(∞)||
||x∼ (k) − x∼

(∞)||
=

fγ − 1

fγ
. (3.76)

58 Chapter 3. Canonical process modelling

Given the relaxation object initiated by the solver, each instance of a thermody-

namic model can contribute contributes further relaxation objects, which can include

positive infinity. Appendix E.3 describes an algorithm to calculate the representation

of the union of two relaxation objects. The union of all relaxation objects is used to

determine the maximal relaxation factor γmax from the domain that is described in

Equation (3.75). With γ1 > 0, there is always a feasible step size γmax > 0.

Figure 3.10 shows a non-convex domain in

������
������
������
������
������
������

������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

x∼
(k)

x∼
(k) + ∆x∼

∆x∼

γmax ∆x∼

X

Figure 3.10: Example iteration step

in a non-convex domain.

white, while the hatched areas represent the in-

feasible regions. An arrow from the current

state x∼
(k) indicates the direction suggested by

the N-R step. Though the full

step ∆x∼ is possible, the distance to the do-

main boundaries is too small, and the safer

step length γmax is selected.

It is important that all restrictions to the

step length are determined through the relax-

ation object. Once a relaxation factor γmax is

determined, this factor should not be changed.

In particular, not all γ ∈ (0, γmax) yield state vectors within the mathematical domain

of the process model. A further manual relaxation below the calculated γmax has a

negative effect on the robustness of the method.

This relaxation method only considers the linearised effect of x∼ towards calcu-

lated properties y∼ and internally calculated variables within the thermodynamic model

including state function transformations. This method may fail if a highly non-linear

domain constraint is active and fγ is chosen too close to unity.

Example

1

2

3

4

5
CH4, C3H8

ṅCH4
= 50 mol/s

ṅC3H8
= 50 mol/s

Q

β

ṅCH4
= 1 mol/s

ṅC3H8
= 1 mol/s

Figure 3.11: Process model with a restricted domain.

Consider the process model shown in Figure 3.11. The total species flow spec-

ification of methane in stream 4 requires a negative species flow in stream 5, if not

enough methane is available. The state is not within the domain, if at the same time

there is still a positive amount of butane. A state calculation is only feasible if the

3.9. Error reporting 59

volume flow and the molar flows have a common sign, either positive or negative.

Figure 3.12 shows a trajectory projected into the molar flow vector of stream 5. Points

infeasible region

infeasible region

feasible region

feasible region

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−40

−20

 0

 20

 40

 60

ṅCH4

ṅC3H8

β = 1.3

β = 1

β = 0.496

β = 0.49

Figure 3.12: Molar flow trajectory dependent on the vapour fraction β – feasible and

infeasible regions.

close to the infeasible region can successfully be calculated. Approaching a molar

vapour fraction of β ≈ 0.496 from below, ṅCH4
approaches zero, while ṅC3H8

is still

positive. For β > 1, both flows become negative, and calculations can be conducted

even though the solution is not physical. The stipulated line within the infeasible

region is calculated after removing the splitter, solving its material balance in a post-

calculation.

If the model is calculated for an infeasible vapour fraction, γmax is restricted to

nearly zero, thus the iteration stalls on the border of the domain. The variables of

active domain constraints can be identified by error diagnosis.

Figure 3.12 also shows a limitation of this relaxation method. Both feasible

branches enter the infeasible region with an angle such that a huge iteration step

would be required in order to jump from one into the other feasible region. Prac-

tically, even this rather small example will not converge, if the starting values and

result are not in the same feasible region. Independent of the actual solving method,

it is therefore important to provide reasonable starting values. However, if the solu-

tion can not be obtained, the relaxation factor approaches zero. Identification of the

restricted variable (in this case nCH4
or nC3H8

) can help the user to understand and

remove the problem.

3.9 Error reporting

Berger and Perris (1979) give a set of objectives for the design of their process sim-

ulator, of which the first one deserves far more attention than is usual today – more

than 25 years later:

60 Chapter 3. Canonical process modelling

FLOWPACK II must be computationally both efficient and reliable. It must ei-

ther solve the problem posed (which may or may not the problem which the user

intended to pose!) or must fail ’gracefully’ for clearly identified reasons.

The feasible extent of error analysis depends on the solving strategy, but few pro-

grams invest any effort in providing user-friendly error-messages. The user is forced

to conduct a cumbersome procedure of changing starting values and design specifi-

cations in the hope to achieve a converged solution. The actual origin of problems

can be:

Terms and definitions 3.3

Linear dependent model equations: A heat exchanger is specified by temperatures

of all streams, or a chemical species is captured within a circulation.

Non-existence of a solution in the mathematical domain of the model: Specified

pressure drop greater than upstream pressure, or first principle specifications, for

instance in species splitter, force values of different sign into the mole vector.

Non-feasible initial values: Typically, the pressure is above or below the stability

pressure of the fluid, or the composition is outside the chemical stability region of

the phase.

The following sections describe how these problems can be identified, and how this

mathematical identification can be translated into a constructive advise for the user

of the program.

3.9.1 Potential points of failure in the solving algorithm

A key feature of the modelling approach investigated in this work is the extensive

use of structural information. As not only one large equation system is solved, the

algorithm can fail in more distinct ways than just to report a general singularity. The

following paragraphs describe distinct problems in the solution process, which can

be identified individually.

Occurrence of a singular matrix in an atomic flowsheet module

Atomic FMs are guaranteed to be non-singular, if they are based on first principles,

like the one-phase calculation node or a component splitter. FMs involving thermody-

namic calculations, like equilibrium reactions and phase equilibrium, might become

singular. A typical example is the occurrence of a trivial solution in phase equilib-

rium. These singularities can usually be identified by the particular module, which in

turn can give detailed failure information to the user, or even fix the problem.

Occurrence of a singular matrix in a composite flowsheet module

If all atomic flowsheet module coefficient matrices are decomposed successfully, the

only reason for a singularity in a composite flowsheet module is a circulation. A

3.9. Error reporting 61

deeper description of the problem and how to solve it is given in Section 3.9.2.

Occurrence of a rank-loss in the constitutive equation set

If the J matrix of the constitutive equation set h∼ (x∼ , λ∼) = 0 is rank-deficient,

some of these equations are linearly dependent. To help the user to overcome

the problem, the left null space reveals the sets of linearly dependent equations.

Consider three constitutive equations on a set of canonical variables (x∼ , λ∼) =

(. . . , p1, T1, p2, . . .), and the following equations:

h1 = p1− p
spec

1
, h2 = p2− p

spec

2
, h3 = T1−T

spec

1
, and h4 = p2− p1 . (3.77)

The J matrix is

∂h∼

∂(x∼ , λ∼)
=





0 . . . 0 1 0 0 0 . . . 0
0 . . . 0 0 0 1 0 . . . 0
0 . . . 0 0 1 0 0 . . . 0
0 . . . 0 −1 0 1 0 . . . 0





. (3.78)

The vector (1,−1, 0, 1) represents the left null space of ∂h∼ /∂(x∼ , λ∼), which means that

h1 − h2 + h4 = 0. All involved elements of h∼ represent a set of linear dependent

equations. This information can be propagated to the user.

The most common constitutive equations are linear in canonical and conjugated

variables. Even if non-linear equations are used, there are no significant conditioning

problems regarding the constitutive J matrix. On this level, linear dependent

equations are rarely a consequence of a numerical problem, but to a high degree of

probability point to an erroneous process model formulation.

Occurrence of a singularity in the combined system

The update equation (3.25) represents an equation system to be solved in order to

determine the correction of source-terms within the canonical equation system. The

method described in the previous paragraph caught linearly dependent constitutive

equations. At this point, the full rank of ∂h∼ /∂(x∼ , λ∼) is verified.

A rank loss of ∂h∼ /∂(x̂∼ , λ̂∼) E≈ x B≈
−1 E≈ α indicates a linear dependency of a combina-

tion of constitutive equations and the canonical equation system. Examples are the

attempt to calculate a T, p-flash for a stream of a pure species or an azeotropic mix-

ture, or the specification of both the input and outlet temperatures of a heat exchanger.

As for the pure constitutive system, the left null space can be used to identify the con-

stitutive equations involved in linear dependent constraints. However, the impact of

the canonical equation system can cause problems at this stage. Actual linearly de-

pendent equations cannot be distinguished easily from singularities caused by other

reasons, as for instance general divergence, described in the next paragraph.

62 Chapter 3. Canonical process modelling

General divergence

Unfortunately, even with a full rank equation system, a physical solution might not

be found, either because there is none, or because the starting values are not within

the convergence radius of the solution method. If the constraints force a solution out-

side the mathematical domain of the thermodynamic models, the algorithm will not

diverge, but as is described in Section 3.8, may stall on the domain boundary. Identi-

fication of the troublesome variables, which are involved in active domain boundary

constraints, offers valuable information to the user in order to solve the problem. This

identification can be performed manually by the user, for instance by observing val-

ues for temperature or molar flows close to zero. The functionality of the relaxation

object (see Section 3.8) can be extended to record the most restrictive calculation

module (e.g. a thermodynamic model).

3.9.2 Problem of circulations

A circulation is defined by a strict conservation of the flow of a chemical species

or another canonical quantity within a recycle. In a sequential-modular approach,

recycles themselves induce the need for partitioning and tearing, while equation-

oriented solvers have the benefit of handling recycles directly. However, if quantities

circulate, as material in a closed refrigerator system, the coefficient matrix becomes

singular due to linearly dependent balance equations, and no solution can be obtained.

Furthermore, no DOFs are available in the process model to actually define the flow

and chemical composition. If the flow is specified through a pressure-flow equation,

the absolute pressure level is not determined.

Currently available process modelling tools simply ignore this effect or even hide

it from the user. Equation-based tools give either a general message to indicate a

singularity, or they find an arbitrary solution within the solution space of the equation

system. Sequential modular tools as e.g. AspenPlus R© (Evans et al., 1979) generally

enhance an estimation or even initial values to specifications and ignore the effect. If

sources and sinks give no contribution to the circulating quantities, and if the system

is numerically stable then the solver finds a solution based on these initial values.

Otherwise, the solver diverges and terminates with an error extraneous to the actual

problem.

This section shows, how the canonical approach allows one to identify singular-

ities in the coefficient matrix on a composite FM level as circulations, in particular

distinct from solving problems within a child FM, for example due to phase stability

problems.

3.9. Error reporting 63

Singularity in an hierarchically defined coefficient matrix

Consider the coefficient matrix of a simplified process model of a refrigerator cycle,

which consists of a heated valve and a cooled compressor:

B≈ =





H≈ 1 I≈
I≈ −I≈

H≈ 2 I≈
−I≈ I≈





.

← Compressor

← Valve

(3.79)

Though all diagonal (child FM) blocks are invertible, the overall matrix is not, be-

cause the second and fourth row contain linear dependent balance equations. Fur-

thermore, there is no specification of the circulating state at any point.

To safely identify a circulation in the process model, it must be ensured that a

singularity during the block decomposition of the process model coefficient matrix

is always caused by such a circulation. The following two theorems are essential to

map the singularity of a pivot block to the singularity of the entire process model.

Theorem 3.1 The coefficient matrix of a composite FM with invertible child coeffi-

cient matrices yields a singular pivot block, iff the total matrix is singular.

Proof: The possibility of a singular child coefficient matrix is already excluded.

Hence, further singularities must origin from a circulation, and any circulation yields

a singularity. Therefore, it is possible to leave out any arbitrary coupling in an invert-

ible coefficient matrix without loss of rank. Even more important is that supplement-

ing new couplings to a singular coefficient matrix cannot restore the rank.

Let D≈
−1 be the block-diagonal matrix of all pre-inverted child flowsheet module

coefficient matrices. Consider the G elimination of (D≈
−1 B≈) in row i. The

next diagonal block (D≈
−1 B≈)i,i is only influenced by recycle streams among the child

modules of lower index. All couplings involving units with higher index are therefore

disregarded. At the given stage of the elimination, the block-row i only consists of the

diagonal block. From here, it is clear that this block is singular, iff the total coefficient

matrix is singular. �

This is not obvious for arbitrary block matrices. For instance the coefficient ma-

trix of a constrained optimisation problem (cf. equation (3.17)) is not singular, but at

the same time not block-invertible.

Theorem 3.2 A pivoting block (D≈
−1 B≈)i,i is block-invertible, if it is invertible.

Proof: The starting point is the identity matrix, which is obviously invertible. Since

adding couplings never restores the rank, a complete matrix of full rank implies a

matrix of full rank with any subset of couplings. From here, the influence of each

output port involved in a recycle is added in steps. The influence of each output

port only affects one column block in (D≈
−1 B≈)i,i. Assuming that the previously

64 Chapter 3. Canonical process modelling

4

21 3

Inlet nodeSinkValve

Circulation module

Outlet node

Compressor

QhotW + Qcold

p4 = p3

H4 = H3

Figure 3.13: The circulation module in a refrigerator cycle.

existing diagonal blocks in (D≈
−1 B≈)i,i are invertible, they can be used to eliminate

any off-diagonal block in the row j, when a contribution of another recycle is added

to column j. Therefore, the diagonal block with index j is invertible, iff (D≈
−1 B≈)i,i is

invertible. This block can be used as a pivot block in the block-inversion. Induction

shows that, beginning with the identity matrix, block-invertibility is preserved as

long as (D≈
−1 B≈)i,i is invertible. �

As a consequence of Theorem 3.1 and 3.2, circulations can be diagnosed in the

canonical flowsheet solver as a singularity in the coefficient matrix, which is not

caused by a singularity within a child FM coefficient matrix. The null space on the

block level can be computed to determine the actual set of involved stream variables.

As an important fact, it is inevitable to involve the user to resolve the problem. In spite

of a simple recycle stream, a circulation provides DOFs in itself. The user needs to

assign one constitutive equation to each of these DOFs in order to completely specify

the model. A specialised FM is introduced in the next section to handle this problem.

Definitely, every recycle introduced into a process model potentially yields a cir-

culation. Technically, a recycle produces a coupling block in the coefficient matrix,

which forces modification of a pivot block during decomposition. This pivot block

becomes singular due to the linear dependency of balance equations, iff the recycle

is a circulation.

Circulation module

A circulation module is a pseudo FM to break up the linear dependent balance equa-

tions and to provide the necessary DOFs. It must be inserted somewhere within

the circulation. The substitute flowsheet is shown in Figure 3.13. Based on the

one-phase FM as described in Section 3.5.1 and the concept of material couplings

3.9. Error reporting 65

(Section 3.4.3), the coefficient matrix of the entire process is given as

B̂≈ =





H≈ 1 I≈
I≈ −I≈

H≈ 2 I≈
−I≈ I≈

H≈ 3 I≈
−I≈ I≈

H≈ 4 I≈
I≈





.

← Compressor

← Valve

← Circulation module inlet node

← Circulation module outlet node

(3.80)

The circulation block as the last diagonal block is trivial to invert. With only uncou-

pled sub-matrices, its insertion does not increase the complexity to decompose the

coefficient matrix. Compared to an ordinary recycle stream, this formulation actu-

ally reduces the complexity, as the recycle is opened up. However, dim x∼ DOFs have

to be filled by constitutive equations. With x∼ in and x∼ out the incoming and outgoing

stream of a circulation module, the set of equations x∼ in = x∼ out is available, but ap-

plying the full set would just shift the linear dependency problem to the constitutive

system. For each linearly dependent balance equation of xi, another constraint must

be activated, e.g. a direct specification of xi at that point, or any suitable external

constitutive equation. The circulation module must validate x∼ in = x∼ out at the solution

point. No changes of state are permitted within this module.

3.9.3 Consistent stoichiometry in chemical reactors

In this work, all definitions of chemical reactions are based on the element balance

equations (see Section 3.5.3). As this way to define reacting systems does not allow

for the violation of conservation of chemical elements, this already eliminates a major

source of error. Furthermore, the state-based approach requires no redundant and

potentially inconsistent information about the enthalpy of reaction. Depending on

the applied constitutive equations, the partial enthalpies of reacting species determine

either the product temperature or the heat duty of the reaction process.

However, with reactions proceeding to their full extent, as described in Sec-

tion 3.5.3, stoichiometric constraints might get linearly dependent (see Figure 3.4).

This case can be detected as a singularity of the combined system (see p. 61). The

identification of the involved constitutive equations helps to describe the actual prob-

lem.

66 Chapter 3. Canonical process modelling

Chapter 4

Advanced process systems

engineering disciplines

4.1 Introduction

The previous chapter concentrates on a basic discipline of process systems engineer-

ing (PSE), namely steady-state process simulation. Other PSE disciplines are largely

built on the functionality of steady-state simulations, of which Figure 4.1 gives an

overview. Case studies are basically a sequence of simulations, therefore posing

Steady state process simulation Soft sensing, analysis & reporting

Sensitivity analysis

Optimisation

Dynamic data reconciliation

Dynamic optimisation

Data reconciliation

Dynamic simulation Case study
underspecification

+ objective

overspecification

+ weighting

time extension

(e.g. exergy analysis)derivative

information

Figure 4.1: Process system engineering disciplines. The gray background represents

the scope of this work.

no further challenges with respect to the canonical modelling approach. The same

could be stated about the subject of soft sensing, analysis and reporting. However, a

canonical approach yields an elegant way to define and discuss exergy, as is shown

in Section 4.6.

The subject of dynamic process modelling generates a number of challenges that

are not specific to the approach of canonical modelling, namely integration meth-

67

68 Chapter 4. Advanced process systems engineering disciplines

ods, discrete handling of events such as topology changes, initial value problem and

identification of badly posed problems. A brief introduction to dynamic process mod-

elling on a canonical basis is discussed in Appendix D.

An important extension from ordinary process simulation is the supply of reliable

derivative information with various sets of dependent and independent variables. The

next section describes how this information can be extracted from a solution of the al-

gorithm described in Section 3.3.2. The subsequent sections show how to utilise this

technique in process optimisation and data reconciliation. It must be noted that these

fields pose many challenges by themselves. The purpose of the following sections is

to investigate the potential of canonical modelling and prove its general suitability.

4.2 Process model derivatives

4.2.1 Computational methods

One common way to obtain derivative information from the result of an algorithm is

to perturb the independent variables systematically and use the numerical approach

of finite differences: dψ/dx∼ ≈ [(ψ(xi + ∆xi) − ψ(xi − ∆xi))/2∆xi] e∼ i. Not only has

the algorithm to be executed 2 · dim x∼ times to obtain the first derivative, but it also

remains a problem to choose ∆xi small enough to eliminate smoothening effects, but

large enough to overcome numerical problems due to the precision of the algorithm’s

results. These two requirements are often irreconcilable in practice.

There are different approaches to obtain analytical derivatives of functions and

algorithms. Automatic differentiation compiles existing code of a specific program-

ming language into extended functions in the same language, which produce the re-

quired derivative information (Mischler et al., 1995). This method is applicable, if

the function and the set of selected dependent and independent variables are defined

at compile time. A prime example is the generation of first- and second-order state

function derivatives with respect to their state vector. However, in a dynamically con-

figurable process modelling tool, much necessary information is added at runtime,

such as

• Process topology and selection of FMs.

• Thermodynamic models and sets of chemical species.

• Sets of constitutive equations, partly first generated by user runtime, subse-

quently parsed into computer memory.

• Selection of dependent and independent variables in the context of optimisation

or reconciliation.

Based on the functional programming paradigm (Hudak, 1989), a general function

can be represented by a symbolic algebra graph. Computer algebra systems (CASs)

4.2. Process model derivatives 69

like Maple © (Čı́žek et al., 1993) and Mathematica © (Fateman, 1992) and frame-

works for symbolic computations like GiNaC (Bauer et al., 2002) utilise this tech-

nology.

Elementary functions and operators and literal numbers are represented as nodes

in a directed graph, in which the edges point from function and operator nodes to the

respective arguments. Literal numbers represent the leaf nodes with zero outgoing

cardinality. As shown in Figure 4.2, this symbolic representation not only allows for

the calculation of analytical derivatives, but also for code optimisation, for evalua-

tion of expressions with different data-types, and for automatic generation of code

in different programming languages. Technical details about the symbolic algebra

Simplification

of automatically

generated derivatives

Analytical derivatives

Sensitivity analysis

Optimisation and

data reconciliation

Implementation of

thermodynamic models

Error propagation

Phase boundaries

critical points

Matlab ® / Octave

Symbolic Algebra Graph

Optimisation/

Simplification Evaluation with different datatypes

High precision calculations

(e.g. rational numbers)

and consistency test

Physical unit propagation

Dependency analysis

Complexity analysis by

operation counting

Propagation of bibliographic

data

Printout

Rapid C code

languages

Exchangeable formats

 (e.g. MathML, CapeML)

Typeset formulae

(LaTeX)

Raw dump

Other programming

Figure 4.2: Available functionality through symbolic algebra.

datatype developed and applied in this work are given in Appendix A.1.

However, the pure form of symbolic algebra only works with explicit functions.

Iterative algorithms introduce circles in the representative graph that require special

treatment. In particular, such a loop would in general not provide full robustness

regarding convergence. The use of symbolic algebra is therefore limited to functional

constructs and treat algorithms externally.

4.2.2 Symbolic derivatives from the canonical solver

This section follows the idea that if a second-order method terminates successfully

with a solution, the first-order derivative information is also provided through the

coefficient matrix used in the last iteration step.

Consider a non-linear program without inequality constraints, as described in

Section 3.2, the optimisation of a state function P(x∼) subject to constraints δ∼ (x∼) = 0∼ .

The update equation is based on a T series of the first derivative of the L

70 Chapter 4. Advanced process systems engineering disciplines

Function Λ being

Λ(x∼ , λ∼ , ψ∼
) = P(x∼ , ψ∼

) − λ∼ δ∼ (x∼ , ψ∼
) . (4.1)

In this context, ψ
∼

is a vector of parameters, either of the process model (u∼) or the un-

derlying thermodynamic models (c∼). With ζ
∼
= (x∼ , λ∼) and l∼(ζ∼

) = ∂Λ/∂ζ, the truncated

T series for ζ(k) in the neighbourhood of the solution ζ(∞) is

l∼(ζ∼
(∞), ψ

∼
) ≈ l∼(ζ∼

(k), ψ
∼

) +
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

(k)

(ζ
∼

(∞) − ζ
∼

(k))
!
= 0∼ . (4.2)

The sensitivities ∂ζ
∼
/∂ψ
∼

are to be obtained. The derivative of Equation (4.2) with

respect to ψ
∼

is

0≈ =
∂l∼

∂ψ
∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

(k)

+
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
ψ
∼

d ζ
∼

(k)

dψ
∼

+





∂2l∼

∂ζ
∼
∂ψ
∼

+
∂2l∼

∂ζ
∼

2

∣
∣
∣
∣
∣
∣
∣
ψ
∼

∂ζ
∼

(k)

∂ψ
∼





(ζ
∼

(∞) − ζ
∼

(k))

+
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
ψ
∼





d ζ
∼

(∞)

dψ
∼

−
d ζ
∼

(k)

dψ
∼





=
∂l∼

∂ψ
∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

(k)

+





∂2l∼

∂ζ
∼
∂ψ
∼

+
∂2l∼

∂ζ
∼

2

∣
∣
∣
∣
∣
∣
∣
ψ
∼

∂ζ
∼

(k)

∂ψ
∼





(ζ
∼

(∞) − ζ
∼

(k)) +
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
ψ
∼

d ζ
∼ ∞

dψ
∼

. (4.3)

For a converged iteration at k → ∞, ζ
∼

(∞) = ζ
∼

(k), while the other terms do not approach

zero. Omitting the notation to indicate the iteration step at convergence, the limit is

0≈ =
∂l∼

∂ψ
∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

+
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
ψ
∼

d ζ
∼

dψ
∼

, and finally
d ζ
∼

dψ
∼

= −





∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
ψ
∼





−1

·
∂l∼

∂ψ
∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

. (4.4)

Hence the derivative of ζ
∼

with respect to ψ
∼

can easily be found, if the solution vector

ζ
∼

(k) and the last calculated coefficient matrix B≈ = (∂l∼/∂ζ∼
) is already LU-decomposed.

The derivative of the right hand side ∂l∼/∂ψ∼
can be obtained by means of symbolic

algebra as described in the previous section.

Application to one-phase chemical equilibrium calculations

An example should clarify the direct use of Equation (4.4). The objective is to obtain

the derivative of the chemical potentials at chemical equilibrium with respect to the

parameters of the thermodynamic model. At constant temperature and pressure, the

objective function can be defined based on G-energy G as

Λ(n∼ , λ∼) = G(n∼) − λ∼ A≈ (n∼ initial − n∼) . (4.5)

4.2. Process model derivatives 71

Subsequently,

ζ
∼
=

(

n∼
λ∼

)

, l∼ =

(

µ∼ + A≈
T λ∼

A≈ (n∼ − n∼ initial)

)

, and
∂l∼

∂ζ
∼

=

(

H≈ A≈
T

A≈ 0≈

)

. (4.6)

At the solution, the derivatives can be expressed as follows (see Equation (4.4)):

d

dψ
∼

(

n∼
λ∼

)

= −
(

H≈ A≈
T

A≈ 0≈

)−1

· ∂

∂ψ
∼

(

µ∼ + A≈
T λ∼

A≈ (n∼ − n∼ initial)

)
∣
∣
∣
∣
∣
∣
∣
n∼ ,λ∼

= −
(

H≈ A≈
T

A≈ 0≈

)−1

·





∂µ∼
∂ψ
∼

∣
∣
∣
∣
∣
∣
n∼

0≈





. (4.7)

Furthermore, the derivatives of the chemical potential µ∼ can be obtained from λ∼ :

µ∼ = −A≈
T λ∼ ⇒

dµ∼

dψ
∼

= −A≈
T

dλ∼

dψ
∼

. (4.8)

Derivative information can be obtained by this technique in order to implement pa-

rameter optimisation.

Example

An ideal gas mixture of NO2 and N2O4 is considered. Under the assumption of

constant heat capacity, the chemical potential is given as (the universal gas constant

is defined as R = 8.3144 J/mol K, furthermore N =
∑

i ni)

µi = ∆fh
ref
i + T

[

cp,i

(

1 − T

T ref

)

− sref
i + R ln

p

pref
+ R ln

ni

N

]

. (4.9)

Table 4.1 shows the thermodynamic properties and the equilibrium quantities neq

at T = 600 K and p = 1 bar. Using the equilibrium condition µNO2
= 2µN2O4

, the

equilibrium composition is calculated analytically from Equation (4.9). To investigate

Table 4.1: Ideal gas model parameters and equilibrium state of the one-phase system

NO2 – N2O4 at T = 600 K and p = 1 bar.

s0 [J/(mol K)] cp [J/(mol K)] ∆ f h0 [kJ/mol] neq [mol]

NO2 204 45.8 33.1 0.31

N2O4 304 104 9.08 0.69

the sensitivity of the chemical equilibrium with respect to the standard state entropy

sref
i

, Equation (4.7) can be substantiated as follows:

d

ds∼
ref





nNO2

nN2O4

−2µNO2




= −





R T
(

n−1
NO2
−N−1

)

−RT/N 2

−RT/N R T
(

n−1
N2O4
−N−1

)

1

2 1 0





−1

·





−T 0

0 −T

0 0




.

72 Chapter 4. Advanced process systems engineering disciplines

(4.10)

The numerical outcome is

d

ds∼
ref

(

nNO2

nN2O4

)

=

(

0.015 −0.030

−0.030 0.060

)

mol2K/J . (4.11)

This calculated sensitivity is valid for the material constraint 2 nNO2
+ nN2O4

= const.

The chain-rule yields the correct sensitivity regarding the molar fraction of NO2:

d

ds∼
ref

(

nNO2

nNO2
+ nN2O4

)

=
1

(nNO2
+nN2O4

)2

(

nN2O4

−nNO2

)T

· d

ds∼
ref

(

nNO2

nN2O4

)

=

(

0.019567

−0.039133

)

mol K/J . (4.12)

As expected, increasing the standard entropy for NO2 stabilises this species and

yields an increased equilibrium concentration. Furthermore, increasing sref
NO2

has ex-

actly the same effect as decreasing sref
N2O4

by twice the amount. This is a consequence

of the equilibrium condition µNO2
= 2µN2O4

.

4.2.3 Derivatives with respect to process parameters

For process simulation, the information about the derivative of state variables with

respect to parameters in constitutive equations is of great value and accessible directly

from the result of the 2nd order solver. A modelling task often involves variation of the

process parameters to observe impact on the calculated state. In process optimisation

(Section 4.4), and data reconciliation (Section 4.5), these derivatives are mandatory.

The derivative information obtained in Equation (4.4) was general and not re-

stricted to parameters of the thermodynamic model. As described in Section 3.3, the

canonical equation system is solved in combination with a set of constitutive equa-

tions:

h∼ (ζ
∼

(α∼), u∼) = 0∼ . (4.13)

Vector α∼ is a contribution to the right hand side l∼ of the inner equation system. Fur-

thermore, α∼ is the only contribution in l∼, which is directly dependent on the process

parameters u∼ . Considering the sparse contribution of α∼ to l∼ by the selection matrix

E≈ α as introduced in Section 3.3.2, Equation (4.4) can be interpreted as

dζ
∼

dα∼
= −





∂l∼

∂ζ
∼





−1

E≈ α or as a total differential dζ
∼
= −





∂l∼

∂ζ
∼





−1

E≈ α dα∼ . (4.14)

As mentioned above, only α∼ is dependent on u∼ , such that

dζ
∼

du∼
= −





∂l∼

∂ζ
∼





−1

E≈ α
dα∼

du∼
. (4.15)

4.2. Process model derivatives 73

The change of α∼ with respect to u∼ can be obtained from the total differential of h∼ as

defined in Equation (4.13). With one selection matrix E≈ x defined to map ζ̄∼ = E≈
T
x ζ∼

,

the total differential is:

dh∼ =
∂h∼

∂ζ̄∼

∣
∣
∣
∣
∣
∣
α∼ ,u∼

∂ζ̄∼

∂α∼

∣
∣
∣
∣
∣
∣
u∼

dα∼ +
∂h∼

∂u∼

∣
∣
∣
∣
∣
∣
ζ̄∼

du∼
!
= 0 ⇒

∂h∼

∂ζ̄∼

∣
∣
∣
∣
∣
∣
α∼ ,u∼

∂ζ̄∼

∂α∼

∣
∣
∣
∣
∣
∣
u∼

dα∼

du∼
= −

∂h∼

∂u∼

∣
∣
∣
∣
∣
∣
ζ̄∼

. (4.16)

Here, ∂ζ̄∼ /∂α∼

∣
∣
∣
u∼

can be substituted by the differential quotient from Equation (4.14),

such that




∂h∼

∂ζ̄∼

∣
∣
∣
∣
∣
∣
α∼ ,u∼

E≈ x





∂l∼

∂ζ
∼





−1

E≈ α





︸ ︷︷ ︸

J≈

dα∼

du∼
=
∂h∼

∂u∼

∣
∣
∣
∣
∣
∣
ζ
∼

. (4.17)

Matrix J≈ already was computed within the solution method itself (see Section 3.3.2).

As mentioned in Section 3.9.1, a singular matrix J≈ indicates a linear dependency of

constitutive equations in combination with the canonical system. With invertible J≈ ,

the sensitivity of α∼ with respect to the process parameters u∼ is given as

dα∼

du∼
= J≈

−1
∂h∼

∂u∼

∣
∣
∣
∣
∣
∣
ζ̄∼

, (4.18)

and can be substituted into Equation (4.15), hence

dζ
∼

du∼
= −





∂l∼

∂ζ
∼





−1

E≈ α J≈
−1

∂h∼

∂u∼

∣
∣
∣
∣
∣
∣
ζ

. (4.19)

∂h∼ /∂u∼

∣
∣
∣
ζ
∼

is easy to obtain by means of symbolic algebra, while the other matrices

involved are already available for a solved process model. The equation obtained

therefore provides valuable information with very little additional effort. Naturally,

the derivatives of every set of derived quantities y∼ (ζ
∼

) can be obtained applying the

chain-rule:

dy∼

du∼
=
∂y∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
u

dζ
∼

du∼
+
∂y∼

∂u∼

∣
∣
∣
∣
∣
∣
ζ

. (4.20)

As an important fact, Equation (4.19) can be evaluated as a post-calculation. Com-

pared to an ordinary process simulation, no computational overhead is required dur-

ing the iterations to solve the model.

4.2.4 Derivatives with respect to thermodynamic parameters

In order to gain the derivative of state variables with respect to thermodynamic pa-

rameters c∼ , Equation (4.4) requires the derivative of the right hand side at constant

74 Chapter 4. Advanced process systems engineering disciplines

ζ
∼

. But in a relevant simulation, ζ
∼

will consist of states transformed by state function

transformations (see Section 2.5.2). The performed transformations are applied nu-

merically and therefore only valid in the calculated point for a converged solution.

With ζ̂∼ as the native1 state of a system, ∂l∼/∂c∼

∣
∣
∣
ζ̂∼

is available instead. The objective of

this section is to find an explicit expression for ∂l∼/∂c∼

∣
∣
∣
ζ
∼

based on ∂l∼/∂c∼

∣
∣
∣
ζ̂∼

.

Considering l∼ as a function of ζ̂∼ and c∼ , whereas ζ̂∼ is a function of ζ
∼

, for

l∼ = l∼(ζ̂∼ (ζ
∼
, c∼), c∼) the total differential is

dl∼ =
∂l∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼





∂ζ̂∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
c∼

dζ
∼
+
∂ζ̂∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ̂∼

dc∼




+
∂l∼

∂c∼

∣
∣
∣
∣
∣
∣
ζ̂∼

dc∼ . (4.21)

As ζ
∼

is constant, dζ
∼
= 0 and therefore

∂l∼

∂c∼

∣
∣
∣
∣
∣
∣
ζ
∼

=
∂l∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼

∂ζ̂∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

+
∂l∼

∂c∼

∣
∣
∣
∣
∣
∣
ζ̂∼

. (4.22)

To obtain the missing expression for the derivative ∂ζ̂∼/∂c∼

∣
∣
∣
ζ
∼

, the total differential of

ζ
∼

(ζ̂∼ , c∼) can be utilised:

dζ
∼
=
∂ζ
∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ̂∼

dc∼ +
∂ζ
∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼

dζ̂∼ = 0 ⇒
∂ζ̂∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ
∼

= −





∂ζ
∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼





−1

·
∂ζ
∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ̂∼

= −J≈ ·
∂ζ
∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ̂∼

.

(4.23)

Furthermore, the total differential l∼(ζ̂∼) at constant c∼ can be used to obtain ∂l∼/∂ζ̂∼

∣
∣
∣
c∼
:

dl∼ =
∂l∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼

dζ̂∼ =
∂l∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼

J≈ dζ
∼
⇒

∂l∼

∂ζ̂∼

∣
∣
∣
∣
∣
∣
∣
c∼

=
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
c∼

J≈
−1 . (4.24)

These results can be substituted into Equation (4.22). Hence

∂l∼

∂c∼

∣
∣
∣
∣
∣
∣
ζ
∼

=
∂l∼

∂c∼

∣
∣
∣
∣
∣
∣
ζ̂∼

−
∂l∼

∂ζ
∼

∣
∣
∣
∣
∣
∣
∣
c∼

·
∂ζ
∼

∂c∼

∣
∣
∣
∣
∣
∣
∣
ζ̂∼

. (4.25)

All the terms on the right hand side of this equation can be easily obtained. However,

the implementation of thermodynamic models in their native state function must have

the functionality to provide derivatives with respect to thermodynamic parameters.

1regarding the underlying thermodynamic models

4.3. Sensitivity Analysis 75

4.3 Sensitivity Analysis

4.3.1 Motivation

The most fundamental utilisation of the derivatives obtained in the previous section is

in sensitivity analyses, i.e. to interpret the direct physical meaning of the derivatives.

A sensitivity analysis can therefore be a substitute or supplement for a case-study,

giving valuable information to set up a meaningful optimisation.

In general, to understand the derivatives of process properties with respect to

process parameters it is necessary to understand the process model and to check the

rationale of selected process constraints. In contrast to a descriptive process model,

a predictive model must deliver relevant sensitivity information correctly. This is a

necessary requirement to conduct further disciplines as for instance process optimisa-

tion. The effort to obtain a realistic set of process constraints is often underestimated.

Unsuitable constraints yield non-optimal or even infeasible operating conditions.

4.3.2 Sensitivity analysis of an air compression process

3rd stage

1st stage

ṁ = 200 t/h
T0 = 100 ◦C
p0 = 5 bar

k = 250 W/m2K

∆p ∼ F
TCW = 7 . . . 9 ◦C

H2O

∆p = 0.2 bar

T1 = 20 ◦C

Wel

ηpoly =
0.45 s/m3 V̇ (18 m3/s−V̇)

51 m3/s−V̇

ηmech = 95%

p2 = 20 bar

Figure 4.3: A process air compression stage with inter-cooling.

As an example, the second stage of a process air compression train is con-

sidered as shown in Figure 4.3. The pre-compressed air was originally saturated

with water at 15 ◦C and 1 atm, and it is first cooled by cooling water. Con-

densate is removed in a separator, before the actual compression takes place. A

larger surface area F in the heat exchanger will provide a lower T1, but also in-

crease pressure drop proportionally with a rate of 23 mbar/m2. These effects sug-

gest the existence of an optimal surface regarding a minimal compressor work duty.

The S-R-W equation of state (Schwartzentruber et al.,

1990; Schwartzentruber and Renon, 1989) as described in Appendix B is used to

calculate the properties of air and water in this chapter.

The core of the process simulation tool Yasim (cf. Chapter 5) is used to gener-

ate numerical results to the examples in this chapter. The process model topology

is therefore defined as described in Section 3.4. All specifications shown in Fig-

ure 4.3 are formulated as constitutive equations. The algorithm in Section 3.3.2 is

used to obtain the simulation results shown in Table 4.2. Applied on the solution,

76 Chapter 4. Advanced process systems engineering disciplines

Equation (4.20) yields the derivatives with respect to the process parameter T1. In

Table 4.2: Sensitivity study results of an intermediate compressor stage.

T1 [◦C] F [m2] p1 [bar] Wel [MW] T2 [◦C] ṁH2O [t/h]

20 578.9 4.67 10.6 197.6 1.74

∂ψ/∂T1 -24.4 0.0056 0.032 1.44 -0.046

10 1028.4 4.56 10.4 184.8 2.09

∂ψ/∂T1 -100.6 0.023 -0.0042 0.87 -0.025

the example, the derivative of compressor duty with respect to T1 actually shifts sign,

indicating an optimum within the range 10 ◦C < T1 < 20 ◦C.

Naturally, the derivatives and consequently the optimum will be highly dependent

on those process parameters that remain constant, as for example the surface-specific

pressure drop. Considering a constant pressure drop of 0.4 bar instead, the derivative

∂Wel/∂T = 38.2 kW/K at T = 8 ◦C is completely different from the reference case

shown in Figure 4.3. There is no longer an indication for the existence of an optimal

finite heat exchanger surface. Other constraints and formulation of objective func-

tions would become relevant, not least the investment costs for the heat exchanger.

4.4 Process optimisation

4.4.1 Comparison to data reconciliation

Even though the scope of this work is limited to steady-state process models, process

optimisation of these models still covers a wide range of applications, with a smooth

transition towards the discipline of data reconciliation. In both cases, an objective

function of state variables is optimised with respect to an independent set of pro-

cess parameters. However, in data-reconciliation, the objective is to match redundant

measurements in an optimal way, i.e. to describe inconsistent state information by

one consistent state as well as possible. Process optimisation aims for an unknown

state that optimises a given objective function. Section 4.2.3 describes a suitable way

to obtain the J matrix J≈ = dy∼/du∼ .

4.4.2 Selection of independent variables

Given a process model with a suitable set of process constraints, the actual set of in-

dependent variables within an optimisation is of secondary importance, as long as the

desired DOFs are addressed, i.e. J≈ is not singular. Considering the example of Fig-

ure 4.3, an optimisation can be performed on the temperature T1, on the heat removed

in the cooler, or on the heat exchanger surface F with identical results. Obviously,

it is a good choice to select independent variables for which most conceivability is

given in terms of physically feasible domain and expected optimal value. Clearly, a

prior sensitivity analysis can provide much of this inside knowledge.

4.4. Process optimisation 77

4.4.3 Substitution of independent variables

Inequality constraints potentially add significantly to the complexity of an optimisa-

tion problem. The non-linear program is supplemented by a discrete set of conditions,

converting it into a mixed integer non-linear program. With a suitable set of indepen-

dent variables, many – in some cases all – inequality constraints can be hidden by

substitution by bounded functions. The chain rule is applied to map ∂Λ/∂u∼ to the

sensitivity of the objective function with respect to the modified process parameter

vector û∼ :

∂Λ

∂û∼
=
∂Λ

∂u∼

∂u∼

∂û∼
. (4.26)

Consider a process parameter u bounded by umin ≤ u ≤ umax. A suitable substi-

tution can be

u = (umax −umin)
1 − cos π û

2
+umin with

∂u

∂û
=
π

2
(umax −umin) sin π û . (4.27)

Even if the solver overshoots into another period of the harmonic function, û still

maps to a feasible value of u. However, ∂u/∂û = 0 at û ∈ �, which is a singularity

that has to be handled by the solver. As a positive side effect, such a substitution

scales the independent variable into a defined and comparable dimensionless range,

which is especially important for application of first-order optimisation methods.

Substitution of independent variables can also be used to reduce the problem

dimension. Consider a separation column with individually heated/cooled stages.

With ui as the heat duty of stage i, dim u∼ is unnecessarily high, as a certain continuity

will be expected for proximate stages. Especially for preliminary optimisations, a

profile function can reduce the dimension significantly, for instance in a linear form

as follows:

ui = û1 + i û2 with
∂ui

∂(û1, û2)
= (1, i) . (4.28)

4.4.4 Optimisation of compressor intake temperature

For the process introduced in Section 4.3.2, the temperature derivatives listed in Ta-

ble 4.2 indicate the existence of an optimal compressor inlet temperature T1. The

existence of a minimum compressor duty is asserted at an intake temperature T1 be-

tween 10 ◦C and 20 ◦C.

This example uses T1 as the only one independent variable. The derivative

∂Wel/∂T1 can be used to apply a first-order method to minimise the compressor duty.

The secant method (Nocedal and Wright, 1999) yields the following update formula:

T
(k+1)

1
= T

(k)

1
− (∂Wel/∂T1)(k)

T
(k−1)

1
− T k

1

(∂Wel/∂T1)(k−1) − (∂Wel/∂T1)(k)
. (4.29)

78 Chapter 4. Advanced process systems engineering disciplines

With T
(0)

1
= 10 ◦C and T

(1)

1
= 20 ◦C, the subsequent iterations result in

T
(2)

1
= 11.16 ◦C, T

(3)

1
= 10.39 ◦C, T

(4)

1
= 10.29 ◦C, T

(5)

1
= 10.31 ◦C, . . . (4.30)

The optimal temperature is T1,opt = 10.3 ◦C, and Wel = 10.42 MW, F = 998 m2 and

T2 = 185.1 ◦C.

This calculation is a practical example for the efficient use of analytical deriva-

tives in process optimisation. The derivatives dy/du are calculated using Equa-

tion (4.20).

However, this tiny example already indicates challenges, which are beyond what

can be solved by providing the technical framework. The realistic replication of

actual process constraints, as mentioned in the previous section, has a significant

impact on the location and even existence of an optimal point.

No less important is the formulation of the objective function, in particular, if

penalty contributions of different metrics are to be combined. With this, it becomes

clear how important it is to perform sensitivity studies prior to process optimisation.

In many cases, the optimal process parameter is bounded by technical feasibility. For

instance the compressor inlet should not be cooler than 5 ◦C in order to avoid icing

on the compressor blades.

The treatment of such inequality constraints is essential to process optimisa-

tion, but decoupled from the canonical modelling approach. Edgar and Himmelblau

(2001) give a comprehensive overview over the broad field of process optimisation.

4.5 Data reconciliation

4.5.1 Weighted least-squares method

As mentioned in Paragraph 4.4.1, data reconciliation is really a specialised case of

process optimisation. The objective function measures the difference between calcu-

lated properties y∼ and measured properties y∼meas. The simplest applicable approach

is to define a sum of weighted least-squares without constraints outside the process

model itself:

min
u∼

1

2
(y∼ (u∼)− y∼meas) W≈ (y∼ (u∼)− y∼meas) with W≈ as diagonal weight matrix. (4.31)

Exactly one process parameter ui is selected as an independent variable for each

DOF. As explained in Paragraph 4.4.3, inequality constraints of the process param-

eters can potentially be eliminated by substitution to ease the optimisation scheme.

An overview of different objective functions with respect to gross error detection in

particular is given by Özyurt and Pike (2004). The least-squares method yields a

linear optimisation problem, but defect measurements contribute strongly. More ad-

vanced formulations are based on so-called redescending influence functions. These

objective functions assign low weight to gross error measurements.

4.5. Data reconciliation 79

To solve the least-squares problem, Equation (4.31) is derived with respect to u∼ .

With J≈ = dy∼/du∼ from Equation (4.20), the zero-gradient condition becomes

J≈
T W≈ (y∼ (u∼) − y∼ target) = 0∼ . (4.32)

Linearisation of y∼ (u∼) in u∼
(k) yields the well known equation for the weighted linear

least-squares problem, which is an overdetermined equation system:

J≈
T W≈ J≈ (u∼

(k+1) − u∼
(k)) = J≈

T W≈ (y∼ target − y∼ (u∼
(k))) . (4.33)

Figure 4.4 shows the main strategy to implement data reconciliation based on the

Reconciliation
Process model

Process model

simulation

u∼
(0) u∼

(k) u∼
(k+1)

u∼
(∞)

y∼
(k)

J≈
(k)

∆u∼

y∼
(∞)

Figure 4.4: Flow-diagram of a data reconciliation process.

canonical flowsheet simulation. The process model delivers y∼ (u∼) and J≈ (u∼) as a rep-

resentation of a linearised process model. The reconciliation block evaluates the

regression Equation (4.33) to update the independent process parameters u∼ . The con-

verged set of independent parameters u∼
(∞) is applied to the process model to obtain

the complete set of reconciled data y∼
(∞). It is advisable to converge the process sim-

ulation step before any reconciliation step. Not only is the derivative obtained by

Equation (4.33) valid only at a converged simulation result, but even the intensive

variables themselves only receive their physical interpretation at the solution point.

For instance, the L multiplier, which in the solution point is interpreted as

pressure, can assume large negative values during the iteration procedure.

4.5.2 Data reconciliation of a compressor stage model

3rd stage

1st stage

M
Dry air

Water
TI

4

TI

5

3

TI

3

PI

1

EI

FI

1

11

TI PIQI

1

2

TI

6

TI

2

PI
relative humidity

measured in QI

k ≈ 250 W/m2K
F = 580 m2

H2O

H2O

ηpoly =
0.45 s/m3 V̇ (18 m3/s−V̇)

51 m3/s−V̇

ηmech ≈ 95%

Figure 4.5: Process model of the compressor stage for data reconciliation.

Figure 4.5 shows the process flowsheet of the compressor train, slightly modified

to suit the data reconciliation case. The relative humidity of air determines the split

80 Chapter 4. Advanced process systems engineering disciplines

factor to supply dry and saturated air into the first compressor stage. Ambient air

conditions (QI1, PI1 and TI1) and cooling water inlet temperature (TI4) are typically

measured outside the actual process. The nominal compressor efficiency (both me-

chanical and isentropic), and heat transfer in the heat exchanger are used as indirect

measurements, i.e. the empirically calculated efficiency and heat transfer are used as

if they were measurements. Weight factors can be employed to use the indirect mea-

surements actively in order to reconcile the only flow measurement. Alternatively it

is an option to just monitor heat transfer and compressor efficiency in order to observe

operational problems (e.g. fouling and corrosion).

Originating from the base-case, a set of distorted potential measurements is cre-

ated, adding a statistical error, a systematic error, and, for some quantities, a drift of

the data to replicate real measurements as input for a data reconciliation run. How-

ever, in order to concentrate on the general principles, no gross-errors have been

generated within the measurements in this example. The volume flow measurement

reconciled

raw data

reconciled

raw data

 36

 38

 40

 42

 44

 46

 48

 50

 0 200 400 600 800 1000measurement #

 11

 11.05

 11.1

 11.15

 11.2

 11.25

 0 200 400 600 800 1000measurement #

V̇
[m

3
/s

]
W

[M
W

]

Figure 4.6: Reconciled data series of volume flow and compressor effect.

is redundant to the compressor energy duty and affecting temperature and pressure

measurements. From Figure 4.6, a systematic error can clearly be identified. The

volume flow is measured too low, and/or the compressor duty is measured too high.

Trusting both measurements simultaneously, the reconciled values stay in between.

Figure 4.7 shows typical data, which is not directly measurable, but calculated pro-

cess properties as a result of the data reconciliation. Such data is of special interest for

a process operator. With measured cooling water temperatures and heat exchanger

surface, the heat transfer coefficient can be determined. In spite of dominant statis-

tical errors, a slight trend towards lower conductivity can be observed, which might

4.6. Exergy analysis 81

reconciled

reconciled

estimation

data sheet reference

 190

 200

 210

 220

 230

 240

 250

 260

 270

 0 200 400 600 800 1000

U
 [

W
/m

2
K

]

measurement #

−3

−2.5

−2

−1.5

−1

−0.5

 0

 0.5

 1

 0 200 400 600 800 1000measurement #

η
c
a
lc
−
η

n
o
m

in
a
l
[%

]

Figure 4.7: Reconciled data series of heat transfer coefficient and compressor effi-

ciency.

indicate a fouling problem.

The compressor efficiency in this example stays approximately 1% below the

nominal values, but does not show a deteriorating behaviour. The deviation can be

caused by systematic measurement errors or a loss of performance on a larger time

scale.

4.6 Exergy analysis

As is obvious from the problem formulations of the previous sections, process mod-

elling is a key factor for improving chemical processes, during both the design phase

and operation. Data reconciliation enhances accuracy through the appropriate inter-

pretation of available measurements, allowing one to tune more precisely towards a

target state of operation, while process optimisation actually determines an optimal

target state. In this regard, exergy analysis can help to first identify inefficient pro-

cess parts and then to estimate a potential improvement, based on the second law of

thermodynamics.

4.6.1 Concepts of second law analysis

The literature often defines exergy solely considering temperature gradients (Callen,

1985; Tester and Modell, 1997), while not considering chemical reactions or pressure

changes. This special case yields the C-efficiency η = 1 − T0/T , while Wall

82 Chapter 4. Advanced process systems engineering disciplines

(1986) uses a more general definition, namely:

Exergy is the totally convertible part of the energy, i.e. that part which may be

converted into any other energy form.

However, since chemical potentials will be considered here, the definition of an am-

bient chemical potential for each chemical species is required. For a consistent de-

scription, one recipient species for each chemical element is sufficient, as it is shown

below. Furthermore, the concept of exergy is often mixed up with that of available

energy. This work uses therefore following definitions:

Terms and definitions 4.1

Exergy The totally convertible part of energy in a stream represented by a state ẋ∼ .

Exergy is based on enthalpy as the conserved property regarding the first law of

thermodynamics for adiabatic stream-based systems.

Available energy The totally convertible part of energy in an accumulated state rep-

resented by x∼ . Available energy is based on internal energy as the conserved prop-

erty regarding the first law of thermodynamics for closed systems.

In particular, it is meaningless to define exergy on an accumulated state like the con-

tent of a buffer tank, or to define available energy on a stream.

As in this work, the main focus is put on steady-state processes, exergy is the

measure for second law analysis in this section.

4.6.2 Definition of exergy

Process stream

en
v
ir

o
n
m

en
t

Reactor

E(ẋ∼ 1) = lim
|ẋ∼ 0 |→∞

W

ẋ∼ 0

ẋ∼ 1 ẋ∼ 2

Figure 4.8: Process flowsheet to define the exergy of a process stream. The limit

|ẋ∼ 0| → ∞ indicates a process of infinite size or infinite time.

Given a stream of an arbitrary state ẋ∼ 1, the exergy E is defined as the maximum

amount of work that can be extracted by conforming the intensive properties towards

the intensive state of a defined infinite reservoir (from now this will be referred to as

environment). To archive the environmental state, species are reactants of chemical

reactions. The product species are most stable in the environment, and constrained

by the balance equations of chemical elements, there is exactly one such recipient

species for each present chemical element.

Figure 4.8 shows a possible setup to obtain a suitable mathematical definition

of exergy. The environmental intensive state is reached by infinitely diluting the

4.6. Exergy analysis 83

process stream with a stream of environmental state. Naturally infinite streams can

not be evaluated by means of straightforward process simulation, but the following

derivation describes a way to obtain exergy as a flow property.

All chemical species are converted by chemical reaction into recipient species. In

spite of heat, work is allowed to be exchanged, such that Ṡ 2 ≥ Ṡ 0 + Ṡ 1, furthermore

W = Ḣ0 + Ḣ1 − Ḣ2.

Substituting the E-integrated representation of H into the latter equation

yields (note the mass balance ṅ∼ 2 = ṅ∼ 0 + A≈ ṅ∼ 1):

W = T1 Ṡ 1 + T0 Ṡ 0 − T2 Ṡ 2 + µ∼ 1 ṅ1∼ + µ∼ 0 ṅ∼ 0 − µ∼ 2 ṅ∼ 2

= T1 Ṡ 1 + T0 Ṡ 0 − T2 (Ṡ 0 + Ṡ 1) + µ∼ 1 ṅ1∼ + µ∼ 0 ṅ∼ 0 − µ∼ 2 (ṅ∼ 0 + A≈ ṅ∼ 1)

= (T1 − T0) Ṡ 1 + (µ∼ 1 − A≈
T µ∼ 0) ṅ∼ 1

− (T2 − T0)(Ṡ 0 + Ṡ 1) − (µ∼ 2 − µ∼ 0)(ṅ∼ 0 + A≈ ṅ∼ 1) . (4.34)

Here, the inequality for entropy is substituted by an equality, as any higher Ṡ 2 due

to irreversibility would clearly reduce W by the positive product T2 ∆Ṡ irreversible. To

calculate the limit at |ẋ∼ 0| → ∞, T2 and µ∼ 2 are approximated by linearisations around

ẋ0∼ at constant Ṡ and p:

T2 ≈ T0 +
∂T

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

(ṅ∼ 2 − ṅ∼ 0) =
∂T

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

A≈ ṅ∼ 1 and µ∼ 2 ≈
∂µ∼

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

A≈ ṅ∼ 1 . (4.35)

Using the symmetry of ∂µ∼ /∂ṅ∼ , the work can be written as

W = (T1−T0) Ṡ 1+(µ∼ 1−A≈
T µ∼ 0) ṅ∼ 1−A≈ ṅ∼ 1





∂T

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

(Ṡ 0 + Ṡ 1) +
∂µ∼

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

(ṅ∼ 0 + A≈ ṅ∼ 1)



 .

(4.36)

With the homogeneity property of enthalpy ∂2H/∂(S , n∼)2 · (S , n∼) = 0∼ , this equation

simplifies to

W = (T1 − T0) Ṡ 1 + (µ∼ 1 − A≈
T µ∼ 0) ṅ∼ 1 − A≈ ṅ∼ 1





∂T

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

Ṡ 1 +
∂µ∼

∂ṅ∼

∣
∣
∣
∣
∣
∣
Ṡ ,p

A≈ ṅ∼ 1



 . (4.37)

The partial derivatives are reciprocally proportional to |ẋ∼ 0|. The expression of exergy

of a general stream ẋ∼ is therefore

E(ẋ∼) = lim
|ẋ∼ 0 |→∞

W = (T − T0) Ṡ + (µ∼ − A≈
T µ∼ 0) ṅ∼ = H − T0 Ṡ − µ∼ 0 A≈ ṅ∼ (4.38)

As an example, consider a stream of a pure species or azeotropic mixture within two-

phase equilibrium conditions. Similar to a reservoir, adding heat will not influence

its intensive state, in particular T and µ∼ . The change in exergy is therefore simply

given by ∆E = (T − T0)∆S with ∆H = T ∆S , which yields the C efficiency

ηCarnot =
∆E

∆H
= 1 − T0

T
. (4.39)

84 Chapter 4. Advanced process systems engineering disciplines

Considering the E-integrated representation of enthalpy, the definition of ex-

ergy according to Equation (4.38) can be interpreted as the tangent plane distance

of enthalpy. Due to the convexity of Ḣ, this distance function is positive for all

x∼ 0 = (Ṡ , p0, ṅ∼), if x∼ 0 is at chemical equilibrium, i.e. no spontaneous chemical reac-

tions are possible in the environment.

However, pressures below p0 yield a negative exergy contribution, describing

the work necessary to compress the stream to environmental pressure. The pressure

dependency of exergy is

∂E

∂p

∣
∣
∣
∣
∣
Ṡ ,ṅ

=
∂Ḣ

∂p

∣
∣
∣
∣
∣
∣
Ṡ ,ṅ

= V̇ > 0 for ṅ∼ > 0 . (4.40)

There is an important difference between exergy and available energy, as positive

work can be extracted from an accumulated state at vacuum. Available energy is

therefore always non-negative.

With a fixed T0 and µ∼ 0, the exergy defined as in Equation (4.38) is purely a func-

tion of canonical variables, and can therefore be a contribution to constitutive equa-

tions in the simulation context. With E being a process property y, Equation (4.20)

can be applied, and exergy analysis can be combined smoothly with the tasks of sen-

sitivity analysis and process optimisation.

4.6.3 Selection of an ambient state

The ambient state is in general different from the reference state of the underlying

thermodynamic model. The latter one depends on the availability of data, hence

most models are based on Tref = 298.15 K and pref = 1 bar. Merely the chemical

potential is easily converted to different recipient species by a linear enthalpy shift.

The ambient state could be selected freely depending on the environment of the

considered process, but this selection poses a practical problem in many cases. In

general, cooling water has a different temperature than ambient air. Selecting the

air-temperature as T0, the exergy of cooling water is found to be positive, which

causes lower efficiency values for process parts dealing with cooling water. Select-

ing cooling water temperature as T0, process parts interacting with ambient air are

disadvantaged. Even if only differences in exergy are evaluated, the non-linearity of

exergy still yields a dependency of T0 for irreversible processes. For this reason, a

suitable individual ambient temperature has to be selected for each process part in

order to compare results of an exergy analysis. A possible way to couple process

parts of different ambient conditions into one exergy analysis is discussed in the next

section.

However, the chemical potential µ∼ 0 does not contribute to the exergy balances,

as long as the atom balance is fulfilled. Consider an isothermal reactor at T0 with

an input stream ẋ∼ 1 and a product stream ẋ∼ 1, where the reaction is constrained by

4.6. Exergy analysis 85

ṅ∼ 2 = A≈ 1,2 ṅ∼ 1. The change of exergy is

∆E = (µ∼ 2 − A≈
T
2 µ∼ 0) ṅ2∼ − (µ∼ 1 − A≈

T
1 µ∼ 0) ṅ1∼ = (A≈

T
1,2 µ∼ 2 − A≈

T
1 µ∼ 0 − µ∼ 1 + A≈

T
1 µ∼ 0) ṅ∼ 1

= (A≈
T
1,2 µ∼ 2 − µ∼ 1) ṅ∼ 1 . (4.41)

The selection of ambient pressure p0 affects E only indirectly by the pressure-

dependency of the ambient chemical potential µ∼ 0. Exergy differences are therefore as

well independent of ambient pressure.

4.6.4 Processes of multiple ambient states

Most plants have access to more than one reservoir, typically water and air with

different temperatures and chemical potentials of the recipient species. Generally, one

could suggest to exploit the driving-forces in an infinitely sized engine, and thereby

assign the zero efficiency to all finite processes. This strict criterion is obviously not

suitable for real processes.

However, without entering the deep subject of finite-time thermodynamics, it

can be observed that in order to combine two reservoirs within one process, at least

one of them has to be acquired, e.g. by a material stream. The process must be

separated into sub-processes with a definite ambient reservoir associated to each of

them. This approach requires a minimum of process insight, namely which streams

are exchanged between sub-processes within different environments. Within these

sub-processes, the ambient conditions are used to define exergy. Consequently, the

calculated value of exergy steps up or down on the interfaces between them.

A step downwards means that exergy, which could have been utilised in the

source environment, is wasted into the other system, where it is less valuable – simi-

larly to exporting goods to a country with lower prices for this article. Clearly, such

a transition must be considered as a loss. A step upwards, however, indicates a po-

tential for utilisation of a finite amount of exergy from one reservoir within another.

The gain in exergy is clearly an input to the downstream process.

This approach does not require a process to utilise a potential difference in avail-

able ambient states, but once a process acquires exergy from one environment within

another, it is considered as input to the process – hence a loss if not exploited.

4.6.5 Relative exergy efficiency

It is in general a bad idea to define key performance indicators as quotients of energy

figures, as the zero-level is arbitrarily chosen. For an oil-pipeline, an efficiency of

nearly 100% is calculated, if the heat of formation of chemical species is considered.

A more suitable approach then considers only the pressure drop, as the pipe does not

(and is not supposed to) utilise the oil’s heat of combustion. The efficiency based on

energy or exergy is therefore zero, which is typical for any kind of horizontal trans-

port. Sorin et al. (2000) therefore introduces transiting exergy as the unaffected part,

86 Chapter 4. Advanced process systems engineering disciplines

consumed exergy as the input exergy to be converted, and produced exergy as output.

Considering complex processes, it is a challenge to assign these fractions correctly,

and necessary information might not be available. Sorin et al. (1998b), Sorin et al.

(1998a) and Siepmann et al. (2001) invested effort to provide a consistent basis for

comparability. Hinderink et al. (1996) also suggest a split of exergy into different

contributions, to which they refer to as mixing, chemical and physical exergy. How-

ever, considering the canonical approach, it is more natural to consider contributions

associated to canonical state variables, hence a thermal, mechanical and a chemical

part based on changes in T , p and µ∼ :

E = (µ∼ (T0, p0)−A≈
Tµ∼ 0))ṅ∼

︸ ︷︷ ︸

Ech(ṅ∼)

+ (µ∼ (T0, p)−µ∼ (T0, p0))ṅ∼
︸ ︷︷ ︸

Emc(p, ṅ∼)

+ (T−T0)Ṡ +(µ∼ −µ∼ (T0, p))ṅ∼
︸ ︷︷ ︸

Eth(T, p, ṅ∼)

.

(4.42)

Other decompositions are possible, e.g. E = Eth(T)+Emc(T, p)+Ech(T, p, ṅ∼), but less

practical, if the ambient chemical potential must be evaluated at process conditions,

and a thermodynamic model must be available to perform such a calculation.

As an example to clarify the benefit of a decomposition as in Equation (4.42),

a hydrogen burner to generate high pressure steam from condensate is considered.

Hydrogen

Ambient air

Water

HP steam

Exhaust

ẋ∼ 1

ẋ∼ 2

ẋ∼ 3

ẋ∼ 4 ẋ∼ 5

Figure 4.9: Hydrogen burner to generate high pressure steam.

Table 4.3: Stream table of the hydrogen combustion process. In the scope of this

table, xi denotes the mole fraction of species i.

Condensate Ambient air Hydrogen Exhaust Steam

T [◦C] 90.0 20.0 20.0 123.5 393.2

p [bar] 45.0 1.013 200.0 1.013 45.0

m [kg/h] 295.1 346.0 7.26 353.2 295.1

xN2
[%] 77.7 67.6

xO2
[%] 20.7 5.0

xH2
[%] 100

xH2O [%] 100 1.6 27.4 100

E [kW] 8.8 0.0 250.3 7.5 105.6

The process is shown in Figure 4.9, supplemented by the stream table 4.3 from the

4.6. Exergy analysis 87

process simulation. The total exergy figures are based on ambient air and evaluate

to an absolute exergy loss of 146 kW with exhaust gas considered as a byproduct to

be utilised later. A plain quotient of outgoing divided by incoming exergy suggests

an efficiency of ηmax = 44%, assuming all exergy being converted. Considering the

process as a black box and only viewing the exergy figures, the assumption might

be that no exergy is converted at all. The amount of 113.1 kW would be assigned

to transiting exergy, and 259.1 kW accounted for as loss. This interpretation results

into ηmin = 0%. The true efficiency η is therefore constrained by ηmin < η < ηmax.

However, the process gas and the steam systems are two decoupled material systems.

Due to the second law of thermodynamics, the exergy increase in one material system

can only be explained by internal exergy conversion, so it is possible to find a better

lower limit: ηmin = (E5−E1)/(E3+E2−E4) = 40%. Decomposing the exergy values,

Table 4.4: Decomposed exergy E [kW] of the hydrogen combustion process.

System Type Input Output ∆E Comment

thermal 0.0 1.76 1.76 heat in exhaust gas

process mechanical 13.2 0.0 -13.2 pressure drop of hydrogen fuel

chemical 237.1 5.7 -231.4 heat of combustion

thermal 2.7 99.4 96.7 evaporation of water

steam mechanical 0.36 0.36 0.0 constant steam pressure

chemical 5.8 5.8 0.0 no chemical reactions

as defined in Equation (4.42), yields values as reported in Table 4.4. Input and output

figures are balanced for each material system. In this example, the exergy of process

input is delivered through the hydrogen feed, while the exhaust gas represents the

output. Water and HP steam represent respectively the input and the output for the

steam system.

Without any knowledge about the process, it is clear that differences in net values

are consumed (negative) and produced (positive) fractions. Assuming all other ex-

ergy to be transiting, ηmin can be recalculated as ηmin =
1.76+96.7
13.2+231.4

= 40.25%. Even if

more exergy was converted in practice, this conversion would not be necessary to pro-

vide the functionality of the process, such that η = 40.25% is a representative figure.

The decomposed exergy figures also quantitatively indicate reasons for irreversible

effects, e.g. the loss of 13.2 kW (5.4%) mechanical exergy due to non-utilised expan-

sion of high pressure hydrogen gas.

This approach considers the exergy of the exhaust gas as a product. In fact, down-

stream processes can utilise the temperature and composition difference to ambient

air, and it is not a property of the considered hydrogen burner process whether this is

done or not. However, one might include the stack into the process. The stack has

zero efficiency, as no work is extracted, while the ambient state is approached. The

efficiency in this case is ηmin =
96.7

13.2+237.1
= 38.63%.

However, an exergy analysis of this kind requires some amount of logical and

88 Chapter 4. Advanced process systems engineering disciplines

computational overhead compared to the basic process simulation. In order to ap-

ply Equation (4.42), the chemical potentials in each considered stream have to be

evaluated not only for (T, p), but as point calculations also for (T0, p0) and (T0, p).

The available thermodynamic models might not be predictive at ambient conditions.

Furthermore, even though the total exergy is a derived property of canonical state

variables, this is not the case for its contributions. This detailed exergy analysis is

therefore not easily applicable to process optimisation.

As a solution to the problem, a specialised FM can be implemented to evaluate

the state not only at process conditions, but as well at (T0, p0) and (T0, p). Such a

FM can evaluate the exergy figures required for the detailed analysis described in this

section.

Chapter 5

Yasim

5.1 Introduction

In parallel to the development of methods and technologies as a basis for canonical

modelling, an actual process simulator tool called Yasim has been designed and im-

plemented in this work. The name Yasim is an abbreviation for Yara simulator, as

its first industrial applications and therefore a significant driving force for develop-

ment of a graphical user interface were simulation assignments of the international

fertiliser producer Yara International ASA. In particular urea synthesis processes re-

quire a strong flexibility regarding thermodynamic modelling and handling of nu-

merous significant recycle streams and external constitutive equations. Despite high

licence costs for commercial software, the required flexibility for this kind of mod-

elling was not available. It is in particular problematic to find a flexible equation

oriented process simulator, which supports tailor-made thermodynamic models in a

consistent maintainable framework.

Yasim is therefore developed as a canonical process simulator also driven by in-

dustrial needs instead of pure academic aspects. The aim of design is therefore in

particular a suitable mix of flexibility and simplicity. The main concept can be de-

scribed as follows:

Solve simple problems in a simple way, and make it possible to solve ad-

vanced tasks.

Furthermore, three different levels of process knowledge are identified as shown in

Figure 5.1. The computer requires a mathematical representation of a process model.

This primary process information includes not more than a set of variables ψi and

equations, as well as suitable initial values and numerical specifications of process

parameters. Internally, a heat transfer equation has the form ψ1 − ψ2 ψ3(ψ4 − ψ5) = 0

with ψ5 = 298.15. However, this representation is of little value for the human

engineer, and reverse engineering towards a more understandable form is difficult.

A process modelling tool must therefore preserve e.g. the physical interpretation of

89

90 Chapter 5. Yasim

Process model

Information necessary for

the engineer to handle

primary information

Secondary information

Information necessary for

the computer to obtain

a solution

Primary information

Information necessary to

maintain the process

model

Tertiary information

Initial values

Equations & variables

Parameter specifications

FMs & streams

Physical interpretation

Physical dimensions

of variables and equations

Association DOF −> Equation

FM hierarchy

In−place documentation

Figure 5.1: Different levels of process knowledge.

variables and equations as secondary information. In this case, we have a heat trans-

fer equation formulated as Q − (kF)(T − T0) = 0 with T0 = 25 ◦C. The tertiary

information is important to pick up and re-understand a process model, even with

many weeks between the creation of the model and the continuation of the work. It is

furthermore of high value for new engineers, who get involved into the development

and maintenance of an existing process model. In today’s practice, this is typically

put into reports besides the process model and easily yields inconsistencies between

documentation and the actual process model. It is therefore desirable to enforce as

much self-documentation as possible.

The analysis and maintenance of degrees of freedom (DOFs) is a central issue in

process modelling. Most tools offer two big containers, one for equations and one for

variables – simulation is possible if both containers are equally full. The canonical

modelling basis in Yasim however allows for one-to-one mappings between DOFs

and equations. This is very useful, in particular to comprehend the intentions and

thoughts of the process model’s author.

Yasim consists of two main parts: An inner core that implements the administra-

tion of thermodynamic models, process models, model parameterisation and all the

calculations including the solution scheme described in Section 3.3.2. This kernel is

written in the programming language C++ and provides a programmer’s interface as

a set of libraries. The functionality available on this level covers the complete scope

of Yasim.

The second main part is a graphical user interface, which has been developed

using Microsoft Visio as a front-end. Through this interface, the basic functionality

has been used efficiently in various projects within the research facilities of Norsk

Hydro ASA and Yara International ASA in Porsgrunn, Norway.

This chapter concentrates on the main design aspects of the calculation core,

which are based on the derived concepts of the previous chapters, but supplemented to

enhance maintainability and ensure consistency of process models. Section 5.3 gives

5.2. General process modelling approach 91

an overview over design features on the top level, after the basic concept is explained

in the following section. In particular, a detailed and complete documentation of the

entire software is not in scope of this work.

5.2 General process modelling approach

This section describes a general approach to establish a process model, which is not

necessarily limited to the canonical approach. However, each step is naturally as-

sociated to certain concepts of this work, such that a brief discussion will clarify

the context of the following sections. As shown in Figure 5.2, the first sub-task for

Yasim determines the

available DOF for each FM

Yasim determines the solution

of the process model or

fails with an error message

Yasim determines the set of

active process parameters

process modelling task

available results

Define/refine process topology,

species sets, thermodynamic

models and reacting systems

Execute calculation

Constrain process model with

constitutive equations by

utilisation of available DOF

Assign numerical values

to active process parameters

Figure 5.2: Interaction between user and Yasim to solve a process modelling task.

the user is to define the process topology, instantiating flowsheet modules (FM), es-

tablishing couplings, defining sets of chemical species to be considered and reacting

systems. This step determines the canonical equation system completely, while no in-

formation is yet provided to start defining the constitutive equation system. However,

Yasim identifies the available DOFs for each FM as described in Section 3.3.2. The

next sub-task to establish the process model is to define process parameters, proper-

ties and constitutive equations where necessary, and constrain the process model by

one constitutive equation for each DOF. This step defines the constitutive equation

system and Yasim determines the set of active process parameters. Finally, these pro-

cess parameters are given numerical values and the calculation is executed. Each of

the described three modelling steps can be refined, if Yasim does not find a solution

or the model should be further modified or extended.

5.3 Software design

Figure 5.3 shows a typical representation of a process model in Yasim. The concept

reflects the structure shown in Figure 2.4, enabling a hierarchical module structure.

92 Chapter 5. Yasim

Composite FM

Atomic FM

Atomic FM

Process propertyCoupling Constitutive equation

Input portExported output portOutput port

Process model

Exported input port

Feed

Cooling water

Process air

∆S =0

∆S =0

Wrev := ∆H

W := 1
η

Wrev

W := 1
η

Wrev

W−Wspec=0

∆H−(1
η
−1)Wrev=0

Figure 5.3: Example of a typical hierarchical process model structure.

Within the process model, the compressor appears as an ordinary FM with one input

port and one output port. W − Wspec = 0 is a constitutive equation attached to this

FM, and the user can adjust the value for the process parameter Wspec. As described

in Section 3.6.2, the compressor is a composite FM. The right side of Figure 5.3

shows the inner topology with internal couplings, constitutive equations, and process

parameters.

A key design requirement is to keep FMs maximally independent of their parent

FM. The following sections describe the software design of various groups of func-

tionality to a FM, which are designed to smoothly fit into this concept. The function-

ality is grouped into equations and DOFs, continuous and discrete process param-

eters and properties, thermodynamic models, chemical reactions, input and output

ports and executive functionality, such as simulation and optimisation. A FM pro-

vides these groups of functionality through various handlers as shown in Figure 5.4.

Basic design ideas are inspired by the European CAPE-OPEN (computer aided pro-

FlowsheetModule

CompositeFlowsheetModuleHandler SensitivityHandler

PortHandler

EquationHandler

ReactionHandler

ThermoGroupHandler

VariableHandler

CompositeFlowsheetModule

1

11

1
1

1

1..*

1

1

1

1

0..1

1

1

1 0..1

Figure 5.4: Functionality of flowsheet modules with its interfaces partitioned into

handlers.

5.3. Software design 93

cess engineering – open process environment) project (Braunschweig et al., 1999,

2000).

5.3.1 Handler for thermodynamic groups

As shown in Figure 5.5, a thermodynamic group in Yasim is defined as a tuple con-

sisting of the following attributes:

Identifier: A textual name of the thermodynamic group. The identifier is unique

within its scope, which it is defined for, i.e. the FM it is contained in.

Thermodynamic model: The implementation of a thermodynamic model, capable

of performing point calculations on the given set of chemical species.

Set of chemical species: A set of identifiers of chemical species, which is used to

gather relevant thermodynamic properties from the database, to test the valid-

ity of couplings between two material ports, to collect stoichiometric data for

establishing element balance equations within a reactor FM, and as secondary

information (cf. Figure 5.1) for the engineer to be able to interpret species-

specific data.

ThermoGroupKey

ThermoGroupMap

ThermoGroupHandlerFlowsheetModule

PhysicalPhase

ThermodynamicModel

SpeciesSet

Species

Formula

Identifier ChemicalElement

1

1
11..*

1
1..*

1..*

1

1

1

1
1

11..*

1

1..*

1
1 1

1
*

1..*

1..*
*

1

1

Figure 5.5: Handling of thermodynamic models in Yasim.

The thermodynamic model itself provides a state function P(x∼) with first and second-

order derivatives ∇∼ and H≈ , furthermore an interface to access the thermodynamic

parameters. Symbolic derivatives of P, ∇∼ and H≈ with respect to parameters can be

obtained as well. In order to utilise a thermodynamic model in Yasim, a series of state

transformations is applied as described in Section 2.5.2.

Within the handler, thermodynamic groups are hosted in a map, of which the

keys are used by actual physical phase objects to obtain the correct thermodynamic

group. Consider a vapour liquid equilibrium of moist air over NaCl-solution. The

liquid phase will seek for a key ’liquid’, for which the handler will probably host

an NRTL-model (Non Random Two Liquid) considering the chemical species H2O

and NaCl. The vapour phase will find an SRK-model hosted under the key ’vapour’.

94 Chapter 5. Yasim

A more detailed example, demonstrating the application in a hierarchical context, is

given at the end of this chapter on page 100.

5.3.2 Handler for process properties and parameters

The main focus of this handler is the definition of process properties y∼ and process

parameters u∼ within the scope of a FM. All process variables consist of an identifier,

which is unique in its scope, a numerical value and a physical dimension. The latter

one is identified by a set of basic dimensions (currently length, time, mass, tempera-

ture and quantity) associated with an exponent. The physical dimension of a heat duty

Q is therefore represented by [Q] = mass1 · length2 · time−3. This approach allows for

consistency checks and to obtain physical dimensions of successive expressions, but

does not specify the actual unit of measurement, namely MW or kWh/s. The physi-

cal dimension solely defines the set of valid units of measurement for a given process

variable.

Basic process properties (e.g. n∼ , µ∼), which are available through the solutions x∼
and λ∼ of the canonical equation system, process parameters (e.g. pspec), and derived

process properties (e.g. %) are specialisations of process variables. As shown in Fig-

ure 5.6, each process variable can be used within the definition of new process prop-

erties and constitutive equations. These definitions are based on variable collectors,

FlowsheetModule

BasicProcessProperty ProcessParameterPhysicalPhase

VariableCollectorConstitutiveEquation

VariableHandler

ProcessVariableProcessProperty

PhysicalDimension

EquationHandler

1
11

collects

* *1..*

*

1..*
1

*

1

1
1

1..*
1

* 1

1

inheritance
restrictive

Figure 5.6: Design of process parameters and properties.

which link a symbol or a set of symbols within an algebraic expression to process

variables within the scope of the defined object. Variable collectors represent an im-

portant layer to separate definition and instantiation. Abstract expressions, e.g. for

pressure drop from an upstream module, can be defined, before the upstream module

is connected or even instantiated. Just before actual calculations are conducted, all

expressions link to their symbols and generate a symbolic algebra graph. Symbols

can point to process variables that are defined in the same FM, a direct child FM or

based on a material flow between two child FMs.

Constitutive equations are a restricted specialisation of process properties. Like

for other process variables, variable collectors are used to associate symbols within

5.3. Software design 95

its definition to other process variables. A constitutive equation also needs to be

consistent regarding physical dimensions. The value of a constitutive equation is

actually the current residual during the solution process. However, in the context

of process model parameterisation, it is not of particular interest. The restriction

is therefore that a constitutive equation can not be included as a symbol inside the

definition of another process property.

The approach to define properties as explicit expressions of already defined vari-

ables avoids additional load to the solver. The canonical approach only allows for

one implicit equation for each natural DOF. As proven so far in many applications

of Yasim, process models do not require additional independent variables as a sup-

plement to the canonical basis. However, Yasim is not a general equation solver, but

clearly limited to physical systems, of which the state is completely described by the

thermodynamic state vector x∼ of physical phases.

5.3.3 Handler for equations and degrees of freedom

EquationHandler

ConstitutiveEquation

EquationSlot

EquationSpecificationExportedEquationSlot

0..1
1

1

0..1

1
1 1

0..1

1

* *

1
FlowsheetModule

Figure 5.7: Design of constitutive equations and DOFs.

The equation handler hosts objects to represent DOFs and constitutive equations.

An equation slot is a released balance equation according to the concept described

in Section 3.3.2, and represents a DOF. An equation is represented by an expression,

which calculates the residual of the equation dependent on imported process variables

as described in the previous section. The equation specification object works in the

same way as the variable collector, as it represents a link to an equation, which is

resolved just before actual calculations. As an important restriction, each defined

equation can be used maximally once. An equation slot can be unused, so that the

underlying canonical balance equation (e.g. conserving enthalpy) is used. Even if

the equation specification links to an equation, the equation slot can still be exported.

A constitutive equation defined in the parent FM can then be associated with this

DOF. For exported equation slots, the locally linked equation will only be used, if the

FM itself is the process model. Otherwise, the exported slot determines the actual

equation used. Within nested FMs, equation slots can always be exported up to the

global process model level.

However, like process variables, constitutive equations cannot be exported. If

export of constitutive equations was enabled, the contained variable collectors would

not necessarily have access to their target process variables within the parent FM. The

96 Chapter 5. Yasim

data encapsulation, which prohibits this access, is an important paradigm to preserve

maintainability of process models.

FM C

Exported slot Exported slot

Equation 2

Equation 1

Slot

(b)(a)

FM A

Equation 1

Slot
FM A

FM BFM B

(c)

Equation 1

Slot
FM A

FM B

Figure 5.8: The principle of equation slots and constitutive equations.

Figure 5.8 shows a typical configuration example in the context of a composite

flowsheet module:

(a) FM A provides an equation slot and a constitutive equation (Equation 1) as-

signed to the equation slot. Instantiated into FM B, Equation 1 is therefore an

active constraint to the process model. In parallel to Equation 1, there might be

other constitutive equations defined, which however, if not associated to other

equation slots, are inactive.

(b) Composite FM B is configured to be instantiated as a child FM. For this pur-

pose, the equation slot is exported in order to be visible in the parent FM con-

text. The represented DOF can subsequently be utilised from there. FM B still

can be executed as a process model. In this case, Equation 1 is still active.

(c) In the context of FM C, Equation 1 is no longer active. A new equation (Equa-

tion 2) is defined, and contributions of process variables from various FMs next

to FM B might be the motivation to define this equation at the outer level. If

Equation 2 would only be contributed by process variables of FM B, the pro-

cess model would be most maintainable with this equation being defined in FM

B. Finally, Equation 2 is activated by assigning it to the exported slot.

5.3.4 Handler for input and output ports

Figure 5.7 shows the handling of objects related to material flow. Every FM hosts

a port handler that defines input and output ports. As a composite FM contains

child FMs, the composite FM handler holds coupling objects that represent a ma-

terial stream from exactly one output port to one input port of another FM. An output

port can only be linked to one coupling, but might as well remain unconnected if the

material stream leaves the system boundaries. An input port must be connected at

5.3. Software design 97

PortHandlerFlowsheetModule

Coupling

InputPort
SourceModule

ExportedOutputPort

OutputPort

CompositeFlowsheetModule

ExportedInputPortCompositeFlowsheetModuleHandler

1
111..* 1

1

1
1..**

1

0..1

*

1
*

1

0..10..1

1

11

Figure 5.9: Design of material ports and couplings.

least once, but might retrieve many couplings, in which case all incoming material

flows are considered. The FM implementation determines the boundary conditions

of mixing, most commonly ṅ∼ total =
∑

i ṅ∼ i, Htotal =
∑

i Hi and ptotal = mini pi.

A coupling between an output port and an input port is valid, if the chemical

species provided by the output port are accepted by the input port. In particular, not

all species accepted by the input port have to be provided through a single coupling.

As shown in Figure 5.3, an output port can either be exported or coupled to the

input port of another FM. An exported output port is hosted by a composite FM and

represents an output port of a child FM. An exported input port however does not

represent the input port of a child FM, as this would make it impossible to calcu-

late a child FM as a stand-alone module. As it can be seen for the compressor in

Figure 5.3, a source module, which in local context represents a material reservoir,

can be exported as an input port in a global context. An outer process model will

then disregard the local source module, and link the material flow directed to the

exported input port to the input port downstream of the source module in the local

context. This mechanism is further clarified by an example at the end of this chapter

on page 100.

5.3.5 Handler for reactions

Reactions are only supported by a subset of FMs, therefore not all FMs host a reaction

handler. The current implementation only allows for at most one reaction handler per

FM, but composite FMs could host many, related to different child FMs. As shown

in Figure 5.10, the reaction handler maintains a number of different species sets.

Initially, the inert and key species set is empty, hence the constraint matrix for each

physical phase and input port is generated as element balances respectively based on

the species defined in phase and accepted species sets. According to the approach

described in Section 3.5.3, additional balance equations are introduced for key and

inert species. While the species balance for inert species is meant to be an active

constraint, the species balance of a key species serves as a DOF for any kind of

constitutive equation. Figure 5.11 shows the reactivity of a system containing N2,

O2, NO2, and N2O4. Initially, all species are reactive, and two independent reactions

98 Chapter 5. Yasim

PortHandler

EquationHandlerReactionHandler

EquationSlot

FlowsheetModule

StoichiometricMatrix

KeySpeciesSet

InertSpeciesSet

SpeciesSpeciesSet

InputPort

PhysicalPhase

PhaseSpeciesSet

AcceptedSpeciesSet

1

1 1 1

1

1 1

1 1

1

1

1

1

1..*1..*

1

0..1

*

1

*

*

1

*1

1..*

1

or

defines

1 1..*

1

1

1

1

1..*

1

0..1

Figure 5.10: Design of chemical reaction handling.

NO2 N2O4

N2 O2NO2 N2O4

N2 O2NO2 N2O4

O2N2

NO2 N2 O2 N2O4

species
Inert

species
Equilibrium

species
Locked

Inert system

Reactions

N2+2O2 � 2NO2

N2+2O2 � N2O4

2NO2 � N2O4

2NO2 � N2O4

Figure 5.11: Different stoichiometric constraints on the nitrogen – oxygen reactive

system.

5.3. Software design 99

are possible. Defining N2 as an inert species, there is no possible reaction involving

O2. When NO2 is declared as inert, the entire system is locked and no chemical

reaction is enabled. In the last step, N2 is again permitted to participate in chemical

equilibrium. With this, O2 and N2O4 also become reactive again.

An important design limitation is the one-to-many relation between a reaction

handler and physical phases. The union of chemical species in all phases determine

the constraint matrix. The desirable association between definitions of reactions and

thermodynamic groups is therefore not applicable.

5.3.6 Handler for composite flowsheet modules and optimisation

The composite flowsheet module handler is mainly responsible to host the flowsheet

topology, i.e. child FMs and couplings. Because every well-defined composite FM is

a functional process model in itself, a solver object and a sensitivity handler are cre-

ated on demand. Figure 5.12 shows the structure diagram of this context. The solver

FlowsheetModule

CompositeFlowsheetModule

CompositeFlowsheetModuleHandler

SolverParameters Solver

Coupling SensitivityHandler

DependentVariableSet

IndependentVariableSet

ProcessParameter

ProcessVariable

VariableCollectorSet

VariableCollector

1 1 1

1

1
0..1

1

1

1..*
*

1

0..1

1
1

1

1 *

*

1..*

1..*

1..

1

*

Figure 5.12: Design of process topology and sensitivity handler.

object is generated prior to a simulation run. The separated solver parameters contain

options to tune convergence criteria for the constitutive and canonical equation sys-

tem, a tolerance limit for near-zero pivot elements to detect linear dependencies, and

the relaxation parameter fγ according to Section 3.8. If defined, the sensitivity han-

dler hosts a set of independent and dependent variables. Equation (4.20) is then used

to obtain the desired J matrix, after the simulation is completed. The vari-

able sets are implemented through variable collectors as introduced in Section 5.3.2.

While every process variable can be declared as a dependent variable, only process

parameters are candidates for independent variables. The trivial case of defining a

process parameter as a dependent variable is not considered. However, the user can

force this by defining a process property as y = u if desired.

Considering the example shown in Figure 5.3, Wspec and η are typical process

parameters, therfore candidates for independent variables. The compressor outlet

pressure and temperature are examples of process properties, which can represent

dependent parameters in this context.

100 Chapter 5. Yasim

As soon as the optimisation handler is activated, there must be at least one de-

pendent and one independent variable declared in order to obtain a J matrix

of non-zero size. The sensitivity handler provides functionality to set, get and update

the independent variable vector, get the dependent variable vector and the J

matrix.

5.4 A configuration example

The practical example given in this section clarifies the direct application and func-

tionality. As one example can not be exhaustive, the intention is to substantiate the

contents of the previous section. The objective of the example is to define a sim-

ple process model for a heat exchanger. This composite flowsheet module should

be usable from a parent context and provide standard constitutive equations for heat

transfer. Naturally, different fluids are considered on the tube and shell side.

The first step to set up this process model is to define thermodynamic groups.

Two identical pure water models are sufficient as place-holders for different groups

when applied as a composite FM, named Shell and Tube. The keys within the map are

not identical to the identifiers, but denoted by lowercase shell and tube. The next step

1

2

Output

OutputInput

Input

Tube

Shell

Output
Tube Input

process: tube

Shell Input
Output

process: shell

tube: Tubeshell: Shell

Composite FM

process: tube

process: shell

(a)

2

1 Output

OutputInput

Input

Tube

Shell

process: shell

process: tube

(b)

tube: Tube

Output

Shell

Output

Tube

Shell Input

Tube Input
Output

Output

process: shell

process: tube

shell: Shell

Composite FM

Input

Tube

Input

Shell

QTube−QShell=0QTube−QShell=0

Figure 5.13: Definition of process topology for a simple heat exchanger.

is to define the process topology as shown in Figure 5.13(a). A one-phase module is

defined for both, shell and tube side, each fed by a source module. These child mod-

ules inherit the thermodynamic groups from their parent context. The mechanism for

the FM Shell Input to define and maintain its thermodynamic group is as follows: The

map of the FM contains a key called process. The thermodynamic group addressed

is a copy of Shell in the parent context, named after the key hosting it.

In Figure 5.13(b), the non-connected output ports are exported to the composite

level and named as Tube Output and Shell Output. The source modules are as well

exported and named Tube Input and Shell Input. Both actions have no impact on the

process model as such, but define the interface, when later used as a child FM.

5.4. A configuration example 101

The equation slots provided by the source modules are used to specify the flows

for a local test-case. For pure water flows, there are three DOFs each, which might be

specified as temperature, pressure and mass flow. The equations associated to these

DOFs and the entire source modules will however only be used for local calculations,

not if instantiated as a child FM.

The one-phase modules provide two DOFs each. The material balances stay

constrained in the canonical system, but the balance equations of the first two state

variables, for instance S and V , are released. For a simple model, both pressure drops

are defined as zero, leaving two DOFs to define the heat transfer. The representing

equation slots are both exported to the composite level. Both modules make their

heat duty Q visible on the composite level as a process property. Here, the equation

QTube − QShell = 0 is defined and plugged into one of the exported equation slots.

Various heat transfer equations can now be defined on the composite level, including

incoming and outgoing process properties, such as e.g. temperatures and flows. On

Input

Shell

Shell

Output

Tube

Input

Tube

Output

shell: water

tube: nitricAcid

HE

Cooling water

Warm acid

process: water

Composite FM

water: Water nitricAcid: NitricAcid

process: nitricAcid

Figure 5.14: Usage of the heat exchanger as a child FM.

instantiation as a child FM, these predefined equations can be offered to the user,

selecting one of them to utilise the remaining DOF. Figure 5.14 shows the usage of

the new heat exchanger model in a parent context. The instantiation is called HE

and appears basically indistinguishable from atomic FMs. The exported input and

output ports are visible, while the inner process topology is hidden. Furthermore,

place-holders for two thermodynamic groups are defined, now filled with one group

for water (shell) and the other for nitric acid (tube). When instantiated, the thermody-

namic group water inserted into the shell placeholder will trigger the thermodynamic

groups called shell in each child FM to be replaced by a copy of water recursively.

The heat exchanger offers its defined heat transfer equations and one DOF. How-

ever, the parent FM might define and utilise additional equations or actually apply

two heat transfer equations simultaneously – one physically motivated and one based

on first principles – e.g. to determine the required temperature difference. This tech-

nique requires the utilisation of DOFs external to the the heat exchanger.

102 Chapter 5. Yasim

5.5 Software architecture of Yasim

Yasim core

program
C++ example

Swig

Python script

Zope MS Visio

Python script

C++ Python

XML−RPC

− data reconciliation

− process optimisation

− case−study
− ...

other platformLinux

− testing
− small examples

Measurement data

for data reconciliation

process model

definition
− graphical user interface
− process simulation

Figure 5.15: Yasim software architecture and programmers’ access points.

As shown in Figure 5.15, the core of Yasim is implemented as a framework in

the programming language C++ on Linux-platforms. Most examples in this work

have been programmed through direct access by C++ main-programs. The main

functionality is made available through Swig (Swig, 2005) as a python-interface. The

programming language python (Python, 2005) is much more suitable to adminis-

trate process models than C++. Through the web application server Zope (Zope,

2005), Yasim can be accessed remotely via XML-RPC (XML-RPC, 2005) on arbi-

trary platforms. A graphical user-interface is developed using Microsoft Visio (MS

Visio, 2003).

With this variety of access-points, Yasim can be utilised with high efficiency in

industrial relevant projects. Typically, the process model is established using the

graphical interface. A tailor-made python-script picks up that process model to exe-

cute advanced tasks as described in Chapter 4. This approach combines the maintain-

ability of larger process models through the graphical user interface, while the full

flexibility of a programming language can be applied on the same process model.

Chapter 6

Performance characteristics

6.1 Introduction

This work does not provide the solution to a specific process modelling problem, but

investigates the canonical approach as a formulation of process models in general.

The actual implementation of Yasim, as described in the previous chapter, clearly is

a practical outcome and serves as a basis for future work, both to extend the scope of

Yasim and in combination to apply the existing functionality in industrial projects, as

it is done in several cases already.

This chapter focuses on the performance of the solution methods and other nu-

merical techniques used throughout this work in general. After a discussion of the

solver properties, such as convergence rate and region, the numerical effort is inves-

tigated for different types of process models. The consistent use of symbolic deriva-

tives poses questions about the quality of differently obtained derivatives, which is

the subject of Section 6.4. Scaling problems can occur when using the current imple-

mentation of Yasim for large process models. This problem is addressed in the last

section of this chapter.

6.2 Solver characteristics

Unlike conventional equation solvers, the algorithms described in Section 3.3 solve

two equation systems simultaneously. The canonical equation system is well struc-

tured and is only dependent on thermodynamic and stoichiometric data, while the

constitutive equation system has no defined structure, and contains all geometric in-

formation and process parameters.

6.2.1 Convergence rate

The challenge of implementing the solver is to find an iteration scheme that efficiently

solves the combination of canonical and constitutive equation system. The availabil-

103

104 Chapter 6. Performance characteristics

ity of second-order derivatives makes it possible to obtain quadratic convergence,

if the equation systems are updated correctly. The algorithms in Section 3.3 only

interpret the L multipliers of the canonical system as mathematical deriva-

tives of the objective function with respect to the constraints, when the constraints

are fulfilled, which is a necessary requirement for quadratic convergence. A typical

 0

 0

log10 |p(k)/p(∞) − 1|

lo
g

1
0
|p

(k
+

1
) /

p
(∞

)
−

1
|

numerical precision

2
nd

or
de

r
co

nv
er

ge
nc

e

-2

-2

-4

-4

-6

-6

-8

-8

-10

-10

-12

-12

-14

-14

-16
-16

(0)-(5)

(6)

(7)

(8)

(9)

(10)

Figure 6.1: Convergence characteristics for the separator pressure p of the compres-

sor example shown in Figure 4.3.

progression of a variable involved in non-linear equations is shown in Figure 6.1.

Far from the final solution, the first iterations do not reduce the residual of the merit

function. The step length is even reduced in order to remain within the domain of

thermodynamic models (cf. Section 3.8). Shortly after full steps are taken, conver-

gence is of second-order, such that the residual falls rapidly beneath the limit of nu-

merical precision. The numerical precision depends on the solution method, and the

process model, which influences the condition of coefficient matrices. Avoiding the

calculation of the inverse canonical coefficient matrix, as described in Section 3.3.3,

could further reduce this level, as less critical subtractions of numerical values are

performed (Golub and Loan, 1996).

6.2.2 Convergence regions

The current implementation facilitates a trivial generation of starting values, only

reading T , p and n∼ for each thermodynamic phase from an XML-file. Because the

user will have some ideas about the approximate figures here, practical problems

6.2. Solver characteristics 105

of finding suitable starting values are not significant. The problem of finding more

intelligent initialisation routines is therefore not emphasised in this work. However,

it is very effective to restart a modified process model using recent results as starting

values.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

(2)
(1)

(0)

n
u

m
b

er
 o

f
it

er
at

io
n

s

infeasible region

(0)

(1) (2)

(0)
(1)

(2)

 1 10 100 1000 10000 100000 1e+06
 0.001

 0.01

 0.1

 1

 10

 100

 1000

T [K]

p [MPa]

Figure 6.2: Convergence of a single-phase node with varying starting values.

Figure 6.2 shows the number of necessary iterations to achieve convergence in

a single-phase source module with atmospheric air containing N2, O2, Ar, H2O and

CO2. The starting values are given by equimolar amounts of each species and varying

temperature and pressure. The process model converges for a wide range of T and

p around the solution marked by a white cross. Far-off starting values do not allow

for proper thermodynamic calculations and cause immediate problems. There is a

sharp separation line, at the left of which significantly more iterations are required.

This is caused by the cubic equation of state model, which predicts only a liquid

root at lower temperatures. The enthalpy jumps when iterating towards the desired

solution into the vapour region, and this highly non-linear feature causes the effect.

Another region of slow convergence occurs at high pressures between 500 K and

1000 K around the critical point of the mixture. The repetitive structures at high

temperatures and moderate pressures repeat within approximately one decade and

are caused by the relaxation scheme (cf. Section 3.8). With the requirement T > 0,

each temperature reducing step is restricted to change temperature no more than 90%

of its current value. The two dotted polygons starting on the high temperature side

show iteration paths constrained by this scheme.

Figure 6.3 shows a similar plot of convergence regions. This time, the starting

values for each point calculation are fixed to atmospheric conditions, but the target

specifications are altered. Most significant is the extended region of non-successful

106 Chapter 6. Performance characteristics

n
u

m
b

er
 o

f
it

er
at

io
n

s

(0)

(k)

(2)

(1)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 100 1000 10000 100000 1e+06
 0.001

 0.01

 0.1

 1

 10

 100

 1000

T [K]

p [MPa]

Figure 6.3: Convergence of a single-phase node with varying specifications.

calculations nearly covering the complete range, in which the solution is forced

within the liquid root of the equation of state. While reducing the volume during

iteration, the relaxation method does not prevent the state vector from entering the

unphysical domain with ∂p/∂V > 0. Once inside this region, the solver suggests an

increase of volume to reach a higher pressure, such that the state oscillates between

the unphysical and the vapour region. Only extreme compressed conditions allow

the solver to overleap the unphysical region directly into the liquid root and solve the

system. The first steps of the indicated example calculation with Tspec = 10000 K

and p = 100 MPa are limited by the relaxation scheme, as the volume can not be

reduced by more than 90% of its value in each iteration.

Within regions of ordinary process conditions, it can be concluded that conver-

gence towards a liquid solution can not be obtained if the starting values suggest a

vapour phase. But Figure 6.2 indicates no problems to predict vapour phase results

with starting values suggesting a liquid phase. The first update then yields a clear

vapour state, if the target state is not too close to critical conditions.

As described in Section 3.8, constitutive equations can generate similar effects.

In both cases, the current implementation of the solver relies on starting values within

the same feasible region.

6.3 Computational effort

The computational effort for one iteration is the sum of different contributions. The

current implementation according to Section 3.3 requires the

1. Calculation of state function gradient and H for each thermodynamic

6.3. Computational effort 107

phase within the process model.

2. Calculation of inverse coefficient matrices for each single atomic FM and ar-

ranging them in composite FM coefficient matrices.

3. Inversion of the composite FM coefficient matrix and solving the canonical

system.

4. Evaluation of the J of constitutive equations and calculating updates of

the right hand side.

For process models with some recycle streams, the main bottleneck is identified to

be the inversion of the main composite FM coefficient matrix. In this section, three

different process model structures are considered: (i) A linear process with no recy-

cles, (ii) a counter-current column, and (iii) a particular strongly recycled structure.

The species set chosen for this example is propane, n-butane and n-hexane. Each

flash tank is specified to atmospheric pressure and a 50% vapour fraction. Figure 6.4

(i) linear

(ii) counter−current

(iii) strongly recycled

FM1

FM1

FM1

FM2

FM2

FM2

FMm−1

FMm−1

FMm−1

FMm

FMm

FMm

Figure 6.4: Different topological structures to analyse computational effort.

shows the process topologies and resulting coefficient matrices of these three struc-

tures. Structure (i) contains no recycles. As can be seen in Figure 6.5, the sparse

block matrix structure is exploited to reduce the complexity from order 3 for general

matrix inversions to 1.85. The constitutive equation system for 100 flash modules

is of size 205 and contributes to about 10% of the total calculation time. However,

solving the canonical system of size 1500 could be performed in linear time, if the

inverse matrix is avoided as in the approach discussed in Section 3.3.3.

Process models (ii) and (iii) generate similar performance characteristics. Most

of the sparse matrix block structure is lost during explicit inversion, such that the

108 Chapter 6. Performance characteristics

process model (i)

process model (ii)

process model (iii)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100

T
im

e
p
er

it
er

at
io

n
[s

]

Number of flash modules k

t ∼ k1.85

t ∼ k2.25

t ∼ k2.46

Figure 6.5: Performance of the test implementation for different process types on a

2.0 GHz Intel © XEON
TM

CPU.

computational effort is between quadratic and cubic with respect to the number of

FMs. Still, process (ii) could be solved in linear time by avoiding explicit matrix

inversion, and even though process (iii) yields a rather unstructured coefficient matrix,

the sparsity still limits the necessary effort to solve the equation system in quadratic

time, if the explicit inversion is avoided.

The current implementation is surely a prototype mainly to show capabilities of

canonical modelling, but also to detect potentials such as those to increase efficiency

and robustness in subsequent development. At to this phase of development, a com-

parison of performance with similar process modelling tools is not representative for

the potential of this approach.

6.4 Comparison of derivation methods

Within this work, a small symbolic algebra package is implemented as described in

Appendix A.1. The two main benefits are: the possibility of runtime parsing of alge-

braic expressions, but even more important: the availability of derivatives obtained

by symbolic computations (as from now called symbolic derivatives). In this sec-

tion, symbolic derivatives are compared to analytical and numerical derivatives in the

context of the canonical flowsheet solver. A comparison of derivatives of analytical

functions is trivial, as the symbolic derivatives are identical to the analytical ones.

This section therefore concentrates on derivatives necessary to evaluate equations de-

rived in Section 4.2.2, in particular Equation (4.20) used for process optimisation and

data reconciliation.

6.4. Comparison of derivation methods 109

1:1C4 – C6

β1 = βspecp = const.

T2 = T1

∂H
∂βspec

=?

Figure 6.6: Process model to analyse differently obtained derivatives.

The purpose of the process model shown in Figure 6.6 is to represent a pair of one

process parameter and one property with an analytical relationship. The example is

chosen such that both constitutive equations and the thermodynamic model contribute

to this relationship.

The total effect of the specified vapour fraction βspec to the liquid enthalpy from

the second flash can be obtained by means of symbolic calculations through Equa-

tion (4.20). The same way, the derivatives ∂T/∂βspec and ∂n∼ /∂βspec can be calcu-

lated. The second derivatives of the thermodynamic state function are implemented

as explicit analytical expressions. As shown in Appendix C.3, these include heat ca-

pacity cp and partial entropy S̄∼ . Interpreting enthalpy as H = H(T, p, n∼ (β)) the total

differential at constant pressure is

dH =
∂H

∂T

∣
∣
∣
∣
∣
p,β

dT +
∂H

∂n∼

∣
∣
∣
∣
∣
∣
T,p

dn∼

dβ
dβ ⇒ dH

dβ
−
[

cp

dT

dβ
+ (µ∼ + T S̄∼)

dn∼

dβ

]

= 0 . (6.1)

This equation must hold, if the symbolic derivatives are correct, i.e. consistent with

the analytically available information. Figure 6.7 shows a plot of the residual of

Equation (6.1) over the accuracy of a representative process property, in this case the

enthalpy of the liquid stream from the second flash. A linear relationship can clearly

be identified, and in this case, the derivatives are well over one order of magnitude

more precise than the property itself. With high vapour fractions (βspec → 1), the

condition of the process model deteriorates, such that enthalpy can not be obtained

with full precision. Even with a precision limit of 10−5, the observed derivative is

still far more accurate, yielding a residual of only 10−10.

The traditional alternative to symbolic derivatives is the numerical approach, typ-

ically central differences. βspec is perturbed by ±∆β to obtain

dy∼

dβ
=

y∼ (βspec + ∆β) − y∼ (βspec − ∆β)

2∆β
+ O(∆β2) with y∼ = (H, T, n∼) . (6.2)

Figure 6.8 shows the quality of numerical and symbolic derivatives for various pre-

cisions obtained in the process simulation step. Obviously, the symbolic derivative is

independent of ∆β, but at high precision calculations, fluctuations around a constant

value due to the numerical precision limit of that process model become visible.

The precision of numerically obtained derivatives is limited by the precision of

symbolical derivatives at low precision of the simulation, but otherwise not corre-

lated. The deviation increases quadratically for large ∆β, as is expected according

110 Chapter 6. Performance characteristics

−14

−12

−10

−8

−6

−4

−12 −10 −8 −6 −4 −2

βspec = 0.001

βspec = 0.3

βspec = 0.999

1.0347ψ − 1.31197

log10 | H
H(∞) − 1|

lo
g

1
0
|∆

(d
H
/d
β

)

d
H
/d
β
|

Figure 6.7: Precision of symbolic derivatives compared to process properties.

−4

symbolical derivative

symbolical derivative

numerical derivatives

symbolical derivative

−1−2−3−4−5−6−7−8−9−10

−14

−12

−10

−8

−6

log10 ∆β

lo
g

1
0
|∆

(d
H
/d
β

)

d
H
/d
β
|

log10 | H
H(∞) − 1| < −5

log10 | H
H(∞) − 1| < −7

log10 | H
H(∞) − 1| < −10

Figure 6.8: Comparison between symbolical and numerical derivatives.

6.5. Properties of the coefficient matrix 111

to Equation (6.2). For small ∆β, the finite difference y∼ (βspec+∆β) − y∼ (βspec−∆β)

develops a constant non-zero contribution, such that lim∆β→0 dy∼/dβ = O(∆β−1). This

limitation is equally visible in Figure 6.8.

6.5 Properties of the coefficient matrix

The main limitations to the obtainable numerical precision are the conditions of the

coefficient matrices both of the canonical and the constitutive equation systems. With

measures of various physical quantities such as pressure, energy, volume, etc. forced

into one matrix, conditioning problems can become a limitation to the obtainable nu-

merical precision. A gas separation process model of three pressure stages, contain-

 0

 10

 30

 25

 20

 15

 10

 5

−12 −10 −8 −6 −4 −2 0 2 4 6

 6 4 2 0−2−4−6−8−10−12
 0

 5

 25

 50

 75

 100

 125

fr
eq

u
en

cy
fr

eq
u

en
cy

scaled coefficient matrix

eigenvalues

unscaled coefficient matrix

precarious

cond B≈ = 1018

cond S≈ rowB≈ S≈ col = 105

log10 |ω|

log10 |ω|

Figure 6.9: Eigenvalue distribution of scaled and original coefficient matrices.

ing 22 FMs, three recycles and vapour-liquid-liquid equilibria is established. Consid-

ering 11 chemical species (C1−6, i-C4,5, H2O, N2, CO2), the canonical system is of

size 997 × 997. The top diagram in Figure 6.9 shows the distribution of eigenvalues

of the original matrix, identifying in particular 5 precarious eigenvalues of a mag-

nitude below 10−8. All corresponding eigenvectors are linear combinations of state

variables representing enthalpy, substantiating the hypothesis of this being caused by

bad scaling. As enthalpy is represented in measures of Joule (J), rather big numbers

(≈ 106) are produced compared to the conjugated measure in K−1 (≈ 10−3). Thus, an

eigenvalue of 10−9 is natural in this context. Extreme phase size ratios in separation

modules enhance this situation. To generate the lower diagram in Figure 6.9, two

112 Chapter 6. Performance characteristics

scaling matrices S≈ col and S≈ row are obtained by repeated normalisation of columns

and rows. This way, the condition1 can be reduced significantly down to 105, no

longer being a serious limit of numerical precision. This result is even more signifi-

cant for the constitutive equation system, which in this case is of size 210× 210. The

condition number is here reduced from 108 down to 101.6.

However, the current implementation of Yasim as described in Chapter 5 does

not use active scaling. The internal units of measurement are adapted in order to

obtain a similar order of magnitude for the conjugated variables pressure and volume.

With this, the numerical precision rarely becomes a problem in practical applications.

As an example, Figure 6.7 indicates the precision limit for the specified split factor

βspec = 1 − 10−3 to be in the order of 10−5. This represents a typical limitation, as

values of βspec closer to one yield increasingly unstable iteration paths and inaccurate

results.

1For simplicity reasons, the norm of a matrix is defined here as the maximum ratio of the eigenval-

ues’ absolute values

Chapter 7

Discussion and Conclusions

A new process modelling tool emerged as the practical result of this work. This

tool called Yasim has already been used in several projects within the Corporate Re-

search Centre of Norsk Hydro ASA in Porsgrunn. Simulations and case studies are

performed on models of different plant sections related to urea production. Within

a data reconciliation project, Yasim generates linearised representations of the gas

separation process on one of Norsk Hydro’s offshore platforms.

The equation oriented approach made it a valuable tool for medium sized process

models, strongly coupled by several material streams and constitutive equations.

Built on the fundament of thermodynamic state functions in transformed coor-

dinates, the highly non-linear equations of thermodynamic models are encapsulated

from the main (canonical) equation system. The complexity of these models there-

fore hardly effects the performance in terms of calculation time and robustness. The

H matrices of the thermodynamic models are utilised in multiple ways:

• As a basis to evaluate thermodynamic properties, such as heat capacity, com-

pressibility, thermal expansion coefficient, J-T coefficient, and

speed of sound (cf. Table C.2 and Table C.3).

• In order to transform canonical state vectors between different state functions,

as described in Appendix C.2.2.

• As H matrices in local optimisation nodes, thus in the actual flowsheet

solver (cf. Section 3.2).

The structure of the canonical equation system directly represents the process

topology. Flowsheet modules (FMs) represent diagonal blocks, while couplings re-

late to the off-diagonal block, which shares row and column with down- and upstream

FM. This transparent structure supports the implementation of hierarchical FMs and

error diagnosis. Not only is the sparsity in general known a priori, but also entire

blocks of zeros and identity matrices are recognised, so that the solver can take ad-

vantage of it. In a recursive manner, FMs contribute actively to solve the system,

113

114 Chapter 7. Discussion and Conclusions

currently by inverting, but as suggested in Section 3.3.3, potentially by decomposing

their own subset of equations.

Constitutive equations form a separated equation system of much smaller size.

The use of symbolic algebra is essential to allow run-time defined user-equations and

to obtain symbolic derivatives, reliable sparsity information of the resulting J

matrix, and validation of physical dimensions to avoid consistency errors.

Clearly, as a result of continuous research, the current implementation does not

represent the current state of knowledge presented in this work. A pure symbolic

representation of thermodynamic models would have a significantly positive impact

on the maintainability of these models without noticeable loss of performance. Fur-

thermore, the use of the VV(H,V/T, n∼) state function involves many more state trans-

formations than U(S ,V, n∼). Thanks to the constitutive equation system, individual

coordinate systems for each FM turned out to be unnecessary and hard to maintain.

Restricting all FMs to the system U(S ,V, n∼) contributes only marginal to the size of

the constitutive equation system, but avoids M transformations.

Since M transformations are currently used in Yasim, further reference state

information contributes to the H matrix through the chemical potential µ∼ (cf.

Table C.1) and therefore may amplify conditioning problems.

A general limitation is given by state functions, which assume volume as a canon-

ical variable, conjugated to pressure in the gradient (e.g. the H function). For

incompressible fluids, the pressure is not defined though the state function, as a vol-

ume change at constant temperature and pressure is not possible. Consequently, the

H matrix contains infinite values, and no calculations can be performed. As a

consequence, all thermodynamic models must describe a nonzero compressibility in

order to be used for canonical modelling. Appendix B.3 describes a suitable model

contribution to ensure a nonzero compressibility.

The implementation of the augmented solver version that avoids explicit inverse

matrices will improve performance significantly with respect to both calculation

time and numerical stability in ill-conditioned systems. This applies especially to

larger process models, exceeding 50 FMs, in particular those containing separation

columns.

Automatic initialisation of process models is not yet implemented, but starting

values are provided in XML-Files. As cumbersome as manual tweaking of these

files sometimes can be, the direct access for the user to fill in the starting values is

essential and can prevent from high work effort in terms of trial and error tweaking

of the process model towards a converging equation system.

The same applies to the phase stability analysis. The current version of Yasim

works on a constant topology with each material stream representing one physical

phase. Implementation of phase stability tests and consequently considering multiple

phase streams is desirable, especially for heat exchangers with phase transitions. The

possibility to restrict possible phase sets must be preserved in order to utilise first

principle FMs.

This work and the resulting tool Yasim is committed to steady-state process mod-

115

els. Still today, a wide range of relevant problems in process design, data reconcili-

ation, optimisation and plant performance projects are performed using steady-state

models. However, Appendix D demonstrates the general feasibility of dynamic pro-

cess modelling on a canonical basis. The topological structure and the constitutive

equations can be handled without any changes in the methodology.

116 Chapter 7. Discussion and Conclusions

Appendix A

Software utilities

A.1 Lazy evaluation datatype

An object oriented symbolic algebra datatype is developed in C++. An extensible

set of algorithm classes provides functionality for a large variety of applications.

Applied in particular to thermodynamic functions, the framework can be used for

complex modelling tasks. E.g. a derivative algorithm is applied for tasks like auto-

matic model implementation, parameter optimisation, data reconciliation, and phase

boundary tracking.

A.1.1 General Software Design

Algorithms Symbolic Algebra Graph

TypeEvaluator

ADT can be any

algebraic data type

double

Algorithm {abstract}

Optimiser

CodeGenerator DerivativeAlgorithm

Needle

Node {abstract}

Mesh

SourceMesh

+setValue(double) : doubleAddNode

SqrtNode

...Node
SourceNode

1..*

1..*

is child of

*

inheritance

emulated as

double is not

defined as a

class in C++

CGenerator

MatlabGenerator

<<uses>>

<<uses>>

ADT

Figure A.1: UML class diagram of algorithm objects and symbolic algebra graph

design.

The UML class diagram (OMG, 2001) of algorithms and representation of the

symbolic algebra graph is shown in Figure A.1. The vertices of the symbolic algebra

graph are objects of class Node. All operators and standard functions are represented

117

118 Appendix A. Software utilities

by such a vertex. Via reference counting (Stroustrup, 1997), Node instances can be

shared among other vertices or user objects called Needle. A Needle can contain any

subset of existing Nodes, and provides a method to apply algorithm objects. A Mesh

is a specialisation that carries exactly one Node. On Mesh, all common arithmetic

operators and functions are defined, so it can be treated like the builtin C++ double

datatype. One further specialisation is a holder of a single source node SourceMesh,

to which a new value can be assigned without altering the graph.

The following code of simple assignment expressions generates the graph shown

in Figure A.2:

* +
−

sqrt

+

5.0

3.0

a

d

b

c

= Mesh = Node

Figure A.2: Graph representation of a

simple expression.

1 SourceMesh a = 1.0, b = 3.0;

2 Mesh c = a + b;

3 Mesh d = sqrt(c) - (c + a * b);

Though graph optimising algorithms can be

implemented, assignments are represented

by shared nodes to preserve the benefit of

manual coding, namely to avoid redundant

evaluations. a and b can also be declared

of type Mesh, if the values are not to be

changed later in the program. In this case

however, printing d will display −5 initially

only. The subsequent line of code

4 a.setValue(6.0); // call setValue() on SourceMesh instance a

yields the output of −24. It becomes clear, how little effort is required to translate ex-

isting function implementations into functions generating a symbolic algebra graph.

Template-based numerical packages can often be utilised directly.

The operands of a symbolic node, represented by child nodes, are connected at

construction for the whole lifespan of the node. Thus, the symbolic algebra graph is

assured to be non-cyclic, which is a necessary requirement for algorithms to terminate

in a finite number of steps.

A.1.2 Algorithms

The main concept of algorithms on symbolic algebra graphs is based on the idea to

separate functionality from the actual function implementation. The UML sequence

diagram (OMG, 2001) in Figure A.3 explains the application of an algorithm object.

It’s illustrated, how the function object only creates the symbolic algebra graph and

is subsequently not involved, when algorithm objects are executed.

It’s shown in Figure A.1 that all algorithm classes implement an interface called

Algorithm, which defines methods for the following stages of application:

Initialisation: The algorithm object is created and given the necessary information

to function. E.g. a derivative algorithm requires a set of independent variables.

A.1. Lazy evaluation datatype 119

e.g. implementation

of a thermodynamic

model

<<create>>

User /

top application

Symbolic algebra graph

Function object

calculate

Algorithm object

[graph]

work on vertex *

execute algorithm

Figure A.3: The role of a function object in the context of lazy evaluation.

Execution: The needle object executes the algorithm object. Each node in the needle

is called recursively by the algorithm object. Intermediate data is created and

temporarily saved in each node. The data belonging to the direct child nodes of

the needle represents the result of the algorithm. This can for instance be other

nodes in case of a derivative algorithm, or a string in case of an equation-filter.

It is saved inside the algorithm object.

Deallocation: The intermediate data of each traversed node is released.

Result query: The specific result is requested from the algorithm object.

The node objects offer functionality for algorithms to traverse to child nodes and

determine the type and value of each addressed node. Algorithms – as top layer code

– can supplement the graph, but not modify or delete existing nodes.

Generation of Simplified Derivatives

Figure A.4 shows a simple example code and a belonging sequence diagram, whereas

the belonging symbolic algebra graphs are visualised in Figure A.5. Line 1–3 define

the variables a, b, and c = a · b. A derivative algorithm object is declared and a is

given as the independent variable. The boxed line in the code executes the algorithm

itself. As shown in the sequence diagram, node N3 is first processed. The algo-

rithm then descends recursively to N1 and N2, generating their derivatives, before

constructing its own, represented by N8.

The result of the algorithm is of type Needle, which in general can hold many

nodes. The Needle class supports an STL1-style interface (Austern, 1998; Schildt,

1999), such that the first and in this case only element is obtained by the front()

method.

1Standard Template Library

120 Appendix A. Software utilities

 1 Mesh a = 3.0;

 2 Mesh b = 5.0;

 3 Mesh c = a * b;

c D

eval(N 1)

eval(N 3)

N4

eval(N 2)

 8 Optimiser O;

 9 d.execute(O);

10 Mesh e =

 O.getResult().front();

N5

N7

N8

 4 DerivativeAlgorithm D;

 5 D.setIndepNeedle(a);

 D.getResult().front();

 6 c.execute(D);

 7 Mesh d =

User /

top application

execute(D)

][N4

][N5

][N8

N6

Figure A.4: Application of a derivative algorithm to a simple example.

The use of distinct nodes for exact 0 and 1 instead of using an ordinary source

node of regarding value makes it possible to efficiently simplify the result by another

algorithm. The algorithm class Optimiser is declared and used much like the previous

one. By exploiting 1 · x = x, 0 · x = 0, and 0 + x = x, it is found that N2 itself

represents ∂c/∂a. Considering this piece of code as a sub-function, which returns e,

the user object d will run out of scope and release N4 – N8.

*

+

* * *

3.0

5.0

a 3.0

5.0

a 3.0

5.0

a
N1

b

c

N1

b

c

N1

e

b

c

One
6N

*
N5

Zero

d
8N

N3

N2

N3

N2

N3

N2

N4

N7
(i) (ii) (iii)

Figure A.5: Symbolic algebra graphs for the example in Figure A.4: (i) line 3 com-

pleted; (ii) line 7 completed; (iii) The optimiser algorithm has generated e in line 10,

and with d running out of scope, N4 – N8 are released.

A.2. Linear algebra package 121

A.2 Linear algebra package

A.2.1 Requirements

The canonical equation system contains a complete state vector for each physical

phase and L multipliers for each distinct intensive state. A process model

with typically 50 FMs of two extensive and one intensive state, considering 8 chemi-

cal species, yields an equation system of size 1200×1200. In order to benefit from the

canonical modelling approach as described in the main part of this work, the linear

algebra package must provide the following key functionality:

• Each scalar element of a linear algebra object can be either an ordinary float-

ing point variable or an instance of the symbolic datatype as described in Sec-

tion A.1.

• There are block structures, which are compatible to the elementary linear al-

gebra objects. The algebra preserves the block structure in its operators. As a

consequence, this block structure can be applied recursively, i.e. a block struc-

ture contains child linear algebra objects, which again can be block structures.

• A limited number of special linear algebra objects are identified as such. Op-

erators on these objects are implemented to efficiently exploit the additional

information. In addition to full matrices and vectors, it is desirable to recog-

nise the following special entities: zero matrix 0≈ , zero vector 0∼ , identity matrix

I≈ , and diagonal matrix D≈ .

• Due to a significant amount of trivial operators, such as 0≈ + A≈ or I≈ · A≈ , spe-

cific data access objects are handled by reference to avoid extensive copying

efforts. These accessors therefore implement reference counting technology

(Stroustrup, 1997).

With this, the linear algebra package is in itself a significant part of the solver, with

functionality exceeding the scope of freely or commercially available software on

this field. On the other hand, the elementary matrices, i.e. those not represented as

a block structure, are of moderate size, typically 10 × 10. Thus, there is no need for

highly developed algorithms made to handle huge matrices efficiently.

A.2.2 General software design

Figure A.6 shows the main classes of the library according to the current design. With

a floating ownership, accessors are at first accumulated in the user objects, which are

Matrix and Vector. These user objects implement algebraic operators and provide

further functionality to access and manipulate the underlying accessors. Instances of

block structures always accumulate further accessors. Block matrices of symmetric

block structure are treated distinct from general block matrices. They represent the

122 Appendix A. Software utilities

LinearAlgebraObject

MatrixGeneralMatrixAccessor

Accessor

BlockMatrixAccessor

FullMatrixAccessor

DiagonalMatrixAccessor

IdentityMatrixAccessor

ZeroMatrixAccessor

RectBlockMatrixAccessor

SquareBlockMatrixAccessor

DataContainer

Vector GeneralVectorAccessor

BlockVectorAccessor

FullVectorAccessor

ZeroVectorAccessor

*

**

*

1

1

1
1

11

1..*

11

1..*

Figure A.6: Static UML structure diagram of user objects, accessors and data con-

tainers.

diagonal blocks in the canonical coefficient matrix and therefore assume a special

role. The storage of actual floating point numbers is only required for a subset of

linear algebra object types. Each instance of of these accessors accumulate one data

container.

The current implementation supports a wide range of additional accessors, among

others for symmetric matrices, matrices of constant value and dyadic matrices. How-

ever, in praxis, the accessor types shown in Figure A.6 are most relevant to accom-

plish an efficient implementation to solve the canonical equation system.

Figure A.7 shows a simplified sequence diagram of the inversion operation

B≈ inv = B≈
−1 with B≈ =

(

I≈ C≈
0≈ A≈

)

, (A.1)

whereas A≈ is square but not necessarily of same size as I≈ . There is a table for each

operation, which holds a reference to operator objects. Tables of unary operators

contain one operator object for each type of linear algebra object, this operation can

be applied to. For binary operators, this table contains an operator object for each

possible combination, of which many are trivial as A≈ + 0≈ , while others are identical

through the commutative law.

The operator object create a new accessor object, which is either processed on a

higher block level operator, or as a result wrapped into the user classes Matrix and

Vector.

A.3. Remarks 123

B InversionTable SquareBlockInvOp

SquareInvOp

MultiplicationTable

[product]

MatrixMatrixMulOpresult(b) result(b)

result(a)

result(c, ainv)

[binv][binv]
[product]

[ainv]

[ainv]

[Binv]

inv(B)

Application

result(a)

result(c, ainv)

Figure A.7: UML sequence diagram of a execution of a typical operator.

A.2.3 Transposed and negated linear algebra objects

The computational effort of transposing or negating a matrix is quadratic in size and

therefore not negligible. But obviously, A≈ +(−B≈) = A≈ −B≈ , hence subsequent operators

can often efficiently integrate these kind of modification steps by a simplified lazy

evaluation technique. With this, it is

[(−A≈
T)(−B≈

T)]−1 +C≈
T = [A≈

TB≈
T]−1 +C≈

T = [(B≈ A≈)T]−1 +C≈
T = [(B≈ A≈)−1]T +C≈

T

= [(B≈ A≈)−1 +C≈]T (A.2)

such that only the multiplication, inversion and addition involve floating point opera-

tions, while the transposing and negating could be avoided.

However, this technique’s drawback is the need for many new binary operators

for matrices. The current implementation supports

A≈ ± B≈ , A≈ ± B≈
T, A≈ · B≈ , A≈ · B≈

T, A≈
T · B≈ , A≈

E· B≈ and A≈
E· B≈

T. (A.3)

With 9 different binary operators and 23 different accessors implemented, the number

of potentially possible operators is approaching 5000. Even though only a fraction

of these is defined and some more are identical or trivial, this approach generates a

maintenance problem.

A.3 Remarks

Handling a symbolic data-type within a linear algebra package represents a working

solution for the purpose of this work. However, performance problems can occur,

if systems with large number of chemical species are instantiated. Furthermore, the

rudimental realisation of lazy evaluation techniques on linear algebra level, restricted

124 Appendix A. Software utilities

to transposition and negation, generates a huge number of required different binary

operators, which represents a maintenance problem for current implementation.

It is desirable to alter the approach towards a fully symbolic linear algebra pack-

age with generalised operators. A standard linear algebra package can be utilised

to represent the low level entities in order to ensure a validated and efficient pro-

cessing. Operators can be generalised in many ways. For instance, multiplication

of two diagonal matrices is identical to element-wise multiplication of the diagonal

vectors. Other operators merely differ by different indexing of two-dimensional data-

containers.

With such a symbolic linear algebra package, still fulfilling the requirements

given in Section A.2.1, the canonical system could be symbolically decomposed and

simplified. Significant amounts of maintenance in each iteration step can be avoided

this way. Bauer et al. (2002) have developed a framework for symbolic computation,

probably suitable to be extended towards block structure handling.

Appendix B

Thermodynamic models

B.1 Implemented contributions of thermodynamic models

A(T,V,n)G(T,p,n)

Margules IdealGas Schwartzentruber Renon Watanasiri

ConstantCompressibility IdealGas

CpBerman CpDippr CpPoly3 CpShowmate

S0

H0

Soave Redlich Kwong

Figure B.1: Simplified structure of available thermodynamic models in Yasim.

Figure B.1 shows a graph of thermodynamic model contributions that are avail-

able in Yasim today. Grey shaded boxes indicate the contributions, which were used

in the examples of this work. These contributions will be described more detailed

in the following section. While H models necessarily need to describe a

nonzero compressibility in order to define pressure, this is no general requirement

for G models. In many applications, the compressibility of liquid phases is not

of particular interest, but the canonical modelling approach relies on in in order to

correlate volume and pressure as conjugated variables. The simplest way to describe

a nonzero compressibility is implemented into the model contribution ConstantCom-

pressibility and further described in Appendix B.31.

1The following sections contain model equations with many mathematical symbols. To maintain

readability, some symbols receive a local interpretation in the scope of this appendix.

125

126 Appendix B. Thermodynamic models

B.2 Schwartzentruber-Renon-Watanasiri equation of state

The thermodynamic model described in this section is used for all Yasim calculations

within this work, in particular Chapter 4 and 6.

B.2.1 Pure species contributions

The reference state chemical potential µref
i

at reference conditions (T ref, pref) is given

by

µref
i = ∆fh

ref
i − T sref

i . (B.1)

Here, ∆fh
ref
i

is the molar reference state heat of formation, and sref
i

the molar reference

state entropy. The next contribution is related to the ideal gas heat capacity, given as

a third degree polynomial:

cp,i(T) = c
[0]
p,i
+ (T − T ref)c

[1]
p,i
+ (T 2 − T ref2)c

[2]
p,i
+ (T 3 − T ref3)c

[3]
p,i
. (B.2)

This heat capacity contributes as follows to the pure species chemical potential:

µi(T) = µref
i +

T∫

T ref

cp,i(T̂) d T̂ − T

T∫

T ref

cp,i(T̂)

T̂
d T̂ . (B.3)

B.2.2 Helmholtz ideal gas state function

The ideal gas model contribution incorporates the effect of ideal mixing, and the

pressure dependency given by the ideal gas law p V = N R T with N =
∑

i ni and R

the universal gas constant:

µ
ig

i
(T, p, n∼) = µi(T) + R T ln

ni R T

p0 V
. (B.4)

The H energy is a state function given as A = G − p V:

A(T,V, n∼)ig =
∑

i

µ
ig

i
(T, p, n∼) ni − N R T . (B.5)

B.2.3 Schwartzentruber-Renon-Watanasiri residual contribution

The S-R-W equation of state (Schwartzentruber and

Renon, 1989; Schwartzentruber et al., 1990) is an extended version of the well-known

S-R-K (SRK) equation of state (Soave, 1972). The P́ contri-

bution C allows for a more precise description of liquid volumes (Péneloux et al.,

1982). Asymmetric interaction coefficients L≈ and polar parameters p∼ i are introduced

B.2. Schwartzentruber-Renon-Watanasiri equation of state 127

to enhance the model for polar species and at supercritical temperatures. The equa-

tion of state is formulated as

p =
N R T

V + C̄ − B̄
− Ā

(V + C̄)(V + C̄ + B̄)
with N =

∑

i

ni . (B.6)

Furthermore:

Ā = nin j
√

aia j

(

1 − ka,i j −
1

N
li j(ni − n j)

)

(B.7)

B̄ =
1

2 N
nin j(bi + b j)(1 − kb,i j) C̄ = cini (B.8)

ai = Ωa αi

R2 T 2
c,i

pc,i

with Ωa =
1

9
(21/3 − 1)−1 ≈ 0.427480 . . . (B.9)

bi = Ωb

R Tc,i

pc,i

with Ωb =
1

3
(21/3 − 1) ≈ 0.086640 . . . (B.10)

ci = c0,i + c1,i Tr,i + c2.i T 2
r,i with Tr,i = T/Tc,i (B.11)

αi =






[

1 + mi(1−T
1/2
r,i

) − (1−Tr,i)(p1,i + p2,i Tr,i + p3,i T 2
r,i

)
]2

for Tr,i ≤ 1

[

exp
(

γi(1−T
di

r,i
)
)]2

with
γi=1 − 1

di
and

di=1 + mi

2
− (p1,i+p2,i+p3,i)

for Tr,i > 1

(B.12)

mi = 0.48508 + 1.55171ωi − 0.15613ω2
i (B.13)

ka,i j
def.
= ka, ji = k

[0]
a,i j
+ k

[1]
a,i j

T + k
[2]
a,i j
/T (B.14)

kb,i j
def.
= kb, ji = k

[0]
b,i j
+ k

[1]
b,i j

T + k
[2]
b,i j
/T (B.15)

li j
def.
= −l ji = l

[0]
i j
+ l

[1]
i j

T + l
[2]
i j
/T. (B.16)

The parameters are critical temperatures Tc,i, critical pressures pc,i, acentric factors

ωi, polar parameters p1,i, p2,i, and p3,i, interaction coefficient matrices k
[0])

a,i j
, k

[1]
a,i j

, k
[2]
a,i j

,

k
[0]

b,i j
, k

[1]

b,i j
, k

[2]

b,i j
, l

[0]
i j

, l
[1]
i j

, and l
[2]
i j

, and liquid volume parameters c0,i, c1,i, and c2,i.

The residual H state function is then obtained by integration of residual

pressure over volume as

Ares =

∞∫

V

p − N R T

V
dV = N R T ln

V

V + C̄ − B̄
+

Ā

B̄
ln

V + C̄

V + C̄ + B̄
. (B.17)

The complete H energy state function is given as

A(T,V, n∼) = Aig + Ares . (B.18)

128 Appendix B. Thermodynamic models

B.3 Constant compressibility model contribution

This model contribution describes a phase with constant compressibility εp,i, thermal

expansion coefficient εT,i, and a given reference molar volume v̄ref
i

.

Compressibility and the thermal expansion coefficient are defined as follows:

εT =
1

V

∂V

∂T
and εp = −

1

V

∂V

∂p
. (B.19)

These definitions can be formulated also on the partial volume v̄i, such that εT,i and

εp,i are interpreted as pure species properties. The calculated compressibility of a

mixture is then a consequence of these properties and possible mixing effects:

εT,i =
1

v̄i

∂v̄i

∂T
and εp,i = −

1

v̄i

∂v̄i

∂p
. (B.20)

Integration and combination gives

v̄i(T, p) = v̄ref
i (T ref, pref) exp

[

εT,i(T − T ref) − εp,i(p − pref)
]

. (B.21)

Furthermore

∆µi =

p∫

pref

v̄i dp =
v̄ref

i
(T ref, pref)

εp,i

exp
[

εT,i(T − T ref)
] (

1 − exp
[

−εp,i(p − pref)
])

.

(B.22)

With a realistic parameterisation for condensed phases, moderate pressures and tem-

peratures do not yield a significant contribution to calculated thermodynamic proper-

ties, in particular regarding phase equilibrium calculations. However, the contribution

ensures a consistent correlation between pressure and volume.

Appendix C

State functions and

transformations

C.1 Properties of homogeneous state functions

Theorem C.1 A state function P(x∼E, x∼ Ē) of extensive canonical variables x∼E and in-

tensive canonical variables x∼ Ē can be represented in the E-integrated form, iff it

is first-order homogeneous:

P(x∼E, x∼ Ē) =
∂P

∂x∼E
x∼E ⇔ P(x∼E, x∼ Ē) =

1

ψ
P(ψx∼E, x∼ Ē) for ψ , 0 . (C.1)

Proof (⇐): Let x̂∼E =
1
ψ

x∼E and derive with respect to ψ:

∂

∂ψ
P(x∼ E, x∼ Ē) =

∂

∂ψ

(

1

ψ
P(ψ x̂∼E, x∼ Ē)

)

⇒ 0 =
1

ψ

∂P

∂(ψ x̂∼ E)
x̂∼ E−

1

ψ2
P(ψ x̂∼ E, x∼ Ē) . (C.2)

Multiplication with ψ2 and back-substitution of ψ x̂∼E = x∼E yields the E-integrated

form. �

(⇒): Integration of the differentiated form in (⇒) to ψ yields

1

ψ
P(ψ x̂∼ E, x∼ Ē) = P̂(x̂∼ E, x∼ Ē) . (C.3)

In particular, P̂ is not dependent on ψ, but a yet unknown function of all canonical

variables (x̂∼E, x∼ Ē). The equation must still hold for all ψ , 0 including ψ = 1,

concluding P̂ = P. �

Furthermore, derivation of the E-integrated form with respect to x∼E yields

∂P(x∼E, x∼ Ē)

∂x∼E
=

∂2P

∂x∼E∂x∼E
x∼ E +

∂P(x∼E, x∼ Ē)

∂x∼E
⇒ ∂2P

∂x∼E∂x∼E
x∼E = 0∼ (C.4)

as a necessary, but not sufficient property of first-order homogeneous state functions.

129

130 Appendix C. State functions and transformations

C.2 State function transformations

C.2.1 Preservation of homogeneity

The L and M transformations are used to obtain a state function rep-

resentation from another. The homogeneity of thermodynamic state functions is an

important feature in the concept of canonical modelling. The preservation of homo-

geneity throughout transformations is therefore proven here.

Theorem C.2 Any L transformed state function P̂ = L j[P] of a given a ho-

mogeneous first-order state function P is also first-order homogeneous.

Proof: For the case x j ∈ E, the subtracted term in Equation (2.16) is identical to the

contribution to be removed from the E-integrated form. x̂ j ∈ Ē does not give

a new contribution. If x j ∈ Ē, consider the implicit formulation of Equation (2.16).

With ∂P/∂x j = x̂ j and x j = −∂P̂/∂x̂ j, it is

P̂(x̂∼) = P(x∼) +
∂P̂(x̂∼)

∂x̂ j

x̂ j . (C.5)

The added term is identical to the term to be added to the E-integrated form,

since x̂ j ∈ E. As proven for theorem C.1, this is sufficient condition for a homoge-

neous state function. �

Theorem C.3 Any M transformed state function P̂ = M j[P] of a given a ho-

mogeneous first-order state function P with x j ∈ E and ∂P/∂x j , 0 is likewise first-

order homogeneous.

Proof: Consider the total differential of P at constant x∼ Ē, separating out the term

containing x j and divide by ∂P
∂x j

and solve for dx j to obtain the total differential of

M j[P]:

dP =
∂P

∂x j

dx j +
∑

i∈E\{ j}

∂P

∂xi

dxi ⇔ dx j =
1
∂P
∂x j

dP −
∑

i∈E\{ j}

∂P
∂xi

∂P
∂x j

dxi . (C.6)

In transformed notation regarding the differentials, this is

dP̂ =
1
∂P
∂x j

dx̂ j−
∑

i∈E\{ j}

∂P
∂xi

∂P
∂x j

dx̂i ⇔ ∂P̂

∂x̂ j

=
1
∂P
∂x j

∧ ∂P̂

∂x̂i

= −
∂P
∂xi

∂P
∂x j

for i , j . (C.7)

Based on the partial derivatives obtained, the E-integrated form is

P̂ =
1
∂P
∂x j

x̂ j −
∑

i∈E\{ j}

∂P
∂xi

∂P
∂x j

x̂i or x j =
1
∂P
∂x j

P −
∑

i∈E\{ j}

∂P
∂xi

∂P
∂x j

xi , (C.8)

which is equivalent to the presumed E-integrated form of P. �

C.3. State functions and thermodynamic properties 131

C.2.2 Jacobian matrices

With different state functions applied simultaneously within one process model, the

sensitivity of a transformed state x̂∼ with respect to the original state x∼ is required to

calculate consistent updates. The J matrix for a chain of transformations can

be subdivided by chain-rule into the product of J-matrices for single transfor-

mations.

For the L transformation, it is

x̂ j = g j , therefore
∂x̂ j

∂x∼
=

∂2P

∂x j x∼
. (C.9)

Accordingly, the inverse L transformation yields

x̂ j = −g j , therefore
∂x̂ j

∂x∼
= − ∂

2P

∂x j x∼
. (C.10)

As in a M transformation, x̂ j = P(x∼), therefore ∂x̂ j/∂x∼ = ∂P/∂x∼ .

C.3 State functions and thermodynamic properties

The columns xt, xm and xc in Table C.1 show the canonical variable sets of some

selected state functions, followed by the physical interpretation of first and second-

order derivatives of that state function with respect to the canonical variables.

Horizontal lines separate groups of state functions, which can be transformed into

Table C.1: Thermodynamic state functions P and physical interpretation of the

derivatives with respect to their canonical variables.

P xt xm xc Pt Pm Pc Ptt Ptm Ptc Pmm Pmc

G T p ni −S V µi −Cp

T
V εT −S̄ i −V εp V̄i

A T V ni −S −p µi −CV

T
− εT

εp

εT

εp
V̄i − S̄ i

1
V εp

− V̄i

V εp

U S V ni T −p µi
T

CV
− εT T

εp CV
(εT

εp
V̄i−S̄ i)

T
CV

1
εp V
+

ε2
T

T

εp
2 CV

T εT (S̄ i εp−εT V̄i)

CV εp
2 − V̄i

εp V

H S p ni T V µi
T
Cp

V T εT

Cp
− T S̄ i

Cp

V2 ε2
T

T

Cp
−V εp V̄i − T V S̄ i εT

Cp

S H p ni
1
T
−V

T
− µi

T
− 1

T 2 cp

V(1−T εT)

T 2 cp

µi+T S̄ i

T 2 cp
. . .

VV H V
T

ni
1
T

p − µi

T
. . .

S U V ni
1
T

p

T
− µi

T
− 1

T 2cV

εT T−εp p

T 2 εp cV
. . .

each other by L transformations. A M transformation is necessary to

reach from one group into another (see Section 2.5.2). The H elements of

M-transformed surfaces S and VV can be physically interpreted, but the com-

plexity of their analytical expressions in many cases prohibits a practical use. There-

fore, second-order information of these state functions is used solely as the sensitivity

132 Appendix C. State functions and transformations

of the gradient with respect to the canonical variables. The first H elements of

S (U,V, n∼) are shown in Table C.1.

Table C.1 can also be used to extract M-relations, as for example

Ptm =
∂

∂xm

(

∂P

∂xt

∣
∣
∣
∣
∣
xm ,xc

)∣
∣
∣
∣
∣
∣
xt ,xc

=
∂

∂xt

(

∂P

∂xm

∣
∣
∣
∣
∣
xt,xc

)∣
∣
∣
∣
∣
∣
xm ,xc

e.g.
∂V

∂T

∣
∣
∣
∣
∣
p,ni

= − ∂S

∂p

∣
∣
∣
∣
∣
T,ni

. (C.11)

Further interpretations are available with help of the E-integrated form of state

functions:

G = µ∼ n∼ , A = −p V + µ∼ n∼ ,

U = T S − p V + µ∼ n∼ , and H = T S + µ∼ n∼ .

As an example, using the E-representation of H, the following non-canonical

derivative can be analysed:

∂H

∂p

∣
∣
∣
∣
∣
T,ni

=
∂

∂T

(

T S + µ∼ n∼

)
∣
∣
∣
∣
∣
p,ni

= S −T
∂(−S)

∂T

∣
∣
∣
∣
∣
p,ni

+
∂µ∼

∂T

∣
∣
∣
∣
∣
∣
p,ni

n∼ = −T
∂(−S)

∂T

∣
∣
∣
∣
∣
p,ni

= Cp .

(C.12)

Table C.2 can be used to back-calculate heat capacities Cp and CV , thermal expansion

Table C.2: Thermodynamic properties as a function of canonical derivatives.

P xt xm xc Cp CV εT S̄i εp V̄i

G T p ni −Gtt T T

(
G2

tm

Gmm
−Gtt

)

Gtm

V
−Gtc −Gmm

V
Gmc

A T V ni T

(
A2

tm

Amm
− Att

)

−Att T − Atm

V Amm

Atm Amc−Amm Atc

Amm

1
V Amm

− Amc

Amm

coefficient εT , compressibility εp, partial entropy S̄ i and partial volume V̄i from given

derivative information. Heat capacity at constant p (Cp) and at constant V (CV) are

linked by CV = Cp − T V ε2
T
/εp. Combining these quantities, a set of dependent

thermodynamic properties can be obtained. The symbols introduced in Table C.3 are

not consistent with the main part of this work.

C.3. State functions and thermodynamic properties 133

Table C.3: Derived thermodynamic properties – Mi is the molar weight of species i.

Quantity Formula Quantity Formula

Total molar quantity N =
∑

i ni Molar fraction xi = ni/N

Total mass M =
∑

i Mi ni Mass fraction wi =Mi ni/M

Concentration ci = ni/V Average molar mass M̄ =M/N

Density %=M/V Partial enthalpy H̄i = µi + T S̄ i

Molar heat capacities cp/V =Cp/V/N Adiabatic exponent κ=Cp/CV

Joule Thomson coefficient JT =V/Cp (T εT−1) Speed of sound vsonic =
√

κ/(% εp)

134 Appendix C. State functions and transformations

Appendix D

Dynamic simulation

The main scope of this work is focused on canonical process modelling, in this ap-

pendix exploring the feasibility to perform process modelling tasks beyond steady-

state simulation. Dynamic process simulation definitely holds more challenges then

those which can be addressed in this appendix. Some of them are consistent initiali-

sation, stiffness, event handling, and a wide range of index problems. This appendix

therefore only sketches the basic approach, how dynamic behaviour can be described

within the framework of canonical modelling.

In order to explore the feasibility of dynamic simulation based on a canonical

process model representation, it is necessary to define different forms of dynamic

simulation. The data-reconciliation example in Section 4.5 is generally not consid-

ered as dynamic, even though the process state is calculated as a function of time.

Hence, if the process model itself has no memory, but only time-dependent process

parameters give variations of state in time, the process model is called quasi-steady-

state. On the other hand, a dynamic process model contains some kind of memory,

represented by an accumulated (or integrated) state. In the context of canonical pro-

cess models, there are two distinct kinds of potential dynamic elements: (i) canonical

(thermodynamic) dynamics (in x∼), as for instance a buffer tank or a pipe hold-up, and

(ii) non-canonical dynamics (in y∼), as for instance any control structures and limited

valve-opening rates:

x∼ 2(t) = x∼ 2(t0)+

t∫

t0

∑

i

ẋ∼ 1,i(t̂) dt̂ (i) y∼ 2(t) = y∼ 2(t0)+

t∫

t0

y∼ 1(t̂) dt̂ (ii) . (D.1)

An example is a buffer tank with the difference in state variables of incoming and

outgoing streams ẋ∼ 1,i, and the accumulated state x∼ 2 inside the buffer tank. However,

the integrands can depend on the accumulated variables, for instance if the outgoing

flow is dependent on the liquid level in the tank. This dependency can be direct or

indirect through canonical or constitutive process constraints.

The second case requires integration not only of state variables (see ẋ∼ 1,i(t) in

135

136 Appendix D. Dynamic simulation

Equation (D.1), but of calculated properties y∼ 1(t) as well. As an example, the actual

valve position is no longer a process parameter u, but the integrated actuator speed.

With this, the integrated properties y∼ 2(t) become non-canonical state variables

as well. State variables other than those of thermodynamic nature are an inevitable

consequence of the fact that non-canonical dynamic effects, such as control structures

are considered.

D.1 Transition from steady-state to dynamic simulation

Even though material flows described by state vectors ẋ∼ are supplemented by time

derivatives of accumulated states dx∼ /dt, the interface between two FM remains re-

stricted to couplings of streams. Interactions of accumulated states with each other

always is described by either material streams between them, or constitutive equa-

tions. This restriction is not limiting the flexibility of the simulation tool, but greatly

improves maintainability, as the collaborations are not changed from figure 2.4.

In a traditional switch from steady-state to dynamic simulation, all FM are sup-

plemented with dynamic features instantaneously, i.e. hold-up volumes are assigned

to every flash tank and even valve, and constitutive equations are exchanged by oth-

ers more suitable for dynamic simulation automatically. As a result, the dynamic be-

haviour of the system is immediately very complex, and the origins of high-frequency

oscillations can hardly be understood. Extensive use of default geometric parameters

yields a process model, which looks much more predictive than it really is.

As the interface between dynamic FMs can be kept compatible with steady-state

FMs, the strategy to switch from steady-state to a dynamic simulation from a user’s

point of view can be designed as a continuous transition:

1. Originally, there is a steady-state process model. The simulation can be

interpreted as a single point calculation.

2. Without changes in the process model, an integrator can be started. As there is

no accumulated state, and all process parameters are independent of time, the

calculated properties are constant in time and still represent the steady-state

solution.

3. Time-dependent process parameters are defined. There is still no dynamic

behaviour (accumulated states), and the calculation results represent a series

of point calculations of the steady-state process model.

4. Individual FMs are replaced with a dynamic equivalent, for instance a rel-

evant buffer tank. From now, the process model shows its own dynamic effects.

5. Accumulated and stream-based variables are used in constitutive equations.

The pressure of a liquid outlet from a tank is set into an algebraic relationship

to the liquid level and the pressure in the tank.

6. The explicit integration and differentiation of process properties is used, e.g. to

implement control structures and limited valve opening rates. This technique

requires the maintenance of non-canonical state variables.

D.2. A sketch example 137

D.2 A sketch example

Consider the example process shown in Figure D.1. To emphasise the paradigm of

FIC

Control

LNG feed

valve
Storage tank

ẋ∼ 1

x∼ 2

ẋ∼ 3 ẋ∼ 4

T = 4 ◦C

T = 15 ◦C

p = 1 atm

p = 1.1 bar
p = 2 bar

ṁ = ψ(t)

z

Figure D.1: Dynamic process with PID control.

only considering relevant dynamics, only the storage tank holds an accumulated state

x∼ 2, of which pressure and temperature are even specified. The feed stream enters with

constant temperature and pressure, but time-variant flow. The valve with constant

outlet pressure utilises a pressure-flow relation as described in Section 3.6.3.

The canonical system is not entirely different from that of a steady-state process:





H≈ 1 I≈
I≈

H≈ 2 I≈
−I≈ I≈ I≈

I≈ H≈ 3 a∼
a∼

H≈ 4 I≈
−I≈ I≈





·





∆ẋ∼ 1

λ∼ 1

∆(dx∼ 2/dt)

λ∼ 2/3

∆ẋ∼ 3

λ3

∆ẋ∼ 4

λ∼ 4





=





−g
∼ 1

δ∼ 1 + α∼ 1

−g
∼ 2

δ∼ 2 + α∼ 2

−g
∼ 3

α3

−g
∼ 4

δ∼ 4 + α∼ 4





← LNG feed

← Storage tank (hold-up)

← Storage tank (outlet)

← Valve

(D.2)

The indices of the state variable vectors are consistent with the stream numbers in

Figure D.1. Both valve and source module are identical, while the tank coefficient

matrix reminds one of that of a flow splitter (cf. Section 3.5.5). Actually, as the

flow splitter shares a single intensive state for both of its physical phases, the same

applies to the storage tank. The outlet stream ẋ3∼ is split from the derivative of the

accumulated state x∼ 2.

The constitutive equation system is modified only by including two new opera-

tions, namely integration and differentiation. The integrator is necessary to include

non-canonical dynamic effects, such as limited changes in valve position, while the

differentiator mainly is applied for process control equipment. In this example, the

immediate valve position is determined by the flow control (FIC), implemented as a

138 Appendix D. Dynamic simulation

PID controller as follows:

z = z0 + k
[

(V̇4 − V̇4,SP)
︸ ︷︷ ︸

V−VSP

+
1

tInt

t∫

t0

(V̇4 − V̇4,SP) dt

︸ ︷︷ ︸

int(V−VSP)

+tDiff
dV̇4

dt
︸︷︷︸

diff(V)

]

. (D.3)

The expressions beneath the braces indicate a possible syntax for the parser of con-

stitutive equations. The PID control is simply coded as a constitutive equation:

z0 + k ((V − VSP) + int(V − VSP)/TInt + TDiff diff(V)) − z = 0 . (D.4)

The internal implementation of the int and diff operations are dependent on the

actual integration method.

As an important fact, H≈ 2 and g
∼ 2 are naturally calculated from x∼ 2. For an explicit

solving strategy, these derivatives are therefore constant during iterations of one time

step. In this case, constitutive equations must be based on the state x∼ 2 of the previous

time-step in order to obtain correct derivatives to maintain second-order convergence.

For an implicit solution method, H≈ 2 and g
∼ 2 are to be evaluated on the next time step.

Appendix E

Numerical methods and matrix

computations

E.1 Block LU-decomposition

In order to solve equation systems related to canonical process models efficiently,

the sparse block-structure of linear algebra objects is exploited to avoid redundant

floating point operations. The LU-decomposition is conducted using the following

algorithm on a block-matrix B≈ :

for k = 1 : n − 1

for r = k + 1 : n

solve for B̂≈ r,k: B̂≈ r,k B≈ k,k = B≈ r,k

B≈ r,k := B̂≈ r,k

end for

for c = k + 1 : n

for r = k + 1 : n

B≈ k,c := B≈ r,c − B≈ r,k B≈ k,r

end for

end for

end for

This version without pivoting requires B≈ to contain invertible diagonal blocks, which

is the case for solvable composite flowsheet module coefficient matrices.

However, building blocks of equilibrium flowsheet modules contain singular

H-matrices of thermodynamic state-functions and zero-matrices. In order to

decompose these matrices on block-level, it is therefore necessary to pivot both

rows and columns, even though row-pivoting is sufficient to perform a scalar LU-

decomposition on a non-singular matrix (Golub and Loan, 1996). A typical example

is given in Section 3.2.1. Still, the number of atomic flowsheet modules is limited and

their internal structure fixed, such that an appropriate permutation can be performed

prior to the application of the non-pivoting algorithm above.

139

140 Appendix E. Numerical methods and matrix computations

E.2 Solution strategies for non-blockinvertible systems

E.2.1 One-phase systems of chemical equilibrium

The non-singularity of a matrix does not imply block-invertibility. A common exam-

ple is any reactor coefficient matrix as given in Section 3.2.2:

(

H≈ A≈
T

A≈

) (

∆x∼
λ∼

)

=

(

−g
∼
δ∼

)

. (E.1)

According to Equation (2.15), H≈ is singular, while A≈ is not even square, hence no

pivot block can be found. Furthermore, no LU-decomposition exists, since

(

H≈ A≈
T

A≈

)

=

(

L≈ 1,1

L≈ 2,1 L≈ 2,2

) (

U≈ 1,1 U≈ 1,2

U≈ 2,2

)

⇒ L≈ 1,1 U≈ 1,1 = H≈ . (E.2)

As H≈ is singular, either of L≈ 1,1 and U≈ 1,1 must be singular, which can not be a result

of a successful decomposition.

Repartitioning

Repartitioning can be an efficient strategy for a one-phase reactor, if the number of

reactions is small compared to the number of chemical species involved. Utilising the

full row-rank of A≈ , the contained balance equations can be recombined to partition

A≈ = (I≈ Â≈). System (E.1) then becomes





H≈ 1,1 H≈ 1,2 I≈
2

H≈
T
1,2

H≈ 2,2
3

Â≈
T

I≈
1

Â≈









∆x∼ 1

∆x∼ 2

λ∼




=





−g
∼ 1

−g
∼ 2

δ∼





(E.3)

with

H≈ =

(

H≈ 1,1 H≈ 1,2

H≈
T
1,2

H≈ 2,2

)

,∆x∼ =

(

∆x∼ 1

∆x∼ 2

)

, g
∼
=





g
∼ 1

g
∼ 2



 (E.4)

and can be solved by using the boxed elements as pivot blocks in the indicated se-

quence.

System modification

Preserving the structure to the cost of efficiency, Equation (E.1) can be modified by

multiplication as follows:

(

I≈
A≈ I≈

) (

H≈ A≈
T

A≈

) (

∆x∼
λ∼

)

=

(

I≈
A≈ I≈

) (

−g
∼
δ∼

)

⇔
(

H≈ A≈
T

A≈ (H≈ + I≈) A≈ A≈
T

) (

∆x∼
λ∼

)

=





−g
∼

δ∼ − A≈ g
∼



 . (E.5)

E.3. Domain restrictions in a relaxation object 141

Since A≈ is of full row rank, A≈ A≈
T is non-singular. The balance equations can be

rearranged to obtain A≈ orthonormal, thus A≈ A≈
T = I≈ . Still, a sub-system of size dim H≈

must be solved, which is the drawback of this method.

E.3 Domain restrictions in a relaxation object

Given a relaxation object R1 with its representation as a sorted sequence of values γ1,i

(see Section 3.8), the object describes a currently permitted domain for a relaxation

factor γ as

γ ∈ R1 = [γ1,0, γ1,1] ∪ · · · ∪ [γ1,i, γ1,i+1] ∪ · · · ∪ [γ1,N−1, γ1,N] . (E.6)

Open intervals can be described by the formal notation γ1,N = ∞. The following

algorithm determines the relaxation object R = R1 ∩ R2:

R := R1

for k = 1 : 2 : N − 1

R̂ := R

(b, e) = (γ2,k, γ2,k+1)

Remove all γ j with b < γ j < e from R

if b ∈ R̂ then insert b into R.

if e ∈ R̂ then insert e into R

end for

Example:

Let R1 = [0 : 3] ∪ [6 : 9] and R2 = [0 : 2] ∪ [5 : 8]. The representing coefficients are

〈γ1,i〉 = (3, 6, 9) and 〈γ2,i〉 = (2, 5, 8).

The first pair of R2 to consider is (b, e) = (2, 5), such that γ1 = 3 is to be removed

from R := R1, which yields R̂ = [0 : 6] ∪ [9 : ∞]. Since b = 2 ∈ R, we modify

R̂ = [0 : 2] ∪ [6 : 9]. As e = 5 < R, no further modification is taken in this step.

The second pair of R2 is (b, e) = (8,∞). γ3 = 9 ∈ [b, e] must be removed:

R = [0 : 2] ∪ [6 : ∞]. Now, b = 8 ∈ R, such that the final result is

R = R1 ∩ R2 = [0 : 2] ∪ [6 : 8] . (E.7)

E.4 A suggestion for an initialisation algorithm

The input to the algorithm is a set of robust (mostly linear) equations, a set of inequal-

ity constraints, and the complete set of canonical and canonical conjugated variables.

Each equation is associated to a non-negative cost value, which describes its degree

of reliability. Furthermore associated to the equation are all involved canonical vari-

ables. Each inequality constraint points to an equation, which – if applied – forces

142 Appendix E. Numerical methods and matrix computations

the constraint to be fulfilled. For example the constraint T > 0 points to an equation

T − 298.15 K = 0. Most variables do not really need to be initialised. Therefore,

obligatory variables are specially marked as part of the algorithm input, that is tem-

perature T , pressure p, and molar vector ṅ∼ of each phase in the process model (see

Section 3.7.2).

The algorithm framework can be described by the following work-flow:

1. Find an optimal set of robust equations (a square system) to determine all oblig-

atory variables.

2. Detect linear dependent equations and modify equation cost attributes, such

that a new solution of step 1 does not include these singularities.

3. Solve equation system.

4. Test for non-fulfilled inequality constraints. If there are any, lower the cost of

the equation, this inequality points to. Goto step 1.

5. With no singularities and non-fulfilled inequality-constraints, the solution from

step 3 represents a feasible set of initial values.

E.4.1 Obtaining a minimal structural invertible sub-system

The core of the algorithm is to solve assignment problems as described in Sec-

tion E.4.2, which however requires a matching number of equations and variables.

In our case, dummy variables can be added to the system. These variables do nei-

ther appear in any equation, nor are they required for initialisation. The cost ci j of a

matching between equation i and variable j is set to the cost-value of the equation, if

the variable appears within the equation, an infinite value else.

Theorem E.1 A small modification of the assignment problem algorithm finds not

only one, but all optimal matchings, i.e. {Mi | c(Mi) = min
M j

c(M j)}. As a fact, exactly

all possible perfect matchings in the last iteration k of the algorithm are optimal.

Proof: It is trivial to see that all these matchings are optimal, since they are found

on the same cost-reduced matrix C≈
(k). To prove that no others are optimal, consider

an optimal matching M2, for which γ(k) =
∑

ei j∈M2

c
(k)

i j
, 0, then γ(k) > 0 because

c
(k)
i j
≥ 0 ∀i, j. But the distance γ(0) − γ(k) is due to the reduction of complete rows and

columns only depending on k, but not the matching M. Hence c(M2) > min
Mi

c(Mi),

M2 is not optimal. �

All optimal matchings can therefore found by subsequent disallowing of all

matching edges recursively until no perfect matching exists for C≈
(k).

E.4. A suggestion for an initialisation algorithm 143

Theorem E.2 With all optimal matchings Mi and the most reduced sub-matchings

M̄i, such that M̄i contains all necessary variables xi, there is no non-optimal matching

Mn with c(M̄n) < c(M̄i), i.e. all optimal sub-matchings are among sub-sets of the

optimal matchings:

Proof: Let M1 be an optimal matching with the sub-assignment M̄1 3 xi. Mn is a

non-optimal matching, but c(M̄n) < c(M̄1). Since M̄n is per definition a structural

solvable sub-system, the graph G = (X ∪ F, E) can be partitioned by defining Xn and

Fn, such that M̄n ⊆ (Xn ∪ Fn, Xn × Fn), as shown in Figure E.1. It is obvious that

nX X \ Xn

nF \ FF = E \ M

= M \ M

n

n n

n

= Mn

Figure E.1: Partitioning of the bipartite graph to isolate an optimal sub-assignment.

there exists no complete optimal matching Mi in G with Mi∩Xn × (F \Fn) , ∅, since

|Xn| = |Fn| and ci j > copt for {(i, j)|Xi < Xn ∧ F j ∈ Fn}. Hence, both partial graphs

Gn = (Xn ∪ Fn, Xn × Fn) and Ḡn = G \Gn are decoupled. It is

G is optimal ⇔ Gn is optimal ∧ Ḡn is optimal . (E.8)

It can be assumed w.l.o.g. that M̄n is optimal, hence selection of an optimal supple-

menting matching generates an optimal matching M2 ⊃ M̄n. �

The important conclusion of this is that there exists a polynomial algorithm to

find the optimal set of equations to determine all required variables.

E.4.2 Assignment Problem Algorithm for Square Systems

The algorithm to solve the assignment problem includes an algorithm called ”Hun-

garian method” to obtain a maximum matching and a minimum vertex cover for a

bipartite graph:

The Hungarian method

Given a bipartite graph G = (U ∪ W, E) and an initial (not necessary maximum)

matching M of G, the maximum matching and minimum vertex cover can be obtained

as follows:

1. Marking vertices:

(a) Every u ∈ U \ M is marked by ’0’

(b) If all marks are processed, goto step 3. Else select a non-processed v ∈
U ∪W . Goto step 1c, if v ∈ U, or to step 1d, if v ∈ W .

144 Appendix E. Numerical methods and matrix computations

(c) Processing a v ∈ U: Each unmarked w ∈ W with v w ∈ E \ M is marked

with v. Goto step 1b.

(d) Processing a v ∈ W: If v < M, goto step 2. Else select matching partner

u ∈ U with v u ∈ M and mark u with v. Goto step 1b.

2. There is an M-prolonging path P from a vertex u ∈ U \ M to v ∈ W \ E as

follows: The first vertex is v, which is marked with u. P starts with v u ∈ E. If

the mark of u is ”0”, P is complete and used to extend M, afterwards clearing

all marks and going to step 1a. Else, u is marked with w ∈ W , P is extended by

u w ∈ E. w is marked also and P follows the marks.

3. M is a maximum matching. The non-marked points of U and the marked points

of W represent a minimum vertex cover.

The weighted matching problem

A cost matrix C≈
(0) is provided as input to the algorithm. To find the least-cost match-

ing in a complete bipartite graph G = (U ∪ W, E) with E = U × W , the following

steps are carried out:

1. Obtain a cost-reduced matrix from C≈
(0) by subtracting the minimum of each

column from the regarding column, and the minimum of each row from the

regarding row:

c
(1/2)
i j
= c

(0)
i j
−min

i
c

(0)
i j
, c

(1)
i j
= c

(1/2)
i j
−min

j
c

(1/2)
i j

. (E.9)

Now, c
(1)

i j
≥ 0 ∀i j, ∃i c

(1)

i j
= 0 ∀ j and ∃ j c

(1)

i j
= 0 ∀i. Set the iteration counter

k = 1.

2. Construct a bipartite graph G(U ∪W, E) with U = 〈ui〉, W = 〈w j〉 and ui w j ∈
E ⇔ c

(k)
i j
= 0. Use the Hungarian method to find a maximum matching and a

minimum vertex cover X ∪ Y with X ⊆ U and Y ⊆ W . The reduction number

m is defined as

m = min
i j
{c(k)

i j
|ui ∈ X ∧ w j ∈ Y} . (E.10)

The assignment problem is solved as soon as the obtained matching is com-

plete. The matching edges represent the assignment.

3. Add m/2 to all rows i with ui ∈ X, subtract m/2 from all other rows. Add

m/2 to all columns j with w j ∈ Y , subtract m/2 from all other columns. The

resulting matrix is C≈
(k+1). Increment k and goto step 2.

The algorithm terminates latest in n2 iterations, but much faster for problems with

many edges of same costs.

Appendix F

Notation

F.1 Landau symbols

In this work, asymptotic notation is used in two different contexts, namely to describe

the precision of approximate functions and to characterise computational effort solv-

ing a particular problem. Latter one can be measured in terms of memory or runtime.

If not stated otherwise, computational effort describes the runtime aspect within the

scope of this work, more precise: the asymptotic number of floating point operations

(flop) necessary to perform a particular task.

Literature offers various ways to define the Landau symbols (e.g. von Bronstein

et al., 1999; Gilbert and Peierls, 1988). A consistent definition, which can be used

for complexity analysis, but as well for error estimations of approximate functions is

the following:

Let ψ1(ξ) and ψ2(ξ) be two arbitrary positive functions of a variable ξ, and ξ0 ∈
� ∪ {±∞} an agreed limit, typically ξ0 = ∞ for complexity analysis, ξ0 = 0 for error

estimations. We define:

ψ2 ∈ O(ψ1) ⇔ lim
ξ→ξ0

ψ2(ξ)/ψ1(ξ) = ν with ν ∈ �,0

ψ2 ∈ o(ψ1) ⇔ lim
ξ→ξ0

ψ2(ξ)/ψ1(ξ) = 0

ψ2 ∈ Ō(ψ1) ⇔ ψ1 ∈ O(ψ2)

ψ2 ∈ ō(ψ1) ⇔ ψ1 ∈ o(ψ2)

ψ2 ∼ ψ1 ⇔ ψ2 ∈ O(ψ1) ∧ ψ1 ∈ O(ψ2)

(F.1)

F.2 Unified modelling language

A complete description of the Unified Modelling Language (UML) can be found

in OMG (2001), but only a small subset is used within the main part of this work,

namely exclusively static structure diagrams. Due to different versions and dialects,

some notation conventions might be deprecated in the future. Figure F.1 contains the

145

146 Appendix F. Notation

Book

Journal

Literature

Cardbox

Database

OR

Library

Customer

can be loaned

only some journals

registered
is

loans

*

1

1 1

1

1
1

1

1..* 0..10

0..1

Figure F.1: Example of a UML static structure diagram

elements used in this work, which are:

Terms and definitions F.1

Class A box filled by a noun indicates a class of objects, e.g. Book. There might be

many instances of type Book, and the common set of properties defines the class.

Inheritance The non-filled arrowheads on lines connecting Book and Journal with

Literature indicate an inheritance relationship. The sub-classes Book and Journal

inherit properties from the base-class Literature, which might be an abstract object,

i.e. all instances of this class are represented by a sub-class. In most cases, the

arrow can be read as an “is a”-relationship: “A book is a [piece of] literature”.

Association Any solid line, which does not represent an inheritance, expresses an

association, which is further specified by cardinality.

Cardinality The cardinality is indicated by numbers or ranges of numbers, including

the symbol * for an arbitrary number. Customer can loan between zero and ten

instances of Literature. Vice versa, an instance of Literature can be loaned out only

to zero or one customer at a time. The Library contains at least one instance of

Literature.

Description For clarification, a solid triangle can give a short description of a partic-

ular relationship, usually expressed by a verb. This directed indicator can be read as

a sentence, e.g. “A customer loans literature”.

OR-Block The block indicating that an instance of Literature is either registered in

Cardbox or Database is a simplification to avoid the necessity to display numerous

classes. Alternatively, both Cardbox and Database could inherit from a new class

called Register, to which they would be associated instead.

Accumulation A black rhombus on the end of an association line indicates an own-

ership relation. The class next to the rhombus is the owner of the counterpart class.

Library is the owner of both, Literature, Cardbox and Database.

Annotation If there is relevant information, which can not be expressed by any other

notation, a dashed line can connect any symbol mentioned above to a text-box with

a dog-ear on the upper right corner.

F.3. Graph theory 147

However, in the appendix, a broader subset of UML is utilised for documentation (cf.

Appendix A). On these occasions, it is referred to literature for further documentation

of UML.

F.3 Graph theory

Graph theory is a suitable discipline to describe the field of discrete mathematics.

This work utilises graph theory to describe process topology as well as mappings

between equations and variables for initialisation purposes (cf. Appendix E.4).

A

D

B C

FE

a

c

b
d e

Figure F.2: An example graph

The following terms related to graph theory are used within this work. Figure F.2

shows a simple example of a graph to illustrate these definitions. Trudeau (1993)

gives an introduction to graph theory.

Terms and definitions F.2

Graph A set of vertices {A, B, . . . , F} and edges {a, b, . . . , e}. One edge connects two

vertices. Vertices can be endpoints of zero, one, or many edges.

Path An alternating sequence of vertices and edges, starting and ending with a ver-

tex. A path contains each edge not more than once. In Figure F.2, (F, c, A, a,D, e,C)

is an example for a path.

Circle A path, in which the starting vertex is identical to the ending vertex.

Bipartite graph A graph, in which the set of all vertices can be partitioned into two

subsets, such that no edge connects two vertices of the same subset. In Figure F.2,

the vertices can be partitioned into a bipartite graph as follows: {A, B,C}∩{D, E, F}.
Matching A subset of edges in a graph, which do not share any vertices, as {c, e} in

the example.

Maximum matching A matching, such that any further inclusion of an arbitrary edge

does not yield a new matching. In the example, {b, e} is a maximum matching.

Perfect matching A (maximum) matching, which covers all vertices of a graph, as

{c, d, e} in the example.

148 Appendix F. Notation

Bibliography

Abbott, K. A., Allan, B. A., Westerberg, A. W., 1997. Global preordering for Newton

equations using model hierarchy. AIChE J 43 (12), 3193–3204.

Austern, M. H., 1998. Generic Programming and the STL. Addison Wesley.

Bauer, C., Frink, A., Kreckel, R., 2002. Introduction to the GiNaC framework for

symbolic computation within the C++ programming language. J. Symb. Comp.

33, 1–12.

Berger, F., Perris, F. A., 1979. Flowpack II – A new generation of system for steady

state process flowsheeting. Comput. Chem. Eng. 3, 309–317.

Biegler, L. T., Grossmann, I. E., Westerberg, A. W., 1997. Systematic Methods of

Chemical Process Design. International Series in the Physical and Chemical Engi-

neering Science. Prentice Hall PTR, London, ISBN 0-13-492422-3.

Bogle, I. D. L., Perkins, J. D., 1988. Sparse Newton-like methods in equation oriented

flowsheeting. Comput. Chem. Eng. 12 (8), 791–805.

Bogusch, R., Lohmann, B., Marquardt, W., 2001. Computer-aided process modelling

with MK. Comput. Chem. Eng. 25, 963–995.

Boston, J. F., Britt, H. I., 1978. A radically different formulation and solution of the

single-stage flash problem. Comput. Chem. Eng. 2, 109–122.

Braunschweig, B. L., Pantelides, C. C., Britt, H. I., Sama, S., 1999. Open soft-

ware architectures for process modeling: Current status and future perspectives.

In: Computer-Aided Design for the 21st Century. FOCAPD ’99.

Braunschweig, B. L., Pantelides, C. C., Britt, H. I., Sama, S., 2000. Process

modelling: The promise of open software architectures. Chemical Engineering

Progress 96 (9), 65–76.

Brendsdal, E., 1999. Computation of phase equilibria in fluid mixtures. Ph.D. thesis,

NTNU Trondheim, ISBN 82-471-0371-0.

149

150 BIBLIOGRAPHY

Callen, H. B., 1985. Thermodynamics and an Introduction to Thermostatistics, 2nd

Edition. John Wiley & Sons, New York, ISBN 0-471-86256-8.

Campbell, J. M., 1984. Gas Conditioning and Processing. Vol. 2. Campbell Petroleum

Series.

Chen, H., Stadtherr, M. A., 1981. A modification of Powell’s dogleg method for

solving systems of nonlinear equations. Comput. Chem. Eng. 5 (3), 143–150.

Čı́žek, J., Vinette, F., Weniger, E. J., 1993. On the use of the symbolic language

Maple in physics and chemistry - Several examples. Int. J. Mod. Phys. C – Phys.

Comput. 4, 257–270.

Cofer, H. N., Stadtherr, M. A., 1996. Reliability of iterative linear equation solvers in

chemical process simulation. Comput. Chem. Eng. 20 (9), 1123–1132.

Dluzniewski, J. H., Adler, S. B., 1972. Calculation of complex reaction and/or phase

equilibria problems. I. Chem. E. Symp. Ser. 35, 4:21–4:26.

Edgar, T. F., Himmelblau, D. M., 2001. Optimization of Chemical Processes.

McGraw-Hill.

Evans, L. B., Boston, J. F., Britt, H. I., Gallier, P. W., Gupta, P. K., Joseph, B.,

Mahalic, V., Ng, E., Seider, W. D., Yagi, H., 1979. Aspen: An advanced system

for process engineering. Comput. Chem. Eng. 3, 319–327.

Fateman, R. J., 1992. A review of Mathematica. J. Symb. Comput. 13, 545–579.

George, A., Ng, E., 1985. An implementation of Gaussian elimination with partial

pivoting for sparse systems. SIAM J. Sci. Stat. Comp. 6 (2), 390–409.

Gilbert, J. R., Peierls, T., 1988. Sparse partial pivoting in time proportional to arith-

metic operations. SIAM J. Sci. Stat. Comp. 9 (5), 862–874.

Golub, G. H., Loan, C. F. V., 1996. Matrix Computations, 3rd Edition. The Johns

Hopkins University Press, Baltimore, ISBN 0-8018-5414-8.

Haug-Warberg, T., 1988. Computation of thermodynamic equilibria. Ph.D. thesis,

NTNU Trondheim.

Hernandez, R., Sargent, R. W. H., 1979. A new algorithm for process flowsheeting.

Comput. Chem. Eng. 3, 363–371.

Hinderink, A. P., Kerkhof, F. P. J. M., Lie, A. B. K., De Svaan Arons, J., van der Kooi,

H. J., 1996. Exergy analysis with a flowsheeting simulator – I. Theory; Calculating

exergies opf material streams. Chem. Eng. Sci. 51 (20), 4693–4700.

Hudak, P., 1989. Conception, evolution, and application of functional programming

languages. ACM Comput. Surv. 21 (3), 359–411.

BIBLIOGRAPHY 151

Jungnickel, D., 1999. Optimierungsmethoden – Eine Einführung. Springer, ISBN 3-

540-66057-7.

Li, X., Shao, Z., Qian, J., 2004. Module-oriented automatic differentiation in chemi-

cal process systems optimization. Comput. Chem. Eng. 28, 1551–1561.

Mahoney, D., Santollani, O., 1994. HYSYS – An integrated System for Process En-

gineering and Control. Hyprotech, Ltd., Calgary, Alberta.

Markowitz, H. M., 1957. The elimination form of the inverse and its application to

linear programming. Manage. Sci. 3 (3), 255–269.

Marquardt, W., 1996. Trends in computer-aided process modeling. Comput. Chem.

Eng. 20 (6/7), 591–609.

Mattsson, S. E., Elmqvist, H., Otter, M., 1998. Physical system modeling with mod-

elica. Control Eng. Pract. 6, 501–510.

Michelsen, M., Mollerup, J., 2004. Thermodynamic models: Fundamentals & Com-

putational Aspects. Tie-Line Publications.

Michelsen, M. L., 1982. The isothermal flash problem. Part II. Phase-split calcula-

tion. Fluid Phase Equilibr. 9, 21–40.

Michelsen, M. L., 1987. Multiphase isenthalpic and isentropic flash algorithms. Fluid

Phase Equilibr. 33, 13–27.

Michelsen, M. L., 1994. Calculation of multiphase equilibrium. Comput. Chem. Eng.

18 (7), 545–550.

Michelsen, M. L., 1999. State function based flash specifications. Fluid Phase Equi-

libr. 160 (158), 617–626.

Mischler, C., Joulia, X., Hassold, E., Galligo, A., Esposito, R., 1995. Automatic dif-

ferentiation applications to computer aided process engineering. Comput. Chem.

Eng. 19, 779–784.

MS Visio, 2003. Microsoft visio 2003. http://www.microsoft.com/office/visio/.

Nocedal, J., Wright, S. J., 1999. Numerical Optimisation. Springer.

Oh, M., Pantelides, C. C., 1996. A modelling and simulation language for combined

lumped and distributed parameter systems. Comput. Chem. Eng. 20 (6/7), 611–

633.

OMG, 2001. OMG Unified Modeling Language Specification Version 1.4. Object

Management Group (OMG).

URL http://www.omg.org

152 BIBLIOGRAPHY

OMG, 2003. OMG Unified Modelling Language Specification, Version 1.5. Object

Management Group Inc., http://www.omg.org.

Özyurt, D. B., Pike, R. W., 2004. Theory and practice of simultaneous data reconcil-

iation and gross error detection for chemical processes. Comput. Chem. Eng. 28,

381–402.

Pantelides, C. C., Barton, P. I., 1992. Equation-oriented dynamic simulation – Cur-

rent status and future perspectives – 2. In: Depeyre, D. (Ed.), European Sympo-

sium on Computer Aided Process Engineering. Vol. 17 of Computers and Chem-

ical Engineering. European Federation of Chemical Engineers, Pergamon Press,

pp. 263–285.

Péneloux, A., Rauzy, E., Fréze, R., 1982. A consistent correction for Redlich-Kwong-

Soave volumes. Fluid Phase Equilibr. 8, 7–23.

Perkins, J. D., 1979. Efficient solution of design problems using a sequential-modular

flowsheeting programme. Comput. Chem. Eng. 3, 375–381.

Perry, R. H., Green, D. W. (Eds.), 1997. Perry’s Chemical Engineers’ Handbook, 7th

Edition. McGraw-Hill.

Python, 2005. Python programming language. http://www.python.org.

Schildt, H., 1999. STL Programming from the Ground Up. McGraw-Hill.

Schwartzentruber, J., Renon, H., 1989. Extension of UNIFAC to high pressures and

temperatures by the use of a cubic equation of state. Ind. Eng. Chem. Res. 28 (7),

1049–1055.

Schwartzentruber, J., Renon, H., Watanasiri, S., 1990. K-values for non-ideal sys-

tems: An easier way. Chem. Eng. , 118–124.

Shewchuk, C. F., 1987. Massbal MKII – New process simulation system. Pulp Pap.-

Canada 88 (5), 76–82.

Siepmann, V., Haug-Warberg, T., Mathisen, K. W., 2001. Analysis and consistency of

process models with application to ammonia production. In: Gani, R., Jørgensen,

S. B. (Eds.), European Symposium on Computer Aided Process Engineering.

Vol. 11 of Computer Aided Chemical Engineering. Computer Aided Process En-

gineering Center (CAPEC), Elsevier, pp. 297–302.

Smith, J. M., van Ness, H. C., Abbot, M. M., 2001. Introduction to Chemical Engi-

neering Thermodynamics, 6th Edition. McGraw-Hill.

Soave, G., 1972. Equilibrium constants from a modified Redlich-Kwong equation of

state. Chem. Eng. Sci. 27, 1197–1203.

BIBLIOGRAPHY 153

Sorin, M., Bonhivers, J.-C., Paris, J., 1998a. Exergy efficiency and conversion of

chemical reactions. Energy Convers. Mgmt. 39 (16–18), 1863–1868.

Sorin, M., Hammache, A., Diallo, O., 2000. Exergy based approach for process syn-

thesis. Energy (Oxford) 25, 105–129.

Sorin, M., Lambert, J., Paris, J., 1998b. Exergy flows analysis in chemical reactors.

Chem. Eng. Res. Des. 76 (A3), 389–395.

Stadtherr, M. A., Wood, E. S., 1984. Sparse matrix methods for equation-based chem-

ical process flowsheeting – I. Comput. Chem. Eng. 8 (1), 9–18.

Stephanopoulos, G., Henning, G., Leone, H., 1990. MODEL.LA.A modeling lan-

guage for process engineering – I. The formal framework. Comput. Chem. Eng.

14 (8), 813–846.

Stroustrup, B., 1997. The C++ Programming Language, 3rd Edition. Addison Wes-

ley.

Swig, 2005. Simplified wrapper and interface generator. http://www.swig.org.

Tester, J. W., Modell, M., 1997. Thermodynamics and Its Applications, 3rd Edition.

Prentice Hall International Series in the Physical and Chemical Engineering Sci-

ences. Prentice Hall PTR, ISBN 0-13-915356.

Tolsma, J. E., Barton, P. I., 1998. On computational differentiation. Comput. Chem.

Eng. 22 (4/5), 475–490.

Tolsma, J. E., Clabaugh, J. A., Barton, P. I., 2002. Symbolic incorporation of external

procedures into process modeling environments. Ind. Eng. Chem. Res. 41, 3867–

3876.

Trudeau, R. J., 1993. Introduction to Graph Theory. Dover Publications, Inc.

UNIDO, IFDC (Eds.), 1988. Fertilizer Manual. Kluwer Academic Publishers, Dor-

drecht, The Netherlands, ISBN 0-7923-5032-4.

von Bronstein, I. N., Semendjajew, K. A., Musiol, G., Mühlig, H., 1999. Taschen-

buch der Mathematik, 4th Edition. Verlag Harry Deutsch AG, Frankfurt am Main,

Germany.

Wakeham, W. A., Stateva, R. P., 2004. Numerical solution of the isothermal isobaric

phase equilibrium problem. Rev. Chem. Eng. 20 (1/2).

Wall, G., 1986. Exergy flows in industrial processes. Tech. Rep. 83-11, Physical Re-

source Theory Group, Chalmers Univ. of Technology and Univ. of Göteborg.

Westerweele, M. R., Preisig, H. A., Weiss, M., 1999. Concept and design of Modeller,

a computer-aided modelling tool. Comput. Chem. Eng. Supp. , S751–S754.

154 BIBLIOGRAPHY

White, W. B., Johnson, S. M., Dantzig, G. B., 1958. Chemical equilibrium in complex

mixtures. J. Chem. Phys. 28 (5), 751–755.

Wilhelm, C. E., Swaney, R. E., 1994. Robust solution methods of algebraic process

modelling equations. Comput. Chem. Eng. 18 (6), 511–531.

XML-RPC, 2005. Xml-rpc homepage. http://www.xmlrpc.com.

Zitney, S. E., Stadtherr, M. A., 1988. Computational experiments in equation-based

chemical process flowsheeting. Comput. Chem. Eng. 12 (12), 1171–1186.

Zitney, S. E., Stadtherr, M. A., 1993. Supercomupting strategies for the design and

analysis of complex separation systems. Ind. Eng. Chem. Res. 32 (4), 604–612.

Zlatev, Z., 1980. On some pivotal strategies in Gaussian elimination by sparse tech-

nique. SIAM J. Numer. Anal. 17 (1), 18–30.

Zope, 2005. Z object publishing environment. http://www.zope.org.

