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Improvement of a Robotic
Manipulator Model Based on
Multivariate Residual Modeling
Serge Gale*, Hodjat Rahmati, Jan Tommy Gravdahl and Harald Martens

Department of Engineering Cybernetics, NTNU, Trondheim, Norway

A new method is presented for extending a dynamic model of a six degrees of freedom
robotic manipulator. A non-linear multivariate calibration of input–output training data from
several typical motion trajectories is carried out with the aim of predicting the model
systematic output error at time (t+1) from known input reference up till and including
time (t). A new partial least squares regression (PLSR) based method, nominal PLSR
with interactions was developed and used to handle, unmodelled non-linearities. The
performance of the new method is compared with least squares (LS). Different cross-
validation schemes were compared in order to assess the sampling of the state space
based on conventional trajectories. The method developed in the paper can be used
as fault monitoring mechanism and early warning system for sensor failure. The results
show that the suggestedmethods improves trajectory tracking performance of the robotic
manipulator by extending the initial dynamic model of the manipulator.

Keywords: manipulator, modeling, PCA, least squares, PLSR

1. INTRODUCTION

Control of various mechanical systems, such as robotic manipulators, autonomous ground vehicles
(AGV), unmanned aerial vehicles (UAV), and surface vehicles (USV), require good model knowl-
edge for precise and efficient control. It has been shown that model-based control is superior to
non-model-based equivalent, this, however, requires rigorous mathematical modeling and detailed
system analysis in order to develop a good and representative model of the system under consid-
eration. In some cases, a dynamic model can be simple, linear, single input single output (SISO)
system, such as a pendulum or mass on a spring [this does not, however, mean that a SISO system
is less non-linear than its multiple inputs and outputs (MIMO) equivalent, in fact there is no direct
correlation between complexity of the system in terms of non-linearities and its number of inputs
and/or outputs]; in others, it may containmany degrees of freedomwithMIMO, and have numerous
sources of non-linear behavior such as a robotic manipulator, as shown in Figure 1. In the case of
a standard industrial 6-DOF manipulator such as ABB IBR140 or KUKA KR150, non-linearities
come from multiple sources, some are taken into consideration during model development stages
following Lagrangian formulation (Spong et al., 2006; Siciliano et al., 2009). The result of systematic
approach in developing a dynamicmodel is a differential equation governing themotion of a system.
For a robotic manipulator, the dynamic model defines the relationship between joint position qi,
angular velocity q̇i, and angular acceleration q̈i to torque τ i necessary to achieve desired position,
velocity, and acceleration.

However, deductive, first principlemodels of complexmechanical, chemical, or biological systems
lack real world touch. Relying on an incompletemodel in generalmay result in system instability and
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poor performance. In control engineering, adaptive algorithms
allow detrimental effects of unmodelled dynamics to be more or
less neutralized over time. However, while we let the computa-
tional system correct for the mistakes automatically by the means
of feedback, we do not learn what was wrong with the model ini-
tially and hence do not correct the originalmodel inductively. Still,
this is highly successful. However, with an incomplete dynamic
model, the controller needs longer time to discover what is going
on in the system to correct it and in some cases it may not be able
to do so at all.

In this paper, we focus on investigating the properties of the
error signal generated by the internal controller of an industrial
robotic manipulator and a model of the same system based on
Euler–Lagrange formulation combined with dynamic parame-
ter identification procedure. The discrepancies between two sys-
tems, assuming zero measurement noise and ideal conditions is,
therefore, the unmodelled dynamics in the theoretical model. To
improve the theoretical model, two methods are used: principal
component analysis (PCA) and partial least squares regression
(PLSR) (Wold, 1985; Helland et al., 1992). PCA is used to test for
and reveal structure in the error between the two models, while
PLSR is used to modify the initial dynamic equation describing

FIGURE 1 | ABB IRB140 industrial manipulator (ABB Robotics, 2004–2009).

the system. The focus of this particular study is not to improve
the output of the real system directly, however, but rather by
developing a method by which a more accurate model of the real
system can be achieved.

This present paper is a part of an ongoing effort to combine the
best of the inductive and the deductive cultures. It has been shown
that when a seriously erroneous or incomplete mathematical
model is fitted to empirical data, the estimated model parameters
may have alias errors. In Martens (2011), the author showed that
multivariate subspacemodeling of the high-dimensional residuals
betweenmeasurements andmodel predictions could give surpris-
ingly detailed quantification of unexpected and thus unmodelled
phenomena in the system. It is our goal to improve understanding
and mechanistic modeling of a real world system from more
in-depth analysis of the residuals between models and measure-
ments.Figures 2, 3, and 7 outline this general approach and intend
to give better models, better understanding, and better process
control.

The first part of this paper outlines in detail the process of
developing dynamic model for a rigid body based on first prin-
ciples described by the basic laws of motion and conservation of
momentum, while the second part attempts to improve the quality
of the theoretically derived model based on gray box methodol-
ogy. The initial method is then extended to include data-driven
approach as a part of model improvement based on statistical
methods.

There are several ways in which the theoretical and data-driven
modeling can be combined. Particularly, we focus on using mul-
tivariate calibration tools to correct for the errors in the outputs
from a mechanistic model. The goal is to improve the estimation
of the torque τ needed to control the robotic arm to follow various
predetermined trajectories via joint space control.We achieve that
by modeling the observed lack-of-fit residual Y between mecha-
nisticmodel predictions of torque and actual measurements of the
“true” torque τ ∗ from the desired trajectory specified as position
q, velocity q̇, and acceleration q̈ in task space X by a subspace
regression methods (Wold, 1985).

The mapping between X and Y is highly non-linear; therefore,
we introduce a new version of the PLSRmethod (PLSR with nom-
inal level representation of the X-variables). This is an extension
of the nominal level PLSR used by Martens (2009), in the sense

FIGURE 2 | Real system and its theoretical model to be improved.
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FIGURE 3 | Quality control: PCA of the input and corresponding lack-of-fit residuals.

that not only main-effects but also interaction effects are modeled
in the nominal level PLSR.

1.1. Dynamic Model Development
For an industrial manipulator as shown in Figure 1, the dynamic
model tends to exclude effects, such as friction, gear oil viscosity,
and shaft torsion compliance, etc. It is possible to determine some
of those effects experimentally, for example a friction model;
however, the validity of the model is only over a limited range
of motion and conditions, none the less it appears that manu-
facturers tend to include this in their product. Generally external
effects and unmodelled dynamics is treated as an undesirable dis-
turbance and remedied via high gain control action or continuous
adaptation in the case of adaptive control strategies.

A definition for a rigid body can be formulated such as a system
of particles, which are subjected to some constraints, e.g., holo-
nomic equation (1) where distances between all of the particles
remain constant during motion (Goldstein, 1980). The principle
of holonomic constraints can be given in a short form as:

f(v1, v2, ...vn, t) = 0, (1)

where v = dx/dt, a first derivative of a distance vector x of a
particle from some given origin.

One way to visualize a rigid body subjected to holonomic
constraints is to imagine a mass that is restrained to move along
a predefined path, such as a stiff wire or a double pendulum with
masses attached to each of the constant length rigid rods. The issue
of the constraints is that the coordinates of the body is no longer
independent and the forces acting on the particle because of the
constraints are not known a priory (Finn, 2009). The solution to
holonomic constraints comes from introduction of a generalized
set of coordinates. A system with n particles free to move in
all three dimensions is said to have 3n independent degrees of
freedom; however, if the system is subject to k holonomic con-
straints the system is, therefore, reduced to 3n− k independent
coordinates (Goldstein, 1980; Spong et al., 2006).

The process of deriving the dynamic model is mathemati-
cally involved and relies upon a number of well-known laws
and principles of classical mechanics. There are two commonly
used approaches to this. The first is the energy based approach
and known as Euler–Lagrange formulation, which derived from
the principle of virtual work. This formulation has a number of
attractive properties for analysis of feedback control system, such
as skew symmetry and explicit bounds on the inertiamatrix aswell
as linearity in the inertial parameters. The method is well suited
for developing control strategies based on energy and passivity
principles (Slotine and Li, 1991; Khalil, 2000). An alternative to
the Euler–Lagrange approach is Newton–Euler formulation. The
latter method is a recursive formulation for rigid body dynamics
and is more suitable for numeric calculations. The Newton–Euler
formulation is well suited for real time inverse dynamics calcu-
lation and is very well suited for model based control system
implementation. The complete derivation procedure is outside of
the scope of this paper and will be omitted; however, detailed
descriptions are given in Egeland and Gravdahl (2002), Craig
(2005), Spong et al. (2006), and Siciliano et al. (2009).

The aim of developing a dynamic model of a rigid body or
system of rigid bodies is to derive a set of differential equations
that govern time evolution of the systems which is subject to
a set of constraints. Systems, such as double pendulum, mass-
spring-damper, or a roboticmanipulator, are subject to holonomic
constraints.

In order to develop a dynamic model, it is necessary to analyze
and derive kinematics of a solid object that describes position
and velocity of the body in space. As it has been mentioned
before, once a set of independent coordinates has been specified,
it is then possible to start developing body kinematics based on
vector algebra. A rigid body can be described by six independent
coordinates, three for position and three for orientation. The
transformation from chosen fixed coordinate system in space to
a fixed coordinate system attached to a rigid body is known as
an orthogonal transformation. A rotation matrix R that fulfils
orthogonality conditions rijrik = δjk is called orthogonal and has
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a number of useful properties, such as RTR= I, where I is the
identity matrix, and RT =R−1 (Spong et al., 2006; Siciliano et al.,
2009). The elementary rotation of a rigid body by some angle
in space can be represented as an independent rotation along
each of the axis in turn. Composition of rotations is achieved via
pre or post multiplication of rotation matrices with coordinate
systems attached to intermediate frames of reference. For a two
dimensional rotation, the R is a two by two matrix, for a three
dimensional rotation the R is a three by three matrix, defining
nine rij not independent directional cosines. A set of all m×m
orthogonal matrices is referred to a Special Orthogonal group of
order m and is denoted SO(m) (Khalil and Dombre, 2004; Craig,
2005). The rotation matrix can be parametrized in a number of
ways, including Euler angles and quaternions. Rotational trans-
formation only describes rotation of one frame with respect to the
other, combination of rotation and translation in a single matrix
H defines the homogeneous transformation [equation (2)],

H =
[

R d
0 1

]
, (2)

where R is 3× 3 rotation matrix, d is 3× 1 translation vector.
Once kinematics of a rigid body has been established the

forward and inverse kinematic chains for a multi-link robotic
manipulator can be developed. Forward and inverse kinematics
are seen as a map between two coordinate systems, i.e., joint
space vs task space, where the latter is the inverse of the former.
The motion of a rigid body through space gives rise to veloc-
ity kinematics, which defines description for linear and angular
motion. For a robotic manipulator velocity, kinematics provides
solution to two types of joint: revolute and prismatic. This in
turn defines a manipulator unique Jacobean matrix, which relates
linear and angular velocities of the end effector to individual joint
velocities.

Armed with the above knowledge manipulator dynamic equa-
tion is defined as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) = τ , (3)

whereM(q) ∈ Rm×n is a positive definite inertiamatrix,C(q, q̇) ∈
Rm×n is centrifugal and Coriolis forces matrix, G(q) ∈ Rm×1 is
gravitation vector, F(q̇) ∈ Rm×1 is friction vector, q, q̇, q̈∈ Rm×1

are joint angles, velocity, and acceleration vectors, respectively,
and τ ∈ Rm×1 is a vector of actuator torques. Note that the inertia
matrixM, centrifugal and Coriolis matrixC, gravity vectorG, and
friction matrix F are non-linear functions.

The structure of the dynamics in equation (3) is not unique and
is also observed in many other mechanical systems such as aerial
or ground vehicles and marine vessels.

1.2. Model Parameter Estimation
The difficulty in identification of the dynamic parameters and
estimation of forces acting on a mechanical system consisting
of a chain of actuated links transcending 0 velocity barrier is
due to discontinuity in second derivative. It is safe to say that
the forces acting on the joints at near 0 velocity are not fully
known, and a high quality description of the dynamics is difficult

to come by. More specific studies and methods can be found in
Armstrong-Hélouvry et al. (1994) and Olsson et al. (1998).

Most of the advanced control methods require good knowledge
of the dynamic model of the plant, performance of a model based
control strategy heavily relies on the accuracy of the dynamic
parameters of such a model. While adaptive and robust control
methods can tolerate some inaccuracies, inverse dynamics, also
known as computed torque control in robotic literature, assumes
precise knowledge of model parameters in order to achieve near
perfect linearization and decoupling of the plant (Khalil, 2000).
It is important to note that, even though a manufacturer may
have access tomajority of manipulator parameters from computer
aided design (CAD) models, the dynamic parameters need to be
identified and can not be taken directly from CAD or computer
aided manufacturing (CAM) system. However, a manufactured
and assembled part almost always will have discrepancies with
its 3D model due manufacturing tolerances and imperfections;
therefore, a fully assembled robotic manipulator will require fur-
ther identification of parameters and tuning of controller gains.
Identification of dynamic parameters requires knowledge of geo-
metric parameters of the manipulator, which has can be achieved
following previously described steps.

There are a number of methods and procedures available in
engineering and robotics literature on dynamic parameter iden-
tification, see An et al. (1986), Gautier et al. (1995), Khalil and
Dombre (2004), Siciliano and Khatib (2008), and Ljung (2015),
and application of these methods have a fairly and rich history. A
good starting point which provides general and solid background
on systems identification is given in Ljung (1998).

In Wu et al. (2010), the authors provide an overview of the
existing work on dynamic parameter identification methods.
There are twomain methods for parameter identifications: online
and off-line parameter estimation. Each of these methods has an
array of sub methods, for example in an online parameter iden-
tification adaptive and neural network based strategies received
significant amount of attention. For off-line identification of
parameters, physical experiments can provide insight into some
of the parameter values. It may be necessary to use extra sensors
or measuring devices during the experimental work; however, the
accuracy of the results depends on the precision of the equip-
ment used. Analysis of input–output data and later minimization
of the cost function characterizing the difference between the
actual systems output and mathematical model is among the
most successful methods for parameter identification as it pro-
vides relatively accurate results with relatively easy experimental
setup.

Special interest should be given to link inertial parameters as
they are important for precise control of motion. As manipula-
tors are designed to kinematic requirements, inertial parameters
become a secondary property of the design. Froman identification
point of view, inertial parameters can be organized in to three
groups: fully identifiable, identifiable in linear combinations, and
completely unidentifiable according to Atkeson et al. (1986). In
the same publication, the authors provide methods for manipula-
tor load and link parameter estimation.

In Swevers et al. (2007a), the authors provide a very compre-
hensive and detailed description of dynamic model identification
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for industrial robots. The paper covers all aspects of the pro-
cess starting from experiment design, data acquisition, parameter
estimation, and model validation.

State-space system identification of robot manipulator dynam-
ics was presented in Johansson et al. (2000), where the authors
compare a number of commercial software and dedicated sub-
space model identification software (MOESP) tools in order to
evaluate their performance.

In Grotjahn et al. (2001), the authors describe an identification
method for industrial robots that does not require the a priori
identification of the friction model, which is one of the more
difficult tasks. The proposed method relies on weighted least
squares (WLS) with the advantage of it being relative simplicity
of implementation for standard robot controls and the possibility
it provides in identifying unmodelled effects and unnecessary
parameters.

An interesting work is done by the authors in Kolyubin et al.
(2015). Their approach uses external measurement device, a
Nikon K610 optical coordinate measuring machine, together
with the KUKA LWR4+manipulator in an open-loop geometric
calibration task. The paper provides a comparative analysis of
three different algorithms and two observability indexes used for
numerical pose selection and optimization. The planning stage for
optimal pose selection used in geometric calibration is done in
order to provide better convergence of parameter estimates.

An experimental comparison between theWLS estimation and
the extended Kalman filtering (EKF) methods for robot dynamic
identification presented in Gautier and Poignet (2001). The appli-
cation of the proposed methodology is tested on a two-degree
of freedom SCARA robot. The advantages and disadvantages of
both methods are discussed. The paper concludes that for off-line
identification the WLS method with the inverse dynamic model
appears to be better than EKF.

Perhaps, more recent and relevant work to this paper has been
presented in Gautier et al. (2008) with more detailed information
and theory including proofs is given in Gautier et al. (2013).
The work is focused on the identification of robotic manipula-
tor dynamic parameters from torque measurements only. The
method relies on the assumption that the model and the real
system have the same control law, more specifically it requires
that the structure and the tuning of the control law is known and
implemented in the simulation. In comparison, in this work, no
prior knowledge or assumptions are made about control law or
the actual structure of the controller used in the real system.

In Janot et al. (2017), authors propose a statistical identification
procedure named state dependant parameter (SDP) estimation.
The method allows to identify and estimate non-linearities in the
dynamic system. The first point worth mentioning is that this
method allows graphical representation of the shapes of non-
liniarities based on experementally sampled data. The method
consists of two stages: first; a non-parametric stage, where the
structure of themodel representing the systemunder investigation
is identified. The second stage is parametric estimation stage,
where the actual parameters of the system is identified. Simi-
lar to the presented work here the suggested approach requires
minimum of a priori assumptions about non-linearities in the
dynamic system. In comparison, the graphical representation of

the components extracted during structure decomposition is able
to show not only dynamic non-linearites but also other effects on
the system caused by external or internal factors.

Once a mathematical model has been developed the next stage
is to apply systems identification procedure. In order to estimate
internal parameters of the system, applied input vector signals
are required to fulfill persistency of excitation (PE) conditions
(Boyd and Sastry, 1983; Gorinevsky, 1995; Nikitin, 2007), this
guarantees parameter convergence. For a simple pendulum, such
input would be a square wave due to its physical properties. For a
robotic manipulator, a number of trajectories exists that can give
parameter convergence. Initially PE defined a necessary condi-
tion for a signal vector consisting of input and the output used
for system identification that guaranteed exponential parameter
convergence. Later work focused on deriving a set of necessary PE
conditions exclusively for input signals that result in PE outputs.
The definition and the proof is built upon the identification of
a set of necessary conditions for general form of PE function,
further expanding on previous results a set of conditions derived
for PE input that produces PE states. Finally, efforts are maid to
link PE of an input signal to its order of richness (Shimkin and
Feuer, 1987). PE is very often studied in connection with adaptive
control, systems identification and learning problems and is a
rather basic minimum requirement for convergence, this by no
means guarantees quality of the results in terms of how well it
represents the true parameter values. There are many more things
one can do to improve the results. In fact, experimental design is
something that is rather overlooked in control engineering world;
however, the benefits would be significant. Some previous work
can be found in Ng et al. (1977) and Rojas et al. (2007).

In order to satisfy the condition described above, a number of
trajectories have been identified and developed based on Fourier
series, which have been studied in robotics literature rather exten-
sively, see Swevers et al. (1996, 1997, 2007b) and Park (2006). The
actual Fourier series that was used to generate excitation trajectory
is given in equation (4). The velocity and acceleration profiles are
achieved via differentiating and double differentiating qf (t).

qf(t) = a0 +
5∑

k=1
(akcos(kωt) + bksin(kωt)) (4)

The other trajectories are a cyclic motion and a move-stop-
move trajectory representing continuous periodic motion such as
inspection and welding or pick and place, respectively. Selection
of parameters for Fourier series is not a straight forward task
and care must be taken. The ω parameter defines fundamental or
minimum frequency of the series when k= 1, the higher compo-
nents in the series provide faster dynamics or harmonics. In any
electromechanical system achievable velocity and accelerations
are limited by the hardware to prevent damage to the equipment.
There are current and voltage limiters present in the systemmean-
ing that there is a q̇max and a q̈max, which a joint is able to achieve.
In our experience while defining original Fourier set for q extra
care must be taken as setting high value for ω will mean that q̇
and q̈ will require lower amplitude defined by ak and bk in order
not to trigger the over-current protection of the manipulator.
Therefore, high initial ω will result in short and fast joint motions
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meaning the full range for q will not be visited, meaning the
trajectory will not be able to excite the system enough to identify
all parameters completely. A remedy to this is to either extrapolate
and average, which presents issues on its own if there are some
manufacturing defects existing outside of the identified parameter
range. Alternatively one can select low-enough initial ω, however,
amplitudes will have to be higher, meaning that full range of
motion in q may not be enough to reach q̇max and q̈max. It is
possible to increase the length of the Fourier series by setting kmax
much greater than five, this has a potential problem of exciting
natural resonant frequencies of the mechanical system, which will
lead to instability and damage to the manipulator. Summarizing,
the above can be written in a compact form as such:

q̇f(t) 5 q̇max

q̈f(t) 5 q̈max (5)

One of the useful and interesting properties of the manipulator
model given in equation (3) is that it is linear in the parameters
(Siciliano et al., 2009), which makes it very suitable for parameter
estimation based on least squares method. The alternative form of
equation (3) is given below

Φ(q, q̇, q̈)θ = τ (6)

where Φ ∈ Rm×n is the regression matrix with n independent
parameters, θ ∈ Rn×1 is a vector of unknown parameters to
be identified, τ ∈ Rm×1 is a vector of actuator torques, q, q̇,
q̈∈ Rm×1 are vectors of joint angles, velocities, and accelerations,
respectively. The formulation of equation (3) in the form of
equation (6) makes it very attractive and suitable for parameter
identification task. In general it is assumed that themeasurements,
i.e., joint angles, angular velocities, accelerations, and torques are
affected by independent zero-mean Gaussian noise such that

qm(t) = q∗(t) + eq(t)
q̇m(t) = q̇∗(t) + eq̇(t)
q̈m(t) = q̈∗(t) + eq̈(t)
τ(t) = τ∗(t) + eτ (t) (7)

where q∗, q̇∗, q̈∗, and τ∗ are ideal measurements. In reality,
however, it is rather difficult to measure angular velocity and
acceleration, it is generally achieved via differentiation and filter-
ing of the angular position. There are, however, devices that allow
for direct measurement of angular velocities called resolvers. It is
also possible to use micro electromechanical (MEMS) gyroscopes
to measure joint angular acceleration. In the case of industrial
manipulators manufacturers such as KUKA or ABB, direct mea-
surement only available for joint angles (ABB Robotics, 2004).

1.3. Model Validation
Once dynamic parameters of a robotic manipulator have been
identified it is reasonable to validate the results obtained. There
are a number of validation tests that can be carried out on the
dynamic model; however, this is a field with limited number of
published results and such a validation requires a comprehensive

study with solid experimental design methodology behind it. The
following suggestions are made in Khalil and Dombre (2004).
A direct validation method on the identification trajectory by
computing the error vector between the outputs of the real system
and the simulationmodel. This a solid recommendation, however,
it is not clear under which conditions one has to establish valida-
tion test, i.e., what are the inputs and what are the outputs. An
alternative method is to test if the inertia matrixM in equation (3)
with identified parameters is positive definite (Spong et al., 2006);
this is a simple and straight forward technique, however, it gives
no indication of how the identified parameters relate to their true
values. At this point it would be of great help to provide some basic
guidelines of how to proceedwith validation of the dynamicmodel
in control systems sense.

Equation (3) provides the clue, it can be rewritten in terms
of τ or in terms of q̈; therefore, it makes sense to either chose
input vector as position q, velocity q̇ and torque τ , and measure
acceleration q̈ as the output, or specify input vector as position q,
velocity q̇ and acceleration q̈ and measure τ as the output.

The model validation should be carried out in a feed-forward,
open-loop fashion in order to avoid controller action. In a closed-
loop feedback control the regulator will suppress any model
uncertainties and it is not possible to make a concrete statement
on resulting model quality, as uncertainties in the parameters will
be masked by controller actions.

Performance of the model will also depend on the trajectory
used for validation. An unstable trajectory will require controller
actions, on top of that the system itself must be naturally stable.
It is thus not possible to execute a trajectory on a real system,
record the torques used, then use those torque series as the only
input into the derived simulation model and expect stable and
rational behavior at the output. A robotic manipulator is an
example of a dual integral system, any discrepancies in initial
conditions between two systems will lead to instability of the
output.

1.4. Inverse Dynamics Control
A block diagram of typical controller-plant system is given in
Figure 2. One of the control schemes that is based on feed-
back linearization scheme is called inverse dynamics control. In
the inverse dynamic control, the input is computed such that it
resolves the system in to a set of linear subsystems as in the section
above. Computation of such input requires good knowledge of
systems parameters, which can be rather difficult to estimate. This
is a desirable technique and is often used in conjunctionwith other
methods to increase robustness and stability. The inverse dynam-
ics control assumes perfect knowledge of model parameters and
attempts to cancel non-linearities. The system relies on inversion
of manipulator inertia matrixM as seen in equation (8) which can
be problematic, given the non-linear nature of the model.

τ = M−1(q)aq + C(q, q̇)q̇ + G(q) + F(q̇), (8)

where aq is chosen according to equation (9). In the inverse
dynamics or also known as computed torque control, the input
signal is calculated according to equation (8), thus by substituting
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the right hand side of equation (3) with equation (8) reduces to
the following double integrator system

q̈ = aq
aq = q̈∗ − Kp(q − q∗) − Kd(q̇ − q̇∗) (9)

where Kp and Kd are diagonal gain matrices, and it represents n
decoupled subsystems and thus the control law can be designed
around a linear second order system. A choice of aq under closed-
loop control is such that initial tracking control task is reduced to
stability control around zero in the error space as

ë(t) + Kdė(t) + Kpe(t) = 0 (10)

where Kp andKd are proportional and derivative gain matrices, e,
ė, and ë is position, velocity, and acceleration error, respectively.
This control method requires access to accelerationmeasurement,
which not always available and in most cases it is derived from
position via double differentiation. More details about control
method and its applications can be found in Slotine and Li (1991),
Spong et al. (2006), Siciliano et al. (2009), and Khalil (2000).

In the scope of this study the control of the dynamic model of
the manipulator was chosen to be the one described above. As it
has been mentioned it is not always possible to completely cancel
all non-linearities and usability of such control scheme on its own
is rather unrealistic; however, in the case of a simulation model
the knowledge of all of the parameters is readily available. In other
words, the identified parameters that establish the simulation
model are used in the inverse dynamics controller.

Our interest is not in the analysis and study of the control
scheme but rather an attempt to capture lack of fit between mech-
anistic model and the real system. Therefore, the controller is
chosen in such a way to avoid adding extra layer of complexity
in transient responses due to controller gains into the error signal.
By completely canceling non-linearities inside the simulation via
inverse dynamics control and since the model is derived system-
atically following first principles and identification of dynamic
parameters of the real system via system identification procedure,
the error signal is thus in its purest form, consisting of only
measurements noise and the lack of fit between the models.

1.5. Robotic Manipulator
The mechanical configuration of a typical industrial 6-DOF
robotic manipulator arm is such that the first three joints are
responsible for the position while the last three, which forms
spherical wrist, are responsible for the orientation of the end
effector. The actual configuration of the manipulator involved in
the study can be seen in Figure 1. There are a number of forces
acting on each joint of a robotic arm governed by elementary laws
of physics. Two of the main principal forces that a joint’s actuation
subsystem has to overcome in order to generate motion is gravi-
tational and friction forces. It is important to note that an electric
motor responsible for motion of joint i has to overcome gravity
not only affecting its associated link i but all of the successive n− i
links.

The robotic system is rather complex, parameter identification
procedure is not a straight forward task and requires a large

number of equations compared to the actual dynamic parameters
to be identified, in Khalil (2000). Robotic manipulators are used
in many industries and perform a very wide range of tasks, the
control system is complex and tasked not only with providing
accurate positioning and tracking but also with rejection of all
external disturbances at the same time compensating for natural
wear and tear of the mechanical structure. Therefore, the aim is to
improve initial theoretical model based on data observation will
lead to better, more efficient and longer lasting robotic systems.

2. MULTIVARIATE ANALYSIS

Least squares is a well-known method and used in many fields of
science and engineering; however, derivative methods like PLSR
remains mostly unused in control systems engineering. However,
some methods have found its use: proper orthogonal decom-
position is used in the sense of model reduction (Hovland and
Gravdahl, 2006; Hovland et al., 2008; Benner et al., 2015). There
has been very limited research done in application of PCA and
PLSR as tools in model improvement and error signal analysis.
The model improvement method suggested in this paper in the
initial step is based on PCA analysis of the error signal as seen in
Figure 2. The assumption is that the error signal between the plant
and the model based controller will contain lack of fit between a
theoretical model and its data-driven equivalent. The structure of
the experimental configuration of both the real system and the
equivalent mathematical model is shown in Figure 2. Once the
dynamic model of a real system has been developed and a suitable
simulation environment has been set up, both of the systems are
fed with identical input references. The output at every stage is
synchronized and recorded. Once the simulation for a task is
complete, the output of both systems is compared and analyzed.

2.1. Experimental Setup
The data for the study were collected from anABB IRB140 6-DOF
robotic manipulator which can be seen in Figure 1. A software
simulation model was built based on theoretical modeling of the
manipulator. The parameter identification was carried out based
on the steps described in the introduction.

A number of trajectories were selected which are representative
of a typical robotic manipulator task in an industrial setup, more
specifically for this experiment following trajectories were used:
continuous cyclic trajectory representing a spray painting opera-
tion Figure 5, a pick and place trajectory consisting of relatively
short fast moves Figure 4, a welding simulation trajectory similar
to pick and place with greater number of segments of motion of
the robotic arm, and finally a trajectory consisting of Fourier series
typically used in a systems identification task Figure 6.

Both the real system and its theoretical software simulation
modelwere fedwith identical desired input trajectories, the output
of the systemwas recorded using RobotStudio® Signal Viewer. The
collected data consist of joint angles and torques is used to perform
numerical analysis described in the next section.

The collected data are then organized into vectors and later
combined into matrices. The data are organized in such was that
each row represents a particular observation at time t, while each
column represents a variable such as joint torque or angle.
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FIGURE 4 | PCA results comparison between input (PCA1), lack-of-fit
residuals (PCA2) and a random signal (PCA3) for move–stop–move trajectory.

2.2. Multivariate Analysis Algorithms
Over the years, a number of multivariate analysis (MVA) tech-
niques have been developed and studied in various fields of engi-
neering and science. Such tools established a baseline for analysis
of complex data sets, model reduction and response prediction of
dynamic systems. The most common and well-known technique
called PCA have been rediscovered number of times and is known
under different names depending on the field of application. The
name PCA is given to a statistical technique which can be imple-
mented using number of workhorse algorithms, such as singular
value decomposition (SVD) or eigenvalue decomposition (EVD).
PCA is the algorithm of choice for subspace and exploratory data
analysis (EDA) given a single data set X with the main objective
of discovering major characteristics or structures in the data. The
result of a PCA is a set of linearly uncorrelated latent variables each
of which is represented in turn by a vector of scoresT and loadings
P as in:

X = TaPT
a + Ea (11)

Visual inspection of each latent variable, its components and
residuals provides a much deeper insight into underlying struc-
tural variations in data. An overview of different PCA algorithms

FIGURE 5 | PCA results comparison between input (PCA1), lack-of-fit
residuals (PCA2) and a random signal (PCA3) for cyclic trajectory.

and their applications can be found inWu et al. (1997a), Weinges-
sel and Hornik (2000), Fodor (2002), Wu et al. (1997b), Chat-
terjee et al. (2000), and Wei-Min and Chein-l (2007). In control
systems engineering PCA has found its application mostly, yet
not surprising in linear theory andmultivariable feedback control
design as a measure of controllability and observability as well as
model reduction problem (Moore, 1981; Jonckheere, 1984), signal
processing (Cabell et al., 2001), etc. PCA is a suitable technique
when studying single data set for internal structures or specific
characteristics, when it comes to finding a relationship between
two data tables PLSR comes to aid. Just like PCA, the technique
can be realized using SVD or a power method such as non-linear
iterative partial least squares (NIPALS). Mathematically speak-
ing PLSR determines a linear regression model between depen-
dent and independent variables in a new space which accurately
describes relationship between them. In both cases in its standard
form, assuming that observed data sets contain no missing values
the resulting PC’s are orthogonal to each other, this is a very
important property for control purposes of MIMO systems via
feedback linearization of the plant where decoupling of inputs and
outputs is a desirable property (Slotine and Li, 1991). However, in
the case where missing values are unavoidable, orthogonality can
not be guaranteed and extra steps have to be taken.
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FIGURE 6 | PCA results comparison between input (PCA1), lack-of-fit
residuals (PCA2) and a random signal (PCA3) for fourier trajectory.

2.3. PCA
The field of process control over the years has developed a number
of tools able to capture and discover underlying systems dynamics.
Tools for multivariate analysis are widely available and have been
studied over a long period of time. Algorithms, such as PCA, ICA,
PLSR, etc., offer a great deal of features, whichmakes them suitable
formeta-modeling. Themost common andwell studied algorithm
for online process modeling and monitoring is PLSR (Dayal and
MacGregor, 1997; Qin, 1998; Ni et al., 2012). Recursive partial
least squares (RPLS) algorithm is well suited for both online and
off-line batch data analysis, and has demonstrated its versatility in
various industries.

A standard PCA algorithm decomposes a data matrix
X∈ Rm×n in such a way that each principal component contains
maximum variance after ath ∈ [1, . . ., A] factor:

X = TaPT
a + Ea (12)

where Ta ∈ Rm×a is a matrix of scores, Pa ∈ Rn×a matrix of
loadings and Ea ∈ Rm×n are residuals. The optimal number of
components can be found using jack-knifing or cross-validation
technique (Martens andMartens, 2001). The composition of PCA

inputs is defined in equation (13). Prior to analysis, data are mean
centered and scaled. If no mean centering is carried out prior to
the PCA analysis, the first component will be the mean center of
the data, thus mean centering is not essential, however, scaling is,
and must be performed.

Manipulator output data were collected from three different
types of trajectories. The first trajectory represents continuous
cyclic motion of the manipulator as shown in Figure 5. This
could be an inspection or painting task on a production line. The
second trajectory is of move-stop-move, see Figure 4, type and
is typical for packing, sorting, assembly or welding operation of
an industrial robot, which is dominant type of activity for robotic
manipulator systems currently applied in the industry. The final
trajectory is generated from Fourier series, see Figure 6, and is
typical for parameter estimation procedure where the system is
required to have rich input to guarantee parameter convergence.
During the experiment the real system and the simulation model
were fed with identical input reference signal, as illustrated in
Figures 2 and 3. The input and the error signal were analyzed by
PCA independently as shown in Figure 3, the results can be seen
in Figures 4–6.

The PCA1 inputmatrix consists of the input trajectory, i.e., joint
position [q1, q2, q3], velocity [q̇1, q̇2, q̇3], acceleration [q̈1, q̈2, q̈3],
respectively, while PCA2 input is the error between the real sys-
tems output and theoretical model. PCA3 is purely for comparison
and consists of white noise. Detailed structural description of each
row of PCA input X is:

PCA1 : X ∈ Rm×j = [q, q̇, q̈]
PCA2 : X ∈ Rm×j = [eq, ėq, ëq]
PCA3 : X ∈ Rm×j = [ω1, ω2, ω3] , (13)

where eq, ėq and ëq is the error between measured and esti-
mated value of position, velocity and acceleration, respectively,
ω1, ω2, ω3 are white noise vectors used purely for comparison
of structured vs unstructured data, see Figures 4–6.

The error between the outputs of two systems is due to the lack
of knowledge and lack of modeling effort disregarding sensory
noise. It is possible to develop a more comprehensive theoretical
model of the real system by taking in to account non-linearities
describing friction, drive shaft flexibility, gearbox backlash etc.;
however, the complexity of such a model would increase expo-
nentially the more variables taken in to account. Therefore, a
natural question arises whether there is anything that can be
done about this structure in the error and how can it be used to
expand the initial theoretical model to be more representative of
the real system. To answer this question, we use PLSR to find the
underlying structure in the error signal, such that more accurate
prediction is achieved.

2.4. PLSR
PLSR is capable of developing a meta-model of the input–output
data. There are several equivalentways to describe the PLSRmodel
and the algorithmused to develop it. The version used in this work
is based on the original version of the algorithm introduced in
Wold et al. (1983).
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FIGURE 7 | Calibration.

The purpose is to be able to predict a set of j regressand variables
of Y ∈ Rm×j =

[
y1, . . . , yj

]
from a set of k regressor variables of

X ∈ Rm×k = [x1, . . . , xk] via a set of A linear combinations of k
X-variables, based on joint observations

[
yi, xi

]
, ∀ i ∈ [1, . . . ,m]

from Y and X respectively.
In general case, the composition of X and Y are time synchro-

nized meaning that each row of the regressor matrix corresponds
to an observation taken at the same time interval in the regressand
matrix. In other words there is no time discrepancy between
input and output data as each row in both matrices represents
an observation at a particular time (t). A step ahead time shift
can be introduced by shifting the rows of Ymatrix while keeping
the row of the X unchanged. Thus, by introducing a time shift
of (t+ 1) inside the regressand Y which contains systems out-
put, from unchanged regressor X which contains systems input
trajectory the proposed algorithm builds a model that is able
to predict systems output at (t+ 1) given the input at time (t),
therefore, the joint observations become [yi ,(t+1), xi ,(t)]. In the
remained of the text the subscript (t+ 1) in the in the yi ,(t+1)
variables and (t) in the xi ,(t) variables are omitted for clarity and
space consideration; however, all of the results presented are for
(t+ 1) prediction of the output given the input at time (t). For the
validity of matrix operations after time shift in Y, the size of the
Xmust be trimmed to maintain the same number of rows in both
matrices.

The general bi-linear regression model, at rank a, may be
summarized as follows:

Step 1: estimate and subtract the mean of each of the variable in
X and Y.

Step 2: extract weighted combinations ta ∈Rm×1 ∀ a∈
[1, . . . ,A], fromX by defining weight vectors va ∈ Rk×1 so that:

TA = (X − x̄)VA, (14)

where x̄ is the mean of each variable of X and each of the
columns va in the weight matrix VA are defined according to
some criterion, resulting in the orthogonal score matrix TA ∈
Rm×A = [t1, . . . , tA]. Different methods rely on different
definitions of the weight vectors in VA In PCA each column
vector va in VA is chosen to maximize the variance of each
score vector ta. In PLSR each vector va is chosen as to max-
imize the covariance between the X-score vector ta and the
corresponding linear combination of the Y-variable.
Step 3: for each rank a∈ [1, . . . ,A ≤ min(n − 1, k)] (for gen-
eral case matrix rank should be used), approximate X and Y
according to the bi-linear regression structure model:

X = x̄ + TAPT
A + EA

Y = ȳ + TAQT
A + FA (15)

Loadings are estimated, e.g., by projection [ordinary least
squares (OLS) regression]:

PT
A = (TT

ATA)−1TT
AX

QT
A = (TT

ATA)−1TT
AY (16)

In practice, the optimal number of PLS components (PCs)
A=Aopt ∈ [1: min( j, k)] is determined either manually, by
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jack-knifing, cross-validation, or other methods (Martens and
Martens, 2001), leaving the unmodelled residuals

EA = X̄ − TAPT
A

FA = Ȳ − TAQT
A, (17)

where X̄ indicates X with mean value removed as shown below

X̄ = X − x̄
Ȳ = Y − ȳ. (18)

In PLSR, the weight matrix VA for the first a components is
defined as follows, to maximize the explained X–Y covariance:
for each component, a= [1, . . ., A], let wa be the eigenvector
corresponding to the largest eigenvalue in the residual covariance
expression remaining after subtraction of the previous a− 1 com-
ponents, (ET

a−1Fa−1FTa−1Ea−1). Collect these a so-called loading
weights vectors in an orthonormalmatrixWA = [w1, . . .,wA]. The
weight matrix is then defined as:

VA = WAGA, (19)

where the bi-diagonal matrix is

GA = (PT
AWA)−1 (20)

The prediction of yi ∈ R1×j from xi ∈ R1×k in new objects or
points in time i, may be attained by

ti = (xi − x̄)VA

ŷi = ȳ + tiQT
A (21)

with the additional modeling (good for outlier detection and
graphical interpretation):

x̂ = x̄ + tiPT
a (22)

ei = xi − x̂i
fi = yi − ŷi (23)

Alternatively, an equivalent short-cut prediction, without
explicit modeling of xi, is:

ŷi = b0,A + xiBA (24)

where estimated rank a regression coefficients are:

BA = VAQT
A (25)

with offset vector:
b0,A = ȳ − x̄BA (26)
fi = yi − ŷi (27)

The structure of each row and column inX and Y is defined as:

Y ∈ Rm×i = [eτ1 , eτ2 , eτ3 ]

X ∈ Rm×j = [q1, q2, q3, q̇1, q̇2, q̇3, q̈1, q̈2, q̈3] , (28)

where eτi is the error of an ith joint between the real system
measured torque output and the torque computed by the con-
troller in the simulation model, [q1, q2, q3] are joint reference
positions, [q̇1, q̇2, q̇3] reference velocities and [q̈1, q̈2, q̈3] reference
accelerations, respectively.1

1Only the first three joints out of six of the manipulator were used in this study. The
first three joins responsible for position of the end effector in task space, while last
three are responsible for orientation of the end effector.

2.5. Validation Methods for PLSR
It is important that the results from data-driven method such as
PLSR or in fact any other estimation procedures are validated
and evaluated quantitatively for quality. One can identify two
types of validation: internal and external. The external validation
is aimed at assessing the resulting model’s ability to generalize,
to some extent this can be done from visual examination of
the results produced, as the method is able to provide graph-
ical representation of the dominating patters in the model via
inspection of scores and loadings. The internal validity is assessed
by inspecting statistical relevance and performance of modeling
results.

The residuals EA, FA from estimation of X and Y after A com-
ponents, respectively can be summarized in terms of root mean
square error (RMSE), these summaries in turn can be separated in
to calibration residuals RMSEC and prediction or validated resid-
uals RMSEV (in some literature it is abbreviated as RMSEP). The
prime use of RMSEC is for the diagnostics purposes in analysis of
complex data sets. The RMSEV provides information on model
generalization ability and gives an insight into long term error
prediction.

In this study three types of cross-validation (CV) methods
were carried out: cross trajectory, systematic and random. In
each one of the CV technique employed the process is the more
or less the same. The full observation data set X and Y is
split in to a number of subsets. In a full leave-one-out cross-
validation a single sample is taken out and kept hidden. The
model is trained without the hidden sample, after the initial
training the generated model is used to predict the hidden sam-
ple. The process is repeated for every sample, and therefore,
the number of validation runs is equal to the number of sam-
ples in the set. This presents a problem for large data sets with
many observations like in this case where samples are taken at
high frequency resulting in matrices X and Y with thousands of
rows.

The use of CV allows to determine the optimal number of
components Aopt to be employed in the final model. It pro-
vides a good estimation of model ability to generalize, i.e., the
predictive ability. Cross-validation combined with jack-knifing
allows to identify variables that least affect the model, in other
words it allows estimation of a parameter reliability. Finally,
it provides tools for outlier identification and detection of
abnormality.

2.5.1. Cross Trajectory Validation
In cross trajectory validation routine the data set is split in to
subsets that correspond to each trajectory. The model is trained
with one trajectory removed at a time. The resultingmodel is used
to predict the hidden trajectory.

2.5.2. Systematic Cross-Validation
In systematic CV the full data set is broken in to a number of
subsets. In this study, the number of blocks for systematic and
randommethods was chosen to be 20. The choice for the number
of validation blocks depends on the amount of data available
and the system under consideration. In systematic validation
routine each hidden block contains sequential rows. The process
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is repeated a number of times equal to the number of validation
blocks.

2.5.3. Random Cross-Validation
During random cross-validation just as in systematic the full data
set is split in to a number of subsets; however, in the case of
randommethod each row in the hidden block has little correlation
to its neighbor as during row selection each is selected randomly
from the full set.

In general, the higher the choice of validation blocks the closer
it gets to full leave-one-out method. The RMSEV for Y is calcu-
lated as the average of RMS of the validation subsets.

FIGURE 8 | Standard PLSR results.

2.6. PLSR Modification
Results from application of a standard PLSRmethod are shown in
Figures 8 and 9. The comparison between using no compensation
method, standard PLSR and modified PLSR as suggested later
in this paper is shown in Table 1 and confirms that the overall
improvements are insignificant and it is clear that one has to look
further than a standard method.

The quality of the model developed by PLSR was assessed
using:

RMSE =
∥Y∗ − Ŷ∥2

∥Y∗∥2
, (29)

where Y∗ is matrix of observations collected from the real system
as in equation (28), Ŷ is the results from PLSR compensated
model. The same formula is used to test formodel quality between
the real system and the theoretical model.

The problem lays in non-linearity of the system that gener-
ates the error signal itself. The dynamic model developed earlier
attempts to cancel well known non-linearities in the model by
inverting them, in this case it is a well established and realizable
solution. However, the more complex non-linearities present in

TABLE 1 | 20-fold cross-validation (random block selection) for PLSR predicting τ e

from q, q̇, q̈ for all trajectories.

Joint RMSEV%

No compensation LS PLSR Modified PLSR

τe1 35.9 32.3 32.3 15.2
τe2 19.8 14.1 14.2 6.1
τe3 16 13.5 13.7 6.83

FIGURE 9 | Illustrative result to complement Table 1.
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the system in the form of friction around 0 velocity, backlash in
the gearbox, etc. are not compensated due to complexity and effort
required. In order to address some of the issues two effectivemod-
ifications to the algorithm are proposed. The modification takes
two steps and is concerned with preprocessing the data before it
is fed into PLS. Figure 13 shows block diagram representation of
the modified PLSR calibration scheme.

2.6.1. Step 1
Each of the X variables is replaced by a nominalized representa-
tion of itself. This is better described by the concept of quanti-
zation: nominalization expansion is achieved by discretizing the
operational range of the variable in to a number of equally spaced
levels, thus defining a nominalization level. Each individual level
is then expanded in to a separate column. If a variable falls in
to the range of the nominal block m it is marked as 1 else it
is replaced by 0. For example, given a single vector q∈ Rm×1

applying nominalization expansion of level-k will result in a new
matrix Xq ∈ Rm×k.

2.6.2. Step 2
Replace the nominalized matrix Xq by a matrix of interaction
effects across variables. At this point each column of the Xis
replaced according to

X̃m×p = {Xm×i ◦ Xm×j ∀ i ∈ {1 : n − 1} ; j ∈ {i + 1 : n}} ,
(30)

where, X is an input matrix with m rows and n columns, “◦”
is defined as the Hadamard product, more commonly known as
an element wise product. The resultant matrix X̃ has the same
number of rows as the initial matrix X, while number of columns
p is equal to (n − 1)n/2 and represents purely interaction effects
between variables of the initial input matrix.

The two steps described above provide good improvements
to the model derived by PLSR from observational data judging
from the results. Finally once a data-driven PLSR model has been
developed and cross validated, it is suitable for real time imple-
mentation as it can be realized via a look up table of coefficients
each corresponding to a particular location in the state space map
giving necessary model corrections.

In the case of the experimental data initialmatrixX ∈ Rm×9 ⇒
X ∈ Rm×198 by applying nominalization level of 22. This value is
taken from Figure 12 and depends on the choice of computational
time and required accuracy of the final model. In general the opti-
mal nominalization level depends on each case individually and
on requirements at hand. It is important to note that themaximum
nominalization level is limited by the sensors own discretization
scheme. Further study is required to find a mathematical method
of establishing an optimal nominalization level without going
through experimental trials. Trials were carried out for different
nominalization levels, the results can be seen in Figure 12.

3. MODEL MODIFICATION

The initial dynamicmodel equation (3) can bemodified in the fol-
lowing manner without compromising input-output decoupling:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) + Bfpls(q, q̇, q̈) = τ , (31)

where B is PLSR coefficients and fpls is a function that transforms
the raw sensor data according to nominalization rules and applies
interactions. Figures 13 and 11 show block diagram represen-
tation of the model modification scheme. At first PLSR model
is calibrated as seen in Figure 13 and once adequate level of
performance is achieved it is used in prediction stage as displayed
in Figure 11.

4. RESULTS

The results of calibration and cross-validation of the modified
PLSR method is shown in Figure 10. Three different cross-
validation schemeswere used to test themodel. (1) Randomcross-
validation scheme splits the model in to n number of blocks of
randomly selected rows from X and Y, the block is then removed
from training set, the model is calibrated and the resulting B
coefficients are used to predict unseen Y from unseen X. (2)
Systematic cross-validation scheme sequentially splits X and Y
in to n blocks, each time a block is taken away and model is
calibrated, the resulting B coefficients, similarly to the random
cross-validation scheme are used to predict unseen blocks of X
and Y. (3) Finally cross trajectory validation is performed. Cross
trajectory validation is a subset of systematic validation, with the
number of blocks equal to the number of experiments carried out,
in this case it was three. This type of cross-validation will give
the least accurate results, which is no surprise as the model is not
capable of predicting completely unseen situations.

Finally, from a control systems engineering point of view it is
interesting to see how this method and the results can improve on
the dynamic model of the manipulator by closing the gap between
the real system and the dynamic model that was derived using
first principles. For this to happen, the results from the PLSR
methodology has to be integrated into standard dynamic model
framework. Looking at the structure of dynamic equation (3) one
can see that it can be viewed as a function that provides mapping
between a set of q, q̇ and q̈ on one side, and τ on the other.
Therefore, the model developed using PLSR should also be a map
between the space spanned by q, q̇ and q̈ to space spanned by τ .

FIGURE 10 | Modified PLSR results. Comparison of various cross-validation
methods.
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FIGURE 11 | Prediction.

FIGURE 12 | Nominalization level vs model error.

This can be achieved by carefully selecting Y matrix variables.
The resulting B coefficients will provide mapping according to
specified PLS regression inputs. However, in order to modify the
dynamic model in line with linearization and decoupling proper-
ties of the inverse dynamics which results in a set of decoupled
liner subsystems one has to make sure that the results of the PLSR
do not violate this property. The results can be seen in Figure 9.

The torque signal may appear to be noisy; however, it is impor-
tant to understand the electromechanical system of joint control
before making conclusive remarks regarding the source of vibra-
tion visible on Figure 9. The torque is generated using high power
IGBT transistors which control current in three phase permanent
magnet synchronousmotors (PMSM) (Drives, 2011). For theABB
IRB140 manipulator the encoder is coupled with the electrical
motor shaft and is located at the back of the electrical drive.
The electrical motor is coupled to a reduction gearbox which
acts as a mechanical low pass filter; however, it does introduce
dynamics into the system via internal friction and backlash just

to name a few effects. Around zero velocity crossing these effects
become significant and the whole field of study called tribology
exists studying various phenomena caused by surface interactions,
which includes friction, lubrication and wear. The torque mea-
surement comes from electrical amplifier driving the motors and
the source of jitter can be related to current fluctuations, resonance
of the system operating a particular trajectory or meshing gears of
the gearbox. A more detailed and focused investigation is neces-
sary to provide certain answers for the observed phenomenon and
is outside the scope of this paper.

The drawback of the currently suggested method in this paper
is that the size of initialX is increased dramatically requiring large
amount of memory to process the data. However, using sparse
PLSR (Chun and Keles, 2010) instead of conventional PLSR could
remedy this.Moreover, given the current state of the hardware this
is not a problem for off-line analysis and model improvements.
The other drawback of this method is that it relies too much on
state space being visited at least once, the state space that has not
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FIGURE 13 | Detailed PLSR modifications: calibration.

been visited during calibration stage will have model parameters
and further improvements are necessary; however, there is a num-
ber of options are available to remedy this, for instance, a pyra-
midal representation of nominal levels at different discretization
levels could probably allow for sensible interpolation in regions of
the state space not properly sampled.

5. CONCLUSION

In this paper, we have investigated a possibility of dynamic
model improvement based on the well established statistical anal-
ysis methods PCA and PLSR in the hope of bridging the gap
between purely mechanistic and purely data-driven modeling.
Unlike similar data driven modeling techniques such as ANN,
PLSR and PCA provides an open book approach to the knowledge
gained. By analyzing scores and loadings plots it is possible to
gain an deep understanding into the dynamics of the system
and develop steps necessary to improve current modeling and
estimation tools. The initial PLSR data-driven model has shown
very little improvement; however, nominalization and interaction
expansion of the X matrix provided significant improvements.
The methodology developed allows for a step ahead error com-
pensation. The method, however, requires further work in order
to make it applicable for real time implementation.
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