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Abstract—SDN network’s policies are updated dynamically at
a high pace. As a result, conflicts between policies are prone to
occur. Due to the large number of switches and heterogeneous
policies within a typical SDN network, detecting those conflicts
is a laborious and challenging task. This paper presents two-fold
contributions. First, we devise an offline method for detecting
unmatched OpenFlow rules, i.e., those rules that are never
fired. At the heart of our scheme is a formal approach for
predicting the packet’s path inside a SDN network. In this
perspective, we proffer the taxonomy: invalid and irrelevant
anomalies for the unmatched rules. Second, we introduce a new
set of definitions for the intra-anomalies, which might occur when
using the OpenFlow rule’s multi-action feature. We provide some
comprehensive experimental results that show the feasibility of
our approach and its ability to scale within large SDN network.

Index Terms—Anomaly Definition, Anomaly Detection, Un-
matched rules, Software Defined Network, OpenFlow.

I. INTRODUCTION

Packet forwarding in modern networks is a complex process
that involves several devices such as switches, routers and
firewall operating with different protocols and configurations.
A local device’s policy might be conflicting with another ap-
pliance’s policies. The task of management of network middle-
boxes manually has been proven to be complex, error-prone,
costly and inefficient for many large-networked organizations
[1]. For instance, more than 1000 configuration errors have
been observed in border gateway protocol (BGP) routers [2]. A
single misconfigured router is able to compromise the correct
operation of the whole Internet for hours [2], [3]. Meanwhile,
human errors are known to be the most common contributor to
network downtime. Those errors are responsible for 50 and up
to 80 percent of network device outages [4]. Errors typically
include loops, suboptimal routing, black holes and access
control violations. Moreover, manual troubleshooting in large
networks is often almost impossible. Software-defined network
(SDN) paradigm addresses these challenges by automating
the network control process. SDN separates the control plane
from the forwarding devices via a standard protocol called
“OpenFlow” [5]. SDN controller has control over the state of
the network, thus, it possible to analyze network misconfigu-
ration in a centralized manner. Various methods have been
presented to deal with misconfiguration challenges. Those
methods fall under two main categories: rule-based verification

and log-based verification. Rule-based verification examines
the semantics of the rules for detecting policy violation. For
instance, when it comes to firewall misconfiguration, Al-
Shaer and Hamed [6] propose a tool called Firewall policy
advisor. In the same context, Rezvani and Aryan [7] resorted
to propositional logic to detect policy violations between a
new inserted rule and the combination of existing rules. The
other family of approaches, log-based methods, detects policy
violations based on mining the network appliance’s logs [8],
[9]. Furthermore, policy checking could also be categorized
based on the different aspects that focus on the Intra-and Inter-
devices. For example, the work of Al-Shaer and Hamed [6]
and Rezvani and Aryan [7] try to detect misconfiguration on
the single device, namely, firewall rule anomalies. On the other
hand, both VeriFlow [10] and the work of Kazemian et al. [11]
are able to check policy violation among connected devices
in the network. In this paper, we tackle rule-based approach
for detecting misconfigurations in SDN, which supports both
multi-action and single-action Openflow rules. We catalogue
the main contributions of this paper as follows:

• A new definition for the intra-anomalies has been de-
scribed for the OpenFlow with multi-action feature.
This generalizes the state-of-the-art intra-anomalies defi-
nitions, which are only based on single-action feature.

• We introduce the nomenclature irrelevant and invalid rule
anomalies for the case of unmatched rules.

• The detection method supports parallelization by gener-
ating completely disjoint queries.

• Our query-based proposed method covers whole policy
segments, and therefore it is more efficient than the ping-
based troubleshooting methods that operate on a packet
basis.

• Our suggested method, in contrast to Netplumber and
VeriFlow, considers intra-rule dependency in flow ta-
bles [12].

• In contrast to the Header Space Analysis (HSA), our
method is a priority-based method which makes it com-
patible with the OpenFlow protocol.

The remainder of the paper is organized as follows. In Sec-
tion II, we provide a comprehensive overview over the state-
of-the-art. Section III discusses our formal tracing method.



In Section IV, the OpenFlow rules’ anomalies definition and
detection are explained, and finally the evaluation results are
presented in Section V.

II. RELATED WORK

In recent years, a significant amount of research has ad-
dressed network policy conflict analysis. A notable work is
due to Kazemian et al. [11] who introduced a real time
policy checking tool based on HSA [11] called NetPlumber.
In contrast to the HSA, NetPlumber checks the real time
network traffic incrementally. The authors proposed a new
formal language to express policy checks, which is fast enough
for use as a real-time traffic monitoring. NetPlumber is able to
not only detect loops and other invariant violations, but also
check sophisticated policy’s failures such as: “Web traffic from
A to B should never pass through waypoints C or D between
9am and 5pm.” Although Netplumber proposes a real-time
method for detecting all typical violations, it ignores intra-rule
dependencies in flow tables. Both HSA and Netplumber are
time-consuming and thus are not suitable for networks with
high rate of up and down links. Therefore, this is a major
weakness for Netplumber which focuses on real-time environ-
ments. Mai et al. [13] tackle the misconfiguration problem by
formal analysis of data plane state rather than diagnosing bugs
in the control plane. This approach is able to not only detect
the “invisible” bugs in routing configuration files, but also
unifies the analysis regardless of the many implementations
and protocols. The authors try to develop a tool to collect
the network devices’ Forwarding Information Bases (FIBs)
and detect some typical failure by the Boolean functions.
The tool is called “Anteater” and can check reachability and
consistency of rules among the routers and loops in networks.
It combines the data plane and invariants into instances of a
Boolean satisfiability problem (SAT), and uses an SAT solver
to perform analysis.

Al-Shaer and Al-Haj [9] present a configuration verification
tool, which is called “FlowChecker,” to validate, analyze
and enforce at the run-time OpenFlow end-to-end configura-
tion across multiple federations. It exploits FlowVisor [14],
which partitions the network resources into smaller segments.
FlowChecker is able to detect both intra-switch and inter-
switch misconfiguration in a path of OpenFlow forwarding
devices across the same or different infrastructure. It uses
Binary Decision Diagram (BDD) to encode the flow tables.
Afterwards, it tries to model the inter-connected OpenFlow
switches’ network via model checker techniques. The method
is useful for verifying policy consistency. In addition, vali-
dating the configuration correctness in different switches and
controllers across the distinct OpenFlow infrastructure also
benefited from this tool. Furthermore, it is convenient for
debugging reachability and predicting the impact of new policy
on the network. Config-Checker [15] is a novel method that
models the end-to-end behavior of access control configura-
tion, including routers, IPsec, firewalls and NAT for Unicast
and multicast packets. Config-Checker deals primary with
security aspects in firewalls. The novelty of the method is the

creation of symbolic model checker and its optimization. The
model represents the network as a state machine defined by
the packet header, and its location on the network hops. Packet
header, packet location and the policy define the transitions in
the state machine.

Sherwood et al. [14] present a logical isolation approach in
one hardware switch, which is compatible with commodity
switching chipsets and does not require the use of pro-
grammable hardware such as FPGAs or network processors.
They develop a tool, which is called “FlowVisor.” The tool
uses the OpenFlow protocol for applying the policy isolation
in the target network and is located between controller and
forwarding devices. FlowVisor is a special purpose OpenFlow
controller that acts as a transparent proxy between Open-
Flow switches and multiple OpenFlow controllers. It prepares
segments of network devices, controls them independently
in separate logical controller, and guarantees the isolation.
FlowVisor can create variant segments based on the combina-
tion of the forwarding devices or its ports, packet’s address or
packet’s protocol [16]. However, it has a latency and overhead
on the control channel due to use of an additional TLS
connection. Son et al. devised a model checking system called
“FloVer” [17], a formal approach to prove the conformance
of dynamically produced OpenFlow flow rules against non-
bypass security properties, including those with set and go
to table actions. The authors demonstrate how to translate
OpenFlow rules and network security policies into an assertion
set, which can then be processed and verified by an SMT
solver. This method uses the Yices SMT solver, which is
integrated into NOX, a popular OpenFlow network controller.
This system verifies that the aggregate of OpenFlow network’s
policies does not breach the network security and integrity of
its policies.

III. ROUTING PREDICTION BASED ON INTERSECTION
METHOD

Policies in the SDN-based network are changed frequently.
Clarifying the side effects of new policies in a complicated
network has always been vital for network administrators.
Therefore, proposing an accurate approach for parsing the
complex network by an input traffic is of utmost importance.
In this Section, we will present a tracing method that is able
to predict the route of both single and multiple input packets.
The method is compatible with pipeline tables, group tables
and required action as stated in OpenFlow 1.1.0 [12].

A. Tracing Function

The function “T” defines a recursive trace route process
from a specific node for a single packet. In each iteration,
the function detects which rule matches the input packet and



detects the next hop consequently.

T (X, q) :



T (Aix , q) if ∃Cix , Aix , Cix , Aix ∈ X[(
(Cix ∧ q) ⇔ Aix

)
∧
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)
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′
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′
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′
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∧(j > i)]
]]]

Ax ifAx = Client or Drop
(1)

X denotes a node, which is a set of rules, X : {R1x , R2x , · · ·}.
Each rule contains a matching condition C and an action A,
which refers to a next hop in the form of Rix : (Cix , Aix). The
matching condition C includes the ingress port and packet’s
header properties such as source IP, destination IP and destina-
tion port. q denotes a query representing a packet. The function
T returns the next node as a result. The recursive process is
terminated whenever the next node is a client or when the
drop action is met. Therefore, via the tracing function, we
can predict the destination of the input query. i and j are
used to denote the rule’s order in the flow table. Based on
Equation 1, the Tracing Function is developed and presented
in Algorithm 1.

Algorithm 1: Tracing function

Input: Query, Starting Hop
Output: All Hops in the route
Route ← Starting Hop
Tracing Function (Starting Hop, Query, Route)

1. Rules ← Starting Hop.Rules
2. Foreach rule in Rules
3. If Query ∧ rule.Condition
4. Route ← rule.Action
5. If rule.Action = Client Or rule.Action = Drop
6. Return Route
7. End If
8. Tracing Function(rule.Action, Query, Route)
9. End If
10. End For

B. Transfer Function
The function TA→B(Q) proposes a packet transit process

from a node A to node B via a precise input (Q). The
matching process relies on the Raining 2D-Box model [18].
In this model, the input is checked sequentially against the
higher priority rules. The unmatched part of input is checked
further with the next rules.

TA→B(Q) : ∀q ∈ Q.T (A, q) = B (2)

Equation 2 gives the formal definition of the transfer function.
According to Fig. 1 and Equation 2, the results of the transfer
function can be described as follows:

TA→B(q1) : {TB→C(q3), TB→D(q4, TB→Drop(q8))}
q3 ∪ q4 ∪ q8 = q1

TA→C(q2) : {TC→E(q6), TC→Drop(q9))}
TB→C(q3) : {TC→E(q5), TC→Drop(q9))}

q6 ∪ q5 ∪ q9 = q2 ∪ q3

Fig. 1: A Sample directed graph and its transfer function

T (B, q4) : {D}, T (C, q5) : {E}

Therefore, based on Equation 1 and Equation 2, T (B, q4)
can be expressed recursively as follows:

T (B, q4) ≡ TA→D(q4) ≡ TA→B(TB→D(q4))

As it can be clearly seen in Fig. 1, the node E is reached
via two branches. The recursive expression of joining of these
branches can be described as follows:

T (C, q5) ∪ T (C, q6) ≡
TA→E(q5) ∪ TA→E(q6) ≡

TA→C(TC→E(q5)) ∪ TA→B(TB→C(TC→E(q6)))

In addition, by using the transfer function it is possible to
check whether the path taken by the query passes through a
specific node or not. As an example and according to Fig. 1,
from the result of TA→D(q4), it is possible to check whether
the query path meets node B or C. The result is shown as
follows:

B ∈ TA→D(q4), C /∈ TA→D(q4)

In order to check all possible routes from a source node via
an input query, we shall use the Depth First Search (DFS)
algorithm.

C. Reachability Checking

As aforementioned, reachability checking is one of the
critical troubleshooting operations for network administrators
in complex networks. According to the tracing function (Equa-
tion 1) and the transfer function (Equation 2), it is possible
to check whether a precise host can connect to a specific
host. The reachability checking method is defined based on
the second-order logic (Equation 3). The predicate ϕ has been
declared for checking the reachability of hop Y from hop X
by a query Q. X and Y denote nodes, which are set of rules.

ϕ(X,Y,Q) : ∃q.q ∈ Q
[
TX→Y (q)

]
(3)

Since the proposed method is an offline method, we assume
that whenever we are faced with table miss packet1, the tracing

1Whenever a table miss packet takes place, the packet gets forwarded to
the controller in conformance with the Openflow protocol.



function returns as a final state the last hop where the table
miss packet took place. The Reachability Checking Function
has been developed based on Equation 2 and is described in
greater detail in Algorithm 2. According to the algorithm, for
each query, we detect the next hop.

For instance, in Fig. 2 a network with all routing tables

Algorithm 2: Reachability checking function

Input: Query, Starting Hop, Destination Hop
Output: Boolean Result
Reachability Checking Function (Starting Hop, Desti-
nation Hop,Query)

1. Foreach q in Query
2. Route ← Starting Hop

3. Hops ← All hops in TRACING FUNCTION (Start-
ing Hop, q, Route)

4. If the last hop in Hops = Destination Hop
5. Return Route
6. End If
7. End For
8. Return False

is presented. According to Equation 3 and Algorithm 2,
if the query Q is defined by “inPort=Port3, srcIP=*.*.*.*,
dstIP=192.168.20.5, dstport=80”, the reachability predicate
ϕ(A,D,Q) returns true.

Fig. 2: A Sample network with routing tables

IV. ANOMALY DETECTION ON SDN-SWITCHES

Based on the formal methods defined in Section III, in this
Section, we present an offline anomaly detection approach.
The rationale of the approach we propose is to generate queries
that contain all possible packets that could pass through the
network from all ingress switches. Subsequently, our anomaly
detection algorithms are called for detecting possible policy
conflicts.

A. Generating Queries

As mentioned previously, our anomaly detection method
needs to check all possible packets that might enter the net-
work via the ingress switches. By definition, ingress switches
are gateways between the end clients and rest of the network.
Fig. 3 sketches an example illustrating the ingress switch
concept. In the ingress switch’s flow table, the first rule is

Fig. 3: Ingress switch in network

considered as one query. In order to generate the second query,
we subtract the next rule from the previous rules (here the
previous rules is merely the first rule). This process continues
for the rest of the rules in a flow table of an ingress switch.
The query generation operation is described in Equation 4. The
queries, which are generated based on a specific flow table,
are completely disjoint. Therefore, the queries can be executed
in parallel without any specific order.

Query1 : Rule1
Query2 : Rule2 −Rule1
Query3 : Rule3 − (Rule1 ∪Rule2)

...

Queryn : Rulen −
(

n−1⋃
i=1

Rulei

) (4)

Throughout calling transfer function, each rule in the whole
network (whether or not it is in the ingress switches) will only
be marked as a matched rule if it is matched with at least one
query or subquery. At the end of the process, the unmatched
rules are further investigated in order to discover the possible
anomaly that caused the unmatch. The latter question will be
addressed in the next subsection.

B. OpenFlow Rule Anomaly

There are several reasons that cause one rule to be never
matched by all possible queries. Al-Shaer and Hamed [6]
introduced four types of pairwise anomalies among rules in
a firewall: shadowing, correlation, generalization and redun-
dancy. Rezvani and Aryan [7] defines three more anoma-
lies, namely, total shadowing, total generalization and total
redundancy. Moreover, inter-anomalies, which might occur
in distributed firewalls, have been defined by Al-Shaer and
Hamed [19] and categorized as shadowing anomaly and redun-
dant anomaly. Since the OpenFlow-based rules consist of two
main parts, Conditions and Actions, the same categorization
has been used for intra-anomalies among flow tables’ rules.
However, as explained by [20], flow tables’ rules might have



more than one action, i.e., multi-action. Thus, we shall propose
a new expression for the OpenFlow rules’ intra-anomalies that
supports multi-action. To the best of our knowledge, such an
aspect was not investigated in the literature before. Therefore,
the unmatched rules can be a result of intra or inter-anomalies,
which will be defined in greater detail in what follows.

1) Intra-Anomaly for single-action and multi-action:
An intra-anomaly takes place between rules in the same table.
According to the [6] and [7], these types of anomalies
are categorized into 7 groups. We shall use the bit wise
format defined in [7] in order to re-write rules and packets.
The formal specification of OpenFlow rule anomalies are put
forward as follows.

a) Shadow Anomaly: If rule Rj matches all the packets
that match rule Ri, Ripriority < Rjpriority and the two rules
have different actions, Ri is shadowed by previous rule Rj .
Formally, rule Ri is shadowed by rule Rj if the following
condition holds:

Ripriority < Rjpriority

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri, Rj ∈ FlowTable (Ci ⇒ Cj) ∧ (Ai ⊕Aj)

(5)

As per Equation 5, rule Ri is shadowed by the rule Rj for the
group of actions, which are true in (Ai ⊕Aj).

b) Correlation Anomaly: Two rules in a flow table are
correlated if they have different actions, and the first rule
matches some packets that match the second rule and also the
second rule matches some packets that match the first rule.
Formally, rule Ri and Rj have a correlation anomaly if the
following condition holds:

Ripriority < Rjpriority

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri, Rj ∈ FlowTable[

¬ (Ci ⇒ Cj) ∧ ¬ (Cj ⇒ Ci) ∧ (Ci ∧ Cj)
]

∧ (Ai ⊕Aj)

(6)

As described by Equation 6, rule Ri and rule Rj have
correlation for the group of actions that are true in (Ai ⊕Aj).

c) Generalization Anomaly: Rule Rj is a generaliza-
tion of a preceding Rule Ri if they have different actions,
Ripriority < Rjpriority and if the rule Ri can match all
the packets that match the rule Rj . Formally, rule Ri is
generalization of rule Rj if the following condition holds:

Ripriority < Rjpriority

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri, Rj ∈ FlowTable (Cj ⇒ Ci) ∧ (Ai ⊕Aj)

(7)

According to Equation 7, rule Ri and rule Rj have generaliza-
tion for the group of actions that which are true in (Ai ⊕Aj).

d) Redundant Anomaly: Rule Ri is redundant to Rule
Rj if they have same actions, and if the rule Rj can match
all the packets that match the rule Ri. Formally, rule Ri is
redundant to rule Rj if the following condition holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)

∃Ri, Rj ∈ FlowTable
[
(Ci ⇒ Cj) ∨ (Cj ⇒ Ci)

]
∧ (Ai ∧Aj)

(8)

As described by Equation 8, rule Ri and rule Rj have
redundancy for the group of actions that are true in (Ai ∧Aj).

e) Total Shadow Anomaly: Rule Ri is totally shadowed
by a set of previous rules if the previous rules match all the
packets that match the rule Ri, and the rule Ri has different
action from the previous rules. Formally, rule Ri is totally
shadowed by rules {R1 · · ·Rk} if the following condition
holds:

Ripriority < R1priority , · · · , Rkpriority

Ri : (Ci, Ai)R1 : (C1, A1) , · · ·Rk : (Ck, Ak)

∃Ri, R1, · · · , Rk ∈ FlowTable

(
Ci ⇒

(
k∨

n=1
Cn

))
∧
((

k∨
n=1

Ak

)
⊕Ai

) (9)

According to the Equation 9, rule Ri and rules in the set:
{R1 · · ·Rk} have total shadow for the group of actions that

are true in ((
k∨

n=1
Ak)⊕Ai).

f) Total Redundant Anomaly: Rule Ri is a total redun-
dant of a set of rules if the set of rules match all the packets
that match the rule Ri, and the rule Ri and the set of rules
have the same action. Formally, rule Ri is a total redundant
of a set of rules {R1 · · ·Rk} if the following condition holds:

Ripriority < R1priority , · · · , Rkpriority

Ri : (Ci, Ai) , R1 : (C1, A1) , · · ·Rk : (Ck, Ak)

∃Ri, R1, · · · , Rk ∈ FlowTable

(
Ci ⇒

(
k∨

n=1
Cn

))
∧
((

k∨
n=1

Ak

)
∧Ai

) (10)

As per Equation 10, rule Ri and rules in the set: {R1 · · ·Rk}
have total redundancy for the group of actions that are true in

((
k∨

n=1
Ak) ∧Ai).

g) Total Generalization Anomaly: Rule Ri is a total
generalization of a set of further rules if the rules match all the
packets that match the rule Ri , and the rule Ri has different
action from the rules. Formally, rule Ri is a total generalization
of a set of rules {R1 · · ·Rk} if the following condition holds:

Ripriority > R1priority , · · · , Rkpriority

Ri : (Ci, Ai) , R1 : (C1, A1) , · · ·Rk : (Ck, Ak)

∃Ri, R1, · · · , Rk ∈ FlowTable

((
k∨

n=1
Cn

)
⇒ Ci

)
∧
((

k∨
n=1

Ak

)
⊕Ai

) (11)

As described by Equation 11, rule Ri and rules in the set:
{R1 · · ·Rk} have total generalization for the group of actions

that are true in ((
k∨

n=1
Ak)⊕Ai).

2) Inter-Anomaly:
According to the nomenclature proposed in [19], at any
point along the path of a given flow, a preceding switch is
called an upstream hop whereas a following switch is called
a downstream hop. Among two forwarding devices, when one



or more rules in upstream shadows the specific rule of a
downstream hop matched by one or a group of the packet,
an Inter-Anomaly takes a place. Note that in this section, we
assume that the flow tables are intra-anomaly free. The Al-
Shaer and Hamed [19] categorize the inter-anomalies in four
groups. In contrast to [19], this paper defines four types of
inter-anomalies in a different way, which are the root cause of
unmatched rules.

a) Subset Rule Anomaly: A subset rule anomaly occurs
if all packets that can be matched with the unmatched rule
in a downstream hop, matches with an upstream hop’s rule.
Formally, rule Ri has a subset rule anomaly with rule Rj if
the following conditions hold true:

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri ∈ SWi, Rj ∈ SWj Upstream (SWj)
∧ (Ci ⇒ Cj) ∧ ¬ϕ (SWj , SWi, Ci)

(12)

In Equations 12-14, Upstream() represents a predicate that
returns true if the input hop is an upstream hop. ϕ is regarded
as a predicate, which is described in Equation 3.

b) Superset Rule Anomaly: A superset rule anomaly
occurs if all packets that matched with an upstream hop’s rule,
can be matched by an unmatched rule in a downstream hop.
Formally, rule Ri has a superset rule anomaly with rule Rj if
the following condition holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri ∈ SWi, Rj ∈ SWj Upstream (SWj)
∧ (Cj ⇒ Ci) ∧ ¬ϕ (SWj , SWi, Cj)

(13)

c) Partial Rule Anomaly: A partial rule anomaly occurs
if just parts of packets, that can be matched with an unmatched
rule in a downstream hop, are matched by an upstream hop’s
rule. Formally, rule Ri has a superset rule anomaly with rule
Rj if the following condition holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)
∃Ri ∈ SWi, Rj ∈ SWj Upstream (SWj)
∧¬ (Ci ⇒ Cj) ∧ ¬ (Cj ⇒ Ci) ∧ (Ci ∧ Cj)

∧¬ϕ (SWj , SWi, (Ci ∧ Cj))

(14)

d) Irrelevant Rule Anomaly: The irrelevant rule anomaly
occurs if all packets that can be matched with the unmatched
rule are matched by different rules, and the paths for each
packet are expected by the network administrator. Formally,
rule Ri known as an irrelevant rule if the following condition
holds:

Ri : (Ci, Ai) , Rj : (Cj , Aj)

∀sw ∈ ingress,

[
∃rule ∈ R

[
@packets, (packets ∧ Crule)

∧
(
T (sw, packet) /∈ Ex Path

)]
⇔ irrelevant (rule)

]
(15)

Ingress represents a set of all ingress switches in the network.
R is regarded as a set of all unmatched rules. Crule means
rule’s condition. Ex Path refers to a set of expected paths,
which are defined by the network administrator. T () represents
the transform function, which is described in Equation 2.

Finally, irrelevant() denotes a predicate, which returns true
if the input is an irrelevant rule.

3) Invalid Rule Anomaly:
If the unmatched rule does not match with any subset of the
input queries, it is considered as an invalid rule in the flow
table. This anomaly is defined in Equation 16.

∀q ∈ Q

[
∃r ∈ R

[
¬ (q ∧ Cr)

]
⇔ invalid(r)

]
(16)

As expressed by Equation 16, R represents a set of unmatched
rules and each member of this set is regarded as r, which is
formed as a condition Cr and an action Ar. Q means a set
of input queries. Finally, invalid(r) amounts to a predicate,
which returns true if the input rule r is recognized as an invalid
rule.

C. Anomaly Detection

In the previous subsection, unmatched rules’ anomalies are
defined and categorized. In this subsection, we will describe
the detection method. However, for sake of brevity and due
to space limitation, the pseudo-code is not presented here and
can be found in [21].

1) Invalid Rule Anomaly Detection:
The unmatched rules are checked based on Equation 16 to
detect invalid anomalies. The result determines the rules that
might never be matched by all possible queries. This type of
anomaly usually occurs when a network administrator updates
the network policy and forgets to remove part of the old
rules from the same flow tables. For each unmatched rule, the
algorithm tries to find a query that has an intersection with the
unmatched rule in question. Whenever the function is unable
find any intersecting query, the rule is moved to the invalid
rules list.

2) Intra-Anomaly Detection:
The intra-anomaly detection operation is executed after the
removal of the invalid rules from the unmatched rule list. The
conflicting rules together with the anomaly types are reported
to the network administrator for making a decision. According
to Equations 5 to 7, the Simple Anomaly Detection Function
is defined. This function checks shadowing, generalization and
correlation anomalies between the unmatched rule and each of
its flow table’s rules whenever the pair of rules have different
actions. Moreover, according to Equation 8, the unmatched
rule will be checked with the rules that have same action.
The Total Anomaly Detection Function is defined to detect
the total anomalies based on Equations 9 to 11. In the first
step, the algorithm collects the rules that have lower priority
from the unmatched rule and have partial intersection with it.
Then, total generalization anomaly condition (Equation 11) is
checked for the part of collected rules that have different action
than the unmatched rule. In addition, the total redundancy
anomaly condition (Equation 10) is checked for the rest of the
collection that has the same action as the unmatched rule. For
the next part, rules with higher priority than the unmatched
rule that partially overlap with it are collected. Then, total
shadowing anomaly condition (Equation 9) is checked for



the part of collected rules that have different action from the
unmatched rule. Subsequently, the rest of the rules, which have
same action with the unmatched rule, are checked for the total
redundancy anomaly condition (Equation 10).

3) Inter-Anomaly Detection:
The inter-anomaly detection operation assumes that the flow
tables are intra-anomaly free. The conflicting rules together
with the detected anomaly types will be reported to the
network administrator for making a decision. According to the
detection algorithm, for each unmatched rule, all paths from
all ingress switches are calculated by the transfer function.
Then, each path is compared with the expected path, which
is specified by the network administrator. If both paths are
the same, then no inter-anomaly is reported. Whenever the
paths are different, the Check Rule InterAnomaly Function
will be called. Finally, according to Equation 15, the irrelevant
rule checking will be performed. The unmatched rule is
declared as an irrelevant rule provided that the rule’s host
does not exist in any administrator’s expected path. The
Check Rule InterAnomaly Function aims to check and detect
the anticipated anomalies between the unmatched rule and the
rule that causes the conflict. Therefore, the rule that causes
the difference between the query’s path and the expected one
is found. Then, the type of anomaly is further checked. The
subset anomaly condition based on Equation 12 is checked
between two rules. If it is not verified, the superset anomaly
condition, which is represented by Equation 13, will be
inspected. Finally, as per Equation 14, the partial anomaly
condition will be checked.

V. EVALUATION

In this Section, we evaluate the proposed method, which
consists of four main phases: Test Query Generating, Probing
Process, Intra-Anomaly Detection and Inter-Anomaly Detec-
tion. All methods are implemented in C++ and the experiments
are run on a Ubuntu Virtual Machine, with only one core of
the Intel core i3, 3.70 GHz CPU and 2GB of RAM.

A. Test Query Generating

In this subsection, the execution time of the test query
generation process for different flow table sizes is evaluated.
As illustrated by Table I and Fig. 4, the execution time
increases dramatically whenever the rule set size exceeds 5000
rules.

Table I: Check rule inter-anomaly Function

Rule Number 500 1,000 2,000 5,000 10,000
Process Time (ms) 31,543 126,104 508,206 3.17×

108
1.55×
108

B. Probing Process

For evaluating the probing process, a query, which contains
ingress port, source IP, destination IP and destination port, is
used. Content of OpenFlow switch tables are fetched by the
dump command [22], and then will be prepared by the parsing
algorithm for the process. The parsing algorithm retrieves the

Fig. 4: Processing time results for test query generating
process

table, in port, nw src, nw dst, tp dst and actions fields from
the flow table. According to this procedure, with the predefined
network’s flow tables and the test queries, the execution time is
evaluated. The flow tables do not have the pipeline tables and
group tables. All the rules have the standard required action.
The topology of the test scenario are shown in Fig. 5. As seen

Fig. 5: Experiment’s topology

in Table II and Fig. 6, the execution time as a function of the
number of rules has an almost linear growth.

Table II: Check rule inter-anomaly Function

Middle-box Rules 500 1,000 2,000 5,000 10,000
Total Number of
Rules 3,500 7,000 14,000 35,000 70,000

Call Transfer
Function 43,867 352,459 705,459 1.76 ×

104
3.52 ×
104

Process Time (ms) 2,151 20,109 40,696 100,829 201,701

C. Intra-Anomaly Detection

In this subsection, the execution time of the intra-anomaly
detection is evaluated for different rule sets. By design, the
execution time is independent of the type of the anomaly and
numbers of detected anomalies. As observed in Table III and



Fig. 6: Processing time results for probing process

Fig. 7, all anomaly detection algorithms have almost the same
execution time for each set of rules. However, the execution
time is increased dramatically for the set with 10,000 rules.

Table III: Processing time results for intra-anomaly detection

Flow Table Rule Number 500 1,000 2,000 5,000 10,000
Simple Shadow(ms) 4 7 13 25 53
Simple Correlation(ms) 2 10 17 31 68
Simple Generalization(ms) 2 7 12 26 70
Simple Redundancy(ms) 3 8 15 30 69
Total Shadow(ms) 4 7 15 28 72
Total Generalization(ms) 4 7 16 30 76
Total Redundancy(ms) 6 10 17 31 80

Fig. 7: Processing time results for intra-anomaly detection
process

D. Inter-Anomaly Detection

As seen in Equation 12 to 15, the inter-anomaly detection
resorts to the probing process. Therefore, the engine execution
time follows the same pattern for a different rule number.

VI. CONCLUSION

SDN rules are usually updated in a dynamic manner, which
leads to error prone policies. There have been some valuable
studies on rule anomaly detection, however, those studies do
not cope with multi-action Openflow rules. In this article, we

provide comprehensive and generalized anomaly classification
and detection methods for SDN that cover multi-action Open-
flow rules. Furthermore, we introduce the taxonomy: invalid
and irrelevant anomalies for unmatched rules. An offline
method is implemented based on the new definitions. The
efficiency of our devised anomaly detection procedures are
evaluated and the results are very promising. Our detection
methods are embarrassingly parallel, which make them a
viable solution for large network troubleshooting. As future
work, we would like to quantify the gain in terms of execution
time induced by the parallel nature of our algorithms.
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