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A B S T R A C T 

Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound 

refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum.  

The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic 

aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-

coefficients, a compact analytical expression for the modulation transfer function of the system is 

obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical 

expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. 

 

 

1. Introduction 

Synchrotron X-ray microscopy experiments, using X-ray optical elements to 

create magnified images, are typically carried out with monochromatic 

radiation produced by filtering the incident polychromatic beam from the 

source through a double-crystal monochromator, most commonly using the 

Si(111) reflection. This practically eliminates chromatic aberrations of 

refractive or diffractive optics which in turn improves the spatial resolution 

of the microscope, but at the cost of photon flux. The loss can be critical in 

experiments which require high frame rates, e.g. fast in situ X-ray imaging 

experiments in 2 or 3D. It is therefore of general interest to examine in 

detail to which extent monochromatisation can be relaxed before chromatic 

effects become detrimental. In the present study the transmission cross-

coefficients are examined to derive compact analytical expressions for the 

performance of a full-field transmission microscope based on compound 

refractive lenses (CRLs) as function of the bandwidth of the illuminating x-

rays. 

The typical source for high performance X-ray microscopy at a 3rd 

generation synchrotron is an undulator. The undulator produces radiation 

with a comb-like spectrum of odd harmonic peaks. A completely non-

monochromatised beam is referred to as a white beam, whereas an isolated 

harmonic peak commonly is referred to as a pink beam. The typical 

bandwidth of a harmonic peak is ΔE/E~10-2, roughly 2 orders of magnitude 

larger than the typical bandwidth of a Si(111) double crystal 

monochromator. Both pink and white beams are used for fast lensless 

projection imaging [2-4], and more recently, the possibility of using 

compound refractive lenses (CRLs) with pink beams for focusing 

nanoprobes and microscopy have been demonstrated [1, 5-7]. 

Currently there is no simple and accurate estimate available for the 

modulation transfer function (MTF) of CRL-based transmission 

microscopes. Consequently, simple estimates for essential image forming 

characteristics such as point spread function (PSF), line spread function 

(LSF), or edge spread function (ESF) are missing. When partial coherence 

is to be taken into account, the straight forward integration over source 

points can be quite time consuming for optimization purposes, where 

simulations may have to be repeated when parameters are shifted. A first 

approximation of adding root mean square (r.m.s.) values in quadrature is 

sometimes used to estimate spot sizes [6-8], but this approach has a limited 

range of validity and can be misleading when it comes to optimization. The 

Hopkins method [9], sometimes also referred to as the transmission cross 

coefficient (TCC) method, is an effective method for simulating imaging 

with partial coherence. So far, direct analytical application of the Hopkins 

method to CRLs has not been reported. 

2. Theory 

Hopkins’ equation is as follows [9]: 
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Here, ( )I x  is the image intensity, F  the Fourier transform of the complex 

sample transmission function, and ( ', '')TCC q q  the transmission cross-

coefficients. Substituting ( ' '') / 2q q q  , and ' ''q q q    allows 

recasting (1) into a Fourier transform with respect to q ,  
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which is convenient for numerical evaluation. In the monochromatic case, 

the transmission cross-coefficients are given by  
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where P is the pupil function, and J  the angular source distribution. The 

integral in (3) must be calculated for all values of q  and q . Fortunately, 

the pupil function of an x-ray CRL has the mathematically convenient 

Gaussian shape, even for CRLs of arbitrary length [10, 11]. Therefore, 
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where σN.A. is the root mean square (r.m.s.) of the transmission function of 

the aperture, and 2 /k   , with   as the photon wavelength. It is 

assumed that the pupil function is fully determined by the absorption in the 

CRL material, and that therefore the physical aperture is much larger than 

σN.A.. For typical microscopy applications, this is a good approximation [10, 

12]. 

Furthermore the angular source distribution, as seen by the sample 

through any condensing optics and decoherers, is also approximated by a 

Gaussian, 
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where S is the ratio between the r.m.s of the angular source distribution and 

σN.A.. Under these assumptions, (3) can be integrated analytically, yielding  
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(5) 

i.e. the TCC becomes the product of two Gaussians depending on q  and 

q only. 

In the above equations it has been assumed that the filtering action of 

the pupil function is homogenous over the field of view. This is 

approximately the case if the FOV is small compared to the aperture of the 

objective, which may not necessarily be the case for CRL microscopy. 

Inhomogeneous filtering gives rise to directionally dependent fringing at 

edges in the sample [13], but can be eliminated by  focusing the 

illumination in the appropriate spot, gideal, downstream of the object plane. 

In most practical cases, this is equivalent to focusing the illumination near 

the objective lens plane[1]. It is possible, however, to take into account 

deviation from this case in the TCC formalism in order to describe other 

illumination schemes, such as Köehler illumination or critical ilumination. 

If gideal is known, any deviation between the ideal and the actual focus, g, 

can be simulated imposing a quadratic phase shift on the sample 

transmission function, F, replacing it with 
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where x is the real space coordinate. In the case of a thin lens, gideal will be 

the distance from the sample to the objective lens position. For thick CRLs, 

the correct convergence of the beam can readily be calculated by means of 

ray tracing matrices [8, 10].  

To include chromatic effects, it is necessary to integrate the intensity 

distribution given by (2) over the energy spectrum. The image formed by 

out-of-focus energies will be defocused and scaled versions of the 

monochromatic in-focus image. Instead of considering the bandwidth 

directly, it is convenient to consider the spread of defocus distances. Let 

d(α) represent the defocus distance at energy E, with α=E/E0 where E0 is the 

in-focus energy. If the bandwidth of the pink beam is modest, d(α) may be 

linearized in terms of α as 
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The power spectrum is assumed to be reasonably well represented by a 

Gaussian function of α, with an associated r.m.s. σΔE/E. Linearization of d(α) 

implies that the defocus distribution also attains a Gaussian form,  
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with r.m.s. given by 
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In order to capture the effect of increased flux with increasing bandwidth, 

(8) have intentionally not been normalized. The full integral expression for 

the chromatic transfer cross coefficients is 
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(10) 

Carrying out the integration over both d and q yields  
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The values of Km,n are given in Table 1. Note that only longitudinal 

chromatic aberration has been accounted for so far.  

Lateral chromatic aberrations are related to the energy dependence of 

the image magnification. Similar to the case of inhomogeneous filtering, the 

lateral chromatic aberration can be eliminated, to the first order in d at least, 

by focusing the illumination in the appropriate distance gch from the  sample 

[1]. The effect can be taken into account in the same way as the 

inhomogeneous filtering, i.e. by applying a quadratic phase shift to the 

sample transmission function,  
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Fortunately, gch will be equal to gideal as long as all CLR between the sample 

and detector planes are of one material. In most experiments involving 

CRLs so far, only one type of lens material is used at a time. When this is 

not the case it will not be possible to represent scaling and spatial filtering 

by (6) and (12) simultaneously, however, using gch = gideal may still yield 

good approximations. 

 



Table 1: Expressions for Km,n. 

Coefficient  Monochromatic 
term 

Chromatic 
term 

Defocus term
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Once the expression for TCC is known, the evaluation of (2) can be 

performed numerically using a diagonal sum method  [14]. With 
*( ') ( '')F q F q   represented on a square 2D grid, and the TCCs  evaluated 

in the grid points, integration over q can be performed by taking the 

diagonal sum. The remaining integral over Δq takes the form of a Fourier 

transform, and can be evaluated by the fast Fourier transform algorithm. An 

alternative  method is the so-called sum over coherent systems method 

(SOCS)[15]. As SOCS involves singular value decomposition of the TCCs, 

it is not suitable for frequent re-evaluation of (2) with different parameters.  

The modulation transfer function (MTF) can be calculated by going to 

the incoherent limit of (11), i.e. taking S to infinity.  The MTF is of interest 

due to its simplicity and independence of q . Assuming d0 = 0, a relatively 

simple expression for the MTF can be derived, and the result is 
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(13) 

when normalizing so that MTF(0)=1. The result is generalizable to two 

dimensions simply by replacing Δq with the magnitude of the two 

dimensional momentum exchange vector, Δq. The incoherent LSF and PSF 

can be obtained from the MTF via numerical Fourier transformation. 

Optimization 
As the sample to a large extent will determine the choice of photon 
energy, optimization with respect to this parameter is of little general 
relevance, and will not be carried out here. For optimization purposes, a 
generic sample is chosen, represented by a small sinusoidal thickness 
modulation of a uniform slab. The transmission function of the sample is 

 ( ) 1 cos( )F x qx 
. (14) 

Here q is the spatial frequency and ε the complex amplitude of the 

modulation. Using (14) in (2) yields an expression on the form  

 2
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Assuming ε to be small, the ε2-term can be ignored. The figure of merit to 

optimize is  
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and is proportional to the contrast to noise ratio (CNR). It is assumed that 

the noise is dominated by shot noise, and can be adequately modeled as 

Gaussian. The transmission function and FOM used here are chosen mainly 

due to the resulting mathematical simplicity, and do not necessarily 

represent the image quality as judged by a human observer [16]. Despite 

being a simple model for image quality, it captures the dependence on 

spatial frequency of the sample. The system also resembles one potential 

application of the hard x-ray pink beam microscope, namely the study of 

self-assembling periodic lamellar patterns in solidifying metal alloy 

microstructures [17]. Up to a certain point, increasing the bandwidth 

increases both contrast and noise, but beyond this point the noise 

contribution becomes dominant.  In other words, there is an optimal 

bandwidth with respect to the CNR. The right hand side of (16) can be 

maximized analytically with respect to σd, for a given q yielding 
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In the incoherent limit, σd, opt reduces to 
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while in n the coherent limit,  
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where ZT = 4πk/q2 is the Talbot length related to q. It should be stressed that 

the positive contribution of increasing σd, stems entirely from enhanced 

photon flux. Increasing σd, by enlarging d    has no positive effect. A 

smaller d    improves the CNR, regardless of bandwidth. Similarly, 

when considering optimization of CNR with respect to S, attention must be 

given to whether the total flux increases, or not. If the effective source size 

is determined by occlusion, increasing the source size will increase the 

photon flux linearly with S. In that case, the FOM should be multiplied by 

S1/2 to account for it. Optimization with respect to S yields 
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(18) 

In the case where the illumination intensity remains constant while the 

angular source changes, the optimal S is  
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The expression for the optimal numerical aperture is impractically large, 

and has been included as supplementary material. Fortunately, optimization 

of the MTF yields  
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which is a much more compact and agreeable expression. 

 
3. Results and discussion 

Figure 1 shows the LSF and PSF calculated for the pink beam case by using 

(13), together with the monochromatic case were the PSF and LSF are 

identical.  Evidently and perhaps not surprisingly, the chromatic spread 

functions have tails, and those of the LSF are more severe than for the PSF. 



In the monochromatic case, adding a third line (equally spaced) makes little 

contribution to the contrast between the first two, provided that they are 

separated by a distance comparable to the diffraction limit. In the pink beam 

case, however, the presence of additional lines can make significant 

contributions to contrast between the other two. The sinusoidal sample 

model used here assumes an infinite periodic sample and will therefore take 

into consideration the long tail of the LSF. 

 
 

Figure 1: The LSF and PSFs for the pink beam and monochromatic 
beam cases. The LSF is determined by an inverse Fourier 
transform of the 1D MTF, and a slice of the PSF has been extracted 
by applying the Fourier slice theorem to the 2D MTF. The ESFs 
were calculated by convoluting the LSF with a step function. The 
parameters used in the calculation were σd=5.4 mm and 
σN.A.=1.5·10-4. 

Figure 2 compares 1D images of two Gaussian shaped objects at different 

defocus lengths. Depth of field (DOF) with monochromatic illumination is 

mostly a matter of numerical aperture. It is evident that with pink-beam 

illumination, σd can come into play in a significant manner as well. A 

coherence ratio of 0.5 was used to create the images in Figure 2. It should 

Figure 2: Simulated 1D images at different defocus d0. (a) and (b) are monochromatic and pink beam images, respectively, of
a Gaussian with 10 nm r.m.s. value, which is small compared to the diffraction limit of 75 nm. (c) and (d) are monochromatic
and pink beam images, respectively, of a grating with period of 150 nm. A coherence ratio of S=0.5 was used in the 
simulations. The other parameters used were E0=35keV, and σN.A. = 1.05·10-4. In the pink beam case, σd=2.55 mm was used, 
while σd=0 was used in the monochromatic case. 
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The theory and optimization presented here is concerned with perfect 

lenses. Real CRLs, of course, have aberrations that will influence the image 

quality. Figure 5 shows two images taken from a previously published 

experiment [1], using 17.1 keV photon energy, recorded with an objective 

and condenser consisting of 84 and 32 double concave 50 µm apex radius 

Be lenslets, respectively. The condenser was positioned to focus the 

illumination into the center of the objective, and a beam decoherer, which 

produced a coherence length of ~150nm[18] corresponding to S≈0.6, was 

placed approximately 10 cm downstream of the condenser.  The sample was 

a 4 µm thick Copper mesh and was placed 300 mm upstream of the 

objective lens. The distance from the objective lens to the detector was 2600 

mm. Figure 6 compares simulations based on the presented theory to the 

experimental results sampled from the black lines in Figure 5. The defocus 

in the simulations was set to d0 = 4.6 based on an estimate that considered 

the apparent difference in magnification of the experimental curves [1].  

There is a notable mismatch between the simulation and the 

experimental data, the most significant of which is the exaggerated contrast 

in the simulation presented in a).  In b) there is a reasonable agreement that 

gets progressively worse towards the periphery of the FOV, i.e. as x 

increases. It is notable, however, that in the region between 15-30 µm, the 

agreement is quite good, especially considering that the simulation 

parameters were simply taken from estimates, without parameter fitting. 

The fit is somewhat better when using g=-30 cm, which corresponds to 

regarding the decoherer as the effective source plane.  

While it is tempting to attribute the improvement to the decoherer, it 

cannot be ruled out that spherical aberrations might be the real cause. 

Spherical aberration in the type of lenses that were used in the experiment, 

namely 50 µm apex radius Be lenses, have been reported [6, 19]. If 

spherical aberration was present, it would, in the parallel beam case, 

produce a defocused image by an amount that differs over the FOV. Figure 

7 shows the same simulations as in Figure 6, repeated with d0 = -4 mm. The 

x = 15-30 µm region is no longer a good fit, however the x=0-10 µm region 

is now in much better agreement than in Figure 6. Furthermore, the contrast 

level in the focused beam simulation is close to that of the experiment, 

albeit with some new fringe features. It should be mentioned that the 

appearance of fringes is rather sensitive to the choice of S. The contrast 

level largely depends on the transmission of rays representing low spatial 

frequencies, which in the focused beam case travel mostly through the 

center the lens where spherical aberration is least prominent. This might 

suggest that the defocus that gives a good fit in the center of the FOV would 

also give a better estimate of the contrast. Thus spherical aberrations seem 

to be an important source of discrepancy between the simulations and 

Figure 6: Comparison with experimental results [1]. x=0 is in the center of the FOV. a) Beam focused into objective. b)
Parallel beam illumination. Note that g is the only parameter that was changed in the simulations. All other parameters were
the same for all three simulations. d0 was set to 4.6 mm, as estimated in [1, 2] . Other parameters used were σd = 3.6 mm,
σN.A. = 1.75·10-4, E = 17 keV, S = 0.7, and gideal = 30 cm. The curves were flat field corrected with a simulated featureless
sample, to compensate for vignetting of the FOV. 

Figure 5: Experimental images of a copper mesh from a
previously published experiment [1]. (a) and (b) were
recorded with parallel illumination and with converging
illumination, respectively. The convergence was due to a
condenser lens configured to focus the source inside the
objective. The exposure time was 6 ms in both cases. 



experiments.  

4. Conclusion 
The transmission cross‐coefficients for an x‐ray microscope based on 
compound refractive lenses were derived using Gaussian approximations 
of the source shape and energy spectrum.  The effects of partial 
coherence, defocus, beam convergence, as well as lateral and longitudinal 
chromatic aberration are included in the solution. An analytical expression 
for the MTF was obtained, as well as for optimal numerical aperture, 
coherence ratio, and bandwidth. Comparison with experimental data 
shows qualitative agreement, however, it is likely that a more detailed 
model of illumination or lens aberrations, or both have to be taken into 
account in order to produce better simulations. It might be interesting to 
compare our results with a full scale 2D image simulation based on the 
synchrotron radiation workshop (SRW)[20], which is currently the most 
developed software package for x‐ray optics simulations. SRW supports 
inclusion of defects and apertures. It might be interesting to investigate to 
what degree these results are valid when aberrations and apertures are 
included. 
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