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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

In the current study, we present an experimental (in vitro) 2D flow
model for studying blood flow in the human left ventricular out-
flow tract (LVOT) and the first part of the aorta using particle image
velocimetry (PIV) and computational fluid dynamics (CFD). Two
cardiac pathologies were investigated in this study; 1) anterior mi-
tral leaflet (AML) billowing, and 2) asymmetric septal hypertrophy
(ASH). Each of these conditions has the potential to alter the nor-
mal direction of the flow entering the aortic valve apparatus from
the LVOT and therefore place an abnormal stress distribution on the
aortic valve leaflets. We found good agreement between the PIV
results and the CFD calculations. The largest discrepancy between
the experimental data and the numerical results was found in the
recirculation zone adjacent to the left coronary leaflet. The main
limitations in the current study when evaluating the clinical signif-
icance of the results are the choice of a 2D geometry with stiff and
stationary walls. Keeping this in mind, our results show that AML
billowing and ASH bulging alone does not alter the flow field in the
LVOT dramatically. However, when the two conditions combine,
we see a significant flow separation and re-circulation zone forming
at the left coronary leaflet, covering half of the aortic outflow tract
at peak systole.

Keywords: In-vitro, PIV, CFD, Left ventricle.

NOMENCLATURE

Greek Symbols

p  Mass density, [kg/m?]

u Dynamic viscosity, [cP]
v Drag correction factor, [-]

Latin Symbols

p Pressure, [Pa].

u Fluid velocity, [m/s].
d Diameter, [m].

Re Reynolds number, [-].
St Stokes number, [-].

Sub/superscripts

X Cartesian x component..
y Cartesian y component.
p Particle
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INTRODUCTION

In the current study, we present an experimental (in vitro) 2D
flow model for studying blood flow in the human left ven-
tricular outflow tract (LVOT) and the first part of the aorta
using particle image velocimetry (PIV), under both physi-
ological and pathological conditions. The same setup was
analyzed using computational fluid dynamics (CFD) and the
results compared. Two cardiac pathologies were investigated
in this study; 1) anterior mitral leaflet (AML) billowing, and
2) asymmetric septal hypertrophy (ASH). Each of these con-
ditions has the potential to alter the direction of the flow en-
tering the aortic valve apparatus from the LVOT and there-
fore alter the stress distribution on the aortic valve leaflets. In
order to investigate the hemodynamic effects of AML billow-
ing and ASH bulging on the aortic valve apparatus, the de-
gree of AML billowing and ASH bulging was parametrized
through parameters L1 and L2 in Figure 1.

There is a general agreements that the velocity profile in
the LVOT and aortic annulus is flat but skewed, in previous
Doppler ultrasound studies (at rest) (Sjoberg et al., 1994; Ku-
pari and Koskinen, 1993; Zhou et al., 1993). Abnormal con-
ditions such as AML and ASH which alters the geometry of
the LVOT may have significant influence on the flow pro-
files in the same area (Matre et al., 2003; Zhou et al., 1993).
However, previous studies on the hemodynamical influence
of AML on LVOT are more scares in the literature, while
some geometrical studies exists (Kvitting et al., 2010). Some
authors have used CDF models to study the hemodynamical
effects of AML (Dahl et al., 2011; Dimasi et al., 2012; Xiong
et al., 2008), and reports that there is a non-negligible effect
on the flow conditions in the aortic annulus due to AML bil-
lowing. In this work, we have build a simplified parametrized
2D model (both in an experimental lab setup and CFD) of
the LVOT and aortic annulus were we can test hypotheses
regarding the hemodynamical effects of AML billowing and
ASH on the velocity profile in the aortic annulus and the load
on the aortic vale leaflets. With this model setup, we also be-
lieve that we will be better equipped to point out directions
where more detailed studies are needed, e.g. with 3D CFD
and fluid-structure simulation models as well as 3D Doppler
and 4D MRI studies of blood flow in the LVOT.

The two main limitations in our choice of model setup are;
1) the flow field is 2D, which may introduce unnatural flow
conditions compared to the real 3D case, such as increased
vortex formation, and 2) the walls are non-deformable and
stationary. However, our model offers very good visual and
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Figure 1: The flow domain geometry (blue area) which is cut into a 10mm thick Plexiglass plate by a water jet. A 40/60% glycerol-water
mixture enters the model through the "inlet" port, then flows through the "flow straightener” before entering the LVOT and the aortic
valve apparatus, finally the flow follows the aortic arc and exits through the "outlet". The degree of AML billowing and ASH are
parametrized with Plexiglass inserts with different widths defined by the lengths L1 and L2.
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Figure 2: Illustration of the experimental setup, which consists of a fluid reservoir, the 2D LVOT flow model, a piston pump, a linear actuator
(Zaber, X-LRQ-E) and connecting fiber reinforced 1" tubes and one-way polymer ball valves (SXE PVC-U, 1"). Fluid can be
pumped through the loop and the LVOT model a pulsatile manner, determined by the waveform given to the linear actuator. The flow
field in the 2D LVOT model was visualized by tracking the movement of polymer particles by recoding their shadows projection
with a high-speed camera (Photron, FASTCAM 1024 PCI). The particle shadows where projected into the camera from a spot-light
lamp (dedolight DLH400DT) and a light diffuser plate inline with a the camera.

quantifiable access to the LVOT flow field. Our geometry
was based on conditions at peak systole when aortic leaflets
are fully open, we will therefore focus our measurements on
this period of the cardiac cycle. At the onset of the systole
the aortic valve opens fully in typically less than 30 ms.

METHODS

Experimental setup

The LVOT flow model consists of three Plexiglass plates.
The geometry of the flow domain, seen in Figure 1, was cut
out of the middle plate by a water jet. This plate was then
sandwiched between the two uncut Plexiglas’s plates, as il-
lustrated in Figure 2. In this way, the 2D flow domain was
sealed inside the plates providing excellent visual access to
the flow field. The middle plate was 10mm thick. Flow in-
let and outlet ports were mounted on the uncut plates. The
LVOT geometry is extracted from ultrasound recording pro-
vided by Dahl (2012) at peak systole, and is given by the
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so-called long axis view from such recordings defined as the
2D plane through the center of the aortic valve annulus, the
mitral valve annulus and the apex of the left ventricle.

A flow loop was built so that fluid could be circulated
through the LVOT model in a pulsatile manner. The flow
loop is illustrated in Figure 2, and is made up of; the 2D
LVOT flow model, a fluid reservoir, a piston pump and con-
necting tubes and one-way valves. The piston pump was con-
nected to a programmable linear actuator (Zaber, X-LRQ-
E) so that an an arbitrary flow pulse could be injected into
the model in displacement control. Two ball valves (SXE
PVC-U, 1") and fiber reinforced 1" transparent PVC tubing
connected the loop components and ensured that unidirec-
tional pulsatile flow could be circulated through the flow loop
setup.

The blood analog fluid consisted of 60% deionized water
and 40% Glycerol, which at room temperature gives a New-
tonian fluid with a dynamic viscosity of y = 3.6mPa.s (Yousif
etal.,2011).
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The velocity field in the 2D plane of the LVOT model (i.e.
the flow domain described by Figure 1) was quantified by
particle image velocimetry (PIV). In our case we added poly-
mer particles to the reservoir tank, which were circulated in
the loop, hence there was a uniform concentration of par-
ticles in the system. The particles were visualized by spot-
light lamp (dedolight DLH400DT) inline with a light diffuser
plate, the 2D LVOT flow domain and a high-speed camera
(Photron, FASTCAM 1024 PCI), as seen in Figure 2. In this
setup the shadows of the particles could clearly be seen in
the flow domain on a white background because of the light
diffuser plate. However, the quality of the visualization de-
pended on several factors such as the distance between the
spot-light lamp, the diffuser and the flow domain, the poly-
mer particle size and the high-speed camera resolution (other
important factors where also particle concentration, light in-
tensity, camera shutter speed and aperture). The particle size
compared to the camera resolution was particularity impor-
tant, i.e. the size of the shadow needed to be larger than the
size of the image pixels. In our current setup with the nec-
essary zoom and a camera resolution of 512x512 (needed in
order to have a frame rate of 3000 frames/sec), we achieved
a pixel resolution of 0.013 pixels/um. Hence, we used 80 um
polymer particles (Dynoseeds®TS 80), having a density of
1050 kg/m3. According to Tropea et al. (2007) tracing ac-
curacy errors for spherical traces are below 1% if the Stokes
number is significantly smaller than 0.1. Stokes number with
Reynolds number drag correction (Israel and Rosner, 1982)
may be given by

_ Ppdpu
18u

where p,, and d,, are the particle density and diameter, respec-
tively, and y(Re,) is the drag correction factor. In the cur-
rent setup flow velocities around 1.0 m/s are expected in the
LVOT, which by Eq. 1 gives a Stokes number of St ~ 0.75.

The recorded shadow particle images were post processed
using the open source software OpenPIV (python version,
0.20.5) (Taylor et al., 2010). Default settings in the software
was used during PIV calculations with a window size of 24
and overlap of 20 pixels.

St V(Rey) ey

Experimental protocol

The two pathologies investigated in this study can be seen in
Figure 1, defined by the parameters L1 and L2. L1 defines
the degree of AML billowing and L2 defines the degree of
ASH. Four cases were studies in the current work, as given
in Table 1 the normal physiological geometry, case 1; AML
billowing, case 2; ASH, case 3; and a combination of AML
billowing and ASH, case 4.

Table 1: Model parameter matrix with; the normal physiological
geometry, case 1; AML billowing, case 2; ASH ,case 3;
and a combination of AML billowing and ASH, case 4, as
depicted in Figure 1

AML ASH
Case L1 (mm) L2 (mm)
1 0 0
2 0 9
3 9 0
4 9 9

The experiments started with preparing the 40/60%
glycerol-water mixture which was added to the reservoir
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tank, as seen in Figure 2. Polymer trace particles were then
added (Dynoseeds® TS 80) until the particle density was suf-
ficient to achieve good PIV quality. Care was taken to evacu-
ate all air pockets and bubbles form the connecting tubes and
vales, and the fluid mixture was circulated in the loop until
a uniform distribution was obtained. The software control-
ling the inflow waveform (given by the linear actuator and
the piston pump) was able to trigger the high-speed camera
at a predetermined point in the cardiac cycle. Six full car-
diac cycles were recorded with a frame rate of 3000 frames
per second, for each of the four geometry cases in Table 1.
The LVOT inflow waveform was obtained from ultrasound
recording provided by Dahl (2012), defined by the volumet-
ric change of the left ventricle during systole.

CFD model

The LVOT flow model described in the previous subsection
was simulated using ANSYS Fluent 16.2. The computational
domain was limited to the section after the flow straightener
and the outlet was simplified to a simple in-plane rectangular
outlet. The actual dimensions of the CFD domain and the
flow loop were the same since the same underlying CAD was
used to generate both the machined loop geometry and the
CFD domain.

A hexahedral mesh was used, with a nominal grid resolu-
tion of 500 um in the region of interest, i.e. the aortic root
and lower part of the ascending aorta. A boundary layer was
attached to the mitral and septal sides of the flow conduit
with a starting size of 100 um expanding with a factor of 1.2
in 9 layers. In the out of plane direction the resolution was
1 mm, and in the distal parts relative to the aortic root (inlet
and outlet regions) the lateral resolution was decreased to 2
mm.

The flow is highly transient, the whole outflow lasting 360
ms. Thus, there is not enough time for steady state bound-
ary layers to develop, and not time enough time for turbu-
lence to develop. For these reasons we opt to use a laminar
flow model, although at the aortic root the Reynolds num-
ber briefly rises to a value of approximately 6000 at peak
systole (peak flow). The SIMPLE method was used for the
pressure-velocity coupling, a second order upwind scheme
for the momentum equation, a second order scheme for pres-
sure, and gradient reconstruction was done using cell based
least squares. A first order implicit formulation was used for
the transient formulation. Estimated peak flow velocities are
1.5 m/s, and with a 100um resolution this results in a time
step requirement of 30 us, we have employed a time step of
20 us. Furthermore, constant density, 1050 kg/m3, and New-
tonian viscosity, 3.5 mPa.s, were employed.

At the outlet a pressure boundary condition was imple-
mented, with zero gauge pressure, as the reference point for
the pressure was also located at the center of the outlet. The
inlet was modeled as a velocity inlet. The inlet velocity was
determined in the following way: The volume curve obtained
from a subject using ultrasound (Dahl, 2012) was used to
give a physiological realistic time varying profile. This vol-
ume curve was converted into a time varying piston position,
and the velocity was simply the derivative of this curve and
is depicted in Figure 3. The inlet velocity was implemented
using ANSYS Fluents user defined functions (UDF).

RESULTS

PIV and CFD results from the four LVOT geometry cases is
presented in Figure 4. Additionally, the maximum axial ve-
locities for the velocity profiles (blue solid lines) are given in
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Figure 5: Left column: PIV and CFD velocity profiles for Case 4 at 0.08 and 0.1 sec, respectively. Middle column: PIV velocity vectors for
Case 4 at 0.08 and 0.1 sec, respectively. Right column: CFD velocity vectors for Case 4 at 0.08 and 0.1 sec, respectively. The PIV
velocity vector plot at 0.08sec (1st row and 2nd column) shows that a wake is forming at the left coronary leaflet. The CFD velocity
profile at 0.08sec (1st row and 3nd column) shows that a large wake is already present in the CFD simulation. Additionally, the PIV
velocity vector plot at 0.1sec shows (2st row and 2nd column) show that the PIV analysis is not able to pick up the detailed flow field
in the wake at the left coronary leaflet where the velocities are small
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Figure 3: The inlet flow velocity derived from the volume change
between successive frames in a patient specific ultra-
sound recording. The volume curve at the top of Figure
4 represents the accumulated ejection volume and is thus
smoother than the velocity curve. The vertical red lines
indicate the times visualized in Figure 4.

Table 2. In Figure 4, the top row shows illustrations of the
geometry of the LVOT for the four cases, where the remov-
able inserts are colored orange. The inflow waveform used in
the experimenters is given in the left column of Figure 4 and
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3. The curves in Figure 4 shows remaining ejection volume
of the ventricle as a function of time and defines the volume
flow in the loop, Figure 3 shows the corresponding develop-
ment in inlet velocity. The systole begins at time zero and
ends at 0.360 sec. Velocity profiles at three times and four
different positions in the aortic valve apparatus during sys-
tole is given in the figure, at 0.08, 0.16 and 0.24 sec. The blue
velocity profiles give the velocity components in the axial
direction (y-direction) and the red velocity profiles give the
velocity components in the transverse direction (x-direction).
The PIV results from the in-vitro flow loop is given by solid
lines, and is averaged over six cardiac cycles. Additionally,
at the three selected times, velocities are averaged in a time
span of 3 milliseconds (i.e. 3 PIV frames). The plotted blue
and red areas give the standard deviation in the PIV data. The
velocity profiles components from the CFD calculations are
given by blue and red dashed lines, for the axial and trans-
verse direction respectively.

Velocity profiles for Case 1, where there is no AML bil-
lowing nor ASH bulging, remains relatively flat throughout
systole, as can be seen in Figure 4. There is however a recircu-
lation zone adjacent to the left coronary leaflet. The recircu-
lation zone develops during systole due to the angle between
the anterior mitral leaflet and the left coronary leaflet. For
Case 2, with an ASH bulging of 9mm, a small re-circulation
zone can be seen at the root of the right coronary leaflet.
The re-circulation zone does not extend into the aorta and is
caused by the angle between the ASH bulging right coronary
leaflet. A 9 mm AML billowing, as defined in Case 3, causes
a larger recirculation zone adjacent to the left coronary leaflet
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Table 2: Maximum axial velocities for the velocity profiles (blue
solid lines) given in Figure 4, at flow times 0.08, 0.16 and
0.24 seconds, for Case 1, 2, 3 and 4. At each flow time,
four velocity profiles are plotted at regular increments in
the vertical direction starting at the root of the aortic vales,
as seen in Figure 4. The maximum velocities given in the
table are arranged in the same vertical order as the velocity
profiles in Figure 4.

Time | Case 1 Case2 Case3 Case4d
[s] [m/s] [m/s] [m/s] [m/s]
0.57 0.61 0.69 0.68
008 0.70 0.71 0.85 0.82
’ 0.67 0.79 0.84 0.88
0.85 1.03 0.90 0.99
0.92 0.99 1.00 1.27
016 0.92 1.10 1.09 1.34
’ 1.03 1.17 1.11 1.24
0.87 0.94 0.86 0.92
0.78 0.94 0.99 1.31
0.74 1.03 1.04 1.19
0.24 0.87 0.95 0.91 0.97
0.66 0.81 0.74 0.80

compared to the physiological case (Case 1). However, the
axial velocity profiles remains relatively flat throughout the
systole, and there are little cross flow in the transverse direc-
tion. Large re-circulations zones adjacent to the left coronary
leaflet were found for Case 3 and Case 4. They are indicated
as areas shadowed by yellow color in Figure 4. These areas
were discriminated by having a velocity magnitude smaller
that 0.1 m/s. There is also significant back flow downstream
of the left coronary leaflet in the ascending aorta. Case 4
has the highest presence of transverse flow through the aortic
vales and also exhibits a re-circulation zone similar to that of
Case 2 at the root of the right coronary leaflet.

The PIV velocity vector plot at 0.08 sec (Figure 5, top
left panel) shows that a wake is forming at the left coronary
leaflet. The CFD velocity profile shows that a large wake is
already present in the CFD simulation at 0.08 sec. Addition-
ally, the PIV velocity vector plot at 0.1 sec shows (Figure 5,
top left panel) show that the PIV analysis is not able to pick
up the detailed flow filed in the wake at the left coronary
leaflet where the velocities are small.

DISCUSSION

In this work, we performed both in-vitro experiments and
CFD calculations on the 2D LVOT model. The 2D models
were parametrized according to Table 1, where Case 1 rep-
resents the normal physiological geometry. AML billowing
was simulated by removing a 9mm wide insert (Case 2, Ta-
ble 1) in the mitral valve position, as seen in Figure 1. ASH
was simulated by inserting a 9mm wide insert (Case 3, Table
1) on the right LVOT wall, as seen in Figure 1. Finally, both
AML billowing and ASH was simulated in Case 4.

The agreement between the PIV results and the CFD cal-
culations can be seen in Figure 4 and 5. The largest dis-
crepancy between the experimental data and the numerical
results can be seen in the re-circulation zone adjacent to the
left coronary leaflet. The timing of the development of the
circulations zone is not exactly the same for the CFD and the
experimental results. From the axial velocities one can ob-
serve that there is some time shift between the experimental
and the CFD results. The most likely cause of this time lag
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originate from some compliance present in the experimental
setup which delays the flow wave form into the LVOT com-
pared to the CFD results, as seen in Figure 5. Moreover, the
current PIV setup was not able to map the small velocities
in the re-circulation zone at the left coronary leaflet as seen
in Figure 4 and 5, this was also confirmed by testing an al-
ternative PIV software (PIVlab). The velocity field in the
recirculation zone can determined by analyzing this region
with higher spatial resolution, i.e. smaller polymer particles
and increased camera resolution/zoom.

Flow velocity measurements based on particle shadows
allows for low-power illumination compared to a conven-
tional laser PIV setup. Additionally, since the light source in
shadow PIV can illuminate continuously, the temporal reso-
lution is only restricted by the frame rate of the high-speed
camera and not on a laser system. A drawback with the
shadow PIV technique is that it is not possible to isolate par-
ticles in a specific plane in the depth direction of the flow
domain (i.e. in the line defined by the camera an the light
source), which is the strong point of laser PIV where typi-
cally a laser sheet is used to illuminate particles in a specific
2D plane (Estevadeordal and Goss, 2005). However, by ad-
justing the focus point of the camera in the center of the flow
domain (in the depth direction) we were to some extent able
to favorize particles in the center plane of the flow model. A
second issue with shadow PIV technique in the current setup
is the particle size. As shown in Sec. Experimental setup,
the particles in our setup have a Stokes number in the order
of 0.75, which is somewhat high for following the flow as
true tracers. A smaller Stokes number could be achieved in
our setup with a high speed camera with higher resolution,
which will be considered for future studies.

The main limitations in the current study when evaluating
the clinical significance of the results are the choice of a 2D
geometry with stiff and stationary walls. The 2D geometry
will introduce unnatural flow conditions compared to the real
3D case, such as increased vortex formation. Moreover, the
aortic valves are not to allowed to move in our current flow
model. In the real physiologic case, the aortic vale leaflets
are highly deformable structures and the final fully open po-
sition during systole is believed to be significantly influenced
by the local flow conditions in the LVOT. A more realistic
in-vitro setup for future studies might involve a full 3D ge-
ometry with a biological prosthetic aortic vale.

CONCLUSION

In conclusion, while keeping in mind the limitations of the
current study from a clinical perspective as discussed above,
our results show that ASH bulging alone does not alter the
flow field in the LVOT dramatically. However, for AML bil-
lowing and for the combination of AML billowing and ASH,
we see a significant re-circulation zone covering half of the
aortic outflow tract at peek systole (i.e. 160ms into the car-
diac cycle), as seen in e.g. Case 4 in Figure 4. This result is
not surprising since these two cases produce large expansion
angles between the LVOT and the aortic outflow tract. Which
in turn, might cause asymmetrical hemodynamical loads on
the aortic valve leaflets and downstream compactions.
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