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Abstract  

The evaluation of a recession based ‘top-down’ model for distributed hourly runoff 

simulation in macroscale mountainous catchments is rare in literature. We evaluated the 

model for a 3090 km2 boreal catchment and its internal subcatchments. The main research 

question is how the model performs when parameters are either estimated from 

streamflow recession or obtained by calibration. The model reproduced observed 

streamflow hydrographs (Nash-Sutcliffe efficiency up to 0.83) and flow duration curves. 

Transferability of parameters to the subcatchments validates the performance of the 

model, and indicates an opportunity for prediction in ungauged sites. However, the cases 

of parameter estimation and calibration by excluding the effects of runoff routing 

underestimate peak flows. The lower end of the recession and the minimum length of 

recession segments included are the main sources of uncertainty for parameter estimation. 

Despite small number of calibrated parameters, the model is susceptible to parameter 

uncertainty and identifiability problems. 
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Continuous simulation of runoff in gauged and ungauged watersheds are important in 

water resources management for instance for objectives like flood forecasting, design and 

operation of water infrastructure and for ecological assessments. However, several studies 

indicates the uniqueness of catchments runoff response due to natural heterogeneities in 

catchment characteristics, climate forcing, dominant hydrological processes and process 

interactions (e.g. Beven 2000, McDonnell et al. 2007), which complicates the application 

of simulation models.  

    A plethora of precipitation-runoff models have been developed based on various 

modelling approaches (e.g. see Singh and Woolhiser 2002) to conceptualize dominant 

hydrological processes in catchments. Various lumped conceptual precipitation-runoff 

modelling strategies, for instance linear or non-linear reservoir based models (e.g. 

Bergström 1976), fill-and-spill storage based models with parameterization of sub-basin 

heterogeneity by a probability distribution (e.g. Moore 1985) are widely employed 

especially for operational forecasting purposes due to lower requirements for data and 

simplicity of updating model states. Despite their advantages, it is argued that this domain 

of models heavily rely on parameter tuning using calibration algorithms, which may 

increase problems related to parameter uncertainty and identifiability.  

    Another modelling approach commonly employed in hydrological sciences is based on 

modelling the dominant hydrological processes from point-scale physical equations and 

upscaling to larger scales following the ‘bottom-up’ approach (Klemeś 1983, Jarvis 

1993). One of the main motivations for the distributed process-based ‘bottom-up’ models 

was to reduce parameter calibration efforts by parameterizing in terms of measurable 

physical quantities. However, in practice, effective values of parameters are set by 

calibration to compensate for the limitations of the approximation to the physics of flow 

in heterogeneous domains (see Beven 2000). Another advantage of this domain of models 

are to better represent the spatial variability of inputs and processes, and to assess the 

impacts of land use and climate change. A model to be fully distributed, all aspects of the 

model must be distributed including parameters, initial and boundary conditions and 

sources and sinks (Singh and Woolhiser 2002). Therefore, distributed models require 

more data than lumped models. Cunderlik et al. (2013) noted that the full potential of 

distributed models could only be realized under particular logistical circumstances.  
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    The ‘top-down’ (Klemeś 1983, Jarvis 1993) precipitation-runoff modelling approach 

is also common in hydrology. According to Sivapalan et al. (2003), the defining feature 

of this approach is that it attempts to predict the overall catchment response based on an 

interpretation of the observed response at the catchment scale. The authors also noted the 

importance of this approach for parameter parsimony and learning from observed data. 

Kirchner (2009) suggested a recession based ‘top-down’ approach for lumped rainfall-

runoff modelling based on ‘catchments as simple dynamical system’, in which the 

combined effect of all subsurface flow processes on discharge (Q) of the catchment can 

be represented as resulting from a single variable that is a bulk catchment storage (S) and 

the conceptualization of the system properties can be inferred from temporal fluctuations 

in streamflow during recession. The author inferred model structure, equations and 

parameters by analysing streamflow recessions to reduce reliance of the traditional 

parameter tuning by calibration, which is challenging in overparameterized and poorly 

identified models. Kirchener (2009) demonstrated the lumped modelling methodology 

for headwater catchments in Mid Wales (United Kingdom) for both parameter estimation 

from streamflow recession analysis and from direct calibration based on observed 

rainfall-runoff relationships. Teuling et al. (2010) demonstrated good performance of the 

approach for streamflow simulation during wet periods in a snow influenced Swiss 

prealpine catchment. Rainfall-runoff modelling based on storage–discharge relationships 

and streamflow recession analysis has been applied for a long time (e.g. Lambert 1969, 

Ambroise et al. 1996, Lamb and Beven 1997, Wittenberg and Sivapalan 1999, Rees et al. 

2004, Aksoy and Wittenberg 2011, and Fiorotto and Caroni 2013).  

    The main basis of the approach by Kirchner (2009) is the water balance equation. The 

author inferred a single-storage model structure based on a discharge sensitivity function, 

g(Q) = dQ/dS. If discharge is a function of storage, then the catchment antecedent 

moisture will be implicitly measured by stream discharge and the catchment response to 

a unit increase in storage will be directly quantified by the hydrologic sensitivity function 

(Kirchner 2009). The main assumptions in the approach are that the discharge from the 

catchment Q depends solely on the release of water from storage in the catchment (S) 

rather than ‘bypassing’ flow from direct precipitation and the S–Q relationship is 

monotonically increasing function and invertible i.e. Q = f(S); S = f-1(Q). Secondly, the 



4 
 

unsaturated and saturated storages are assumed to be hydraulically connected. In addition,  

the net groundwater flow across watershed boundary is assumed to be zero.      

    There are several advantages of the approach:  

i. It does not specify the functional form of the storage–discharge relationship a 

priori, but rather determines it directly from analysis of streamflow 

fluctuations.  

ii. Parameters can be estimated from streamflow recession e.g. during nighttime 

low-flow periods, when the effects of evapotranspiration and precipitation are 

assumed negligible, which reduces the reliance on uncertain and 

unrepresentative climate data for parameter calibration. 

iii. The method allows parameter estimation from recession analysis and hence 

reduction of calibrated parameters which improves parameter identifiability. 

iv. The ability to make inference on catchment storage from readily available 

streamflow observations. We are particularly limited due to our inability to 

‘see’ the subsurface of a catchment, in which much of the hydrologic response 

often remains hidden from our current measurement techniques (Wagener et 

al 2007). In this regard, Ajami et al. (2011) applied the recession approach to 

estimate mountain block recharge (MBR) in a semi-arid region. 

v. The S–Q relationship is invertible and allows inferring effective rainfall inputs 

and evapotranspiration rates from the fluctuations in discharge. Beven (2012) 

noted that a more interesting application of the recession based approach is to 

infer effective rainfall inputs and evapotranspiration rates from the 

fluctuations in discharge. Krier et al. (2012) illustrated inferring basin-

averaged effective precipitation rates from streamflow fluctuations for 24 

small to mesoscale (< 1092 km2) catchments of heterogeneous lithology.  

    There are also limitations of the recession based approach due to the assumptions on 

which it was derived. The main limitations (Kirchner 2009) are that the method cannot 

be expected to give reasonable results in catchments in which infiltration excess runoff 

mechanism is dominant, in catchments where runoff is controlled by interconnected 

subsurface reservoirs with different storage–discharge relationships, in small size 

catchments where streams are not permanent, and in large scale catchments where 

rainfall-runoff behavior is determined more by the spatial distribution of precipitation and 
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the runoff delay in the hillslope and channel networks than by the storage–discharge 

dynamics. 

    Kirchner (2009) concluded with the importance of assessing the applicability of the 

recession based approach to diverse hydrologic settings. Previous studies (e.g. Sivapalan 

et al. 2003, Blöschl 2006) also suggested the need for testing models in many catchments 

exhibiting different climatic and hydrologic conditions to evaluate the applicability of the 

model. Relevant to the boreal catchment under study, Myrabø (1997), Beldring (2002) 

and Jansson (2005) noted that the dominant soil formation in boreal catchments is glacial 

tills, in which the dominance of preferential flow was reported in literature (e.g. Jansson 

et al. 2005). However, Zehe and Sivapalan (2009) classified preferential flow and 

connectivity of flow paths to the outlet as runoff response thresholds. Therefore, 

dominance of preferential flows in glacial tiils has the potential to violate one of the main 

assumptions of the recession based model, the assumption of hydraulic connectivity of 

unsaturated and saturated storages. In addition, the storage–discharge relationship that 

characterizes the overall catchment’s behavior might not describe any individual point on 

the landscape (Kirchner 2009), which is a limitation of any spatially lumped precipitation-

runoff model. Several studies also illustrated the non-uniqueness of the response of 

discharge to storage. For instance, Clark et al. (2009) illustrated for a mountain watershed 

in Georgia (USA) that the recession relationships of (dQ/dt) and Q is approximately 

consistent with a linear reservoir at a hillslope scale and deviation from linearity becomes 

progressively larger with increasing spatial scale, and Myrabø (1997), Beven (2006), 

Ewen and Birkinshaw (2007), Spence et al. (2010), Martina et al. (2011) and Fovet et al. 

(2015) reported hysteresis in discharge-storage relationships. Furthermore, Teuling et al. 

(2010) noted low performance of the ‘catchments as simple dynamical system’ approach 

for dry conditions compared to wet conditions for a Swiss prealpine catchment and Brauer 

et al. (2013) reported low performance of the approach based on the power-law relation 

(Brutsaert and Nieber 1977) for a less humid lowland catchment (6.5 km2) in the 

Netherlands. Hence, the performance of the model, which are based on the prevailing 

assumptions, needs assessment across catchments in different climate regimes, landscape 

features and catchment sizes.  

    Related to the catchment size and the effects of runoff delay, Kirchner (2009) stated 

that the approach must break down for catchments that are too large. However, Krier et 



6 
 

al. (2012) illustrated the validity of the approach for small to mesoscale catchments (≤ 

1092 km2). Therefore, the effects of the runoff delay or routing on the discharge 

sensitivity function g(Q) and hence the runoff simulation requires further study. To 

account for the runoff delay, Kirchner (2009) and Beven (2012) suggested linking the 

approach to a transfer function for instance a geomorphic instantaneous unit hydrograph 

or a unit hydrograph. Spatial variability of precipitation in large-scale catchments may 

also influence the runoff response more than the catchment storage–discharge 

relationships. However, to our knowledge, all the previous studies or applications of the 

recession based approach were lumped and the runoff delay were not modelled. 

Therefore, the investigation of the performance of a gridded version of the recession 

based approach coupled to a gridded travel lag response function for runoff routing would 

be interesting for a large-scale, mountainous and snow-influenced catchment. 

    The likelihood of reliability of prediction is highly influenced by the reliability of 

estimated or calibrated parameters. There are uncertainties in estimated parameters 

related to extraction of recession segments and parameter estimation algorithm. Since 

precipitation-streamflow relationships can provide only limited information, uncertainty 

and identifiability of calibrated parameters related to overparameterization and 

equifinality problems (Beven and Binley 1992; Kirchner 2006) are not completely 

avoidable even in models with small number of calibrated parameters. Therefore, 

uncertainty and identifiability assessment for parameters estimated from the recession 

segments and obtained from the calibration is necessary. To reduce the problem by further 

constraining the calibrated parameters, several multi-objective calibration based on 

matching additional measured and simulated variables, for instance, ground water level 

(e.g. Beldring et al 2003), snow cover data (e.g. Parajka and Blöschl 2008, Ragettli et al. 

2012) were illustrated to perform better than calibration to only streamflow. However, 

this require availability of measurements of these variables, which is not the case in many 

regions.  

    The objectives of the present study are:  

(1) To evaluate the calibration and validation performance of a storage–discharge 

relationship and recession based model implemented as a spatially distributed model 

(1x1 km2) for hourly runoff simulation in large-scale, mountainous and snow-

influenced boreal catchments.  
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(2) To evaluate the performance of both parameter estimation from streamflow recession 

analysis and parameter calibration using observed precipitation-streamflow 

relationships especially for the simulation of peak flows.  

(3) To assess the parameter uncertainty and identifiability for both parameter estimation 

from recession segments and calibration. 

(4) To study the effects of parameter uncertainty and runoff delay on the discharge 

sensitivity function g(Q) and hence simulated streamflow.  

2  THE STUDY REGION AND DATA 

The study area is the Gaula watershed in mid Norway. We used streamflow data from 

Gaulfoss and its three internal subcatchments Eggafoss, Hugdal bru and Lillebudal bru. 

The climate of the catchment is influenced by seasonal snow. A map of the catchment 

and the characteristics of the study catchments are given in Fig. 1(a) and Table 1 

respectively. The dominant land covers are conifer forests, mountainous terrain above 

timberline and marsh land/bogs. The dominant soil type is glacial tills.  

    The climate data used are precipitation (P) from 12 stations, temperature (T) from 11 

stations, wind speed (Ws) from nine stations, and relative humidity (HR) and global 

radiation (RG) from three stations. All climate input data are in hourly time resolution. 

The spatial fields of precipitation and other climate data on the 1x1 km2 grids are 

computed by inverse distance weighing (IDW). An average adiabatic temperature lapse 

rate of -0.65 oC/100m was considered in the spatial interpolation for temperature. The 

precipitation records from the stations used in the present study do not display any simple 

orographic precipitation gradients (elevation-precipitation relationship) for the region 

(Figure 1b). This may be due to the fact that the complexities of precipitation patterns and 

dynamics in this mountain region cannot be adequately captured using the sparsely 

distributed precipitation gauging stations. Therefore, using elevation based interpolation 

or accounting for precipitation gradients by incorporating a precipitation gradient 

parameter on the interpolation process would unreasonably modify the spatial 

precipitation fields and would force the model calibration just to a ‘fit-for purpose’. 

Therefore, the assumption is made that a basic IDW scheme may be applied for the 

purposes of this study recognizing its limitations.  
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3  METHODS AND MODELS  

3.1  Kirchner’s runoff response routine 

Kirchner (2009) developed a runoff response routine (Fig. 1(c)) based on a water balance 

equation: 

- -- - in out

dS
I AET Q

dt
I AET Q G G                                                                  (1) 

The water balance based response routine is: 

0 1 2

2

- - - -

1
ln ln ln ;  

dQ dQ dS dQ
I AET Q g Q I AET Q

dt dS dt dS

S g Q β β Q β Q
g Q

Q dQ

,                                        (2) 

where the actual evapotranspiration (AET), infiltration (I), which is the sum of rainfall 

and snow melt, discharge (Q) and bulk catchment storage (S) are given in  mm, t is a time 

variable and Gin - Gout or the net groundwater flow across watershed boundary is assumed 

to be zero. The g(Q) is as already defined and the β0, β1 and β2 are regression parameters. 

The reciprocal of the sensitivity function or 1/g(Q) is system ‘response time’ or ‘memory’ 

(Teuling et al.2010) usually denoted as τ and this indicates how rapidly streamflow 

recedes. Runoff was computed by solving the integral in eq. (2) in time using an adaptive 

Bogacki-Shampine (Bogacki and Shampine 1989) numerical method, which is 

implemented in ENKI (Kolberg and Bruland 2012). An observed discharge before the 

start of simulation period was used as an initial state for all grid cells to infer the initial 

storage. 

    In the lumped water balance model of Kirchner (2009), I, AET, Q and S in the above 

equations are lumped on the catchment scale. But, in the present study we simulated 

distributed runoff for each grid cell by considering spatially distributed climate inputs, 

fluxes and storage. The grid based computations accounts for the spatial variability of 

climate forcings. However, the model parameters, which are estimated from the recession 

analysis or calibrated in the present study, are ‘effective’ parameters applied to all grid 

cells in the catchment. In the following two sections, we will explain procedures for 

estimation of regression parameters i.e. runoff response parameters from streamflow 

recession analysis and parameter tuning by a calibration algorithm.  

3.1.1 Estimation of the regression parameters and g(Q) from streamflow recession  
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The parameters of the regression or runoff response parameters (β0, β1 and β2) were 

estimated from recession analysis of observed streamflow. In this approach, the storage 

discharge characteristics of a catchment are inferred from measured fluctuations in 

discharge, particularly during winter recession periods in which evapotranspiration rates 

are expected to be small (Beven 2012). Recession plots provide information on how the 

rate of streamflow recession (-dQ/dt) varies with discharge (Q) when the effects of 

evapotranspiration and precipitation or infiltration are assumed negligible and hence eq. 

(2) for dQ/dt can be reduced to eq. (3):  

,- I Q AET Q

dQ
g Q Q

dt
                                                                                             (3)        

The main advantages of recession analysis are that rainfall can be assumed to be zero, or 

at least small (so difficulties with any errors in catchment rainfall estimation are avoided), 

and that the hydrograph represents an aggregate measure of catchment behavior 

(Sivapalan et al. 2003).  

    The refined recession analysis (extraction and binning) procedures by Kirchner (2009) 

was followed. For estimation of g(Q) from the recession analysis, we estimated the 

regression parameters based on bin-averaged discharges extracted from streamflow 

recessions. In this method, we used long time series of hourly data (1995–2011 for 

Gaulfoss, Eggafoss and Hugdal bru and 2004–2011 for Lillebudal bru). We extracted 

only nighttime recessions to avoid marked effects of evapotranspiration on estimation of 

regression parameters due to the assumptions of I<<Q and AET<<Q during the recession 

periods of runoff hydrograph. However, we did not exclude periods with any marked 

precipitation compared to discharge due to lack of long hourly series of precipitation data. 

From the recession plots of observed streamflow (Fig. 2 (a)), we fitted a second order 

polynomial between ln(-dQ/dt) and ln(Q). Rearranging for g(Q) in eq. (3) with log-

transformation for numerical stability following Kirchner (2009), the following 

polynomial regression based storage–discharge relationship was fitted from the recession 

analysis: 

2

, 0 1 2

- /
ln ln ln ln ln

I Q AET Q

dQ dQ dt
g Q β β Q β Q

dS Q
,                   (4) 

where β0, β1 and β2  are parameters of the polynomial regression model. The rate of flow 

recession (-dQ/dt) is computed as differences in discharge between two successive hours 
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and the discharge Q is computed as average discharge over the two successive hours 

following Brutsaert and Nieber (1977) and Kirchner (2009). We estimated the regression 

parameters using an ordinary least squares method: 

0 1 2

2

0 1 2

2

0 1 2

2

0 1 2
, , 1

ln ln

ln ln ln

ˆ ˆ ˆ, , arg  min  ln -
bn

T

i i i
β β β i

β β Q β Q

g Q β β Q β Q

β β β g Q

ε

,                           (5) 

where ԑ is an error term, Qi represents bin-averaged discharges, nb is the number of bin- 

averaged discharges. 

    However, the validity of the results depends on the adequacy of the fitted regression 

model. Hence, we tested the adequacy of the selected polynomial regression model. We 

diagnosed the multicollinearity, significance of the regression model and parameters, key 

features of residuals and parameter identifiability for the regression model. Though a 

polynomial regression with only two parameters obtained by setting the quadratic term 

β2 = 0 may reduce problems related to correlation among the parameters, the regression 

model may not remain significant due to the lack of fit due to the missing quadratic term. 

We performed a significance test for the regression parameters and the regression model 

using the t-test and F-test. We diagnosed the residuals for the normality assumption of 

the linear regression model by the Z-score test, which is the inverse of the standard normal 

distribution corresponding to a probability (pr). The probability is given as pr = (i-0.5)/N, 

where i is the ranks of the residuals in ascending order and N is the number of samples. 

We carried out residuals diagnosis for homoscedasticity, correlation, systematic lack of 

fit and outliers from plots of the estimates of the response variable ln(g(Q)) versus the 

residuals, which should be random plots around an expected value of zero.  

    We estimated the Individual Confidence Levels (ICL) for the parameters from the t-

test. To assess identifiability of regression parameters through their joint confidence 

regions, we wanted to compute the Joint Confidence Region (JCR), which simultaneously 

bounds the joint parameters, to assess the effects of parameter correlation based on 

elliptical confidence regions (Bard 1974). Elliptical joint confidence regions are better 

predictors of regression model uncertainty because they capture the parameter correlation 

(Rooney and Biegler 2001). From the multivariate normal distribution of regression 

parameters given in Appendix A, the sum of squares function in the exponent term of eq. 

(A1) is an equation of a hyper-ellipse centred at the parameter estimates. The joint 
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confidence region is all the points in the ellipsoid region and computed from the F-

distribution as:  

1

', ,2

ˆ ˆ

'

T

p n p α

θ θ C θ θ
F

p S
,                                                                                          (6) 

where θ is the subset of β that denotes the regression parameters in eq. (6), C is the part 

of the (XTX)-1 matrix, which is corresponding to the parameters for which the joint 

confidence region is to be constructed, p’ < p is the dimension of the parameters for which 

the joint confidence region is to be constructed and the underline denotes a matrix or a 

vector. In the present study p’ = 2 since we computed the joint confidence regions of two 

parameters at a time. The α is significance level, the S2 is estimated error variance = 

SSE/N-p, where p denotes the number of parameters. Equation (6) is exact for the linear 

regression model (Rooney and Biegler 2001, Vurgin et al. 2007).  

3.1.2 Model parameters and g(Q) from direct calibration  

In this case, the regression parameters (eq. 4) along with other model parameters (Table 

2) were calibrated based on precipitation-streamflow relationships to compute g(Q). The 

Differential Evolution Adaptive Metropolis algorithm or DREAM (Vrugt et al. 2009) 

with residual based log-likelihood objective function implemented in ENKI hydrological 

modelling framework (Kolberg and Bruland 2012) was used: 

2
( ) ( )

1

2

2
2 ( ) ( ) 2

1

log / 2log log
2 2 2

,

n
λ λ

i i
i

ε

n
λ λ

ε i i ε r
i

l δ σ π σ

Qsim Qobs
n n

σ
Qsim Qobs f ,   (7)        

where Qsim
(λ) and Qobs

(λ) respectively are Box-Cox (Box and Cox 1964) transformed 

simulated and observed streamflow series of length n, δ denotes model parameter, l 

denotes likelihood, λ is the Box-Cox transformation parameter and σƐ
2 is variance of error. 

We computed the λ from observed streamflow records based on the ‘fminsearch’ 

algorithm in matlab, which finds the λ value that maximizes a log-likelihood function 

(http://www.mathworks.com). The fr is a fraction of effectively independent observations 

estimated from the autoregressive or AR (1) model of error covariance (Ziḙba 2010).  

    We used a 3-year (2007-2010) and a 1-year (2010-2011) hourly time series for 

parameter calibration and temporal validation respectively due to availability of only 

limited length climate data. We started the simulation in September and provided 

http://www.mathworks/
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sufficient ‘burn-in’ period before the calibration period to reduce the effects of initial 

snow state. We used the parameter set yielding maximum Nash-Sutcliffe efficiency (Nash 

and Sutcliffe 1970) denoted as NSE for further analyses since it is a suitable and 

commonly used metric for comparison of streamflow hydrographs. We evaluated the 

simulation based on streamflow hydrographs and duration curves. Hydrographs are 

catchment-integrated signatures explaining how catchments respond to climate forcing 

and its own states. Flow duration curves express the temporal variability of flow in terms 

of the percentage of time a flow of a certain magnitude is available within a year. We 

tested the temporal transferability of both the estimated and calibrated parameters for the 

Gaulfoss catchment (3090 km2) and spatial transferability (validation) to internal 

subcatchments of Eggafoss (653 km2), Hugdal bru (549 km2) and Lillebudal bru (168 

km2). Uncertainty and identifiability of the calibrated parameters were assessed from the 

last 50 % of the marginal posterior parameters obtained from the DREAM calibration 

algorithm.  

3.2 Snow routine 

The snow processes are dominant in the study area during winter and spring seasons. 

Therefore, we used the gamma distributed snow depletion curve based routine (Kolberg 

and Gottschalk 2006) to compute the snow accumulation and melt water release from 

saturated snow. The calibrated parameters in the snow routine are rainfall-snowfall 

threshold temperature (TX) and snowmelt sensitivity to wind speed (WS).   

3.3  Evapotranspiration routine 

In the present study, we computed the potential evapotranspiration, PET (mm/h) by the 

Priestley Taylor method (Priestley and Taylor 1972) method: 

Δ Δ

Δ
n

v

t
PET α R G

γ L
,                                                                                            (8)              

where α is the Priestley Taylor constant, ∆ is the slope of saturation vapor pressure curve 

at air temperature at 2m (kPa/oC), γ is the psychrometric constant (0.066 kPa/oC), Rn 

(W/m2) is net radiation, which is the sum of net shortwave radiation (SRn) and net 

longwave radiation (LRn), G is ground heat flux, Lv (kJ/m3) is volumetric latent heat of 

vaporization or energy required per water volume vaporized and Δt (s) is the simulation 

time step in seconds. We computed the SRn from the global radiation (RG) and land 

albedo, and the LRn based on Sicart et al. (2006). We used α = 1.26 following Teuling et 
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al. (2010) to reduce the number of calibrated parameters. The AET was computed from 

the PET and streamflow based on an evaporation ratio (EvR), which is a calibrated 

parameter. The EvR represents a discharge at which AET equals 0.95*PET (Figure 1(c)). 

The streamflow is used as a proxy to indicate the soil-moisture state according to the 

equation given in Figure 1c.  

3.4  Runoff routing routine 

Travel time lag influences the hydrologic behavior of large basins. To investigate the 

effects of runoff delay, we conducted calibration of parameters with and without 

including the runoff routing routine. For runoff routing, we linked a response function 

based source-to-sink (STS) routing (Naden 1992, Olivera, 1996) to the recession based 

model to account for the effects of runoff delay both in hillslopes and river networks. The 

runoff response at the outlet for runoff signal at each grid cell i (i.e. spatially distributed) 

is given by a response function or Ui(t) [T
-1], which is based on a travel time distribution 

and formulated as below (Olivera 1996; Hailegeorgis et al. 2015):                                                                                 

2

1
1

( ) exp

4 / Π2 / Π

i

i

ii
ii

t

T
U t

tt
t π

TT

,                                                                   (9) 

where Πi [-] = Ʃ(liVi/Di) is the flow path Peclet number, Ti is expected flow travel time to 

the outlet for the grid cell i, t is a time variable and li is flow travel length in grid cell i. 

The Di (flow dispersion coefficient) and Vi (velocity of flow) are effective calibrated 

parameters used for all grid cells. We performed the runoff routing by a convolution 

following Maidment et al. (1996): 

( )
i i

i
gi

sim

A U t

Q t

Q

A
,                                                                                       (10)

       

              

where Qsim [L/T] is catchment averaged routed simulated flow at the time step t, Ai [L
2] 

is area of grid cell, A [L2] is catchment area, Qgi [L/T] is average runoff (over time step) 

generated at each grid cell i and  is the convolution operator.  

4  RESULTS 

4.1 Recession plots and estimated g(Q)  
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Kirchner (2009) discussed the importance of measuring g(Q) across nested networks to 

understand how storage–discharge relationships vary across the landscape. For the four 

catchments in the present study, flow recession rates and recession plots or recession 

relationships fitted to bin-averaged discharges with their corresponding polynomial 

regression equations are given in Fig. 2(a)-(b). The rate of streamflow recession (-dQ/dt) 

ranges from 0.0000-0.031 mm/h2 for Gaulfoss, 0.000055-0.0359 mm/h2 for Eggafoss, 

0.0000-0.0369 mm/h2 for Hugdal bru and 0.00022-0.259 mm/h2 for Lillebudal bru. The 

‘response time’ τ ranges 16-237 h for Gaulfoss, 19-145 h for Eggafoss, 22-126 h for 

Hugdal bru and 15-131 h for Lillebudal bru. The corresponding bin-averaged discharges 

(Q) range from 0.0032-0.698 mm/h for Gaulfoss, 0.0020-0.744 mm/h for Eggafoss, 

0.00298-0.948 mm/h for Hugdal bru and 0.0189-0.942 mm/h for Lillebudal bru. 

Response time (τ) is dependent on catchment size i.e the effects of runoff delay. The larger 

Gaulfoss catchment exhibits slow response time while the smaller Hugdal bru and 

Lillebudal bru catchments exhibit fast response time. Storage characteristics of 

catchments also affects response time. Catchments with slow recession rate are typically 

groundwater dominated, while impermeable catchments with little storage show faster 

recession rates (Staudinger et al. 2011).  

4.2 Hydrographs and flow duration curves 

We present simulated versus observed streamflow hydrographs of Gaulfoss for 

calibration and validation periods in Fig. 3(a)-(c). Fig. 3(a) corresponds to the regression 

parameters estimated from recession (with snow, evapotranspiration and runoff routing 

parameters from calibration), Fig. 3(b) corresponds to parameters calibrated (runoff 

routed) and Fig. 3(c) corresponds to parameters calibrated (runoff unrouted). Parameter 

estimation from recession and calibration (optimization) resulted in NSE up to 0.77 and 

0.82 respectively and the model reproduced the hydrographs for Gaulfoss (Table 5). In 

addition, temporal transfer of parameters to the Gaulfoss catchment and spatial transfer 

of parameters to internal subcatchments (Eggafoss, Hugdal bru and Lillebudal bru) 

respectively based on the ‘split sample’ and ‘proxy basin’ tests (Klemeś 1986) provided 

NSE values up to 0.81 and 0.83 for parameter estimation and calibration respectively 

(Table 5). This also shows that both the g(Q) computed from parameters estimated from 

recession segments and from calibration based on continuous streamflow observations 

provide representative parameters to capture seasonal variations of streamflow 
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hydrographs. However, both parameter estimation from recession analysis and calibration 

without the runoff routing underestimate the peak flows compared to simulation based on 

calibration with runoff-routed included. Fig. 5(a) displays plots of the observed versus 

the simulated flow duration curves from combined calibration and validation periods. The 

model reproduced the temporal variability of streamflow in terms of the flow duration 

curve. 

4.3 Parameter uncertainty and identifiability 

Table 2 shows lists of calibrated parameters along with their ranges of prior values 

whereas Table 3 gives values of the parameters estimated and calibrated both for runoff 

routed and unrouted cases corresponding to the maximum NSE for Gaulfoss catchment. 

Fig. 4(a)-(b) respectively show typical results from diagnostics of the polynomial 

regression and uncertainty bounds of regression parameters for parameter estimation from 

streamflow recession. Fig. 4(c) presents uncertainty of the calibrated response routine 

parameters (runoff routed) in terms of histograms of marginal posterior distributions from 

calibration. The parameters β0 and β1 exhibit wider posterior distributions (large 

uncertainty) compared to β2 and EvR.  

    Diagnostics of the fitted second order polynomial regression of the recession analysis 

revealed the adequacy of the model. The parameters and the model are significant, and 

normality and randomness of the residuals comply with the key assumptions in the 

regression model. However, the residual plots showed systematic lack of fit indicating 

that the regression model appeared to be not significant for some of the study catchments 

when there is no quadratic term.  

    The rectangular region created by individual 95% confidence limits based on the t-test 

indicates wide uncertainty ranges. We performed tests on whether it is necessary to 

consider the joint confidence regions to account for the correlation among the regression 

parameters for Gaulfoss catchment. It was observed that the majority of ellipsoid joint 

confidence regions lie inside the rectangular individual confidence limits for β0 and β1 

(Fig. 4(b)), which indicates that considering joint confidence region is not necessary for 

these parameters. However, the elliptical joint confidences regions involving the 

quadratic parameter β2 (not shown here) are far off their corresponding rectangular 

individual confidence limits, which indicate poor identifiability due to correlation 
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between the parameters and hence suggest removing the quadratic term containing the β2 

from the regression model.  

    However, significance test based on residuals analyses (Fig. 4(a)) revealed that the 

regression model is not adequate for some cases without the quadratic term as discussed 

earlier. Despite these two contradicting results, we preferred to use the second order 

polynomial regression with the three parameters (constant, linear and quadratic terms) of 

eq. (5) in the present study. Even though the regression parameters that are estimated 

from recession analysis are different from the optimized values (Table 3), their 

uncertainty bounds somehow overlap. This can be observed from comparing the 

confidence limits or regions (Fig. 4b) versus histograms of posterior parameters for 

Gaulfoss catchment (Fig. 4(c)).  

    Table 4 contains the results of parameter correlation in terms of the linear correlation 

matrix and ranges of posterior parameters for Gaulfoss catchment. The large linear 

correlations among the response routine parameters for the direct calibration indicate poor 

identifiability of parameters. To address the effects of parameter uncertainty on the g(Q), 

we presented in Fig. 5(b) effects of parameter estimation, parameter calibration and runoff 

delay on the g(Q) along with ensemble mean of g(Q) that is computed from posterior 

parameter sets from the calibration. 

 4.4 Parameter transferability  

The transferability of model parameters from Gaulfoss (3090 km2) to its three internal 

subcatchments Eggafoss (653 km2), Hugdal bru (549 km2) and Lillebudal bru (168 km2) 

shows the validity of the ‘top-down’ modelling approach. However, the performance of 

parameter transfer to Lillebudal is lower than that of the others.  

5  DISCUSSION 

5.1 Model calibration and validation 

    The results from the present study indicate that the principle of ‘catchments as simple 

dynamical systems’ in which the streamflow is assumed to be mainly controlled by the 

release of water from the storage provides reasonable runoff simulation for the boreal 

glacial tills dominated catchment. Though the occurrence of preferential flow in glacial 

till soil has been reported (e.g. Jannson et al. 2005), the present study showed that 

streamflow simulation based on the main assumption of hydraulic connectivity of 
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storages and flow pathways provided satisfactory calibration and validation results. Both 

the parameters estimated from streamflow recession and calibrated parameters could 

represent effective characteristics of the heterogeneous catchment system (see Beven et 

al. 2000,Wagener and Wheater 2006). Calibrated effective parameters are assumed to 

take into account all of the local scale heterogeneity of land surface characteristics, 

meteorological variables and hydrological processes and fluxes for large areas 

(Gottschalk et al. 2001, Beldring et al. 2003).  

    However, both parameter estimation from recession segments and direct calibration of 

precipitation-runoff relationships without considering the effects of runoff routing 

slightly underestimate the peak flows compared to parameter calibration with runoff 

routing included. This result do not comply with that of Brauer et al. (2013), who found 

that for a less-humid catchment in the Netherlands parameter calibration for a power-law 

storage–discharge relationship led to a strong underestimation of the response of runoff 

to rainfall while parameter estimation from recession analysis lead to an overestimation. 

The differences may arise due to the difference between the polynomial relationship 

derived from the recession analysis in this study and the pre-determined power-law 

relationship in Brauer et al. (2013), and the differences in the calibration and the runoff 

routing algorithms.  

5.2 Transferability of model parameters 

The results of the model was spatially validated based on the transferability of model 

parameters from the Gaulfoss catchment to internal subcatchments, which indicates an 

opportunity for transfer of the parameters to ungauged sites in the catchment. Kirchner 

(2009) noted that if g(Q) can be estimated from some combination of catchment 

characteristics, then it may help in solving the problem of hydrologic prediction in 

ungauged basins. This would also allow distributed parameterization of the regression 

parameters. However, previous attempt by Krakauer and Temimi (2011) to identify first 

order controls of recession time scale indicated that the predictor variables were 

significant only at high or low flow rates. Moreover, observations of the geological 

characteristics of the catchments, which influences the recession behaviors, are not 

readily available and there are limitations associated with the data mining or spatial 

analysis methods. In addition, Pokhrel et al. (2008) and Pokhrel and Gupta (2011) 

illustrated the limitations of making inferences on the spatial properties of a distributed 
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model when only information about catchment output stream response is available. 

Nevertheless, the temporal and spatial transferability of the estimated and calibrated 

model parameters substantiate further evaluation of parameter transferability on larger 

number of catchments.  

5.3 Effects of parameter uncertainty on the g(Q) 

Parameter uncertainty affects the discharge sensitivity to storage or g(Q) and hence 

streamflow simulation. We found considerable differences between the values of g(Q) 

that is computed from estimated and calibrated parameters for the Gaulfoss catchment 

(Fig. 5(b)). For the recession based analysis, g(Q) was found to be an increasing function 

of Q only above certain limits of Q. The problem is associated with the lower ends of the 

recession segments. Kirchner (2009) discussed the significant scatter at the lower end of 

the recession, particularly for Q < 0.1 mm/h and attributed it to the effects of measurement 

noises. As we can observe from the lower ranges of recession rates in Fig. 2(a), there are 

equal recession rates over the ranges of bin-averaged discharges. The ln (-dQ/dt) versus 

ln(g(Q)) plots in Fig. 2(b) also shows higher observed g(Q) for the lower ends of recession 

plots, which may not be related to fluctuations in catchment storage rather potentially 

related to resolution of loggers and errors in measurements of low winter flows. These 

Figures suggest cutting of the lower end of recession below ln(-dQ/dt) < -8.0 or nearly 

below ln(Q) < -3.20 for Gaulfoss and similarly for the other catchments.  

    However, the values of the estimated parameters are sensitive to the cut limits of the 

lower end of the recession. We obtained markedly different recession parameters from 

different cut limits of the lower ends of recession curves. Moreover, the estimated 

parameter sets based on different lower cut limits provided equivalently good 

performances of runoff simulation, which obviously indicate a major source of 

uncertainty. Therefore, in the present study we kept the lower ends of recession segments 

while estimating the parameters. Rather, we limited the upper end of recession to ln(Q) = 

0 to remove outliers above this limit, which are most probably attributable to the errors 

in streamflow measurements during high flow recessions. A further study is required to 

address uncertainties due to the lower end of recession and other sources in a 

comprehensive manner, which was not the main objective of this study. Stoelzle et al. 

(2012) compared different recession extraction and fitting procedures and found 

considerable differences in the results. Differences between the g(Q) found from  
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recession analysis and direct calibration may also arise since the g(Q) from recession 

analysis was obtained from parameter estimation based on only night-time hourly 

streamflow recessions for 17 years data while the g(Q) from calibration was obtained 

from calibration based on 2 years hourly continuous records. While estimation of the g(Q) 

from the long records allows considering the temporal variability of flows, continuous 

records in the case of calibration allow inclusion of all ranges of streamflow, which have 

different degrees of sensitivity to the storage.  

    We also found that incorporating the shorter recession segments in the analysis 

provided a nearly constant τ and g(Q). Since streamflow fluctuations causing recessions 

only for short periods may not be related to catchment storage, we set a minimum length 

of recession segments to be included in the analysis to exclude the shorter discharge 

fluctuations. Selection of recession segments longer than 9 hr to 15 hr provided nearly 

similar patterns of g(Q) for Gaulfoss and Eggafoss and hence we extracted recession 

segments ≥ 9 hr for the two catchments while we extracted recession segments ≥ 4 hr for 

Hugdal bru and Lillebudal bru.  

    The differences in parameters estimated from recession segments versus those obtained 

by calibration, and the differences in calibrated parameters with runoff routing and 

without runoff routing are observed both in the slope and intercept parameters (Table 3). 

It is difficult to distinguish the effects of the procedures of the recession analysis from the 

effects of runoff delay related to river networks or catchment size. However, the model 

calibration allows quantification of uncertainty in the g(Q) from the posterior parameters. 

The ensemble mean of g(Q) obtained from the last 1000 posterior parameters sets are 

lower than the g(Q) corresponding to the optimal parameter sets for both runoff routed 

and unrouted cases while the difference is more exaggerated for runoff routed case (Fig. 

5(b)).  

5.4 Effects of catchment size (runoff delay) on simulation of peak flows 

We obtained a maximum runoff delay or travel time lag between headwater and outlet of 

14.81 hr for Gaulfoss catchment from calibration of parameters. While considering the 

runoff routing explicitly during the calibration, the routing parameters accounts for runoff 

delay in the hillslopes and channel networks and hence it is expected that the regression 

parameters of the runoff response routine do not compensate for the runoff delay. 

Therefore, in the case of considering the runoff delay by calibrating the runoff routing 
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parameters, we obtained lower ‘response time’ (τ = 1/g(Q)) compared to  the case when 

runoff is unrouted (Figure 5(b)). Despite the significant runoff travel time lag in the 

Gaulfoss catchment compared to the hourly runoff simulation, we found slight 

underestimation of peak flows due to the effects of neglecting runoff routing during the 

calibration (Fig. 3(c)). In addition, there is no considerable deterioration in the 

performance measure (NSE) due to neglecting the runoff delay. These show that 

interaction or compensation among model parameters during calibration partially 

conceals the sensitivity of the outlet hydrographs to the effect of runoff delay, which is a 

problem related to parameter identifiability. Generally, the importance of runoff routing 

decreases with the catchment size and is almost negligible for the smallest modelled 

catchment of Lillebudal bru (Table 5). 

5.5 Effects of sparsity of climate stations 

The climate stations are available only inside the Gaulfoss and Hugdal bru catchments 

and hence more representative climate input is expected for these catchments than for 

Eggafoss and Lillebudal bru. In addition, there is a marked proportion of Lillebudal 

catchment located above the highest gauging station of 885 masl (Fig. 1(a)) and hence 

precipitation records at the low-lying areas may not represent the mountainous regions in 

the Lillebudal bru catchment. Therefore, computation of spatial precipitation fields from 

sparse precipitation stations may affect the parameter calibration and runoff simulation 

since the sparse gauging networks may not capture localized precipitation events. 

Orographic effects on precipitation may be pronounced in some mountainous regions. 

However, the available sparse climate data showed no defined orographic precipitation 

gradient in the region (Fig. 1(a)). Moreover, incorporating orographic effects in 

precipitation-runoff models requires extensive study since orographic effects may vary 

between storms and years (e.g. Lundquist et al. 2010), orographic precipitation gradient 

may reverse at certain elevation threshold (e.g. Røhr and Killingtveit 2003), leeward 

(rain-shadow) station records may not exhibit orographic precipitation gradient (e.g. 

Nepal 2012). The spatially distributed climate input obtained from the IDW interpolation 

using point gauges from 3 to 12 stations are expected to provide more reliable spatial 

distribution of precipitation and evaporation, which are the main input for the water 

balance model used in the present study, than a lumped modelling. However, dense 

climate stations that permit identification of precipitation and elevation relationships may  
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improve the runoff simulation. Calibration based on data from high-density climate 

stations is also expected to improve the uncertainty and non-identifiability of parameters 

for improved predictions using the recession based model. 

    Slightly better transferability of parameters to internal subcatchments for the parameter 

sets obtained from the recession analysis over the parameter sets obtained from the direct 

calibration (Table 5) may be attributable to the fact that parameter estimation from 

recession is dependent only on streamflow while representativeness of climate input also 

affects results of calibration. 

6  CONCLUSION 

The lumped recession based ‘top-down’ model suggested by Kirchner (2009) was 

adapted to a distributed simulation setup, and augumented by snow accumulation and 

melt, and runoff routing models. The model provided acceptable calibration and 

validation results for the study catchments. Therefore, the results encourage further 

evaluation of the recession based water balance model compared to other competing 

model structures on more catchments.  

    The lower end of the recession and the minimum length of recession segments included 

in the analysis are found to be the main sources of uncertainty for parameter estimation, 

which needs careful assessment. In addition, owing to the basic assumption of I<<Q 

during recessions, evaluation of effects of some marked precipitation events during 

recessions is required for the parameter estimation from recession segments. Though 

estimation of runoff response parameters from only recession segments is practically 

possible, it exhibited limitations of underestimating the peak flows. Hence, parameter 

tuning by calibration based on the whole ranges of streamflow hydrograph is unavoidable 

for improved simulation of the flood events. Incorporating the effects of runoff delay 

(runoff routing) to the recession based model is also required for improved simulation of 

peak flows in large scale catchments. Despite the small number of calibrated parameters, 

the calibration results showed that the recession based ‘top-down’ model is susceptible to 

parameter uncertainty and identifiability problems like other ‘top-down’ and ‘bottom-up’ 

models. The interaction among the parameters during calibration has the potential to 

partially mask the sensitivity of calibration to the runoff delay even for the macroscale 

catchment modelled in the present study. However, further evaluation of the reliability of 
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runoff simulation and inferences made from the recession approach is required for any 

catchment size, for instance, based on multi-objective calibration by utilizing observed 

distributed variables in addition to the catchment-integrated streamflow. 
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Appendix 

The multivariate normal probability density function for the regression parameters can be 

written as: 

2

1
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,                               (A1) 

where X is a matrix of exploratory variables, β is vector of parameters, p is the total 

number of parameters, |(XTX)-1σ2| is determinant of the covariance matrix of the parameter 

estimates, σ2 is variance, the underline represents a vector or a matrix, T denotes transpose 

and the hat notation represents an estimate.  

 

Figure captions 

Figure 1. (a) Maps of locations and hypsometric curves for the study catchments, (b) 

mean annual (from hourly observations) precipitation-elevation relationships and (c) 

model structure (grid cell) based on Kirchner’s runoff response routine.  

The snow routine is based on Kolberg and Gottschalk (2006). The Qinst is instantaneous 

runoff, Qgi denotes average runoff (over the time step) generated at the grid cells and Qsim 

denotes routed simulated flow.  

Figure 2. (a) Flow recession rates and fitted recession plots, and (b) ln (-dQ/dt) versus 

ln(g(Q)) plots showing effects of lower end of recession.  

Figure 3. Hydrographs for Gaulfoss corresponding to the NSE (a) regression parameters 

estimated from recession (runoff routed), (b) parameters calibrated (runoff routed) and 

(c) parameters calibrated (runoff unrouted).  
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Simulation for calibrated or estimated parameters (01.09.08–01.09.10) and simulation for 

temporal validation (01.09.10–01.09.11). The P represents IDW interpolated and 

catchment averaged precipitation. 

Figure 4. (a) Typical results from diagnostic of the regression for the recession analysis: 

normality test for Hugdal bru (left), residuals plot for Gaulfoss (middle) and systematic 

lack of fit due to missing quadratic term for Eggafoss (right), (b) 95% Individual 

Confidence Limits (ICL) and Joint Confidence Regions (JCR) for regression parameters 

for Gaulfoss, and (c) Parameter uncertainty in terms of histograms of marginal posteriors 

from calibration (runoff-routed) for Gaulfoss.  

Figure 5. (a) Precipitation and streamflow duration curves and (b) discharge sensitivity 

function (g(Q)) and ‘response time’ (τ) for Gaulfoss.  

The g(Q) and τ are computed based on eq. (4) from the regression parameters estimated 

or obtained by calibration. 

 

Table 1. Some major characteristics of the study catchments.  

Description (units)                      Gaulfoss   Hugdal bru     Eggafossen   Lillebudal bru 

Lat./long. of streamflow stns.(°)   63.12/10.25     63.01/10.19       62.93/11.08 62.83/10.48 

Catchment area, A (km2)                    3090 549 653 168 

Elev. 25 m DEM (m a.m.s.l.)             54-1330                130-1257 285-1286 516-1304 

Mean elev. catchment (m a.m.s.l.)     730.60 651.27 832.33 915.20 

Elev. of climate stations                     127-885                        127-885 127-885 127-885 

Catch. averaged annual precip. (mm)  874.21 863.53 884.06 864.70 

Lake percentage (%)                           2.05 1.00 2.84 1.14 

Forest percentage (%)                         36.72 53.59 24.55 21.70 

Bare rock/mountain above TL* (%)    35.80 20.69 43.96 65.33 

Marsh/Bog (%)                                   14.53 16.70 12.57 8.98 

Farm land (%)                                     2.66 5.99 2.11 0.52 

* TL denotes timber line. 
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Table 2.  Lists of parameters and their prior ranges.  

No. 

Calibrated 

(free) 

parameters Description Unit 

Prior range 

[Min., 

Max.] 

 Snow    

1 TX Threshold temperature °C [-3,2] 

2 WS Snow melt sensitivity to wind speed - [1,6] 

 Runoff response    

3 EvR 
Discharge at which AET equals 

0.95*PET 
mm/h [0.1,Qmax] 

4 β0 Regression parameter (constant term) - [-4.2,-1] 

5 β1 Regression parameter (linear term) - [0.2,1.5] 

6 β2 Regression parameter (quadratic term) - [-0.5,0,5] 

 Routing     

7 V Velocity of flow m/s [1.9,2.6] 

8 D Dispersion coefficient of flow m2/s [200,1500] 

Qmax is maximum streamflow for the calibration period. 

 

 

 

Table 3. Estimated and calibrated parameters corresponding to NSE for Gaulfoss 

Cases TX WS EvR β2 β1 β0 V D 

1 NSE: regression parameters estimated from recession* 

 
-1.482 5.708 0.273 0.130 0.920 -2.850 2.198 774.215 

2 NSE: parameters calibrated (routed) 

 -1.482 5.708 0.273 -0.040 0.684 -2.477 2.198 774.215 

 NSE:parameters  calibrated (unrouted) 

3 -0.999 5.895 0.670 -0.127 0.286 -3.234   

* Parameters other than the regression parameters are calibrated parameters for runoff 

routed case. The bold fonts indicate regression parameters. 

Table 4.  Parameters correlation matrix (r), and maximum and minimum values of 

marginal posteriors parameters from calibration (runoff-routed) for Gaulfoss.  
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Parameters TX WS EvR β1 β0 β2 V D 

TX 1.00 0.44 0.27 0.03 0.12 -0.07 0.06 0.05 

WS  1.00 0.23 0.25 0.27 0.23 -0.28 0.12 

EvR   1.00 0.51 0.64 0.40 -0.17 -0.37 

β1    1.00 0.91 0.97 -0.28 -0.23 

β0     1.00 0.80 -0.36 -0.23 

β2      1.00 -0.23 -0.20 

V       1.00 -0.08 

D        1.00 

Max. -0.73 6.00 0.34 1.49 -1.55 0.10 2.59 1466.24 

Min. -1.41 2.71 0.13 0.27 -3.63 -0.13 1.91 201.11 

Bold fonts indicate |r| > 0.6. 

 

 

Table 5.  Results for Maximum values of NSE from parameter estimation from recession 

segments and calibration for Gaulfoss, and temporal and spatial transferability or 

validation for ‘proxy ungauged’ internal subcatchments.  

Cases Max NSE  

Temporal 

validation 

(01.09.2010-

01.09.2011) 

Spatial validation 

Eggafoss 
Hugdal 

bru 

Lillebudal 

bru 

1 NSE: regression parameters estimated from recession 

 
0.77 0.81 0.70 0.80 0.55 

2 NSE: parameters calibrated (runoff routed) 

 
0.82 0.83 0.68 0.75 0.52 

3 NSE: parameters calibrated (runoff unrouted) 

 
0.80 0.82 0.65 0.79 0.51 

 


