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ABSTRACT 
Floating suspension bridges, one of several new designs to 
make it possible to cross deep and wide fjords, consist of three 
spans and supported by two tension leg platforms and two fixed 
traditional concrete pylons. Geometric nonlinearities, nonlinear 
aerodynamic and hydrodynamic forces and nonlinear mooring 
systems can become of high importance. Time domain methods 
are commonly applied when nonlinearities need to be 
considered. The main challenge in time domain simulation of 
the floating suspension bridge is the modelling of frequency-
dependent aerodynamic self-excited forces and hydrodynamic 
radiation forces. This paper shows how rational functions fitted 
to aerodynamic derivatives and hydrodynamic added mass and 
potential damping can be converted to state space models to 
transform the frequency-dependent forces to time-domain. A 
user element is implemented in the software ABAQUS to be 
able to include the self-excited forces in the dynamic analysis. 
The element is developed as a one node element that is included 
in the nodes along the girder and the tension leg platforms. The 
responses of the floating suspension bridge under turbulent 
wind forces and first-order wave excitation forces are calculated 
in a comprehensive case study and compared with results 
obtained using a multi-mode frequency domain approach to 
illustrate the performance of the presented time-domain 
methodology.  

Keywords: Suspension bridge, floating bridge, state space 
method 

INTRODUCTION 
In Norway, all ferries along the coastal highway E39 are aimed 
to be eliminated and replaced by bridges. Bjørnafjorden has a 
width of up to 5 km and depth of 500 m, which requires a 
significant extension of present bridge technology. A three span 
suspension bridge with two floating pylons is one of the new 
concepts considered to cross these wide and deep fjords [1, 2]. 

The bridge represents an entirely new design and it is a 
combination of offshore and bridge technologies, making very 
detailed analysis of its dynamic behavior necessary. One of the 
concerns is that large length-width ratio may induce serious 
nonlinear behavior. Thus, it is strongly recommended to apply 
time domain methods to investigate the importance of nonlinear 
effects.  
One of the main challenges in the time domain simulations is to 
model the frequency dependent terms, i.e., aerodynamic 
damping and stiffness and hydrodynamic added mass and 
damping coefficients. An attractive alternative is to apply quasi-
steady theory to model the aerodynamic self-excited forces and 
to model the added mass and the potential damping from the 
interaction with water in a simplified manner by picking values 
at a selected frequency, for instance the peak in the wave 
spectra. This makes the coefficients in the load models 
frequency independent such that they can be used in a 
straightforward manner in time domain. It can however be 
challenging to model the self-excited forces accurately using 
these simplified approaches, which has resulted in a number of 
suggestions for improvements, for instance, using convolution 
integrals or indicial functions [3-6] to simulate the fluid 
memory effect. To guarantee both computational accuracy and 
efficiency, state space models [7-12] are also commonly used in 
the modelling of the hydrodynamic and aerodynamic self-
excited forces.  
There exists very few studies about the performance of the state 
space methodology in the analysis of dynamic behavior of 
structures subjected to both wind and wave actions. A brief 
introduction to state space modelling of self-excited 
aerodynamic and radiation forces are therefore given in this 
paper. The reliability of the time domain method is verified 
through a comparison of critical wind velocity and dynamic 
response for a linearized system with frequency domain results. 



2 
 

 
FIGURE 1. A THREE-SPAN SUSPENSION BRIDGE WITH TWO FLOATING PYLONS. ILLUSTRATED BY ARNE 

JØRGEN MYHRE, STATENS VEGVESEN 

EQUATION OF MOTION 
The three-span suspension bridge with two floating pylons is 
shown in Fig. 1. Accounting for the wind and wave loading 
acting on the girder and pylons, the equation of motion can be 
expressed as: 

, ,

(t) ( ) ( ) ( )

                (t) (t) (t) (t)
s s s h

Wind ex se Wave ex Rad

t t+ + +

= + + −

M u C u K K u
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 
    (1) 

Here, sM , sC and sK  are the still-air mass, damping and 
stiffness matrices, respectively and u is displacement of the 
finite element model.  The wind actions consist of wind forces 

,Wind exF due to the mean and turbulent wind velocity and self-

excited force seF  which is generated by the motion of the 
structure. The hydrodynamic contributions consist of wave 
excitation forces ,Wave exF , the radiation forces RadF  and the 

hydrostatic restoring stiffness hK . In this paper, only the theory 
about modelling the motion induced forces in an efficient 
manner in time domain is introduced. A brief overview of how 
the motion induced forces can be modeled by means of state 
space models is presented below while more details can be 
found in [13]. A detailed explanation of how the wave 
excitation forces and the buffeting wind forces are obtained by 
mean of Monte Carlo simulations is given in [13]. 

Modelling of radiation forces 
Radiation forces are induced by the motion of the submerged 
part of the structure and consist of two components which are in 
phase with oscillation acceleration and velocity, respectively 
[14]. For a single frequency motion, it can be written as  

( ) ( )Rad h hω ω= +F M u C u                             (2) 
Here ( )h ωM  and ( )h ωC  are the frequency dependent added 
mass and potential damping matrices. When the oscillation 
frequency goes to infinity, the damping coefficient converges to 
zero, whereas the added mass becomes constant and frequency 
independent. 

( ) ( ) ( )
( ) ( ) ( ) ( )

h h h

h h h h

ω ω
ω ω ω
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          (3) 

The constant part of the added mass is convenient to model in 
the dynamic response analysis because it can be directly added 
in the mass matrix in the equation of motion. Only accounting 
for the frequency dependent terms, the radiation forces can be 
expressed in frequency domain as: 

( ) ( ) ( )
Rad

ω ω ω=z uG H G                               (4) 

Here, ( )
Rad

ωzG  and ( )ωuG   are the Fourier transform of the 
radiation force and the velocity of the submerged structure 
which is considered as a rigid body in the hydrodynamic 
analysis. ( )ωH denotes the hydrodynamic transfer function 

( ) ( ) ( )h hiω ω ω ω= +H m c . By applying the inverse Fourier 
transform to Eq. (4), the forces can be expressed in the time 
domain as a convolution integral:  

(t) (t ) ( )Rad dt t t
∞

−∞
= −∫z h u                         (5) 

Here (t)h is the inverse Fourier transform of ( )ωH . Equation 
(5) consists of 6 6× =36 convolution integrals and as noted by 
several authors [10, 11], it is very time-consuming to solve the 
convolution integrals during a dynamic analysis. Replacing 
them by state-space models is an efficient alternative. In this 
chapter we will only present the expression of the convolution 
integral giving contribution to the radiation force in direction i 

due to motion in direction j, ( ) (t) ( ) ( )dRad
ij ij jz h t ut t t

∞

−∞
= −∫   

since the others are handled in the same manner. Convolution is 
a linear operator, and it is well known that this can be modelled 
by means of state space models, see [11] for further details. The 
radiation force in direction i due to motion in direction j can 
thus be expressed as   
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See [11, 13] for detail derivation of Eq. (6) and the content of 
the constant matrices (H)

cD , (H)
cE  and (H)

cQ . 

Modelling of aerodynamic self-excited forces 
Similar to the radiation forces presented in Eq. (4), the 

aerodynamic self-excited forces 
T

y zq q qq =  q can be 
expressed in frequency domain as follows: 

( ) ( ( ) ( )) ( )

( ) ( )
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u
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ω ω

= +

=

G C K G

F G
               (7) 

Here, ( )q ωG and ( )u ωG  are the Fourier transform of self-

excited forces and displacements. Their positive directions are 
displayed in Fig. 2. The aerodynamic damping matrix, ( )ae KC , 
and the aerodynamic stiffness matrix, ( )ae KK , contain 18 
aerodynamic derivatives, *

nP , *
nH  and *

nA , 

{ }1,2,...,6n∈ ,which are functions of the reduced frequency of 
motion ( ) /K B Vω=  [15]. 
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Here, V is the mean wind velocity, ρ is the air density, and B is 
the width of the girder. The aerodynamic derivatives are 
commonly determined using wind tunnel tests [16].  

 
FIGURE 2. AERODYNAMIC FORCES ACTING ON THE 

BRIDGE SECTION CONSIDERED IN THIS STUDY  

By applying the inverse Fourier transform to Eq. (7), the self-
excited forces in time domain can be expressed as follows: 

(t) (t ) ( )dt t t
∞

−∞
= −∫q f u                           (8) 

Here, f(t) and u(t) are the inverse Fourier transforms of 
( )ωF and ( )u ωG .  

Integrating the distributed self-excited forces applying the 
principle of virtual work and introducing the state space model 
to replace the convolution integrals render the following 
expression for the nodal self-excited forces: 

1 2
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See [10, 13] for detail derivation of Eq. (9) and expression for 
the constant matrices 1A , 2A , ( )ae

cD , ( )ae
cE  and ( )ae

cQ . 

Implementation in ABAQUS 
Inserting Eqs. (2), (6) and (9) into Eq. (1), it is found that 
the self-excited force in time domain includes five terms: 

( )h ∞M u , 2A u  1A u , ( )sez and ( )Radz . The last two terms 
are more complicated because they depend on the motion 
history and need to be modelled by the state space models 
outlined above. A user element is then implemented in 
ABAQUS in order to include these terms in the dynamic 
analysis [17]. The element is developed as a one node element 
and is modelled on top of the nodes of ordinary beam elements 
such that it is not necessary to involve the mass, damping and 
stiffness terms related to the structure. Details can be found in 
[13]. 

STABILITY OF THE SYSTEM 
It is of crucial importance to study the stability and the damping 
of the dynamic system before conducting time domain 
simulations since the fluid-structure interaction effects will 
change the properties of the dynamic system. The interaction 
with water will provide stiffness due to buoyancy, potential 
damping and added mass. The interaction with the wind is 
somewhat more complicated since the aerodynamic stiffness 
and damping forces is strongly influenced by the mean wind 
velocity. Flutter is one of the most important concerns when 
designing cable-supported bridges since this may lead to a 
collapse like the infamous Tacoma Narrows Bridge. A 
multimode approach is commonly used when studying the 
stability of cable-supported bridges and this approach will also 
be used in this paper [18]. The first step is to establish a 
comprehensive finite element model of the bridge and calculate 
the still-air and dry natural frequencies and modes. In our case 
it is a good idea to include the restoring stiffness as well as the 
added mass when the frequency goes to infinity since these 
effects will change the modes and frequencies severely. The 
next step is to use the resulting modes as assumed shapes to 
establish a generalized equation of motion and include the rest 
of the fluid structure interaction effects. This will couple the 
equation of motion, which implies that the stability of the 
system can be studied by considering the complex eigenvalues 
of the new equation of motion. The characteristic equation of 
motion can be defined as   

( ) ( )
( )

2
0 0

0

( ) ( ) (V, )

(V, ) 0

h h ae

h ae
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Here s a iω= +  denotes the eigenvalues of the system while 

0M , 0C and 0K  represents the generalized still-air and dry 
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FIGURE 3. FINITE ELEMENT MODEL OF THE THREE-SPAN SUSPENSION BRIDGE WITH TWO FLOATING 

PYLONS 

mass, damping and stiffness matrix respectively. The 
aerodynamic effects are introduced by the generalized 
aerodynamic stiffness matrix (V, )ae ωK  and damping matrix 

(V, )ae ωC  that are defined in terms of aerodynamic 
derivatives, which are functions of the mean wind velocity and 
the frequency of motion. The hydrodynamic effects are 
introduced by the frequency dependent added mass ( )h ωM , 

potential damping ( )h ωC  matrices, as well as the constant 

restoring stiffness hK . The eigenvalue problem defined in 
Eq.(10) needs to be solved in an iterative manner since many of 
the matrices involved contain terms that are function of the 
frequency of motion. The stability of the combined structure 
and flow system can be studied by considering the real part of 
the eigenvalues since the damping ratios of the system is 
obtained by Re(s ) /i i isξ = − .      

NUMERICAL SIMULATIONS 
This paper is mainly focused on the verification of the time 
domain method. Some properties of the bridge are referred to 
Hardanger bridge, one of the slenderest bridge in Norway, 
because the detailed design parameters of the new bridge were 
not available when the study was started. Fig. 3 shows the finite 
element model used for dynamic analysis in ABAQUS as well 
as the panel model used to calculate the hydrodynamic force in 
WADAM [19]. The three main spans of the bridge are 1385 m 
long and the top of the pylons is approximately 200 m above 
the mean water level. The water depth is 550 m and 450 m at 
the left and right floating pylons, whereas the draft of both 
pylons is approximately 65 m. The girder, main cable, tethers, 
hangers and pylons are modelled using the beam elements in 
ABAQUS. The aerodynamic self-excited and hydrodynamic 
radiation forces are simulated by implementing a user element. 

The element is developed as a one-node element in the nodes of 
the girder and the gravity center of the submerged part of the 
floating pylons as illustrated by the red markers in the figure. 
The added mass, potential damping and first order transfer 
functions for the wave excitation forces are obtained using the 
potential theory in WADAM. To obtain accurate hydrodynamic 
forces, the geometry of the submerged part of the pylon in 
WADAM must be modelled in an identical manner to the actual 
one instead of being simplified to a beam. 

Flutter analysis based on the multi-mode method 
Several vibration modes of the system are displayed in Fig. 4. It 
is important to keep in mind that the modes have been obtained 
including only added mass when the frequency goes to infinity 
and the restoring stiffness, which implies that many of the 
frequencies and corresponding modes will change when the rest 
of the hydrodynamic effects are added together with the 
aerodynamic self-excited forces. This effect will be accurately 
captured if sufficient generalized coordinates are included in the 
analysis. The vibration modes are in general more complicated 
than what are typically seen for cable-supported bridges, 
making the flutter analysis more complicated. This is partly 
because the bridge has three spans and partly because of the 
floating pylons. The flutter stability limit considering both 
aerodynamic and hydrodynamic contributions is Vcr=74.96 m/s 
and ωcr=1.63 rad/s. 

Flutter analysis based on the time-domain method 
It is also of interest to study the free vibration response of the 
system close to the critical velocity in time domain in order to 
compare it with the multi-modal approach to validate its 
performance. At the start of the time-domain simulation, an 
impulsive loading is imposed at the mid-span of the bridge. 
Time series of the torsional response at the mid-span of the 
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# 

Pylon 4
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Pylon 3
# 

x 
y 

z 

    1
# 2

# 
3

# 4
# 

User Elements 

Tethers 

Model in WADAM 
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a) Mode 1, natural frequency: 0.0727 rad/s, lateral motion of superstructure 

 
b) Mode 2, natural frequency: 0.0967 rad/s, lateral motion of superstructure 

 
c) Mode 3, natural frequency: 0.185 rad/s, vertical motion of superstructure, surge and pitch of floating pylons 

 
d) Mode 7, natural frequency: 0.462 rad/s, lateral motion of superstructure, yaw of floating pylons, torsional motion of the 

girder 

 
e) Mode 19, natural frequency: 0.913 rad/s, deformation of the cable 

FIGURE 4. THE NATURAL MODE SHAPES OF THE SUSPENSION BRIDGE WITH TWO FLOATING PYLONS. ONLY 
ADDED MASS WHEN THE FREQUENCY GOES TO INFINITY AND THE HYDROSTATIC RESTORING STIFFNESS 

ARE CONSIDERED.  

bridge are displayed in Fig. 5 at a mean wind velocity of 70, 74 
and 75 m/s. As can be seen from the figure, the damping is very 
low at 74 m/s while the damping appears to be zero or very 
close to zero at 75 m/s. The response at 76m/s is displayed in 
Fig. 6 and the response has a clear divergent nature. A snapshot 
of the structure showing the response around 2500 seconds is 
displayed in Fig. 7. Contribution from all modes besides the 
flutter vibration modes has been damped out making the 
snapshot a visualization of the flutter vibration mode. The mode 
will in general be complex and thus slightly time dependent but 
the snapshot gives an overall good representation of the motions 
seen in the animation of the response. As the figure illustrates it 
is mainly the girder, hangers and the two main cables that 

participate in the flutter motion while only small motions can be 
observed for the floating pylons.  

Dynamic response for the linearized system 
When the system is linear, the time domain method introduced 
in this paper should result in the same response as the frequency 
domain approach if a sufficient amount of generalized 
coordinates is included in the modelling. Therefore, both time 
domain and frequency domain methods are applied to predict 
the dynamic response of the floating suspension bridge at a 
mean wind velocity of 35 m/s and significant wave height of 
4.88 m in order to verify the reliability of the method. Turbulent 
wind forces that act on the pylon have not been considered.  
The mean value of the standard deviation of the displacement 
along the girder for 5 time-domain simulations of 1-hour 
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FIGURE 5. TORSIONAL RESPONSE AT MID-SPAN UNDER DIFFERENT MEAN WIND VELOCITIES 

 
FIGURE 6. TORSIONAL RESPONSE AT MID-SPAN UNDER MEAN WIND VELOCITIES OF 76 M/S 

 
a) 
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b) 

FIGURE 7. A SNAPSHOT OF THE STRUCTURE AT 2500 S AND 2501.8 S UNDER MEAN WIND VELOCITIES OF 76 
M/S. THE PERIOD OF THE FLUTTER RESPONSE IS APPROXIMATELY 3.87 S. THE RED LINES ARE USED TO 

MAKE THE GIRDER AND CABLE EASIER TO RECOGNIZE. DEFORMATION SCALE FACTOR IS 5. A) T=2500 S; B) 
T=2501.8 S   

 
FIGURE 8. THE STANDARD DEVIATIONS OF THE DISPLACEMENT ALONG THE GIRDER IN LATERAL, 

VERTICAL AND TORSIONAL DIRECTION. THE SOLID RED LINE ― IS THE AVERAGE OF THE 5 REALIZATIONS 
WHILE THE SOLID BLUE LINE ― REPRESENTS THE FREQUENCY DOMAIN RESULTS.  

TABLE 1. COMPARISON OF TIME AND FREQUENCY 
DOMAIN RESULTS OF THE STANDARD DEVIATION 
OF THE DISPLACEMENT RESPONSE FOR PYLON 2# 

 Multi-Mode 
Method 

Time Domain 
Method  

(mean value) 

Difference 
(%) 

yσ (m) 1.61 1.70 5.53 

zσ (m) 4.53 4.83 6.47 

xθ
σ (x10-3 rad) 1.03 0.973 -5.78 

yθ
σ (x10-3 rad) 1.21 1.18 -1.5 

duration is compared to frequency-domain results in Fig. 8. As 
can be seen, the results correspond very well along the entire 
girder. Table. 1 shows the variance of the displacement of the 
pylons obtained from time series based on time domain method 
and from response spectral density based on frequency domain 
method. The mean value corresponds well. Thus, the linearized 
time-domain simulations accurately capture the dynamic 
behavior. Moreover, the time domain approach allows for 
including nonlinear features, which is discussed in [13].  

CONCLUSIONS 
This paper focuses on the efficient modelling of the 
aerodynamic self-excited forces and hydrodynamic radiation 
forces on a three-span suspension bridge with two floating 
pylons using state space models.  
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Critical wind velocity and dynamic response for a linearized 
system was used to verify the presented time-domain 
methodology by comparing the obtained response statistics to 
the frequency domain results. The conclusion is that the time 
domain methodology can capture the dynamic behavior of the 
structure because the time- and frequency-domain results are 
consistent.  
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