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ABSTRACT
The Bergsøysund Bridge is currently being extensively monitored with accelerometers, anemometers, wave radars and GNSS
sensors. By applying Covariance-driven Stochastic Subspace Identification (Cov-SSI), the modal parameters of the bridge are
estimated. The results are interpreted in the context of the environment, represented by significant wave heights. The problem
is characterized by the fact that modes are closely spaced in frequency and have high damping. Two weighting algorithms for
the Cov-SSI are applied, to assess their performance for application on structures with these characteristics.
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Introduction
For decades, floating bridges served mainly as a military asset, for temporary crossings of rivers and straits. Floating bridges
were first applied as critical links in modern road networks in the middle of the 20th century, with exception of the Galata
floating bridge in Istanbul finished in 1912 [1]. The continuous box girder design has shown great success in the State of
Washington, USA, where most of the existing floating bridges are located. For straits highly affected by current and wave
action, floating bridges relying on separate and discretely distributed pontoons may be beneficial. By using such a design, the
waves will excite the structure merely in the points where the pontoons are located, and the correlation of the excitation will
influence the response in a manner more sensitive to changes in the wave field. This will be of particular importance when
the spans of the bridges increase. Currently, limited experience about the behavior of such floating bridges is available, and a
thorough study of existing structures will be valuable. There exist only two end-supported floating bridges in the world that
rely on discretely distributed pontoons, both located in Norway. The Bergsøysund Bridge is one of them, and it is currently
extensively monitored to study its behavior upon wave and wind excitation. Operational modal analysis (OMA) is a highly
valuable tool in the study of the behavior of the bridge. The covariance-driven stochastic subspace identification (Cov-SSI)
algorithm is amongst the methods considered most robust and accurate [2–5] and performs very well for traditionally tested civil
structures, such as suspension bridges and high-risers. The performance of the Cov-SSI algorithm applied on the Bergsøysund
Bridge has previously been studied by [6, 7]. In the current study, it is applied on recordings of acceleration of the bridge, to
evaluate how it is affected by variations in the environmental conditions. The performances of various weighting algorithms
are also assessed. The results are compared with modal parameters obtained from the eigenvalue solution of an model-updated
version of the numerical prediction model presented in [8].

Covariance-driven Stochastic Subspace Identification
The applied implementation of the Cov-SSI algorithm is based on the description given by Herman and van Der Auweraer [9],
and the reader is referred to the mentioned paper for specifics. Only the most important details are repeated here. The starting



point for the analysis is the block-Hankel matrix, [Hi], which is constructed with sub-matrices representing the correlation
between all the measurement channels l, with varying time shifts, as follows:

[Hi] =


[R1] [R2] . . . [Ri]
[R2] [R3] . . . [Ri+1]

...
...

. . .
...

[Ri] [Ri+1] . . . [R2i+1]

 (1)

Here, 2i corresponds to the maximum number of time lags, or equally valid, i corresponds to the number of block rows. The
correlation matrices are formally defined as:

[Rk] = E
(
{yn+k}{yn}T ) (2)

where the vector {yn} corresponds to the monitored quantities (accelerations) from all channels, for sample n. The sample-shift
k is related to the time lag through ∆t = k f−1

s , where fs is the sampling rate and ∆t represents the time lag. The cross-correlation
matrices may be efficiently computed based on FFT and IFFT, as is how the xcorr function built-in to MATLAB is functioning.

The block-Hankel matrix can be decomposed into the corresponding observability and controllability matrices as follows:

[Hi] = [Oi][Ci] (3)

which further are defined as follows:

[Oi] =


[C]

[C][A]
[C][A]2

...
[C][A]i−1

 , [Ci] =
[
[G] [A][G] . . . [A]i−1[G]

]
(4)

The matrices [A] and [C] refer to the discrete state matrix and discrete output matrix, respectively, from the stochastic state space
model describing the problem:

{zn+1}= [A]{zn}+{wn} (5)
{yn}= [C]{zn}+{vn} (6)

where {zn}, {yn}, {wn}, and {vn} correspond to the state vector, output vector, process noise and measurement noise, respec-
tively. The matrix [G] is formally defined as follows:

[G] = E
(
{zn+1}{yn}T ) (7)

After pre-multiplication with [W1] and post-multiplication with [W2]
T , the block-Hankel matrix is decomposed using singular

value decomposition (SVD), and thereafter truncated, as follows:

[W1][Hi][W2]
T =

[
[U1] [U2]

][[Σ1] [0]
[0] [Σ2]

][
[V1]

T

[V2]
T

]
(8)

≈
[
[U1] [U2]

][[Σ1] [0]
[0] [0]

][
[V1]

T

[V2]
T

]
(9)

= [U1][Σ1][V1]
T (10)

The truncation above represents an approximation due to noise and imperfections in the system; a system of finite order will
have non-zero values for [Σ2] in practice, and a manual specification of the order has to be made. The optimal order is not
known a priori, and a stabilization plot is used to distinguish physical poles from spurious ones, using multiple truncation levels
(orders). A pole is deemed physical and stable, as opposed to spurious and unstable, if certain criteria for deviance of modal
quantities are fulfilled. One possible implementation of this is discussed in the sub-section below.

By combining Equation 3 and 8, the following estimate of the observability matrix is established:

[Oi] = [W1]
−1[U1][Σ1]

1/2 (11)



Then, the state matrix can be computed as follows:

[A] = [Odown]
†[Oup] (12)

where the matrices [Odown] and [Oup] both are subsets from [Oi], without the first or last l rows, respectively, and † denotes the
pseudo-inverse. The output matrix [C] is required to establish the physical mode shapes, and is retrieved from the first l rows of
the observability matrix, as follows:

[C] = [Oi]1:l (13)

By performing an eigenvalue decomposition of the discrete state matrix [A], the discrete eigenvalues λ̂r and the system eigen-
vectors [Ψ] are established, which thereafter are transformed to continuous eigenvalues and to eigenvectors with coordinates
referring to the sensor coordinates as follows:

λr = ln
(

λ̂r

)
· f−1

s , [Φ] = [C][Ψ] (14)

where the modal transformation matrix [Φ] has columns that refer to the identified mode shapes {φr}, where r is the mode
index.

Selection of weighting matrices
There are two traditional selections for the weighting matrices [W1] and [W2] for Cov-SSI, namely the canonical variate analysis
(CVA) weighting and the balanced realization (BR) weighting.

The CVA weighting is commonly interpreted as the weights ensuring balanced energy levels for all the system modes (see
e.g. [9]). The following two Toeplitz-structured matrices are used as a starting point:

[R+] =


[R0] [R1]

T . . . [Ri−1]
T

[R1] [R0] . . . [Ri−2]
T

...
...

. . .
...

[Ri−1] [Ri−2] . . . [R0]

 , [R−] =


[R0] [R1] . . . [Ri−1]
[R1]

T [R0] . . . [Ri−2]
...

...
. . .

...
[Ri−1]

T [Ri−2]
T . . . [R0]

T

 (15)

The weights are thereafter defined as follows:

[W1] = [L+]−1, [W2] = [L−]−1 (16)

where [L+] and [L−] are established from the Cholesky decomposition of [R+] and [R−], respectively. This weighting is reported
to yield a better identification of less excited modes. The Cholesky decomposition is not straightforward to perform due to the
poor conditioning of the input matrices. The authors observed that the block-Cholesky decomposition algorithm described
in [10], modified to use Gaxpy-rich Cholesky factorization, was rather robust.

BR weighting is analogous to using unit matrices for [W1] and [W2].

Efficient stabilization analysis
To determine if poles corresponding to analyses with different orders corresponds to the same mode, a modal indicator is used,
which in the current study is the modal assurance criterion (MAC) number. The MAC number between poles p and q are
computed as follows:

MACp,q =
|{φq}T{φp}|2

{φq}T{φq} · {φp}T{φp}
(17)

where the ·̄ is the complex conjugate operator. The poles from the current order are identified to correspond to the poles from
the previous order by finding the maximum value of the MAC between the poles in the different orders. The most common
choice for a modal indicator is the frequency, but because the modes are closely spaced in frequency, the MAC number is a
better choice for the current study. For a pole from a analysis with a higher order to be considered stable, it has to fulfill the
following criteria when compared to a previous reference pole: it has to deviate a maximum amount in frequency and damping,
and their mode shapes have to yield a MAC value above a certain threshold. To increase the clarity of the stabilization plots,
the parameter stability level is introduced. For a stability level of s, the above requirements have to be fulfilled with all poles
corresponding to calculations with 1-s orders lower than the queried pole.



Figure 1: The Bergsøysund Bridge. Photograph by NTNU/K. A. Kvåle.

Table 1: Vital statistics of the selected recording, initiated 06:47 on December 26, 2015, with a duration of 30 minutes. The
indicated wind direction corresponds to the angle of origin of the wind, where 0◦ corresponds to winds along the x-axis indicated
in Figure 2 and increases in an clockwise manner.

Waves Horizontal wind Acceleration*

Position SWH [cm] Pontoon water level [cm] Speed [m/s] Direction [◦] Lateral [mg] Vertical [mg]

Center (pontoon 4) 34.8 407 12.4 264.7 1.8 0.5
Quarter (pontoon 2) - - 12.3** 262.7** 1.4 0.5
* g is used as acceleration unit, and refers to the gravitational constant (g = 9.81m/s2).
** Reported wind statistics refer to anemometer A1, positioned close to pontoon 2. See Figure 2.

The Bergsøysund Bridge
The Bergsøysund Bridge is a pontoon bridge with total length 931 m and main span 845 m, located on the northwestern coast of
Norway. It consists of a steel truss supported by 7 concrete pontoons (Figure 1). The bridge is arc-shaped to reduce the bending
moments due to lateral wave forces. The bridge is only supported in the ends, as no side-mooring is present. An extensive
monitoring system is currently operating on the bridge (Figure 2). Three-dimensional anemometers are capturing winds 7
meters above the deck level at locations spread across the deck, while wave radars are monitoring the sea surface elevation near
the center of the bridge. Furthermore, the response of the bridge is measured by means of two triaxial accelerometers on each
pontoon and a single Global Navigation Satelite Systems (GNSS) displacement sensor located at midspan on top of the deck.
The reader is referred to Kvåle et al. [11] for a more in-detail description of the monitoring system.

Operational Modal Analysis
The following stability criteria were used: maximum frequency deviance of 1%, maximum damping deviance of 5%, and a
minimum MAC value of 95%. The stability level was chosen as s = 8 for the analyses of which all presented results are
based on. By investigating the statistical properties of captured recordings, a suitable time series was identified. In particular,
a recording with perpendicular winds and decent excitation levels was sought after. A recording made 06:47 on December
26, 2015, fits these requirements. Some vital statistics related to this recording are found in Table 1. Modal analyses were
performed both with BR and CVA weighting. The resulting stabilization plots are shown in Figure 3, for both cases. It is clear
that the CVA weighting does help in identifying the less excited modes for the current analysis. However, it is observed to
behave rather erratically, and is very sensitive to input parameters, such as the number of block rows. The agreement with an
updated version of the numerical prediction model in [8] is indicated with lines in the stabilization plot from the CVA analysis.
To assess the effect of the increased stability level (s = 8), the stabilization plot from the analysis with CVA weighting is also
shown wiht s = 1 in Figure 4. Increased stability level results in a better readability and clarity of the stabilization plot. Table
2 shows the modal parameters of the CVA analysis together with modal parameters obtained from the eigenvalue solution of
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Figure 2: Monitoring system.
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(b) CVA weighting. The lines indicate identified modes, with numbers corresponding to the modes from the numerical prediction model.

Figure 3: Stabilization plot from Cov-SSI analyses of the selected recording. Stabilization level s = 8.
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Figure 4: Stabilization plot from Cov-SSI analysis of the selected recording with CVA weighting. Stabilization level s = 1.

Table 2: Identified modal parameters compared with modal parameters from eigenvalue solution of numerical prediction model.

Natural frequency, ωr [rad/s] Damping ratio, ξr [%]

Mode number Prediction Cov-SSI/CVA Prediction Cov-SSI/CVA MAC

1 0.58 0.59 1.63 5.16 0.94
2 0.99 1.08 12.25 4.47 0.32
3 1.03 0.99 11.24 11.62 0.86
4 1.05 1.02 5.00 2.53 0.53
5 1.17 1.22 7.67 4.88 0.95
6 1.38 1.42 5.91 6.93 0.78
7 1.44 1.51 3.28 2.65 0.98
8 1.87 1.96 1.07 0.96 0.67
9 1.95 1.98 3.62 3.15 0.90
10 2.23 2.21 0.43 1.86 0.89

the numerical prediction model. The corresponding mode shape comparison is found in Figure 5. Overall, a decent agreement
is observed. The damping levels are not satisfactory, especially for modes 2, 4 and 5. The next sub-section indicates large
variability of the damping ratios. Because the modes are closely spaced, they are prone to switch their ordering in frequency
with small changes in the excitation. Furthermore, the complex, coupled and environment-dependent dynamic behavior is
believed to make the appearance of the mode shapes more variable.

Automatic OMA and the effect of varying environment
By using the eigenvalue solution from the predictive numerical model as reference, the natural frequencies and critical damping
ratios are automatically identified for various environmental conditions. The numerical prediction model is described in [8].
The MAC numbers between the predicted and measured mode shapes were required to have a value above 0.7, for storing as an
identified mode. For the automatic OMA, the BR weighting is utilized due to higher robustness than the CVA weighting. The
natural frequency and critical damping coefficients of mode 1, 2 and 3 are compared to the significant wave height (SWH) in
Figure 6. The SHW is defined as Hs = 4ση , where ση is the standard deviation of the wave elevation process. Large variability
in the modal parameters, in particular the damping ratios, are observed. The plots indicate that the damping ratio is increasing
for increased SWH. Increased SWH affects the three presented natural frequencies differently. Furthermore, the scatter of the
natural frequencies are reduced for increasing SWH, i.e., increased excitation levels. This tendency is explained by the fact that
a larger amount of the excitation is accounted for when the SWH is larger.

Concluding remarks
The Cov-SSI method is successfully applied with different weighting schemes on the Bergsøysund Bridge, an end-supported
pontoon bridge in current operation, to identify the structure’s modal parameters. Damping ratios and MAC-values are poor
for certain modes. The CVA weighting scheme improves the clarity of the stabilization plot to a great extent. When the CVA
weighting is used in conjunction with a high stability level, the resulting stabilization plots become quite clear. On the other
hand, the CVA weighting implementation used is observed as very sensitive to the input time series and parameters, and less
robust than an unweighted analysis, i.e., BR weighting. The OMA procedure is made automatic by using the eigenvalue solution
from a predictive numerical model as reference, which shows that the bridge’s natural frequencies’ variability is reduced when
the excitation, represented by the SWH, is increased. Both mean value and variance of the damping ratios are in general
increased as a consequence of increasing SWH.
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(t) Mode 10: Cov-SSI/CVA.

Figure 5: Mode shapes from eigenvalue solution of numerical prediction model and identified from Cov-SSI/CVA. The num-
bering refers to the numerical prediction.
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Figure 6: Effects on modal parameters from changing significant wave height.
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