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Abstract: Non-linear time series analysis based methods are a popular choice for industrial
control loop data analysis. In this paper a delay vector variance (DVV) based approach is
presented to analyze the source of oscillations in an industrial control loop. The method is
capable of differentiating between the linear and non-linear causes of oscillations and can
also help in isolating the source of non-linearity. The automatic determination of embedding
dimensions is augmented with the DVV analysis to make it more robust and reliable. The efficacy
of the proposed method is established using simulation as well as industrial case studies.
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1. INTRODUCTION

Data driven approaches for control loop performance mon-
itoring (CPM) offer considerable advantages over conven-
tional model based diagnosis. These data driven methods,
dealing exclusively with recorded data, are more flexible,
robust and are easy to automate. There are numerous
factors affecting the performance of industrial control
systems, such as poor controller tuning, external distur-
bances, equipment non-linearities etc. Therefore differen-
tiating among these factors leads to enhanced profitability
and reduced shut down time. The fact that only a third
of industrial control loops are reported to be functioning
correctly, while rest are suffering from one problem or
the other [Choudhury et al. (2008)], makes performance
monitoring an important part of any industrial control
systems.

Non-linearities, whether stemming from a sticking valve or
a faulty sensor, are reported to be one of the major sources
of performance issues [Srinivasan et al. (2005)]. Therefore
much focus has been on the detection and isolation of non-
linearities in the control loops. Different methods are being
explored and reported in literature [Thornhill and Horch
(2007) and di Capaci and Scali (2015)], a brief overview of
some procedures are discussed here.

Some methods, like the one proposed by Srinivasan et al.
(2005), Hägglund (2011) and Yamashita (2005), try to find
similarity of the waveform with predetermined sets.

A popular method to distinguish between non-linear and
linear sources of oscillations in control loops based on
higher order spectra is proposed by Choudhury et al.
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(2008). Inability to detect non-linearities in symmetric
waveforms(exhibiting odd harmonics) such as triangular
or square waves are major limitations of this method
[Thornhill (2005) and Zang and Howell (2003)].

Quite recently non-linearity detection methods based on
the Hilbert Huang Transform (HHT) have been presented
[Babji et al. (2009) and Aftab et al. (2016)]. These
method use the intra-wave frequency modulation to detect
the presence of non-linearity induced oscillations. Though
these methods are applicable to non-stationary time series
and are fully data driven, the mode mixing in the empirical
mode decomposition (the precursor of HHT) in the pres-
ence of noise, make these methods prone to falsely report
non-linearities.

Non-linear time series analysis methods make use of the
fact that time series from nonlinear systems exhibit phase
coupling and hence are more predictable. Analysis based
on surrogate time series is therefore used to differentiate
between linear and nonlinear nature of time series. Surro-
gate time series are time series that share the same power
spectrum with the original time series, but contain random
phase. One such method, to detect the presence of non-
linearity in control loops, is proposed by Thornhill (2005).
The algorithm compares the predictability of the time se-
ries from control loops with its surrogate counterparts. The
accuracy of this method depends on the tuning of different
parameters like embedding dimensions, prediction horizon,
number of nearest neighbors, etc. Moreover the method
relies on a test statistic that assumes the prediction error
to follow the Gaussian distribution, that may not be the
case in practice 1 .

1 Details can be seen in Thornhill (2005)



This paper presents the delay vector variance method
(DVV) for detecting the presence of non-linearity in the
control loops. This method is also based on surrogate
data, but is more general and doesn’t require the tun-
ing of different parameters. Surrogate data is generated
using the iterative amplitude adjusted fourier transform
method (IAFFT) proposed by Schreiber and Schmitz
(1996). Moreover a rank based test statistic is adopted
to test the Null hypothesis, i.e. whether the data is from
a linear source, as recommended by Kantz and Schreiber
(2004). Another important feature is the automatic deter-
mination of embedding dimensions that is augmented with
this analysis to make it more robust and reliable.

The paper is organized as follows. Section 2 gives and
overview of the delay vector variance (DVV) method. The
steps involved in testing the Null hypothesis using rank
based statistics are outlined in section 3. Automatic deter-
mination of embedding dimensions is explained in section
4. Section 5 gives the detailed algorithm. Simulation and
industrial case studies are presented in sections 6 and 7
followed by conclusions.

2. DELAY VECTOR VARIANCE (DVV) METHOD

The delay vector variance method, developed recently
[Gautama et al. (2004a)], tries to ascertain the nature
of the time series via estimation of predictability and
determinism. The method, as the name suggests, is based
on the time delay embedding representation of time series
X(k) = {x(k) | k = 1 . . . N}. The time series is rep-
resented as a set of delay vectors (DVs), the method of
so called phase space reconstruction [Kantz and Schreiber
(2004)], with embedding dimension m and time delay τ ,
given by y(k) = [xk−mτ , . . . , xk−τ ]. The each DV has a
corresponding target, i.e. the next sample x(k) [Gautama
et al. (2004b)].

The delay vectors so obtained are the state space represen-
tation of the actual time series. The target variance σ∗ is
then calculated using the following steps [Gautama et al.
(2004a),Gautama et al. (2004b)].

(1) The distance between DVs is calculated using the
Euclidean norm, denoted by ||y(i)− y(j)|| for i 6= j.

(2) The mean µd and standard deviation σd are computed
for the calculated DV distances.

(3) All the DVs that lie within a certain distance τd are
collected in sets Ωk , written mathematically as

Ωk = {y(i) | ‖y(i)− y(j)‖ ≤ τd} (1)

(4) The threshold τd is taken from the uniformly sampled
interval [µd−ndσd;µd−ndσd]; with nd specifying the
span over which the analysis is performed.

(5) The target variance σ∗2
k , is calculated for each set Ωk

that contains at least N0 DVs.
(6) The average of these target variances σk over all sets

divided by the variance of time series σ2
x gives the

overall target variance σ2∗, given by Equation 2.

σ∗2 =
(1/K)

∑K
k=1 σ

∗2
k

σ2
x

(2)

The target variance σ∗ is the inverse measure of the
predictability of the time series. The target variance is
plotted against the standardized distance measure rd given
by
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Fig. 1. A snapshot of target variance

rd =
τd − µd
σd

(3)

The greater the determinism in the time series the lower
would be the value of target variance at smaller spans and
vice versa. The target variance in (2) converges to unity
for larger spans as for the maximum span all DVs belong
to same set Ωk and variance of Ωk matches the variance of
the data itself. The span parameter nd must be increased
if the target variance does not converge to unity. Figure 1
illustrates this effect graphically.

This target variance parameter not only gives the estimate
of the determinism in the time series but also helps in
classifying the time series as an output of linear or non-
linear systems. This fact can be used to detect presence
of non-linearity induced oscillations in industrial control
loops as explained in subsequent sections.

2.1 Detection of Non-linearity using DVV Method

The surrogates of the input time series are used within the
DVV framework to assess the linear or non-linear nature of
the data from the oscillating control loops. The difference
in the predictability of the original time series and its
surrogate counterpart is taken as an indication of the non-
linearity in the time series.

Figure 1 shows the target variance of two control loops
from an industrial plant, along with the corresponding
target variance of surrogate time series, to illustrate the
DVV analysis results graphically. It can be seen that
the target variance of data from Tag 13 is significantly
different from its surrogate and is also more predictable;
whereas for Tag 20 the loop data and its surrogates exhibit
almost similar target variance. Moreover, another way of
visualizing this relationship is using the so called DVV
scatter plot; wherein the target variance of the time series
is plotted versus that of its surrogates. For the linear
case the target variance of the original time series and
its surrogates would be similar and the scatter plot will
be in close proximity of the bisector line whereas in the
case of the non-linear signal this plot will diverge from the
bisector line. This fact is shown in Figure 2 where Tag 13
scatter plot deviates clearly from the bisector line whereas
for Tag 20 it is in close match with the bisector line.
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Fig. 2. DVV scatter plot ::A glance

2.2 Measuring the Extent of Non-linearity

The extent of non-linearity can be adjudged using the
deviation of the target variance from the bisector line in
the scatter plot. For this purpose the root mean square
error (RMSE) from the bisector line seems to be an
automatic choice to compare the extent of non-linearity
in different time series. The rank based statistical test
(described next) is used to differentiate between the linear
and non-linear nature of time series and then the extent
of non-linearity is calculated using the RMSE value.

2.3 Isolating the Source of Non-Linearity

Once the control loops suffering from the non-linearity
induced oscillations are identified, the next step is to
isolate the source for targeted maintenance and reme-
dial actions. In a multi-loop environment, non-linearity
induced at one point may propagate to other variables
so the correct identification of the origin of the oscillations
can significantly reduced the effort required in maintaining
the control system. It is a well known fact that the different
parts of plant act as low pass mechanical filter and tend
to filter out the higher harmonics as we move away from
the source of non-linearity [Thornhill et al. (2001)].

The RMSE measure discussed in section 2.2 can be used to
compare the extent of non-linearity in different variables.
The loop with maximum RMSE value is taken to be the
source of non-linearity. The results, using RMSE, for the
industrial case study are discussed in section 7.

3. TESTING OF THE NULL HYPOTHESIS: THE
TEST STATISTICS

The rank based statistical test, as recommended by Kantz
and Schreiber (2004), is adopted here to test the Null
hypothesis that the time series is an output of linear
Gaussian process. The rank based test is chosen as the
probability distribution of the non-linearity measure is
not known in advance; so a non-parametric rank based
statistical test from Theiler and Prichard (1996) is adopted
here to accept or reject the Null hypothesis.

The discriminating statistics chosen here is the RMSE
value of the target variance. The RMSE η0 is computed for

the original time series. Then B surrogates are generated
and corresponding statistics ηk are calculated for each
k = 1, . . . , B. Then it is checked whether the η0 is on the
tail of distribution. For one sided test the null hypothesis
rejected at level α, if η0 is among largest (B + 1)α in the
sorted list containing η0 and all ηks.

Table 1. Rank statistics for rejecting NULL
hypothesis

if rank > (B + 1)(1 − α)
then reject Null hypothesis (non-linear source)

else
accept Null hypothesis (linear source)

In this work, to test the Null hypothesis,B = 99 surrogates
and α = 0.1 are chosen. Therefore the Null hypothesis is
rejected if the RMSE of the original time series in among
largest 10 RMSEs out of total 100(r > 90) and time series
is classified as originating from a non-linear source (Table
1). The rank based test and the RMSE values for the two
signals in Figure 2 are given in Table 2. This procedure will
be applied to simulation and industrial examples later in
the paper to show how effective this method is in detecting
the non-linearities in the control loops and isolating the
root source.

Table 2. Rank statistic and RMSE

Signal rank Type RMSE

Tag 20 4 Linear –
Tag 13 99 Non-Linear 0.041

4. DETERMINING THE EMBEDDING DIMENSIONS

The construction of delay vectors, for the phase space
reconstruction, is carried out using delayed embedding.
The embedding dimension m of the attractor manifold is
the most important parameter in such a reconstruction.
Too small m will mask some of the dynamics and will
lead to erroneous results whereas too large m will result in
unnecessary computation overload. An automatic method
for determination of the embedding dimension, proposed
by Cao (1997), is augmented with the DVV to make it
more robust and reliable.

According to the embedding theorems [Sauer et al. (1991),
Cao (1997)] m is the true embedding if any two points
which are close in the m-dimensional reconstructed space
stay close in the (m+ 1)-dimensional reconstructed space
as well. Therefore some kind of a distance measurement
between two points in m and m+ 1 dimensional space can
be used to identify the required dimension m.

Here again we consider a time series X(k) = {x(k) |
k = 1 . . . N} and ith delay vector yi(m) with embedding
dimension m is given by

yi(m) = (xi, xi+τ , . . . , xi+(m−1)τ ) i = 1, 2, . . . , N −mτ
(4)

Now a distance measure a(i,m) is defined as

a(i,m) =
‖yi(m+ 1)− yn(i,m)(m+ 1)‖
‖yi(m)− yn(i,m)(m)‖

i = 1, 2, . . . , N −mτ
(5)
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where ‖.‖ represents vector norm operation; yi(m + 1) is
the ith delay vector with m+ 1 dimensions and n(i,m) is
integer in set (1 ≥ n ≥ N −mτ) such that yn(m) is the
nearest neighbor of yi(m) in the m dimensional space.

The mean E(m) of all a(i,m)s is defined as

E(m) =
1

N −mτ

N−mτ∑
i=1

a(i,m) (6)

The variation in E for the increase in embedding dimen-
sion to m+ 1 is given by the quantity E1 defined as

E1(m) =
E(m+ 1)

E(m)
(7)

Therefore when E1 stops changing for some m ≥ m0;
m0 + 1 is taken as the minimum embedding dimension
for the reliable phase space reconstruction [Cao (1997)].
The E1 measure for one of the data (Tag 3) is plotted in
Figure 3. It can be seen that the E1 approaches the unity
value after m = 8 and stays there for all subsequent values
of m. Therefore embedding dimension m > 8 can be used
for the correct analysis.

5. PROPOSED METHOD

The proposed method for the identification of the non-
linearity induced oscillations and isolation of the source
using DVV is listed below.

(1) Mean center and normalize the time series from the
control loop to unit standard deviation.

(2) End match the data to avoid spurious modes in the
surrogate. End matching requires that the difference
between both initial and final values d0 and difference
between initial and final gradient d1 is minimized. d0
and d1 are calculated using (8) [Thornhill (2005)].

d0 =
(xi − xi+n−1)2∑i+n−1
j=i (xj − x̄)2

d1 =
[(xi+1 − xi)− (xi+n−1 − xi+n−2)]2∑i+n−1

j=i (xj − x̄)2

(8)

where xi is the ith element and x̄ is the mean of time
series xi . . . xi+n−1.
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Fig. 4. Time trends from simulation example

Fig. 5. Closed loop model

(3) Determine the minimum embedding dimension for
the phase space reconstruction.

(4) Perform the DVV analysis on normalized, end matched
data.

(5) Generate B surrogates of the loop data.
(6) Perform DVV analysis on all the surrogates.
(7) Compute the average target variance of all the surro-

gates.
(8) Compute the RMSE for input data and surrogates.
(9) Perform the rank based statistical test.

(10) Loops with RMSE rank r > (B + 1)(1 − α) are
classified as non-linear at confidence level α.

(11) Perform steps 1-10 for all the loops under analysis.
(12) Once all the non-linear loops are identified look for

the maximum RMSE value.
(13) The loop with maximum RMSE value is designated

as the source of the non-linearity.

6. SIMULATION EXAMPLE

The simulation example used to distinguish non-linearity
induced oscillations from the linear one is taken from our
recent work [Aftab et al. (2016)]. The block diagram of the
closed loop system is shown in Figure 6. Three scenarios,
oscillations due to valve stiction(LuGre friction model),
external sinusoidal disturbance and external dist added to
a loop with a poorly tuned controller, are tested using
the proposed method. Noise of variance 0.1 is also added
to test the robustness of the proposed method. The time
trends for these three test cases are shown in Figure 4.

Table 3. DVV analysis (Simulation example)

Case rank type RMSE

Stiction 100 Non-Linear 0.042
External Dist+Fast Cont 49 Linear –

Ext Dist 62 Linear –

The results of these three scenarios are summarized in
Table 3. The method is able to classify the test scenarios
correctly. The stiction case is correctly identified as non-
linear; the fact endorsed both by the rank statistics and
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the DVV scatter plot. The application of the proposed
method to the industrial case study is presented next.

7. INDUSTRIAL CASE STUDY

The case study is taken from Thornhill (2005) and Zang
and Howell (2005). The analysis of 37 different tags reveal
that a plant wide oscillation with fundamental frequency of
0.06min−1 is found to be present in 9 Tags. The objective
is to analyze these tags and to find the root cause of
oscillation. The time trends of these 9 Tags are shown in
Figure 7.

All these tags are analyzed using the DVV method pro-
posed in this paper and results are summarized in Table
4. The analysis consists of two parts.

Table 4. DVV analysis (industrial case study)

Tag rank type RMSE

Tag 2 79 Linear –
Tag 3 38 Linear –
Tag 11 95 Non-Linear 0.0378
Tag 13 99 Non-Linear 0.0415
Tag 19 94 Linear 0.0318
Tag 20 4 Linear –
Tag 25 86 Linear –
Tag 33 92 Non-Linear 0.0299

Tag 34 100 Non-Linear 0.0743

7.1 Detection of Non-Linearity

First of all the loops are analyzed for the presence of non-
linearity. The DVV analysis points out that the Tags 11,
13, 19, 33, and 34 exhibit non-linearity induced oscilla-
tions; whereas no non-linearity is detected in other tags
using the rank based statistics. The findings confirm the
already reported findings that the oscillations are due to
non-linearity in the control loops. The results are similar
to the ones reported by Thornhill (2005) and Zang and
Howell (2005) except that Tag19 which is classified here
as non-linear.

7.2 Isolating the Source of Non-Linearity

Once it is concluded that the plant wide oscillation with
frequency 0.06min−1 is due to non-linearity, the next step
is to find the source of this non-linearity. As discussed
in section 2.3 that different components of plant act
as mechanical filter and tend to filter the higher order
harmonics and the signature of non-linearity loses strength
as we move away from the source. This fact dictates that
the most non-linear element will be the source of the
oscillation.

The RMSE values from the DVV analysis (Table 4) reveal
that Tag34 has the largest non-linearity and is thus the
root cause of the oscillation. The same finding is reported
in other studies conducted by Thornhill (2005) for the
same data set.

8. CONCLUSIONS

A novel approach based on delay vector variance (DVV)
is presented to detect and isolate non-linearities in control
loops. The proposed scheme is simple and effective; and
doesn’t require tuning of the parameters like prediction
horizon, number of nearest neighbors etc as the case
with existing methods like the one presented by Thornhill
(2005). An automatic method to find the suitable embed-
ding dimensions is also augmented with the DVV analysis
to make it more robust than existing tools. Moreover,
instead of assuming the Gaussian distribution of the test
statistics, a non-parametric rank based statistic is used
to test the Null hypothesis. The efficacy of the proposed
scheme is established using both simulation and industrial
case studies.
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