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Abstract

Multi-level coupled cluster theory is presented with special focus on the extended

CC2 model. Combined with Cholesky molecular orbitals, these models makes it

possible to treat different subsystems with different levels of coupled cluster theory

giving potentially large reductions in computational complexity. Total energy

and excitation energies using ECC2 are presented for several different molecular

systems. ECC2 can reproduce CCSD results when using appropriate parameters.
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Sammendrag

Denne oppgaven er en del av et p̊ag̊aende forskningsprosjekt som ser p̊a utvikling

og implementering av multi-level coupled cluster (MLCC) teori. I MLCC, blir

orbitalrommet delt opp i to eller flere underrom. Basert p̊a hvilket underrom or-

bitalene involvert tilhører blir eksitasjonsoperatorene i cluster -operatoren delt inn

i forskjellige operatorer. Ved å behandle delene av cluster -operatoren med forskjel-

lige niv̊a av coupled cluster teori kan man f̊a store besparelser i beregningstid med

minimale tap av nøyaktighet.

I Cholesky dekomposisjon blir en positiv semidefinitt matrise dekomponert i en

nedre triangulær matrise og dens transponerte. For glissne, diagonaldominerte

matriser er denne dekomposisjonen svært effektiv. Én-elektrons tetthetsmatrisen i

atomorbitalbasisen er b̊ade positiv semidefinitt, diagonaldominert og glissen og ved

å dekomponere den vil Cholesky-vektorene tilsvare parametriseringen til lokalis-

erte molekylorbitaler (MO). Diagonalelementene i tetthetsmatrisen korresponderer

til atomorbitaler sentrert p̊a atomer og et lokalt, aktivt rom kan oppn̊aes ved å

definere et sett med atomer som aktive.

Pilotkode for total energi og eksitasjonsenergier har blitt implementert for MLCC

modellen extended CC2 (ECC2) i programvarepakken DALTON. I ECC2 deles

orbitalene inn i to rom som behandles med CC2 og CCSD. Ved å inkludere HOMO

og LUMO i det aktive rom unngikk man problemer med nær degenerering som

oppstod i dissosiasjonsprosesser med CC2. Med et lokalt aktivt rom ble CCSD-

dissosiasjonsenergien for eten reprodusert til kjemisk nøyaktighet. ECC2 viste

ogs̊a forbedringer i beregninger av elektronisk dipolmoment og polariserbarhet for

systemer hvor CC2 var unøyaktig i forhold til CCSD.

Ved å bruke lokale aktive rom kunne ECC2 reprodusere CCSD-verdier for eksi-

tasjonsenergier. ECC2 var mest vellykket dersom alle orbitalene involvert i eksi-

tasjonen var inkludert i det aktive rommet, men dette var ikke absolutt nødvendig

for høy nøyaktighet.
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Ved å implementere et rom beskrevet med SCF langt fra det aktive rom vil

beregninger skalere lineært med systemstørrelse for molekylsystemer over en viss

størrelse fordi elektronkorrelasjon bare blir beregnet for et fast, aktivt rom. Ved

hjelp av Cholesky dekomposisjon kan en generere en auxiliary basis for beregn-

ing av MO-integraler. Dette gjør det i prinsippet mulig å effektivt implementere

en modell med størrelsesintensiv kompleksitet som kan konkurrere med DFT i

skalering for store systemer.



Acknowledgements

First, I would like to thank my supervisor, Professor Henrik Koch, and Professor

Alfredo M. J. Sánchez de Merás, who has acted as co-supervisor, for letting me

work on this project. It has been very interesting and challenging and they have

provided patience and guidance when things have appeared too challenging.

A special thanks goes to Andrew Dibbs and Eirik Hjertenæs for reading through

and correcting spelling and grammar in this thesis, as well as helping with practical

things and LATEX.

I would also like to thank the groups of Applied Theoretical Chemistry at NTNU

and ICMOL at the University of Valencia. I have felt very welcome in both groups

and working with researchers have encouraged me to seek out an academic career.

Finally, I would like to thank my family and friends who have supported and

encouraged me throughout my studies and when working with this project.

ix





To my mother Nina

xi





Contents

Declaration i

Preface iii

Abstract v

Sammendrag vii

Acknowledgements ix

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 5

2.1 Coupled cluster theory . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Cluster operator and exponential ansatz . . . . . . . . . . . 5

2.1.2 Coupled cluster equations . . . . . . . . . . . . . . . . . . . 7

2.1.3 Truncated cluster operator . . . . . . . . . . . . . . . . . . . 9

2.1.4 Approximate coupled cluster models . . . . . . . . . . . . . 11

2.2 Multi-level coupled cluster theory . . . . . . . . . . . . . . . . . . . 12

2.2.1 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Extended CC2 . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Beyond ECC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xiii



2.3 MLCC response theory . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Quasi-energy response method . . . . . . . . . . . . . . . . . 19

2.3.2 Linear response function for ECC2 . . . . . . . . . . . . . . 22

3 Implementation 25

3.1 ECC2 energy calculations . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 ECC2 excitation energies . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 29

4.1 ECC2 energy calculations . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Abstraction processes . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Local geometry . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Static properties . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Excitation energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Functional groups . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Solvent effects . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Conjugate systems . . . . . . . . . . . . . . . . . . . . . . . 46

5 Discussion 51

5.1 Linear and sublinear scaling . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Extensive properties . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Intensive properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion 59

6.1 Development of MLCC . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Results from calculations . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Future work 61

A ECC2 response derivation 63

B Initial geometries 69

Bibliography 71



List of Figures

2.1 Example of an active space of 1,3-butadiene. I denotes internal, SE
semi-external and E external excitations with respect to the active
CCSD space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Total energy curves for dissociation of lithium hydride using the
basis set aug-cc-pVDZ. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Total energy curves for dissociation of a sodium dimer using the
basis set aug-cc-pVDZ. . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Total energy curves for dissociation of a hydrogen atom from ethene
using the basis set aug-cc-pVDZ. . . . . . . . . . . . . . . . . . . . 32

4.4 Total energy curves for dissociation of a hydrogen atom from 1,3-
butadiene using the basis set aug-cc-pVDZ. . . . . . . . . . . . . . . 33

4.5 Decanal A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Decanal B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Decanal C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Decanal D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.9 Trans-ethyl-i-butyl-diazene A . . . . . . . . . . . . . . . . . . . . . 42

4.10 Trans-ethyl-i-butyl-diazene B . . . . . . . . . . . . . . . . . . . . . 42

4.11 Tert-butyl hydroperoxide A . . . . . . . . . . . . . . . . . . . . . . 43

4.12 Tert-butyl hydroperoxide B . . . . . . . . . . . . . . . . . . . . . . 43

4.13 Acetone A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.14 Acetone B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.15 (2E,4E,6E,8E)-2,4,6,8-decatetraene . . . . . . . . . . . . . . . . . . 47

4.16 2,4,6,8-decatetraenal A . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.17 2,4,6,8-decatetraenal B . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.18 1,3-octadiene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.19 6-methyl-2,4-heptanedione . . . . . . . . . . . . . . . . . . . . . . . 49

4.20 2,4-octadienal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xv





List of Tables

4.1 Electronic dipole moments and polarisability in a.u. of hydrogen
fluoride the along C∞ axis with the basis set aug-cc-pVTZ. . . . . . 34

4.2 Electronic dipole moment and polarisability in a.u. of ozone the
along C2 axis with the basis set aug-cc-pVTZ. . . . . . . . . . . . . 35

4.3 Polarisability in a.u. of ethyne and ethene along the C-C bonds
with the basis set aug-cc-pVTZ. . . . . . . . . . . . . . . . . . . . . 36

4.4 Polarisability in a.u. of benzene along a C2 axis going through two
hydrogen atoms and 1-3-butadiene along the C-C single bond with
the basis set aug-cc-pVTZ. . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Excitation energies of decanal in eV using cc-pVDZ. . . . . . . . . . 40

4.6 Norm of the amplitudes of the different types of single excitations
for decanal using cc-pVDZ. . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Excitation energies of trans-ethyl-i-butyl-diazene in eV using cc-
pVDZ above and aug-cc-pVDZ below. . . . . . . . . . . . . . . . . . 41

4.8 Norm of the amplitudes of the different types of single excitations
for trans-ethyl-i-butyl-diazene using cc-pVDZ. . . . . . . . . . . . . 41

4.9 Excitation energies of tert-butyl hydroperoxide in eV using cc-pVDZ. 42

4.10 Norm of the amplitudes of the different types of single excitations
for tert-butyl hydroperoxide using cc-pVDZ. . . . . . . . . . . . . . 43

4.11 Excitation energies of acetone with water in eV using cc-pVDZ
above and aug-cc-pVDZ below. . . . . . . . . . . . . . . . . . . . . 44

4.12 Norm of the amplitudes of the different types of single excitations
for acetone with water using cc-pVDZ above and aug-cc-pVDZ below. 45

4.13 Excitation energies of (2E,4E,6E,8E)-2,4,6,8-decatetraene in eV us-
ing cc-pVDZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.14 Norm of the amplitudes of the different types of single excitations
for (2E,4E,6E,8E)-2,4,6,8-decatetraene using cc-pVDZ. . . . . . . . 46

4.15 Excitation energies of 2,4,6,8-decatetraenal in eV using cc-pVDZ. . 47

4.16 Norm of the amplitudes of the different types of single excitations
for 2,4,6,8-decatetraenal using cc-pVDZ. . . . . . . . . . . . . . . . 47
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Chapter 1

Introduction

1.1 Motivation

Modern quantum chemistry calculations can be performed for small molecules

to obtain more accurate results than is currently possible through experimental

methods[1]. However, for larger systems, wave function based theories encounter

a computational barrier as all interactions between all electrons in all orbitals

have to be calculated. One solution is to truncate the expressions and neglect

terms that are considered less important. However, scaling is still a challenge.

For example, the most expensive term in coupled cluster singles and doubles[2–4]

(CCSD) scales as V 4O2 where V is the number of virtual and O is the number of

occupied orbitals.

An alternative is density functional theory[5–7] (DFT) where the energy is deter-

mined as a functional of the electron density. In principle, DFT, can yield exact

results, however, in practice, an approximate density functional must be employed.

This makes the method less reliable.

Coupled cluster (CC) theory is arguably the most successful wave function based

theory[1, 4] in use today. Much of current development is focused on speeding up

calculations without reducing their accuracy. Many of the techniques developed

make use of the fact that electron correlation is quite localised in non-conducting
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systems[8–10]. Using pair natural orbitals and projected atomic orbitals, Riplinger

and Neese obtained near-linear scaling for CCSD[11]. More indirectly, the local

nature of the interactions can be exploited by noting that two-electron matrices

are sparse and positive semi-definite. Linear dependencies can then be removed

using Cholesky decomposition[12–18].

Multi-level CC (MLCC) theory uses a different approach to simplifying the calcu-

lations based on active spaces. Active spaces have been combined with CC theory

before[19, 20], however, MLCC gives the opportunity to describe successive ac-

tive spaces with increasing levels of accuracy. Combined with Cholesky molecular

orbitals[21, 22] (MO) this makes it possible to treat distinct parts of a molecular

system with different levels of theory, reminiscent of the ONIOM model[23]. Unlike

similar schemes like embedding[24] and QM/MM[25], MLCC is fully antisymmet-

ric across levels of approximation. By carefully assigning the active spaces, MLCC

should be able to produce highly accurate results while computational complexity

scales sublinearly.

1.2 Scope of the work

In this work, the equations for the extended CC2 (ECC2) model[26] and equa-

tions for more general MLCC models are presented. From these, the linear re-

sponse functions for ECC2 is developed using the quasi-energy (QE) Lagrangian

approach[27–32]. The ECC2 energy code[26] is tested on a number of systems and

an excitation energy solver is implemented and tested.

1.3 Outline of the thesis

Chapter 2 starts with a summary of CC theory before presenting the equations

of some MLCC models. This is followed by a discussion of the QE approach

to response functions and derivation of these for ECC2. Cholesky MOs are also



discussed. Chapter 3 outlines the implementation of ECC2 in the Dalton software

package[33, 34]. Results from ECC2 calculations are presented and compared with

CC2 and CCSD in Chapter 4 and discussed in Chapter 5. Chapter 6 summarises

the results and further work is discussed in Chapter 7.





Chapter 2

Theory

2.1 Coupled cluster theory

2.1.1 Cluster operator and exponential ansatz

This section assumes the reader is familiar with the basics of quantum chemistry

and electronic structure theory. For a review, see Szabo and Ostlund[35].

Coupled cluster theory can be viewed as a correction that introduces electron

correlation to Hartree-Fock (HF) theory. The HF state is used as the reference

state and thus necessitates that the HF state is a relatively good description of the

system. Consequently, the ground state must be dominated by a single electron

configuration.

Interactions between electrons is described by the simultaneous excitation of two

or more electrons from occupied orbitals to virtual orbitals in the HF ground state.

Using the indices i, j, k, l for occupied; a, b, c, d for virtual and p, q, r, s for

general spin-orbitals, an interaction between two electrons is written as

τabij = a†aaia
†
baj. (2.1)
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where a†p is the second quantisation creation operator that creates an electron in

spin-orbital p while ap is the annihilation operator that removes an electron from

the spin-orbital. For a thorough discussion of second quantisation and coupled

cluster theory, see the monograph by Helgaker, Jørgensen and Olsen[1]. To ensure

that the wave function is antisymmetric, the creation and annihilation operators

obey the anticommutation relations

[a†p, a
†
q]+ = [ap, aq]+ = 0 (2.2)

[a†p, aq]+ = δpq (2.3)

The Hamiltonian in second quantisation is

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

(pq|rs)a†pa†qaras + hnuc (2.4)

where

hpq =

∫
φ∗p(x)

(
−1

2
∇2 −

∑
I

ZI
rI

)
φq(x)dx (2.5)

(pq|rs) =

∫ ∫
φ∗p(x1)φ

∗
r(x2)φq(x1)φs(x2)

r12
dx1dx2 (2.6)

hnuc =
1

2

∑
I 6=J

ZIZJ
RIJ

(2.7)

φ refers to spin-orbitals, I and J to atomic nuclei and Z to nuclear charge. R is

internuclear distances and r is the distance between an electron and a nucleus.

A general excitation is denoted τµ and can, in exact theory, involve all electrons in

the system. If the excitation is a single replacement, only involving one electron, it

is considered a relaxation of the orbitals as a response to the change in the electric

field due to interactions.

The exact CC wave function is obtained by taking all such excitations into account.

This is done by associating an amplitude, tµ, with every excitation operator and



writing the CC wave function as

|CC〉 =

[∏
µ

(1 + tµτµ)

]
|HF〉. (2.8)

This form of the wave function is a non-linear parametrisation of the wave function

and is in itself not very useful. However, using the commutation relations of the

excitation operators

[τµ, τν ] (2.9)

and

τµ
2 = 0, (2.10)

the CC wave function can be written as

|CC〉 = exp(X)|HF〉 (2.11)

where X is the cluster operator usually denoted T in the literature.

X =
∑
µ

tµτµ (2.12)

Eq. (2.11) is known as the exponential ansatz. Writing out the exponential expan-

sion, one obtains contributions from all possible configurations of the spin orbitals.

2.1.2 Coupled cluster equations

In configuration interaction (CI) models, the paramtrisation is linear and taking

the derivative with respect to the variational parameters is easy. This is not the

case for CC models. Taking the derivative of the wave function in Eqs. (2.8)

or (2.11) with respect to the amplitudes give expressions that depend on the

amplitudes themselves. As a result, finding the wave function by minimising the

energy expectation value of the Hamiltonian,

〈E〉 =
〈CC|H|CC〉
〈CC|CC〉

(2.13)



leads to a set of nonlinear equations that each involve all the state determinants

and all combinations of the amplitudes.

To avoid the minimisation problem, the projected CC equations are used.

E = 〈HF|H|CC〉 (2.14)

〈µ|CC〉E = 〈µ|H|CC〉 (2.15)

In Eqs. (2.14) and (2.15), known as the unlinked CC equations, E is the CC

energy. They hold because the overlap between the reference state and the wave

function is

〈HF|CC〉 = 1 (2.16)

and |CC〉 satisfies the Schrödinger equation

H|CC〉 = E|CC〉 (2.17)

The unlinked CC equations can be reformulated as the equivalent linked CC equa-

tions.

E = 〈HF| exp(−X)H exp(X)|HF〉 (2.18)

0 = 〈µ| exp(−X)H exp(X)|HF〉 (2.19)

In the exact formulation the equivalence is apparent because

exp(−X)H exp(X)|HF〉 = E exp(−X) exp(X)|HF〉 = E|HF〉 (2.20)

and

〈HF| exp(−X) = 〈HF| (2.21)

For a truncated cluster operator, the equivalence is more involved, but it holds if

the excitation manifold, {〈µ|}, is closed under de-excitation[1].

While both the linked and unlinked formulations can be used to formulate CC



theory, the linked equations have the advantage that they are easily expanded

using the Baker-Campbell-Hausdorff (BCH) expansion.

exp(A)B exp(−A) = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (2.22)

The Hamiltonian contains one and two electron operators, so each time it is com-

muted with an excitation operator, one of its creation or annihilation operators are

fixed. Consequently, all commutator terms involving more than four commutators

vanish.

exp(−X)H exp(X) =

H + [H,X] +
1

2!
[[H,X], X] +

1

3!
[[[H,X], X], X] +

1

4!
[[[H,X], X], X], X]

(2.23)

One of the advantages of CC theory is that it is size-extensive. This can be

shown using the fact that the cluster operators for two non-interacting systems

will commute with each other and the Hamiltonian of the other system. The linked

formulation is even termwise size-extensive. This is very useful when truncating

the cluster operator[1].

2.1.3 Truncated cluster operator

If all excitations are included in the cluster operator in Eq. (2.12), the CC wave

function is equivalent to the full CI (FCI) wave function with a more complicated

formulation and different normalisation. To make a practically feasible model, the

cluster operator is truncated. In the standard CC models, the cluster operator is

expanded by excitation levels

X = X1 +X2 +X3 + ...

=
∑
ai

tai τ
a
i +

1

2!2

∑
abij

tabij τ
ab
ij +

1

3!2

∑
abcijk

tabcijkτ
abc
ijk + ...

(2.24)



The doubles cluster operator, X2, describes the interactions between pairs of elec-

trons while X3 describes the simultaneous interaction between three electrons and

so on. Higher level interactions are much less likely and the cluster operator can be

truncated by leaving out excitations above a set level. For example, in the CCSD

model developed by Purvis and Bartlett[2], only single and double excitations are

included. Introducing the X1-transformed Hamiltonian

Ĥ = exp(−X1)H exp(X1), (2.25)

the CCSD equations for a closed shell system become

〈µ1|Ĥ + [Ĥ,X2]|HF〉 = 0 (2.26)

〈µ2|Ĥ + [Ĥ,X2] +
1

2
[[Ĥ,X2], X2]|HF〉 = 0 (2.27)

In Eqs. (2.26) and (2.27), 〈µ1| and 〈µ2| refers to single and double excited Slater

determinants, respectively.

Even though X4, with the excitations called the connected quadruples, is not

included, the quadruply excited Slater determinants will still contribute to the

CCSD wave function through disconnected excitations. A disconnected excitation

is the product of lower connected excitations. For example, X2
2 is a quadruple

excitation and can be interpreted as the interactions between two distinct electron

pairs. Depending on the system, the disconnected terms can give a highly accurate

description of the contributions from the highly excited Slater determinants[1].

CCSD combined with an approximate, non-iterative treatment of the triple exci-

tations, called CCSD(T)[36], is often refered to as the gold standard of computa-

tional chemistry[37] due to the high accuracy obtained compared to computational

cost. The simplest CC model is CC singles (CCS) which only includes the sin-

gle excitations and is equivalent to HF theory. In CCSDT, the triples as well as

the singles and doubles are included. Higher level models like CCSDTQ[38] and

up to CCSDTQ567[39] have also been implemented. However, despite very high



accuracy, their computational cost is prohibitive for applications beyond bench-

marking.

2.1.4 Approximate coupled cluster models

Many approximate CC models have been developed[4, 36, 40, 41]. In CC2[40], the

CCSD equations are expanded using perturbation theory. The single excitations

are considered zero order while the double exciations are considered first order.

Without explicitly writing out the nuclear potential, the Hamiltonian is separated

into the zero order Fock operator, F , and the first order fluctuation potential, U .

H = F + U (2.28)

In the canonical representation, the Fock operator is diagonal,

F =
∑
p

εpa
†
pap, (2.29)

so the commutator between F and a cluster operator is

[F,X] =
∑
µ

εµtµτµ (2.30)

and higher commutators vanish.

As the single excitations describe approximate orbital relaxation and their equa-

tions are relatively few and simple, they are treated to infinite order. The doubles,

on the other hand, are only solved to first order. This leads to the approximate

CCSD equations

〈µ1|Ĥ + [Ĥ,X2]|HF〉 = 0 (2.31)

〈µ2|Ĥ + [F,X2]|HF〉 = 0 (2.32)



In the similiar CC3 model[41, 42], the singles and doubles are included to infinite

order while the triples are treated perturbatively. The CCS, CC2, CCSD, CC3

and CCSDT models form a hierarchy of increasing accuracy and computational

complexity, scaling as N4, N5, N6, N7, and N8 respectively where N is the number

of orbitals[40].

2.2 Multi-level coupled cluster theory

2.2.1 Cholesky decomposition

Multi-level coupled cluster models treat different parts of the system with different

models from the CC hierarchy. This makes it possible to treat the most important

parts at a higher level of accuracy without paying the full computational cost for

the whole system. To achieve this, the spin-orbitals of the system must be assigned

to different subspaces of the orbital space. For example, in the ECC2[26], model,

a number of occupied and virtual orbitals are assigned to an active space, while

the rest are considered an inactive space. There are several methods to assign

orbitals. The simplest is to use orbital energies and assign the highest energy

occupied (HOMO) and lowest energy unoccupied orbital (LUMO) to the active

space. Another method is to use Cholesky decomposition to generate localised

orbitals[21, 22] and use these to assign localised active spaces.

The one-electron density matrix in the non-orthogonal atomic orbital (AO) basis,

assuming real orbitals, is positive semi-definite and symmetrical and the Cholesky

decomposition is well defined[21]. The Cholesky decomposition of a matrix A is

written as the matrix product of a lower triangular matrix L and its transpose[43]

A = LLT. (2.33)



The elements in L, when A has dimension N , are given by

Lii =

(
aii −

i−1∑
k=1

Lik
2

) 1
2

(2.34)

and

Lji =
1

Lii

(
aij −

i−1∑
k=1

LikLjk

) 1
2

, j = i+ 1, i+ 2, ..., N. (2.35)

The set of vectors Li generated this way are refered to as Cholesky vectors.

The one-electron density matrix in the AO basis, written in terms of the MO

coefficients is

Dαβ =
occ∑
i

CαiCβi (2.36)

where α and β refers to AOs and i refers to occupied MOs. A pseudo-density

matrix is defined for the virtual orbitals as

DV
αβ =

virt∑
a

CαaCβa (2.37)

For positive definite matrices, the number of Cholesky vectors will be equal to

N . However, the one-electron density matrix will almost always be positive semi-

definite. In these cases, a threshold is defined and the decomposition algorithm

is stopped when there are no diagonal elements greater than this threshold. This

will generate less than N vectors.

The density matrix in the AO basis is inherently local and as a result, it is sparse.

When performing Cholesky decomposition, this property is retained and elements

of the Cholesky vectors C̃αi can be viewed as the coefficients of a new set of

localised, occupied MOs.

Dαβ =
occ∑
i

C̃αiC̃βi (2.38)

Performing the decomposition on the pseudo-density matrix generates the equiv-

alent virtual MOs. By construction, these MOs will be orthonormal.



To avoid mathematical instability, pivoting is performed based on the diagonal

elements. Usually, the pivoting is based on the size of the diagonal elements with

the largest element selected for pivoting. For positive semi-definite matrices, unlike

positive definite ones, the decomposition is not unique but depends on the pivoting.

Assuming no ghost orbitals, each diagonal element corresponds to an AO centred

on an atom. To generate a localised active space, a number of atoms considered

to be of special interest are designated as active. The density matrix is then

decomposed using the diagonals corresponding to AOs centred on active atoms

for pivoting until none of these elements greater than the threshold remains. The

resulting MOs will form the occupied orbitals in a localised active space. The same

procedure on the pseudo-density matrix generates the virtual orbitals. Performing

the decomposition on the residual matrix will generate another set that will form

one or more inactive spaces.

A possible disadvantage with this method is that it may generate an unbalanced

set as orbitals describing bonds between atoms may be assigned entirely to one

atom. To counter this, one may limit the number of orbitals in the active space

or perform the decomposition on an atom-by-atom basis[22].

Unlike other localisation schemes like Boys[44], Edmiston-Ruedenberg[45] and

Pipek-Mezey[46], Cholesky decomposition is noniterative and can be made to scale

linearly. However, the orbitals obtained are not as local as those obtained using

the trust region minimisation procedure developed by Høyvik et al.[47].

2.2.2 Extended CC2

Assuming the orbitals have been assigned to spaces, the excitation manifold can

be split into sub-manifolds. Which sub-manifold an excitation is assigned to,

depends on which orbitals are involved in the excitation. Figure 2.1 demonstrates

the classification of excitations. If an excitation only involves orbitals from one

space, it is considered internal in that space while an excitation involving no



Figure 2.1: Example of an active space of 1,3-butadiene. I
denotes internal, SE semi-external and E external excitations

with respect to the active CCSD space.

orbitals from a space is external to that space. If it involves orbitals from several

spaces, it is referred to as semi-external to those spaces.

In the ECC2 model[26], only two spaces are assigned, one active to be treated

with CCSD and one inactive to be treated with CC2. The excitation manifold

is then divided into two submanifolds {〈µS|}, which contains excitations internal

and semi-external to the inactive space, and {〈µT |} with the excitations internal

to the active space. The cluster operator, X, is then split in two.

|CC〉 = exp(X)|HF〉 = exp(T + S)|HF〉. (2.39)

Giving the CC equations

〈µT | exp(−T − S)H exp(T + S)|HF〉 = 0 (2.40)

〈µS| exp(−T − S)H exp(T + S)|HF〉 = 0 (2.41)



Amplitudes in T are treated to infinite order, while those in S will be treated in

an approximate fashion. Expanding S in orders of the perturbation yields

S = S(0) + S(1) + S(2) + ... =
∑
µ

s(0)µ τµ +
∑
µ

s(1)µ τµ +
∑
µ

s(2)µ τµ + ... (2.42)

where µ runs over the excitations in {〈µS|}. Splitting the Hamiltonian as in Eq.

(2.28), the amplitude equations for S becomes

εµs
(0)
µ = 0 (2.43)

εµs
(1)
µ = 〈µ| exp(−T )U exp(T )|HF〉 (2.44)

εµs
(2)
µ = 〈µ| exp(−T )[U, S(1)] exp(T )|HF〉 (2.45)

In both CC2 and CCSD, the single excitations are treated to infinite order, so the

single excitated determinants in ECC2 are refered to as 〈µ1|, regardless of which

submanifold they belong to. The CC equations for the singles amplitudes are the

same as for CCSD.

〈µ1|Ĥ + [Ĥ,X2]|HF〉 = 0 (2.46)

For the same reason, the equations for the amplitudes in T2 are also the same as

in CCSD

〈µT2 |Ĥ + [Ĥ,X2] +
1

2
[[Ĥ,X2], X2]|HF〉 = 0 (2.47)

Excitations in {〈µS2 |} must involve at least one orbital not in the active space, so

〈µS2 |[[Ĥ, T2], T2]|HF〉 = 0. (2.48)

In standard CC perturbation theory, all double excitations are considered first

order in the perturbation. This is not the case in ECC2, where the excitations

in T2 are considered zero order. This leads to an additional commutator term,

[Ĥ, T2], in the S2-amplitude equations

〈µS2 |[F, S2] + Ĥ + [Ĥ, T2]|HF〉 = 0 (2.49)



compared to the standard CC2 equations(2.32). The additional computational

complexity from the commutator term is low due to the relatively small number of

T2 amplitudes, but it leads to an increased accuracy as demonstrated in Chapter 4.

The advantage of the ECC2 model compared with CCSD is the reduced compu-

tational scaling while retaining a comparable accuracy (see Chapter 4). In CCSD,

the most demanding term, the B-term, scales as V 4O2 where V is the number of

virtual and O the number of occupied orbitals[1, 48]. In ECC2, the B-term scales

simply as kV 2, where k is a prefactor scaling as V 2
AO

2
A. VA and OA denotes vir-

tual and occupied orbitals in the active space. As the active space should contain

only a fraction of the total number of orbitals, this greatly reduces computational

complexity. For systems above a certain size, ECC2 will scale as CC2.

2.2.3 Beyond ECC2

ECC2 is a relatively simple model that only contains two spaces and two levels

of theory. More advanced models can be formulated that contain several spaces

and levels of theory. In these models, more orbital spaces are defined and the

same scheme for assignment of excitations is used as the one in ECC2. Internal

excitations are assigned to their space, while semi-external excitations are assigned

to to the lowest level space they include orbitals from.

Including a space at the CCS level is the easiest extension of the ECC2 model.

In all three standard models, CCS, CC2 and CCSD, the singles amplitudes are

treated to infinite order. This means that the singles in a CCS space are treated

the same way as in the other spaces and Eq. (2.46) is still valid. The double

excitations internal and semi-external to the CCS space are simply set to zero.

In addition to a CCS space, an SCF space can also be included where all cluster

amplitudes are set to zero.

To include triple excitations, the best models to use are CCSD(T)[36] or CC3[41].

In such a model, up to five orbital spaces, denoted P,Q,R, S and T are required.

The P -space is only treated at the SCF level, so all amplitudes in the corresponding



part of the cluster operator are set to zero. Eqs. (2.50-2.53) summarise the splitting

of the cluster operator.

X = X1 +X2 +X3 (2.50)

X1 = Q1 +R1 + S1 + T1 (2.51)

X2 = R2 + S2 + T2 (2.52)

X3 = T3 (2.53)

In the standard CCSD(T) model, the amplitude equations are the same as for

the CCSD and this is also true for the MLCC formulation, giving the following

amplitude equations.

〈µ1|Ĥ + [Ĥ,X2]|HF〉 = 0 (2.54)

〈µR2 |Ĥ + [F,R2] + [Ĥ, S2 + T2]|HF〉 = 0 (2.55)

〈µS2 |Ĥ + [Ĥ,X2] + [[Ĥ,X2]X2]|HF〉 = 0 (2.56)

〈µT2 |Ĥ + [Ĥ,X2] + [[Ĥ,X2]X2]|HF〉 = 0 (2.57)

Perturbation theory is used to calculate the T3 amplitudes. As the CCSD double

excitations are considered zero order, only the first order triple amplitudes are

needed. The double commutator term between the double excitation operators

and U is not included in current implementations due to its high computational

complexity. This term could be important and the effect of including it should be

investigated. Computational simplification will still be achieved as the projection

manifold will be restricted to the T-manifold.

εµT3 t
(1)

µT3
= 〈µT3 |[U, S2 + T2]|HF〉 (2.58)

In the resulting energy correction, E
CCSD(T )
corr , only the first order terms are re-

tained. This is another difference from standard CCSD(T) where both fourth and



fifth order terms are retained.

ECCSD(T )
corr =

∑
µT1 ,µ

T
2 ,µ

S
2

tµ〈µ|[U, T3]|HF〉 (2.59)

In the CC3 case, the singles and doubles are included unperturbatively while the

triples are included perturbatively, analogously to doubles in CC2. Only the singles

equations from the T-space will be affected as the Hamiltonian does not contain

higher than two-electron operators. The R2 and T3 operators does not appear in

each others amplitude equations as they are first order and the equations only

solved to first order.

0 = 〈µZ 6=T1 |Ĥ + [Ĥ,X2]|HF 〉 (2.60)

0 = 〈µT1 |Ĥ + [Ĥ,X2] + [Ĥ, T3]|HF 〉 (2.61)

0 = 〈µR2 |Ĥ + [F,R2] + [Ĥ, S2 + T2]|HF 〉 (2.62)

0 = 〈µS2 |Ĥ + [Ĥ,X2] + [[Ĥ,X2], X2]|HF 〉 (2.63)

0 = 〈µT2 |Ĥ + [Ĥ,X2] + [[Ĥ,X2], X2]|HF 〉 (2.64)

0 = 〈µT3 |[Ĥ, S2 + T2] + [[Ĥ, S2 + T2], S2 + T2] + [F, T3]|HF 〉 (2.65)

2.3 MLCC response theory

2.3.1 Quasi-energy response method

As amplitudes in approximate CC models are not obtained through projection,

it is not possible to obtain response functions with the generalised Hellmann-

Feynmann theorem[42]. However, it is possible to derive them as derivatives of

the QE Lagrangian[30, 42, 49, 50]. The QE method assumes that the Hamiltonian

can be written as

H = H0 + V t (2.66)



where V t is a periodic, time-dependent perturbation with period T . Furthermore,

to ensure hermicity, V t has the Fourier transform

V t =
N∑

j=−N

∑
A

AεA(ωj) exp(−iωjt) (2.67)

whereA = A† and is a real frequency-independent operator. Furthermore, ω−j = − ωj
and (εA(ωj))

∗ = εA(−ωj).

In time-dependent theory, the CC ansatz is somewhat modified.

|CC(t)〉 = exp(X(t))|HF〉 exp(iα(t)) (2.68)

Where α is a generally complex phase factor and the time-dependent cluster op-

erator X(t) is written as

X(t) =
∑
µ

tµ(t)τµ (2.69)

The corresponding dual type state[29, 41] is

〈Λ| =

(
〈HF|+

∑
µ

t̄µ(t)〈µ| exp(−T (t))

)
exp(−α(t)) (2.70)

where {t̄µ(t)} are the Lagrange multipliers corresponding to the tµ amplitudes.

If the CC wave function is a solution of the time dependent Schrödinger equation,

it satisfies

〈Λ|
[
H0 + V t − i d

dt

]
|CC(t)〉 = 0 (2.71)

The QE Lagrangian is defined as

L(t) = Re

(
〈Λ̃|
[
H0 + V t − i d

dt

]
|C̃C(t)〉

)
(2.72)

with

|C̃C(t)〉 = exp(X(t))|HF〉 (2.73)



and

〈Λ̃| = 〈HF|+
∑
µ

t̄µ(t)〈µ| exp(−T (t)) (2.74)

The QE Lagrangian is not variational, but the term differing from Eq. (2.71) is

proportional to α̇. Because the time-dependent perturbation is periodic, so is α

and the time averaged QE Lagrangian is variational.

δ{L(t)}T = δ

(
1

T

∫ t0+T

t0

L(t)dt

)
= 0 (2.75)

Expanding the CC amplitudes

tµ(t) = t(0)µ + t(1)µ (t) + t(2)µ (t) + ... (2.76)

with

t(1)µ (t) =
N∑

j=−N

t(1)µ (ωj) exp(−iωjt)

=
N∑

j=−N

∑
A

tAµ (ωj)εA(ωj) exp(−iωjt)

(2.77)

The Lagrange multipliers can be expanded in a similar manner. Due to the 2n+ 1

and 2n+2 rules[51, 52], higher order amplitudes and multipliers does not affect the

linear response functions as they are second order. Expanding the QE Lagrangian

similarly

L = L(0) + L(1) + L(2) + ... (2.78)

the variational condition is then expressed as

∂

∂t
(m)
µ (t)

{L(n)(t)}T =
∂

∂t̄
(m)
µ (t)

{L(n)(t)}T = 0, m ≤ n (2.79)

The linear response function can then be written as the derivative of the the time-

averaged QE Lagrangian with respect to the perturbation strength parameters[29,

30].

〈〈A,B〉〉ωj
=

∂2{L(2)(t)}T
∂εA(−ωj)∂εB(ωj)

(2.80)



2.3.2 Linear response function for ECC2

To introduce time dependent perturbation theory in the ECC2 model, the Hamil-

tonian is split into three parts.

H = F + U + V t (2.81)

The S-operator is first order in both U and V t, while T is still zero order in U ,

but first order in V t[40, 42].

Inserting the ECC2 equations (2.39) into the definition (2.72), the explicit QE

Lagrangian is

L(t) = 〈HF |H exp(T + S)|HF 〉

+
∑
µ1

t̄µ1

(
〈µ1|Ĥ + [Ĥ,X2]|HF 〉 − i

dtµ1
dt

)
+
∑
µT2

t̄µT2

(
〈µT2 |Ĥ + [Ĥ,X2] +

1

2
[[Ĥ,X2], X2]|HF 〉 − i

dtµT2
dt

)

+
∑
µS2

t̄µS2

(
〈µS2 |[F + V̂ , S2] + Ĥ + [Ĥ, T2]|HF 〉 − i

dtµS2
dt

)
(2.82)

Derivation of the amplitudes and multipliers from the Lagrangian variational prin-

ciple is tedious and the reader is referred to Appendix A for details. Only the

results are presented here. The zero order amplitudes are those from the time-

independent theory, so only the first order amplitudes and zero order multipliers

are needed for the linear response function.

t̄0A = η0 (2.83)

(ω1−A)tA(ω) = ξA (2.84)

In Eqs. (2.83) and (2.84), t̄0 is a row vector with the zero order Lagrange mul-

tipliers while tA(ω) is a column vector with the first order amplitudes defined in



Eq. (2.77). The elements in η0 are given by

η0νi = 〈HF |[Ĥ0, τνi ]|HF 〉 (2.85)

and

ξA =


〈µ1|Â+ [Â,X

(0)
2 ]|HF 〉

〈µT2 |[Â,X
(0)
2 ]|HF 〉

〈µS2 |[Â,X
(0)
2 ]|HF 〉

 (2.86)

where Â is the T1-transformed one-electron operators from Eq. (2.67). A is the
ECC2 Jacobian.

A =
〈µ1|[Ĥ0 + [Ĥ0, X

(0)
2 ], ν1]|HF 〉 〈µ1|[Ĥ0, νT2 ]|HF 〉 〈µ1|[Ĥ0, νS2 ]|HF 〉

〈µT2 |[Ĥ0 + [Ĥ0, X
(0)
2 ], ν1]|HF 〉 〈µT2 |[Ĥ0 + [Ĥ0, X

(0)
2 ], νT2 ]|HF 〉 〈µT2 |[Ĥ0 + [Ĥ0, X

(0)
2 ], νS2 ]|HF 〉

〈µS2 |[Ĥ0 + [Ĥ0, T
(0)
2 ], ν1]|HF 〉 〈µS2 |[Ĥ0, νT2 ]|HF 〉 〈µS2 |[F, νS2 ]|HF 〉

 (2.87)

In Eq. (2.87), τνZi is written as νZi . The ECC2 Jacobian is very similar to that

in CC2[40], but it has additional terms in the elements corresponding to the T2

amplitudes and the additional commutator term in the S2 amplitude equations

appears in the (µS2 , ν1) and (µS2 , ν
T
2 ) elements.

Eq. (2.84) will be singular if ω is an eigenvalue of A and the first order amplitudes

will go to infinity. These are the poles in the response function, so the eigenvalues

of A correspond to the excitation energies of the system[40].



The linear response function is

〈〈A,B〉〉ωi
=

∂{L(2)}T
∂εA(−ωi)∂εB(ωi)

= P (A(−ωi), B(ωi))

{
〈HF |[Â, T (B)

1 ] +
1

2
[[Ĥ0, T

(A)
1 ], T

(B)
1 ]|HF 〉

+
∑
µ1

t̄(0)µ1 〈µ1|[Â,X(B)] +
1

2
[[Ĥ0, X

(A)], X(B)]|HF 〉

+
∑
µS2

t̄
(0)

µS2
〈µS2 |[Â,X

(B)
2 ] +

1

2
[[Ĥ0, T

(A)
1 ], T

(B)
1 ] + [[Â, T

(B)
1 ], T

(0)
2 ]

+ [[Ĥ0, T
(A)
1 ], T

(B)
2 ] +

1

2
[[[Ĥ0, T

(A)
1 ], T

(B)
1 ], T

(0)
2 ]|HF 〉

+
∑
µT2

t̄
(0)

µT2
〈µT2 |[Â,X

(B)
2 ] +

1

2
[[Ĥ0, T

(A)
1 ], T

(B)
1 ]

+ [[Â, T
(B)
1 ], X

(0)
2 ] + [[Ĥ0, T

(A)
1 ], X

(B)
2 ]

+
1

2
[[[Ĥ0, T

(A)
1 ], T

(B)
1 ], X

(0)
2 ] +

1

2
[[Ĥ0, X

(A)
2 ], X

(B)
2 ]|HF 〉

}

(2.88)

where T (A)(ωi) = ∂T (1)(ωi)/∂εA(ωi) is the derivative of the frequency dependent

first order cluster operator

T (1)(t) =
N∑

i=−N

T (1)(ωi) exp(−iωit) (2.89)

and P (x, y)f(x, y) = f(x, y) + f(y, x). In Eq. (2.88), the frequency dependence of

the cluster operators has been supressed.

Compared to the CC2 response function[40], additional terms appear in Eq. (2.88).

This is due to the apperance of double excitations that are zero order in U . In

standard theory, all terms containg U and T2 are at least second order and disap-

pear. In ECC2, this is no longer the case and these terms are retained as well as

terms containing two double commutators.



Chapter 3

Implementation

3.1 ECC2 energy calculations

To further study the viability of MLCC methods, the ECC2 model has been imple-

mented in a pre-release version of the DALTON 2013 software package[33, 34]. The

focus of the implementation is proof of principle and to investigate the accuracy of

the ECC2 model compared to CC2 and CCSD. The pilot code is quite primitive

and options for frozen core[53] and symmetry are not yet implemented. Thus, for

the time being, reduced computational complexity cannot be investigated. In fact,

the implementation uses more time than equivalent CCSD calculations.

The basis for the ECC2 pilot code is the CCSD implementation in DALTON by

Koch[54, 55]. As noted previously, the T1 and T2 amplitude equations, Eqs. (2.46)

and (2.47), are the same as for CCSD. The CC equations are solved in an iterative

fashion and in each iteration, 〈µ| exp(−X)H exp(X)|HF〉 is initially calculated as

in CCSD.

Inspecting Eq. (2.49), the terms involving S2-amplitudes are the same that would

appear in CC2. To obtain these, the variable indicating which model to use is

set to be CC2 and the T2-amplitudes temporarily set to be zero before calling the

subroutine that calculates value of the terms. The commutator term, [Ĥ, T2], is

calculated by restoring the T2-amplitudes, setting the S2-amplitudes to zero and

25



resetting the model variable to CCSD. Adding this to the previous calculation

gives a 〈µ2
S|Ĥ|HF〉-term too much. This term is then calculated alone by setting

all amplitudes to zero. Subtracting this from the previous results gives the cor-

rect value. The terms calculated using only CCSD are then overwritten and the

amplitudes restored before continuing the iteration in the usual fashion.

Unless otherwise stated, ECC2 refers to the model described above, but two al-

ternative models are also implemented. In the ECC2-II, as opposed to ECC2-I

described above, excitations semi-external to the active space are included in T2.

This is done by setting the semi-external excitation amplitudes to zero and restor-

ing them together with the T2-amplitudes. In the second variation, called ECC2a,

the commutator term, [Ĥ, T2] is not included and the iteration proceeds normally

after calculating the CC2 amplitudes for S2. If the commutator is included, the

model is refered to as ECC2b.

The ECC2 model is also implemented with a CCS extension. This is achieved by

setting double excitations corresponding to the CCS space to zero for all calcula-

tions.

3.2 ECC2 excitation energies

As discussed in Chapter 2, the excitation energies of a system can be found by

computing the eigenvalues of the Jacobian matrix. In DALTON, originally imple-

mented by Koch[56] and the current version was by Christiansen[57], the Davidson

algorithm[58] is employed to find the lowest eigenvalues. This algorithm works by

solving the eigenvalues of the n × n matrix A in a reduced space K spanned by

the k orthonormal vectors {vm}. The interaction matrix Hk is then defined as

Hk = V T
k AVk (3.1)

where Vk = [v1, v2, ..., vk] is a n× k matrix.



For a sparse and diagonally dominant matrix, such as the CC Jacobian, k will be

much smaller than n, so finding the eigenvalues λ̃k and eigenvectors yk of Hk is

a much simpler task than for the full matrix. Spanning y out in the whole space

gives an approximate eigenvector ũ for A

ũ = Vkyk (3.2)

Convergence is tested by calculating the norm of the residual

rk =
(
λ̃kI−A

)
ũ (3.3)

If the algorithm is not converged, a new vector tk+1 is generated

tk+1 = M−1rk (3.4)

and orthonormalised with respect to {vm} before being added as a column in Vk+1.

The preconditioner M is an easily invertible approximation of
(
λ̃kI−A

)
, usually(

λ̃kI−D
)

, where D is the diagonal of A. For the ECC2 implementation, the

subroutine for generating new vectors was not changed, so the preconditioner used

contained the CCSD diagonal which might have affected the number of iterations.

In DALTON, the Davidson algorithm is initiated by a set of k guess vectors {vm}

where k is the number of excitation energies to be calculated. All the elements of

vk are zero except the element corresponding to the kth largest diagonals in the

Jacobian A. This is a good start guess due to sparsity and diagonal dominance.

Again, the CCSD diagonal is used for the ECC2 model, however, the diagonal

elements corresponding to single excitations are likely to be the largest and these

are the same for both models.



A appears in Eqs. (3.1) and (3.3), both times on the form Av and the transformed

vector will be referred to as ρ. 
ρ1

ρT2

ρS2

 = A


v1

vT2

vS2

 (3.5)

The CCSD[28] and CC2[40] Jacobians are

ACCSD =〈µ1|[Ĥ0 + [Ĥ0, X
(0)
2 ], ν1]|HF 〉 〈µ1|[Ĥ0, ν2]|HF 〉

〈µ2|[Ĥ0 + [Ĥ0, X
(0)
2 ], ν1]|HF 〉 〈µ2|[Ĥ0 + [Ĥ0, X

(0)
2 ], ν2]|HF 〉

 (3.6)

ACC2 =〈µ1|[Ĥ0 + [Ĥ0, X
(0)
2 ], ν1]|HF 〉 〈µ1|[Ĥ0, ν2]|HF 〉

〈µ2|[Ĥ0, ν1]|HF 〉 〈µ2|[F, ν2]|HF 〉

 (3.7)

Comparing Eqs. (2.87) and (3.6), the equations for ρ1 and ρT2 are the same for

ECC2 and CCSD. Thus, as for the energy, the iteration starts with calculating

the CCSD terms. Calculating ρS2 is more complicated and is done in three sep-

arate steps. First, v1 and vT2 is set to zero and the model to CC2 to obtain the

contribution from the lower right part of A. For the next steps, the model is reset

to CCSD. The lower left part contribution is obtained by setting vT2 and vS2 and

all S2-amplitudes to zero. Finally, v1 and vS2 and all amplitudes are set to zero to

obtain the commutators in the T2,S2 part of A.

In total, the transformation routine must be called four times for each iteration

step. In addition, the amplitudes, v and ρ are read and written to disc several

times and intermediates calculated and saved during the energy calculation must

be recalculated. The result is an implementation that often takes ten times longer

than normal CCSD. This greatly reduces the range of feasible applications, both

in terms of system size and number of excitations.



Chapter 4

Results

4.1 ECC2 energy calculations

4.1.1 Abstraction processes

Multi-level coupled cluster models are intended to calculate local properties in

systems that are too large for a more conventional CC approach. In a typical sys-

tem, the active space will only contain a fraction of the orbitals of the system and

MLCC is not expected to perform particularly well with size-extensive properties

such as total energy and polarisability. An exception is cases where perturbation

theory diverges.

During abstraction processes, HOMO and LUMO will typically move closer in en-

ergy and become quasi-degenerate. As a result, the correction terms in perturba-

tive models like CC2 and second-order Møller-Plesset theory (MP2) will approach

singularities and the models fail[1, 4]. If HOMO, LUMO and possibly some of the

orbitals closest in energy are treated with CCSD, the HOMO-LUMO gap observed

by CC2 may become larger and singularities may be avoided.

Figure 4.1 presents a minimal example of such a system. In the figure, the energy of

lithium hydride is calculated using various models is plotted against bond length.
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Figure 4.1: Total energy curves for dissociation of lithium hydride using the
basis set aug-cc-pVDZ.

SCF far overestimates the energy because a single configuration state can only

describe the dissociation into Li+ and H− rather than Li and H[59]. For such

a small system with only four electrons, linked triple and quadruple excitations

are negligable, so CCSD and FCI are identical, consistent with results reported

elsewhere[60]. At equilibrium geometry, the perturbative models MP2 and CC2

perform reasonably well, however, as the bond becomes stretched, the performance

is drastically reduced.

Two ECC2 variations are included in Figure 4.1, ECC2-I and ECC2-II, described

in Chapter 3. In both, the active space consists of HOMO and LUMO. As only

excitations of the electrons in the lithium s1-orbital to orbitals higher in energy

than LUMO are treated at the CC2 level, the ECC2-II model is almost identical

with CCSD and FCI. At the equilibrium geometry, ECC2-I performs comparably

to the perturbative models. At increased bond distances, however, both the ECC2

models converge to the FCI value.
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Figure 4.2: Total energy curves for dissociation of a sodium dimer using the
basis set aug-cc-pVDZ.

A similar behaviour is observed for the sodium dimer in Figure 4.2. The active

space consists of HOMO and LUMO and again ECC2-I performs comparably to

the perturbative methods in the equilibrium geometry, but converges to the CCSD

value when the perturbative methods fail for stretched bonds. The ECC2-II model

is very close to the CCSD value for all geometries.

In addition to the I and II variations of ECC2 described above, Figure 4.2 also

shows the performance of the ECC2a and ECC2b models. The description pro-

vided by ECC2b is slightly better for all geometries.

Figure 4.3 shows the energy curves of ethene during abstraction of one of the

hydrogen atoms. From the initial geometry (Table B.1), a hydrogen atom was

moved along the direction of its bond while the other atoms were held in place.

During the abstraction process, the nature of HOMO and LUMO change from

the π-orbitals of the carbon-carbon double bond to the bonding and anti-bonding

σ-orbitals of the carbon-hydrogen bond. Consequently, only including HOMO and
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Figure 4.3: Total energy curves for dissociation of a hydrogen atom from
ethene using the basis set aug-cc-pVDZ.

LUMO in the active space results in an unphysical drop in the total energy during

abstraction. To remedy this problem, the two highest occupied and two lowest

virtual orbitals are included in the active space in Figure 4.3.

4.1.2 Local geometry

Another possible application for MLCC is the optimisation of local geometries.

Making use of the localised orbitals described in Section 2.2, one can define a

local active space to be accurately modelled. One particular application is the

modelling of chemical reactions in large systems where only a small part of the

system is directly involved in the reaction[61].

Figure 2.1 illustrates the active space used for the modelling of an abstraction

process where a hydrogen atom is dissociated from 1,3-butadiene. This active

space contains 5 occupied and 26 virtual orbitals compared to 10 occupied and
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Figure 4.4: Total energy curves for dissociation of a hydrogen atom from
1,3-butadiene using the basis set aug-cc-pVDZ.

131 virtual orbitals in the inactive space. From the initial geometry (Table B.2), a

hydrogen atom was abstracted along the bond direction. The total energy curves

calculated with various models are plotted in Figure 4.4. The accuracy of ECC2

is about the same as for CC2 in the equilibrium geometry. However, the error in

ECC2 with respect to CCSD is almost constant throughout the process and the

dissociation energy of ECC2 is 531.5 kJ/mol compared to 535.1 kJ/mol for CCSD.

A problem with this model is the unphysical reduction in energy when increasing

the bond length beyond 3.5 Å. This is most likely due to a change in the Cholesky

decomposition during the abstraction process which again leads to a change in the

number of active and inactive orbitals.



Table 4.1: Electronic dipole moments and polarisability in a.u. of hydrogen
fluoride the along C∞ axis with the basis set aug-cc-pVTZ.

Active space Dipole moment Polarisability
o v1 ECC2a ECC2b ECC2a ECC2b

CC2 0.1679 6.73
1 1 0.1679 0.1679 6.72 6.73
2 2 0.1675 0.1685 6.72 6.74
3 3 0.1605 0.1590 6.54 6.50
4 4 0.1607 0.1592 6.49 6.45
4 5 0.1603 0.1580 6.46 6.42
CCSD 0.1527 6.35

1 o - number of occupied orbitals,
v - number of virtual orbitals

4.1.3 Static properties

Static properties such as dipole moments and polarisabilities can be calculated by

taking the numerical derivatives of the energy with respect to field strength. As

these properties are size-extensive, localised active space are generally not expected

to greatly improve their accuracy. However, electrons in higher energy orbitals are

more mobile than the core electrons[62], and thus, treating these electrons with

higher accuracy in an MLCC model may give a better accuracy to computation

complexity ratio.

All static property calculations presented used experimental geometry from the

CRC handbook[63], except for 1,3-butadiene where an SCF optimised geometry

was used[64]. Numerical differentiation was employed to obtain electronic dipole

moments and polarisabilities, as these are not implemented for the ECC2 model.

Both analytical and numerical results are available for CC2 and the difference

between them was in the order of 10−4 a.u. for dipole moments and 10−2 a.u. for

polarisabilities.

Dipole moment and polarisability for hydrogen fluoride along the H-F bond are

presented in Table 4.1. Using CC2, the errors in dipole moment and polaris-

ability is about 10% and 6% respectively with error defined for property p as

|(pCCSD − pCC2)/pCCSD|. With the ECC2b model and the largest active space, 4



Table 4.2: Electronic dipole moment and polarisability in a.u. of ozone the
along C2 axis with the basis set aug-cc-pVTZ.

Active space Dipole moment Polarisability
o v1 ECC2a ECC2b ECC2a ECC2b

CC2 0.1474 14.71
1 1 0.2091 0.2037 14.17 13.99
2 2 0.2123 0.2044 14.14 13.99
3 3 0.2113 0.2047 14.08 13.96
4 4 0.1868 0.1866 14.06 13.97
5 5 0.1858 0.1837 13.99 13.92
6 6 0.1802 0.1821 13.84 13.82
7 7 0.1828 0.1838 13.74 13.76
8 8 0.1808 0.1824 13.74 13.76
CCSD 0.1876 13.63

1 o - number of occupied orbitals,
v - number of virtual orbitals

occupied and 5 virtual orbitals, the error is reduced to 4% and 1%. In total, there

are 76 orbitals in the system, so the number treated with CCSD is greatly reduced

compared to the full model.

Due to its resonance structure, large electron correlation effects are expected for

ozone. The calculated values are presented in Table 4.2 and errors for CC2 is 21%

and 8%. With the ECC2b model and an active space of 8 occupied and 8 virtual

orbitals out of a total of 12 occupied and 126 virtual, this is reduced to 3% and

1%. For most of the systems tested, the ECC2 models gave an intermediate value

between CCSD and CC2. Ozone appears to be a special case, as the smallest

active spaces give an ECC2 dipole moment higher than the CCSD dipole moment

while the CC2 moment is smaller.

Table 4.3 presents the polarisabilities calculated for ethene and ethyne along the

C-C bond. For these systems, CC2 performs considerably better than the pre-

vious examples with errors of 3.3% and 4.4%. Because CC2 performs so well,

there is little to be gained by employing the ECC2 model. Including all occupied

orbitals except the 1s orbitals of carbon and 8 virtual orbitals in the active space

approximately halves the errors to 1.6% and 2.7%.



Table 4.3: Polarisability in a.u. of ethyne and ethene along the C-C bonds
with the basis set aug-cc-pVTZ.

Active space C2H2 C2H4
o v1 ECC2a ECC2b ECC2a ECC2b

CC2 31.30 35.73
1 1 31.30 31.30 35.72 35.72
2 2 31.29 31.30 35.72 35.73
3 3 31.22 31.22 35.70 35.71
4 4 31.17 31.11 35.69 35.70
5 5 31.14 31.08 35.34 35.29
5 6 31.00 31.06 - -
5 7 31.07 30.99 - -
5 8 30.91 30.79 - -
6 6 - - 35.27 35.19
6 7 - - 35.26 35.17
6 8 - - 35.24 35.15
CCSD 30.30 34.21

1 o - number of occupied orbitals,
v - number of virtual orbitals

Table 4.4: Polarisability in a.u. of benzene along a C2 axis going through two
hydrogen atoms and 1-3-butadiene along the C-C single bond with the basis set

aug-cc-pVTZ.

Active space C6H6 C4H6
o v1 ECC2a ECC2b ECC2a ECC2b

CC2 86.31 82.59
1 1 86.32 86.32 82.56 82.56
2 2 86.35 86.31 82.55 82.55
3 3 86.33 86.30 82.53 82.55
4 4 86.30 86.30 82.51 82.54
5 5 86.29 86.29 82.46 82.52
6 6 86.26 86.25 82.44 82.49
7 7 85.77 85.44 80.38 80.17
8 8 85.18 84.94 80.04 79.84
9 9 85.07 84.82 79.97 79.73
10 10 84.92 84.62 79.34 78.85
11 11 - - 79.34 78.85

CCSD 82.38 76.81
1 o - number of occupied orbitals,

v - number of virtual orbitals



For the two larger conjugated systems, benzene and 1,3-butadiene, the errors are

reduced from 4.8% to 2.7% and 7.5% to 2.6% respectively. For both the systems,

the initial improvement is slow and the results worse than for CC2 in some cases.

However, there is a strong improvement when the seventh and eighth occupied and

virtual orbitals for both systems are included. Inspection of the output reveals

that these orbitals introduce new symmetries in the active space.

4.2 Excitation energies

4.2.1 Functional groups

Excitation energies are size-intensive properties and often have a highly local

nature[65, 66]. In particular, systems with functional groups may have excita-

tions involving only orbitals localised on the atoms in the functional group. De-

canal, shown in Figure 4.5-4.8, is such a system with a long, inert carbon chain

with an aldehyde group at the end. The two lowest excitation energies calcu-

lated with CCSD, CC2 and ECC2 with various active spaces using a geometry

from PubChem[67] is presented in Table 4.5. ∆model is the excitation energy

calculated using CCSD minus the excitation energy of the model.

CC2 performs quite well for the lowest excitation, considering that CCSD excita-

tion energies typically have an error in the order of 0.1 eV with respect to FCI[56].

Defining oxygen, the closest carbon and the attached hydrogen as active atoms

halves the error compared to CC2, however, the norms of the amplitudes in Table

4.6 reveals that the excitation has a considerable semi-external character from the

active space. In the table, T refers to the CCSD space, while S refers to the CC2

space. Only single excitations are included because most of the examples are al-

most entirely single excitation and none have more than 10% doubles contribution.

As only excitations with an amplitude greater than 0.161467 are printed, the total

printed norm is less than 0.7 in some cases. This makes the analysis problematic



and a future implementation should print out the character of the excitations by

default.

By expanding the active space to contain the next carbon and its hydrogen, the

excitation becomes entirely internal in the active space and the error is reduced to

0.001 eV. The next two models use the same CCSD space, however, they also use

a CCS space to describe the carbon chain at the other end of the molecule. As

the lowest excitation is still internal to the CCSD space, the excitation energy is

still more accurate than CC2, even though half the molecule is treated with CCS

in the ECC2 D model.

The second excitation energy is considerably less accurate for all models and CC2

is more than 0.4 eV lower than CCSD. ECC2 A and ECC2 B does not perform

particularly well because all the single excitations are either external or semi-

external to the active space. ECC2 C perform surprisingly well, however, this is

due to two opposing effects. CCS excitation energies are generally a lot higher than

those of CC2 and CCSD, so the excitation found using CC2 and CCSD becomes

much higher in energy. Instead, the algorithm finds an excitation with a greater

internal character. As CC2 lowers the energy, the sum is quite close to the CCSD

value. In ECC2 D, the excitation found in the previous model is also pushed up,

so the reported excitation is a high energy excitation mostly internal to the CCSD

space.

The number of orbitals in the active space is proportional to the number of active

atoms. For decanal using cc-pVDZ, ECC2 A uses an active space of 8 occupied

and 27 virtual orbitals compared to a total of 44 occupied and 210 virtual orbitals.

In ECC2 B, this is increased to 12 and 49 orbitals. ECC2 C and ECC2 D has the

same number of CCSD orbitals as ECC2 B and in addition a CCS space. In the

first of these, 8 occupied and 41 virtual orbitals are treated with CCS while 20

occupied and 101 virtual are in the CCS space in ECC2 D.

A similar pattern appears for trans-ethyl-i-butyl-diazene (Table 4.7). The active

spaces used in the ECC2 models can be found in Figures 4.9 and 4.10 and the

geometry obtained from PubChem[68]. Note that the hydrogen atoms are not



Figure 4.5: Decanal A

Figure 4.6: Decanal B

Figure 4.7: Decanal C

Figure 4.8: Decanal D



Table 4.5: Excitation energies of decanal in eV using cc-pVDZ.

CCSD ∆CC2 ∆ECC2 A ∆ECC2 B ∆ECC2 C ∆ECC2 D
1 4.08 -0.08 0.04 0.00 -0.05 -0.05
2 8.52 0.43 0.22 0.17 -0.04 -0.21

Table 4.6: Norm of the amplitudes of the different types of single excitations
for decanal using cc-pVDZ.

Model Exci. T → T T → S S → T S → S tot.

ECC2 A
1 0.68 0.54 - - 0.87
2 - 0.23 - 0.89 0.92

ECC2 B
1 0.87 - - - 0.87
2 - 0.21 - 0.85 0.88

ECC2 C
1 0.88 - - - 0.88
2 0.20 0.24 - 0.82 0.88

ECC2 D
1 0.88 - - - 0.88
2 0.82 - 0.23 - 0.85

active in ECC2 B, so the virtual orbitals centred on hydrogen are considered

inactive. For the lowest excitations, CC2 performs well, however, at higher energies

it performs progressively worse. ECC2 with an active space only including the

nitrogen atoms does not perform very well either and considerably worse than

CC2 for the second excitation. Analysis of the output, summarised in Table 4.8,

reveals that the first excitation is dominated by internal excitations, but also

contains semi-external excitations from the T-space to S-space. Excitations 2-

4 have a smaller internal character and also include S → T excitations while

excitation five is dominated by T → S excitations. As a result, they are all quite

inaccurate.

Expanding the active space to also include the carbon atoms neighbouring the

nitrogen atoms greatly reduces the errors in the excitation energies. The internal

character of excitations 1-4 is considerably increased and the semi-external exci-

tations into the active space seems to become internal. In the last excitation, the

internal character is reduced even though the accuracy is increased. This may be

due to chance, but all these excitations have quite low total norms. As a result,

there might be considerable internal character that is not accounted for.



Table 4.7: Excitation energies of trans-ethyl-i-butyl-diazene in eV using cc-
pVDZ above and aug-cc-pVDZ below.

CCSD ∆CC2 ∆ECC2 A ∆ECC2 B
1 3.40 0.02 -0.03 -0.01
2 7.41 -0.08 -0.16 -0.01
3 8.14 0.20 -0.22 -0.00
4 8.31 0.29 -0.22 -0.04
5 8.46 0.43 -0.20 0.01
1 3.39 0.04 -0.03 -0.01
2 6.24 0.52 0.03 0.03
3 6.55 0.53 0.04 0.03
4 6.60 0.54 0.03 0.03
5 6.88 0.59 0.06 0.04

Table 4.8: Norm of the amplitudes of the different types of single excitations
for trans-ethyl-i-butyl-diazene using cc-pVDZ.

Model Exci. T → T T → S S → T S → S tot.

ECC2 A

1 0.78 0.41 - - 0.88
2 0.65 0.24 0.27 - 0.75
3 0.50 0.25 0.39 - 0.69
4 0.54 0.20 0.46 - 0.73
5 0.38 0.73 - - 0.82

ECC2 B

1 0.87 0.22 - - 0.89
2 0.80 0.19 - - 0.82
3 0.78 0.21 - - 0.81
4 0.81 0.20 - - 0.84
5 0.21 0.76 - - 0.79

When using an augmented basis set, the character of the higher excitations change

considerably. While the character of the first excitation remains more or less

the same, dominated by internal excitations and some semi-external, the higher

excitations become completely semi-external from the CCSD space to the CC2

space. However, they remain quite accurate.

For tert-butyl hydroperoxide (Table 4.9) ECC2 performs very well, even though

CC2 performs poorly. The active spaces are described in Figures 4.11 and 4.12

and the geometry obtained from PubChem[69]. As the highest energy electrons

are situated in the peroxide part of the molecule, these are always described by

CCSD. Consequently, there are no excitations completely external to the active



Figure 4.9: Trans-ethyl-i-
butyl-diazene A

Figure 4.10: Trans-ethyl-i-
butyl-diazene B

Table 4.9: Excitation energies of tert-butyl hydroperoxide in eV using cc-
pVDZ.

CCSD ∆CC2 ∆ECC2 A ∆ECC2 B
1 6.00 0.26 0.00 -0.03
2 6.79 0.53 0.02 0.02
3 6.96 0.22 0.00 -0.02
4 7.57 0.70 0.03 0.06
5 7.75 0.60 0.03 0.03

space involved in any of the excitations (Table 4.10). Excitation 1 and 3 are al-

most entirely internal in ECC2 A, while the others have substantial semi-external

character. In ECC2 B, there is a higher semi-external character for all the exci-

tations except number four. In addition, several of the excitations gain external

character, but the results remain quite accurate. The total norm is around 0.7 for

this system, therefore a significant proportion of the excitations are not accounted

for.

4.2.2 Solvent effects

When describing molecules in solution, one is rarely interested in the properties of

solvent molecules, so such a system is a natural candidate for MLCC. By treating

the solute with a high level method and the solvent with a low level, one can

obtain an accurate description of the solvent effect.



Table 4.10: Norm of the amplitudes of the different types of single excitations
for tert-butyl hydroperoxide using cc-pVDZ.

Model Exci. T → T T → S S → T S → S tot.

ECC2 A

1 0.74 0.19 - - 0.76
2 0.35 0.68 - - 0.77
3 0.66 0.19 - - 0.68
4 - 0.71 - - 0.71
5 0.19 0.68 - - 0.71

ECC2 B

1 0.65 0.34 - - 0.73
2 0.34 0.65 - 0.21 0.76
3 0.59 0.33 - - 0.68
4 0.23 0.58 - 0.35 0.71
5 0.29 0.63 - 0.20 0.72

Figure 4.11: Tert-butyl hy-
droperoxide A

Figure 4.12: Tert-butyl hy-
droperoxide B

Table 4.11 presents the excitation energies of acetone with three water molecules.

The geometry was obtained through optimisation using the MMFF94s force field

in Avogadro[70] (Table B.3) while the active spaces are presented in Figures 4.13

and 4.14. Using CC2 with a cc-pVDZ basis yields quite accurate results, however,

describing acetone with CCSD and the water molecules with CC2 gives the same

first excitation energy as CCSD on the whole system. Even when two of the water

molecules are treated with CCS, the error is only 0.04 eV. The first excitation

energy calculated with CCSD without water is 0.13 eV higher than with water.

The norms are presented in Table 4.12. Accuracy of the first excitation is a result



Table 4.11: Excitation energies of acetone with water in eV using cc-pVDZ
above and aug-cc-pVDZ below.

CCSD ∆CC2 ∆ECC2 A ∆ECC2 B
1 4.52 -0.06 0.00 -0.04
2 8.30 0.15 0.06 -0.63
3 8.57 0.39 0.08 -0.43
1 4.51 0.00 0.00 -0.10
2 6.92 0.65 0.02 -0.29
3 7.41 0.42 0.37 -0.66

of the excitations being almost completely internal. The next two excitations in

ECC2 A are external to the active space and it is thus surprising that they differ

from the CC2 excitations to such an extent. In the ECC2 B model, CCS will

increase the excitation energies of water above those of acetone, resulting in the

excitations becoming internal and semi-external to the T-space.

The lower half of Table 4.11 contains the excitations for the system using aug-cc-

pVDZ. ECC2 A again reproduces the CCSD value for the lowest excitation. In

addition, the second excitation is now situated mostly on acetone and considerably

more accurate. The third, however, is still on water and is not much better than

CC2. The same pattern can be observed for the two lowest excitations in ECC2

B, but it is not very accurate. As the diffuse basis functions reach quite far, it

is possible that orbitals that should be treated with CCSD are instead treated

with CCS. Again, CCS increases the energy of the water excitations, so the third

excitation is entirely internal in the CCSD space on acetone.

Similar calculations on propenal, treated with CCSD, and water, with CC2, gave

similar results. Using cc-pVDZ the errors for the two lowest excitations were 0.03

and 0.07 eV compared to 0.00 and 0.16 eV using CC2. With the augmented basis

set, ECC2 deviated 0.02 and 0.00 eV from CCSD compared to 0.04 and 0.16 eV

with CC2.



Table 4.12: Norm of the amplitudes of the different types of single excitations
for acetone with water using cc-pVDZ above and aug-cc-pVDZ below.

Model Exci. T → T T → S S → T S → S tot.

ECC2 A
1 0.93 - - - 0.93
2 - - - 0.94 0.94
3 - - - 0.94 0.94

ECC2 B
1 0.93 - - - 0.93
2 0.47 0.78 - - 0.91
3 0.78 0.49 - - 0.92

ECC2 A
1 0.83 - - - 0.83
2 0.60 0.47 - - 0.76
3 - - - 0.90 0.90

ECC2 B
1 0.82 - - - 0.82
2 0.73 0.44 - - 0.86
3 0.89 - - - 0.89

Figure 4.13: Acetone A

Figure 4.14: Acetone B



Table 4.13: Excitation energies of (2E,4E,6E,8E)-2,4,6,8-decatetraene in eV
using cc-pVDZ.

CCSD ∆CC2 ∆ECC2
1 5.09 0.36 -0.03
2 6.15 0.21 -0.28
3 6.93 0.12 -0.07
4 7.10 0.27 0.01
5 7.15 0.05 -0.50
6 7.54 0.02 -0.19
7 7.63 0.12 -0.20
8 7.75 0.20 -0.12
9 8.05 0.16 -0.10
10 8.07 0.17 -0.09

Table 4.14: Norm of the amplitudes of the different types of single excitations
for (2E,4E,6E,8E)-2,4,6,8-decatetraene using cc-pVDZ.

Model Exci. T → T T → S S → T S → S tot.

ECC2

1 0.47 0.58 0.34 0.42 0.76
2 0.59 0.35 0.38 0.43 0.89
3 0.64 0.39 0.36 0.29 0.87
4 0.34 0.50 0.47 0.43 0.88
5 0.23 0.53 0.53 0.20 0.83

4.2.3 Conjugate systems

Conjugate systems are highly delocalised. Therefore, using MLCC might become

problematic if parts of the conjugate system are treated with different levels of

theory. The ten lowest excitation energies of (2E,4E,6E,8E)-2,4,6,8-decatetraene

are presented in Table 4.13. As there are many nearly degenerate excitations, it

is difficult to determine if the excitations found by the different methods actu-

ally corresponds to each other. The geometry were obtained from PubChem[71]

and the four central carbons with attached hydrogens were considered active to

maintain the same point group symmetry (Figure 4.15). Neither CC2 nor ECC2

performs particularly well in this case and ECC2 is for several excitations worse

than CC2. Due to the delocalised nature of the excitations, all of them have a

large external and semi-external character (Table 4.14).

A similar behaviour is observed for 2,4,6,8-decatetraenal in Table 4.15. Active



Figure 4.15: (2E,4E,6E,8E)-2,4,6,8-decatetraene

Table 4.15: Excitation energies of 2,4,6,8-decatetraenal in eV using cc-pVDZ.

CCSD ∆CC2 ∆ECC2 A ∆ECC2 B
1 3.78 0.10 -0.01 0.01
2 4.70 0.37 0.02 0.06
3 6.01 0.24 -0.19 -0.16
4 6.50 0.31 0.04 0.02
5 6.96 0.65 0.05 0.09

Table 4.16: Norm of the amplitudes of the different types of single excitations
for 2,4,6,8-decatetraenal using cc-pVDZ.

Model Exci. T → T T → S S → T S → S tot.

ECC2 A

1 0.86 0.27 - - 0.90
2 0.35 0.33 0.36 0.66 0.89
3 - 0.52 0.33 0.64 0.89
4 0.51 - 0.30 0.61 0.85
5 0.63 0.59 - - 0.86

ECC2 B

1 0.78 0.48 - - 0.92
2 0.28 0.41 0.22 0.74 0.92
3 - 0.54 0.20 0.71 0.92
4 0.48 0.25 0.34 0.60 0.88
5 0.52 0.74 - - 0.90

spaces can be found in Figures 4.16 and 4.17 and the geometry was obtained from

PubChem[72]. Note that the hydrogens closest to oxygen are not included in the

active space in ECC2 B. While most of the excitation are quite accurate, excitation

three has a no internal contribution, resulting in a large error.

On the other hand, if the entire conjugated system is included in the active space,

such as for 1,3-octadiene[73], 6-methyl-2,4-heptanedione[74] and 2,4-octadienal[75]

in Figures 4.18-4.20, ECC2 appears to perform very well. For the five lowest



Figure 4.16: 2,4,6,8-decatetraenal A

Figure 4.17: 2,4,6,8-decatetraenal B

excitations in these systems, there were no errors with respect to CCSD greater

than 0.03 eV, even though the errors for CC2 varied widely and were greater than

0.70 eV in some cases. All these excitations were dominated by internal excitations

with small semi-external contributions.



Figure 4.18: 1,3-octadiene

Figure 4.19: 6-methyl-2,4-heptanedione

Figure 4.20: 2,4-octadienal





Chapter 5

Discussion

5.1 Linear and sublinear scaling

Linear scaling techniques are computational techniques whose complexity scales

linearly with the size of the system. The first such technique was implemented for

DFT by Yang in 1991[76] and have since been developed for wave function based

methods like SCF and CC theory[77, 78]. Considerable reductions in computa-

tional complexity has been achieved. For example, Riplinger and Neese recently

performed DLPNO-CCSD calculations on a system with over 450 atoms[11].

The long-term goal of MLCC is to develop models that can determine local prop-

erties with size-intensive complexity (SIC). ECC2, as outlined here, will result in

significant reductions in computational complexity, but it will not achieve sublin-

ear scaling because it uses more or less the standard CC2 equations in the inactive

space. If the system is above a certain size it can be treated at the SCF level

far away from the active space. The SCF calculation, like a DFT calculation,

will scale linearly with the size of the system. However, if the size of the active

space remains constant, the electron correlation calculation can be made size-

intensive by creating an auxiliary basis for the active MO integrals using Cholesky

decomposition[18, 79].
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5.2 Extensive properties

If a size-extensive property, like total energy or polarisability, is desired, one can

at best achieve linear scaling. In such cases, a more traditional active space based

on the orbital energies will be the most useful as the orbitals close to HOMO and

LUMO contribute disproportionately to electron correlation[80].

In Chapter 4, several examples of energy calculations using ECC2 were presented.

As the current implementation is not optimal, calculations have only been per-

formed on quite small systems. The results demonstrate the effect of different

active spaces, but performance should be tested for larger systems.

At equilibrium geometry, the total energy from ECC2 was about the same as CC2

in Figures 4.1-4.3. The active spaces chosen were the smallest possible with only

HOMO and LUMO for lithium hydride and the sodium dimer and two occupied

and two virtual for ethene. As the total energy of a system is rarely of much

interest, the focus should be on how well relative energies like the dissociation

energy are reproduced. Far from the equilibrium geometry, ECC2 greatly outper-

formed CC2 and MP2 as HOMO and LUMO becomes near degenerate. While

the CC2 energy approached a singularity, ECC2 produced physically reasonable

dissociation energies.

For the ethene calculations, more orbitals had to be included because HOMO and

LUMO changed nature. In a large system, this is likely to be problematic as

the changing geometry might cause large changes in orbital energies. Identifying

which orbitals that will become near degenerate and must be included can prove

challenging and require a large active space. For these reasons, a localised active

space will be more appropriate for a large system.

The results from the polarisability calculations were of mixed quality. For ozone

and hydrogen fluoride, the CC2 polarisability, and electronic dipole moment, were

quite inaccurate. Including most of the occupied orbitals, but only a fraction of the

virtual orbitals brought the error in the polarisability down to only one percent.

For the organic molecules, CC2 performed quite well and ECC2 gave small error



reductions. The convergence towards the CCSD value were not linear and some

orbitals led to much greater gains than others. To establish a strategy, more

testing is required, but including very low energy occupied or very high energy

virtual orbitals is unlikely to lead to great improvements[62]. The calculations on

1,3-butadiene and benzene indicate that the symmetry of the active orbitals may

also be important.

When more accuracy is required, but using a more accurate model is too costly

when calculating static properties, using MLCC and an orbital energy based active

space might be a good compromise. The size of the required active space is likely

to scale with the size of the system and one will not obtain SIC. The results

from Chapter 4 indicate that there must be a large difference between the models

employed to achieve significant improvements in accuracy.

5.3 Intensive properties

Intensive properties, like local geometry and excitation energies[81] relies mostly

on the local environment and are almost independent of the electronic structure

further away. Such properties can then be obtained with high accuracy by only

treating the local environment with advanced models and more approximate mod-

els further away.

The energy curves for the dissociation of hydrogen from 1,3-butadiene described

by ECC2 in Figure 4.4 is very encouraging. Even though the equilibrium geometry

energy is about as accurate as CC2, the abstraction process is accurately described

and the difference with respect to CCSD remains almost constant. As a result, the

dissociation energy can be obtained to within chemical accuracy. When scaling

up the size of the system, it is unlikely that it will be necessary to increase the

size of the active space to describe the same process with the same accuracy. This

would make it possible to implement SIC models.



As noted previously, the energy goes through an unphysical minimum at about 5

Å. This is most likely an artefact of the Cholesky decomposition. As the hydrogen

atom moves away, the density matrix and therefore, the number of active Cholesky

MOs changes. To avoid this, one can use the same pivoting diagonal elements for

each geometry. This will ensure that the MOs for each calculation correspond

to each other and that the number of active MOs remains constant. Another

possibility is to increase the size of the active space so that the atoms changing

position are further from the active space boundary.

Only one example of local geometry calculation is presented here and the method

needs further testing on several different systems. Particularly the effect of larger

system size and how well reactions can be described must be more thoroughly

investigated. However, this requires an efficient implementation of ECC2 which is

beyond the scope of this thesis.

Upon calculating excitation energies, ECC2 was able to reproduce CCSD results in

the majority of cases. For non-conjugated organic compounds it seems sufficient

to only treat the functional groups and the nearest two to three carbon atoms

at the full CCSD level and the rest with CC2. In cases were the excitation is

completely internal in the active space, one often obtains the same results as

with CCSD. Excitation energies with some semi-external character tend to be

reasonably accurate with errors less than 0.05 eV though this varies from system to

system. The calculations on trans-ethyl-i-butyl-diazene indicate that the method

is more tolerant towards semi-external excitations from the active space to the

inactive than the opposite, but this needs more testing. Describing solvents with

less accurate models does not seem to affect excitations on the solute much, but

many excitations also involve orbitals located on solvent molecules.

Excitation energies for molecules with conjugate systems can be obtained with

CCSD accuracy, though they seem to require larger active spaces that encompass

the entire conjugate system. For the calculations on decatetraene and decatetrae-

nal the accuracy of the results becomes unpredictable as the excitations are highly



delocalised and may involve orbitals from the inactive space. For these systems,

CC2 performs poorly with larger errors with respect to CCSD.

One must be careful when introducing a third space described by CCS. As excita-

tion energies calculated using CCS are usually much higher than those from CC2

and CCSD, contributions from CCS-space amplitudes tends to be smaller than

they should be. This can in turn increase the excitation energy or shift the order

of excitations. To avoid these problems, one should make sure there is a wide CC2

space to act as buffer between the CCS space and the region of interest. This

seems to be particularly important when using augmented basis sets, as these can

reach further from the atom they are centred on.

The character of the excitations may vary a lot with the basis set and often becomes

more semi-external with an augmented basis set. The effect of this on accuracy

varies and it seems to occur more often for higher excitations.

5.4 Strategy

Unlike standard CC theory and many other quantum chemistry methods, MLCC is

not black box. To make effective use of the method, one has to use knowledge of the

system and chemical intuition to assign an active space. For an unfamiliar system,

this may not be straightforward and a systematic strategy would be advantageous.

Determining the lowest excitation energy of decanal will be used as an example in

the following outline.

If an ECC2 calculation is desired using CC2 and CCSD, a starting point could

be a standard CC2 calculation and an ECC2 calculation with a minimal active

space. In the case of decanal, a minimal active space is ECC2 A. When the

calculation is finished, one observes a quite large difference of 0.12 eV between

the two models. In addition, inspection of the ECC2 output reveals a substantial

semi-external character. Both of these factors indicate that the active space should

be expanded. Running the calculation again using the active space from ECC2 B,



the resulting excitation energy is reduced by only 0.04 eV. More importantly, the

lowest excitation is now completely internal in the active space, a strong indication

that the result is trustworthy. To be certain, one may include a third carbon in

the active space to observe the energy change.

To include CCS, one must be more careful as discussed above. More testing has

to be performed to develop general rules, but the decanal calculation seems to

suggest that a three carbon chain is a big enough CC2 buffer to obtain excitation

energies with reasonably good accuracy if they are internal when using cc-pVDZ.

A possible strategy in the above example would be to first perform the calculations

using CCS and CC2 spaces of varying size and observe how the changing spaces

affect the excitation energies. If they are more or less unchanged, one can proceed

to add a CCSD space. In a calculation of solvent effects, the innermost solvent

shell should probably be treated with CC2 while CCS can be used farther from

the solute molecule.

Reduced computational complexity depends on the size of the active space as

only the active space is treated with the highest level of theory. The size of the

active space scales approximately linearly with the number of active atoms and

one should include enough atoms get accurate results, but no more.

5.5 Variations

A few variations of the ECC2 model were discussed in Chapter 3 and tested in

Chapter 4. As expected, the ECC2-II version performed better than the standard

version, especially in equilibrium geometries. In this model, semi-external exci-

tations are treated at the CCSD level. This will greatly increase the number of

CCSD amplitudes that has to be calculated and decrease the computational gain.

Using ECC2-I with a larger active space is a better method to obtain accurate re-

sults. The effect of intermediate formulations should be investigated. For example,

one could include doubles involving three active orbitals in the T -commutator.



Including the commutator in ECC2b results in a small gain in accuracy and may

be important for describing semi-external excitations. As the size of the active

space is limited, the commutator does not greatly increase computational cost

and should be included.

The active space types tested so far are energy based or Cholesky based. More

localised active spaces can be achieved using more localised orbitals like those ob-

tained using trust region minimisation[47] and should be tested. Both with canon-

ical and localised orbitals only a few, high energy occupied orbitals are involved in

excitations. A possibility is to combine energy and localised active spaces. First,

a localised active space can be defined using a suitable localisation scheme. A sec-

ond active space can then be defined based on the orbital energies in the localised

space. This could be particularly useful for computationally demanding methods

like the non-orthogonal coupled cluster theory that are in development[82, 83].





Chapter 6

Conclusion

6.1 Development of MLCC

In MLCC theory, the cluster operator of standard CC theory is split into two or

more parts. Each of the cluster operators are associated with a subspace of the

orbital space and assigned the excitations in that space. By treating each space

with different levels of theory and assigning excitations between spaces to the

lowest level space it involves orbitals from, great reductions in computational cost

can be achieved. For example, in ECC2, the costly B-term that scales as V 4O2

in CCSD only has to be computed for a small number of orbitals and the overall

scaling becomes that of CC2.

One method to assign the spaces and the splitting of the cluster operator is using

the orbital energy of the canonical MOs with the lowest energy virtual and highest

energy occupied orbitals described by higher levels of accuracy. For larger systems,

this method will scale with the size of the system and may prove problematic when

changing the geometry as the energy of the orbitals change. An alternative is to

generate local Cholesky MOs and assign them to different spaces depending on

which atom they are localised on. The Cholesky decomposition scales as N3 and

is noniterative. While this method may also generate artefacts when changing the

geometry, fixing the decomposition pivoting should alleviate the problem.
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Both the ECC2 Jacobian and linear response function appear as combinations of

CCSD and CC2. However, using a small active space, the CCSD part is corre-

spondingly small and computational complexity should scale as CC2.

6.2 Results from calculations

An ECC2 pilot code has been implemenented in the DALTON software package.

By repeating CCSD calculations with various combinations of CC amplitudes set

to zero, the ECC2 energy and Jacobian can be calculated and total energy and

excitation energy calculations can be evaluated.

Using the orbital energy based active spaces, energy curves for abstraction pro-

cesses were obtained. This demonstrated that an active space of two or four

orbitals is enough to avoid singularities that occur in CC2 and MP2 in small sys-

tems. ECC2 improved the results for electronic dipole moments and polarisibility

in cases were CC2 deviated far from CCSD.

ECC2 with a Cholesky localised active space obtained the dissociation energy

for a hydrogen atom from 1,3-butadiene to within chemical accuracy, indicating

that the model can be used to obtain the local geometry in a subsystem. With

appropriate active spaces, ECC2 reproduced CCSD excitation energies for some

systems. However, care is required when assigning an active space, especially if a

third CCS space is used.



Chapter 7

Future work

Multi-level coupled cluster theory is still in the early stages of development and

much work is required before it can be put to regular use. At the time of writing,

pilot code exists for ECC2 total energy and excitation energies with and without

a CCS space. A version with CCSD(T) has also been implemented, but it has not

been tested yet, so the next step is to explore this model.

The intention of MLCC is to efficiently describe local properties of large systems.

This is not possible with the pilot code because it is too primitive. For the same

reason, it is not suitable for higher level CC models like CC3 or CCSDT. A proper

implementation should solve these issues and therefore have a high priority.

To achieve SIC, Cholesky decomposition can be used to generate auxiliary basis

sets for MO integral calculations. Implementing an efficient model that describes

parts of the system with SCF, MLCC should be able to scale as DFT. Further-

more, combining MLCC with non-orthogonal CC theory should lead to an efficient

multireference model.
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Appendix A

ECC2 response derivation

To determine the amplitude and multiplier equations, the zero- and first order

expansions of the QE Lagrangian(2.82) are required.

L(0) = 〈HF |H0 exp(X(0))|HF 〉

+
∑
µ1

t̄(0)µ1 〈µ1|Ĥ0 + [Ĥ0, X
(0)
2 ]|HF 〉

+
∑
µT2

t̄
(0)

µT2
〈µT2 |Ĥ0 + [Ĥ0, X

(0)
2 ] +

1

2
[[Ĥ0, X

(0)
2 ], X

(0)
2 ]|HF 〉

+
∑
µS2

t̄
(0)

µS2
〈µS2 |[F, S

(0)
2 ] + Ĥ0 + [Ĥ0, T

(0)
2 ]|HF 〉

(A.1)

Taking the derivative of the zero order Lagrangian with respect to the zero order

multipliers results in the time-independent ECC2 amplitude equations. Note that

the zero order Lagrangian is time-independent, so {L(0)}T = L(0).

∂

∂t̄
(0)
µ1

L(0) = 〈µ1|Ĥ0 + [Ĥ0, X
(0)
2 ]|HF 〉 (A.2)

∂

∂t̄
(0)

µT2

L(0) = 〈µT2 |Ĥ0 + [Ĥ0, X
(0)
2 ] +

1

2
[[Ĥ0, X

(0)
2 ], X

(0)
2 ]|HF 〉 (A.3)

∂

∂t̄
(0)

µS2

L(0) = 〈µS2 |[F, S
(0)
2 ] + Ĥ0 + [Ĥ0, T

(0)
2 ]|HF 〉 (A.4)
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The zero order Lagrange multipliers are determined taking the derivative of the

zero order Lagrangian with respect to the amplitudes.

∂

∂t
(0)
ν1

∑
µ1

t̄(0)µ1 〈µ1|Ĥ0 + [Ĥ0, X
(0)
2 ]|HF 〉 =

∑
µ1

t̄(0)µ1 〈µ1|[Ĥ0 + [Ĥ0, X
(0)
2 ], τν1 ]|HF 〉

(A.5)

∂

∂t
(0)
ν2

∑
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t̄(0)µ1 〈µ1|Ĥ0 + [Ĥ0, X
(0)
2 ]|HF 〉 =

∑
µ1

t̄(0)µ1 〈µ1|[Ĥ0, τν2 ]|HF 〉 (A.6)
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(0)
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2 ]|HF 〉

=
∑
µT2

t̄
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µT2
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(0)
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∑
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Writing Eqs. (A.5-A.11) in matrix form gives Eq. (2.83).

In the first order Lagrangian, the dependence on exp(ωt) ensures that the time

averaged QE Lagrangian {L(1)}T = 0. Consequantly, the second order Lagrangian

is required to determine the first order amplitudes. Introducing the frequency

dependent perturbation V t(ωi)

V t(t) =
∑
i

V t(ωi) exp(−iωit) (A.12)

Terms involving second order amplitudes or multipliers does not affect the linear

response function, nor the first order amplitude equations. Disregarding these, the

terms in the second order Lagrangian are.
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[[Ĥ0, X

(1)(ωi)], X
(1)(−ωi)]|HF 〉

+ t̄(1)µ1 (−ωi)
[
〈µ1|V̂ (ωi) + [Ĥ0, T
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Summing the terms and taking the derivative with respect to the first order

multipliers results in Eq. (2.84). Due to the 2n + 2 rule, the first order mul-

tipliers does not contribute to the linear response theory, so the terms involving

them can be disregarded when solving for the response function. Noting that

∂V̂ t(ωi)/∂εA(ωi) = Â, inserting {L(2)} into Eq. (2.80) results in Eq. (2.88).



Appendix B

Initial geometries

Table B.1: Initial geometry of ethene (Å).

atom x y z
C 0.0 0.0 0.665647
C 0.0 0.0 -0.665647
H 0.0 -0.923658 1.239711
H 0.0 0.923658 -1.239711
H 0.0 -0.923658 -1.239711
H 0.0 0.923658 1.239711

Table B.2: Initial geometry of 1,3-butadiene (Å).

atom x y z
C 0.0 0.0 0.0
C -0.524786 3.619893 0.0
C -0.575773 1.160600 0.0
C 0.050986 2.459292 0.0
H -1.729024 3.619893 0.0
H -0.394695 -0.938866 0.0
H -0.130090 4.558760 0.0
H 1.138098 2.500263 0.0
H -1.662884 1.119629 0.0
H1 1.204238 0.0 0.0

1 The abstracted hydrogen atom.
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Table B.3: Geometry of acetone with three water molecules (Å).

atom x y z
C 1.45893 1.01303 -0.72862
C 0.18412 0.26419 -0.44739
O 0.18705 -0.94482 -0.19858
C -1.09931 1.04517 -0.53780
H 1.49786 1.27765 -1.78806
H 1.50510 1.91653 -0.11651
H 2.31761 0.38199 -0.48331
H -1.02606 1.95677 0.05946
H -1.29656 1.29860 -1.58221
H -1.92478 0.44126 -0.15099
O 0.40206 1.76801 2.51905
H 0.08973 0.91990 2.91556
H 0.81688 2.17521 3.29534
O -0.26980 -0.53566 3.79206
H -0.83081 -1.00476 4.43233
H -0.07087 -1.27753 3.16677
O 0.07542 -2.49924 1.96898
H 0.33305 -3.36278 1.60350
H 0.08734 -1.95179 1.14527
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[24] André Severo Pereira Gomes and Christoph R. Jacob. Quantum-chemical

embedding methods for treating local electronic excitations in complex chem-

ical systems. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 108:222–277,

2012.

[25] Andrew R. Leach. Molecular Modelling Principles and Applications. Pearson

Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England, 2nd

edition, 2001.



[26] Rolf Heilemann Myhre, Alfredo M. J. Sánchez de Merás, and Henrik Koch.

The extended CC2 model ECC2. J. Mol. Phys., 2013. doi: 10.1080/00268976.

2013.798435.

[27] Esper Dalgaard and Hendrik J. Monkhorst. Some aspects of the time-

dependent coupled-cluster approach to dynamic response functions. Phys.

rev. A, 28:1217, 1983.

[28] Henrik Koch, Hans Jørgen Aa. Jensen, Poul Jørgensen, and Trygve Helgaker.

Excitation energies from the coupled cluster singles and doubles linear re-

sponse function (CCSDLR). Applications to Be, CH+, CO, and H2O. J.

Chem. Phys., 93:3345, 1990.

[29] H. Koch and P. Jørgensen. Coupled cluster response functions. J. Chem.

Phys., 93:3333–3344, 1990.

[30] T. B. Pedersen and H. Koch. Coupled cluster response functions revisited. J.

Chem. Phys., 106:8059–8072, 1997.

[31] Ove Christiansen, Poul Jørgensen, and Christof Hättig. Response functions

from fourier component variational perturbation theory applied to a time-

averaged quasienergy. Int. J. Quantum Chem., 68:1–52, 1997.

[32] Trygve Helgaker, Sonia Coriani, Poul Jørgensen, Kasper Kristensen, Jeppe

Olsen, and Kenneth Ruud. Recent advances in wave function-based methods

of molecular property calculations. Chem. Rev., 112:543–631, 2012.

[33] Celestino Angeli, Keld L. Bak, Vebjørn Bakken, Gao Bin, Ove Christiansen,

Renzo Cimiraglia, Sonia Coriani, P̊al Dahle, Erik K. Dalskov, Thomas

Enevoldsen, Berta Fernandez, Lara Ferrighi, Heike Fliegl, Luca Frediani,

Christof Hättig, Kasper Hald, Asger Halkier, Hanne Heiberg, Trygve Hel-

gaker, Hinne Hettema, Stinne Høst, Branislav Jansik, Hans Jørgen Aagaard

Jensen, Dan Jonsson, Poul Jørgensen, Joanna Kauczor, Sheela Kirpekar,

Thomas Kjærgaard, Wim Klopper, Stefan Knecht, Rika Kobayashi, Jacob

Kongsted, Henrik Koch, Andreas Krapp, Kasper Kristensen, Andrea Lig-

abue, Ola B. Lutnæs, Kurt V. Mikkelsen, Christian Neiss, Christian B.



Nielsen, Patrick Norman, Jeppe Olsen, Anders Osted, Martin J. Packer,

Filip Pawlowski, Thomas B. Pedersen, Simen Reine, Zilvinas Rinkevicius,

Elias Rudberg, Torgeir A. Ruden, Kenneth Ruud, Vladimir Rybkin, Pawel

Salek, Claire C. M. Samson, Alfredo M. J. Sánches de Merás, Trond Saue,

Stephan P. A. Sauer, Bernd Schimmelpfennig, Arnfinn H. Steindal, Kris-

tian O. Sylvester-Hvid, Peter R. Taylor, David P. Tew, Andreas J. Thor-

valdsen, Lea Thøgersen, Olav Vahtras, Mark Watson, David J. Wilson,

and Hans gren. Dalton2011 Quantum Chemistry Suit, July 2013. URL

http://daltonprogram.org/.

[34] Celestino Angeli, Keld L. Bak, Vebjørn Bakken, Gao Bin, Ove Christiansen,

Renzo Cimiraglia, Sonia Coriani, P̊al Dahle, Erik K. Dalskov, Thomas

Enevoldsen, Berta Fernandez, Lara Ferrighi, Heike Fliegl, Luca Frediani,

Christof Hättig, Kasper Hald, Asger Halkier, Hanne Heiberg, Trygve Hel-

gaker, Eirik Hjertenæs, Hinne Hettema, Stinne Høst, Maria Francesca Iozzi,

Branislav Jansik, Hans Jørgen Aagaard Jensen, Dan Jonsson, Poul Jørgensen,

Joanna Kauczor, Sheela Kirpekar, Thomas Kjærgaard, Wim Klopper, Ste-

fan Knecht, Rika Kobayashi, Jacob Kongsted, Henrik Koch, Andreas Krapp,

Kasper Kristensen, Andrea Ligabue, Ola B. Lutnæs, Kurt V. Mikkelsen,

Rolf Heilemann Myhre, Christian Neiss, Christian B. Nielsen, Patrick Nor-

man, Jeppe Olsen, Anders Osted, Martin J. Packer, Filip Pawlowski,

Thomas B. Pedersen, Simen Reine, Zilvinas Rinkevicius, Elias Rudberg,

Torgeir A. Ruden, Kenneth Ruud, Vladimir Rybkin, Pawel Salek, Claire

C. M. Samson, Alfredo M. J. Sánches de Merás, Trond Saue, Stephan P. A.

Sauer, Bernd Schimmelpfennig, Arnfinn H. Steindal, Kristian O. Sylvester-

Hvid, Peter R. Taylor, David P. Tew, Andreas J. Thorvaldsen, Lea Thøgersen,

Olav Vahtras, Mark Watson, David J. Wilson, and Hans gren. The DALTON

quantum chemistry program system. WIREs Comput. Mol. Sci., 3, 2013.

Submitted.

[35] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction

to Advanced Electronic Structure Theory. McGraw-Hill Publishing Company,

1221 Avenue of the Americas, New York, NY 10020, 1989.

http://daltonprogram.org/


[36] Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin Head-

Gordon. A fifth-order perturbation comparison of electron correlation theo-

ries. Chem. Phys. Lett., 157:479–483, 1989.
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