
Author’s accepted manuscript. The published paper is available at https://doi.org/10.1109/IJCNN.2017.7966406

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Long-Range Navigation by Path Integration and
Decoding of Grid Cells in a Neural Network

Vegard Edvardsen
Department of Computer Science

NTNU – Norwegian University of Science and Technology
Trondheim, Norway

Email: vegarded@ntnu.no

Abstract—Neural modelers in the domain of robot navigation,
e.g. within the fields of neurorobotics and neuromorphic engineer-
ing, can benefit from a wealth of inspiration from neuroscientific
research in the hippocampal formation—cell types such as place
cells and grid cells provide a window into the inner workings of
high-level cognitive processing, and have spawned many interest-
ing computational models. Grid cells are thought to participate in
path integration and to implement a general coordinate system,
both of which are useful features in a neural navigation model.
Continuous attractor networks are a computational model that
can embody both aspects of grid cells, and in previous work
we showed that a neural network can successfully decode the
outputs of such networks in order to implement vector navigation.
That work assumes that the grid cell system represents long
distances by employing a geometric progression in its spatial
scaling of successive submodules, in such a way that “nested” grid
cell decoding can be performed. For long-range navigation this
requires that the continuous attractor networks can implement
sufficiently long geometric progressions of grid scales, but this
turns out to trigger the issue of “pinning”. In this paper we
demonstrate conditions under which pinning occurs as well as
its consequences for the grid cell-based navigation model. We
propose and assess several candidate solutions to the problem, in
particular based on differential adjustment of neurons’ update
rates in the model. We finally demonstrate that the system is able
to perform long-range navigation using our chosen solution.

I. INTRODUCTION

Neural networks have in recent years had a renaissance as a
tool for building artificially intelligent computer systems [1].
Improved hardware, datasets and techniques for construction
and training of deep neural networks have yielded systems
that have advanced the state-of-the-art in areas of such wide
variety as image recognition [2] and beating human players
in the board game Go [3]. Neural networks for such tasks
are often feed-forward in architecture, especially in sensory
processing applications [4]. However, the need for a short-
term memory capacity has also been emphasized, particularly
for problems demanding higher-level cognitive processing [5].

One domain of cognitive tasks that usually requires a short-
term memory is that of navigation—keeping track of where
you come from and where you are going; planning how to get
to a goal location and thereafter back home. In earlier work [6]
we showed how an artificial neural network inspired by the
brain’s grid cell system can keep track of an agent’s current
2D coordinates and use this information to guide the agent to
a goal location. In this paper we will build upon that work to

W E

N

S

(Entorhinal cortex)Grid cells

(Hippocampus)Place cells

Cell 1 Cell 2 Cell 3 Cell 4

Cell 5 Cell 6 Cell 7 Cell 8

Fig. 1. Illustration of two types of spatial neurons found in the hippocampal
formation of rodents such as rats—place cells and grid cells. Left: Neurons
are recorded as the animal explores an enclosure. The animal’s position in the
horizontal plane is recorded simultaneously. Right: By plotting heatmaps for
each neuron—showing the neuron’s average activation in each visited position
bin—the characteristic spatial responses of place cells and grid cells are
revealed. Place cells respond typically in one or a few areas of the enclosure,
whereas grid cells respond at the vertices of an infinite hexagonal grid pattern.

improve our grid cell-based neural navigation system to work
over longer distances.

Section II presents pertinent background material on grid
cells and a computational model for them. In Section III we
demonstrate the range of our navigation system when using
a single module of grid cells. Section IV discusses ways in
which the range of the grid cell system can be extended by
introducing multiple modules. The navigation system is then
tested with increasing numbers of modules and is shown to
experience a shortfall in range improvement after a certain
number of modules have been added. Section V demonstrates
the issue of “pinning” that is responsible for this shortfall. In
Section VI we propose and assess several candidate solutions
to the pinning problem, with our chosen solution evaluated in
Section VII. Section VIII concludes the paper.

II. BACKGROUND

A. Spatial neurons in the brain

Neuroscientific studies of navigation are often concentrated
on the mammalian brain region around the hippocampus, pri-
marily in rats and other rodents. This brain region is believed
to implement a cognitive map—a neural implementation of
high-level cognitive information about the spatial environment.
Cell types in this region, such as place cells [7], head-direction
cells [8], border cells [9], and grid cells [10], provide a wealth

Agent moves east

Timestep 0 Timestep 50 Timestep 100 Timestep 150

 0 50 100 150 200 250 300Ac
tiv

at
io

n
of

se
le

ct
ed

 n
eu

ro
n

Timestep (thus position in W-E direction)

Fig. 2. Illustration of key concepts behind continuous attractor networks,
which constitute a major class of computational models for grid cells. Each
neuron is assigned a row and a column in a “neural sheet”. Neurons are fully
connected recurrently, with connection strengths pre-wired in such a way that
bumps of activity will spontaneously emerge in the neural sheet and distribute
in a hexagonal pattern. This hexagonal pattern becomes visible in the readouts
of individual neurons across space because the pattern in the neural sheet is
made to shift in proportion to the agent’s movements in 2D space. The square
heatmaps show instantaneous snapshots of the activation levels of the neurons
in the neural sheet of a CAN-based grid module, each pixel indicating the
activation level of one neuron. These snapshots are shown at four different
timesteps, all while the agent is moving eastward. In response to the velocity
input, the pattern shifts rightward in the neural sheet (indicated by the yellow
circle, which tracks the motion of one of the bumps in the pattern). By reading
out the activation level of a single neuron and plotting it over time, the grid
pattern is revealed and the neuron therefore acts as a grid cell.

of inspiration for modelers of artificial neural navigation
systems. In the context of systems that benefit from a short-
term memory capacity, grid cells are particularly interesting.
Like place cells and border cells, grid cells are neurons that
activate depending on the animal’s location in space. However,
whereas place cells usually activate at only a particular place in
an environment and border cells activate only along particular
borders, a given grid cell is active whenever the animal
is located at the vertices of an imaginary hexagonal grid
extending throughout the 2D plane (Fig. 1). This relationship
between the cell’s activity and the animal’s location in 2D
space persists even in complete darkness, indicating that grid
cells reflect an internally maintained neural activity and that
this activity can be generically updated by self-motion inputs.
This suggests that grid cells participate in a path integration
process in the brain, continuously adding the animal’s current
velocity vector to an internal variable representing a vector of
the total displacement from a point of reference (Fig. 3).

B. Continuous Attractor Networks (CANs)

“Continuous Attractor Networks” (CANs) are recurrent
neural networks that are wired in a particular way so that
the energy landscape of the network contains a continuum of
stable network states of a particular dimensionality [11]. One-
dimensional CANs are for example used as a model for head-
direction cells—the stable states of the network each represent
a particular head-direction, i.e. the stable states fall along a 1D
line, and inputs signaling head-turns cause the network to shift
to new network states that reflect the updated head-direction.

Path integration Coordst+1 ← Coordst +Movementt

Movementt+1 ← GoalCoordst − CoordstVector navigation

A

A+ north-east = BB

C

north-east

B + south-east = C

south-east

A A− C = westC

A?

Fig. 3. Path integration maintains an internal estimate of the agent’s current
coordinates based on its movement history. Vector navigation calculates the
direction to a goal location based on the current coordinates and the goal
coordinates.

These CANs thus perform path integration on the 1D head-
direction variable—by extending a CAN to two dimensions,
it will be able to use inputs representing velocity in the 2D
plane to update a network state representing the current 2D
total displacement (Fig. 2). It is possible to create 2D CANs
whose individual neurons produce the repeating, hexagonal
grid patterns across space that are characteristic of grid cells,
and CANs have indeed emerged as one of the major classes
of computational models for grid cells [12].

C. Vector navigation with grid cells

The robot navigation system RatSLAM [13] is an example
of the potency of looking to neuroscientific findings in the
hippocampus for neural principles to use in an artificial
navigation system. The core of this algorithm is a CAN that
performs path integration and participates in place recognition.
A CAN such as used by RatSLAM will, within a certain
range, generate unique neural activity patterns for each distinct
location, and reactivate these patterns whenever a “loop is
closed” during revisits to old locations. The outputs of the
CAN can therefore be used to generate novel “labels” for new
locations and then reactivate those labels when an old place
is visited anew [14], therefore helping the system downstream
of the CAN to perform place learning and place recognition.

However, using the neural representation of grid cells,
another function also presents itself. Not only is there a
systematic way in which grid cell activity can be generated
by a path integration process, but the reverse can also be said:
Grid cell activity from location A and location B can be com-
pared in order to extract the direction of movement between
them. The pieces are therefore in place for grid cells to be
used as a 2D coordinate system in artificial neural navigation
systems; coordinates can be updated by adding new velocity
vectors to them, and movement directions can be recovered by
comparing/“subtracting” coordinates (Fig. 3). Bush et al. [15]
provide several possible neural networks for decoding grid
cells to movement vectors, and in earlier work [6] we showed
a neural system where both path integration and grid cell
decoding is integrated in the same agent controller. There are
yet, however, many possibilities and questions left to explore
in this area, one of which—the possibility of using grid cells
for navigation over long distances—is the topic of this paper.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

Re
la

tiv
e

er
ro

r/
fa

ilu
re

 ra
te

Goal distance (meters)

Individual trials (relative error)
Failure rate

Smoothed failure rate
Usable range

Fig. 4. Navigating with a single grid module. The agent was tested for “goal
distances” in 1 cm increments from 1 cm to 200 cm, conducting 36 trials in
10 degree increments for each distance. A trial consisted of the agent driving
in the specified direction, halting once the distance to the origin was within
10−6 m of the “goal distance”, and then being allowed twice the number of
outbound timesteps to try to navigate back to the origin. The closest approach
to the origin was divided by the initial halting distance to obtain a “relative
error” for the trial. Trials with relative errors of 0.5 or more were considered
failures, and the failure rate was calculated for each distance bin. This rate
was then smoothed by averaging it in a sliding window of 5 bins. The “usable
range” was determined as the last distance bin before the smoothed failure
rate reached a threshold of 0.1 (skipping the initial region of failed trials).

III. NAVIGATING WITH A SINGLE GRID MODULE

One of the defining characteristics of a grid cell is that
the neuron’s activity pattern repeats across space, so it is not
possible to unambiguously determine the animal’s location by
making a read-out of one grid cell’s current activation level.
The simultaneous activation levels of other grid cells must
therefore also be considered. Biological grid cells are known to
cluster into grid modules, where all neurons in a grid module
share the same hexagonal grid pattern across space (identical
scaling and orientation of the pattern), except for a shift/offset
in the pattern between neurons. Cells 5–7 in Fig. 1 might thus
belong to the same grid module. The read-out of an entire grid
module will have the same ambiguity due to repeating grid
patterns as an individual grid cell—after traveling a distance
sufficient to make one grid cell start to repeat itself, then all the
other grid cells in the module will also have started repeating.
Grid cells organized in a module make it possible to determine
the animal’s location within the boundaries of the module’s
“unit tile”, but it does not reveal any information about where
this unit tile might be located in global space.

We sought to demonstrate the limits of navigating with only
one grid module in our current grid cell-based navigation sys-
tem. The system performs path integration using a configurable
number of CAN-based grid modules as the simulated agent
drives away from the origin location, and then later tries to find
its way back to the origin by decoding the information residing
in the recurrent short-term memory of the grid modules. The
version of our navigation model used in this paper is in most
respects similar to how it was described in [6].

Fig. 4 shows the results from an experiment where the agent
was tested at various goal distances between 1 cm and 200 cm.
Using a criterion described in detail in the figure caption, we
calculated the “usable range” to be 1.05 meters.

A navigational range on the order of one meter will clearly
not be sufficient for a number of applications, and neither is
this range behaviorally sufficient for animals such as rats and

1st module

2nd module

3rd module

Combinatorial

Nested

Fig. 5. Conceptual comparison of two different views on how the ambiguity
from a single grid module can be resolved—and the usable range thus be
increased—by utilizing multiple grid modules of increasing scale. Depending
on the particular grid scales used, the grid modules can continue to generate
unique activity combinations over distances exceeding the range of the largest-
scaled module in a “combinatorial” fashion. A different view is to assume that
there is a hierarchy of grid modules such that the largest module is sufficiently
large to cover the entire behavioral range of the animal and to guide the
animal into the usable range of the smaller-scaled modules. The smaller-scaled
modules are thus “nested” within the larger-scaled ones, their purpose being
to increase precision beyond what the larger-scaled modules might provide.
Grid scales observed in neuroscientific experiments are known to follow a
geometric progression, so both of these views remain viable options.

bats that forage across distances up to kilometers away from
the nest [16]. However, the fact that there are multiple grid
modules in the brain might provide a solution.

IV. NAVIGATING WITH MULTIPLE GRID MODULES

There are multiple grid modules in the brain, and there
appears to be a constant scaling factor between the spatial
grid scales of successive modules, so that the grid scales of a
sequence of grid modules form a geometric progression [17].
This enables two distinct views of how the grid cell system
might unambiguously represent 2D coordinates over longer
distances (Fig. 5), which we will refer to respectively as the
“combinatorial” and the “nested” approaches. The “combina-
torial” approach emphasizes that the collective activity of a
set of grid modules can remain unique over a total range far
exceeding that of the largest grid module. This range can
theoretically be as much as the least common multiple of
all of the modules’ grid scales [18], which increases quickly
when adding just a few grid modules together—however, it
has been argued that utilization of the full range requires
precise readouts from each module [19], and the possibility
has been raised that an error correction mechanism might be
required during ongoing path integration operation [20]. The
“nested” approach embraces the fact that the grid scales of
successive modules appear to follow a geometric progression.
As the number of grid modules increases, the grid scale of the
largest module grows exponentially. In this view, one therefore
assumes that there is a sufficient number of grid modules so
that the largest grid scale is larger than the behavioral range
of the animal, i.e., that there is a grid module large enough
to by itself unambiguously indicate the animal’s location in
2D space. While the resolution of a grid module might grow
coarser as the grid scale increases—so that a very large-
scaled grid module might only give a rough estimate of the
animal’s location—smaller-scaled grid modules could provide
refinements to the initial estimate from the largest module [21].

It is the latter view we will consider in this paper; we
showed in [6] that there exists a simple neural grid cell decod-

Stronger
attenuation

More influence
on motor output

Path integration
Representation of

current coordinates (vector navigation)

Self-motion
velocity

Motor
output

Larger-scaled
grid modules

Grid cell decoding

Fig. 6. Conceptual overview of the full navigation model considered in
this paper. Self-motion velocity is used to update multiple CAN-based grid
modules of increasing grid scales that follow a geometric progression. Larger
grid scales are achieved by attenuating the input to the grid module, so that the
module’s produced grid pattern appears stretched across space. The collective
activity of all grid modules represents a set of “coordinates” in the navigation
model. Larger-scaled grid modules are given priority in the decoding process,
in accordance with the view that smaller-scaled grid modules are “nested”
within the larger ones [21].

ing mechanism for such setups. The decoder considers the grid
cell signal in each grid module individually and then at the
output end of the system gives priority to the largest-scale grid
module outputs, reminiscent of the nested refinement described
by [21]. Following this principle, in order to increase the range
of the navigation system from ∼1 meter to e.g. 150 meters, we
should repeatedly add extra grid modules to the system in a
geometric progression until the projected range of the largest
module is sufficiently large. Using a scale ratio of 1.5, as
suggested by theoretical studies and within the range of scale
ratios reported from neuroscientific experiments, we would
need 14 grid modules in total (1.05 m · 1.513−1 ≈ 136 m,
1.05 m · 1.514−1 ≈ 204 m).

Fig. 6 illustrates an overall schematic of the full grid cell-
based navigation system with all of these pieces in place. A
number of CAN-based grid modules, following a geometric
progression of grid scales, receive self-motion velocity in order
to perform path integration. The output from these modules is
decoded in a nested fashion to perform vector navigation. The
illustration also alludes to the specific mechanism by which
the different grid scales are attained in the otherwise identical
CAN modules—by increasingly attenuating the velocity input
to each module. We will return to this topic in later sections.

Fig. 7 shows the results of an experiment that follows the
paradigm in Fig. 4, but where much longer distances are
tested and where separate sets of trials were performed with
the model configured to use 2, 4, 6, 8, 10, 12 and 14 grid
modules. The set of trial distances was selected to be equally
spaced on a logarithmic scale, because we are interested in
observing behaviors of the system that are expected to follow
an exponential development. Usable ranges were determined
as in Fig. 4, and aggregated results are shown in Fig. 8.

The system behaves as expected for low numbers of
modules—as extra modules are added, the usable range in-
creases exponentially. However, at 12 and 14 modules there
are clear deviations from this trend. The usable range appears
to level off around the level attained with 10 modules. The

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

2
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

4
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

6
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

8
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

10
 m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256
12

 m
od

ul
es

:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

14
 m

od
ul

es
:

Goal distance (meters)

Fig. 7. Navigating with multiple grid modules. The trials and analyses were
conducted as in Section III, but with either 2, 4, 6, 8, 10, 12 or 14 modules,
and with 65 tested distances selected to be equally spaced on a logarithmic
scale from 1.5−2 ≈ 0.444 m to 1.514 ≈ 292 m. Legend as in Fig. 4.

extra grid modules added from 10 to 12 and 14 do not seem to
have contributed appreciably to the usable range of the system.
In the remainder of this paper we will look into the cause of
this problem and discuss possible solutions.

V. “PINNED” PATTERN FLOWS IN CANS

The source of the shortcoming is demonstrated in Fig. 9.
In this experiment, the flow of the activity pattern in a CAN
is measured for different strengths of net input velocity. The
relevance to the grid scaling problem is that this is currently
how the CANs’ grid scales are increased from the baseline
grid scale—by increasingly attenuating the velocity inputs to
the modules that should have larger grid scales.

The average flow reported for the unattenuated case in Fig. 9
was ∼981 neurons per 100 meters. In order to produce a
grid module with e.g. twice the grid scale, the velocity input
to that module should be half of the original signal—the
module would then use twice the amount of time/distance to
produce the same output as the unattenuated module, in effect
producing a grid pattern stretched to twice the spatial scale.
In general, to scale the grid pattern by a factor s, we attenuate
the velocity input by a = s by dividing it by a.

(a)

1 m.

10 m.

100 m.

 2 4 6 8 10 12 14

U
sa

bl
e

ra
ng

e
Projected
Observed

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 2 4 6 8 10 12 14

C
PU

 s
ec

on
ds

 e
la

ps
ed

pe
r s

im
ul

at
ed

 s
ec

on
d

Module count

Outbound
Return

Fig. 8. Various results from the trials shown in Fig. 7, aggregated by
the number of modules. (a) Usable range for each number of modules, as
determined in Fig. 7. Also shows the expected range as a function of number
of modules, projected from the range value found for 2 modules and using a
factor of 1.5 per module. (b) Mean ± std.dev. across trials, of CPU time spent
per simulated time. 1 simulated second corresponds to travelling 0.2 meters.
“Outbound” is the initial excursion away from the starting location, and
“return” is the following navigation phase where a return back to the starting
location is attempted.

For this strategy to be successful, the network response
should always remain proportional to the net velocity input.
Thus, with an attenuation of e.g. 100—in order to produce a
grid scale of 100 times the normal scale—we want the network
pattern to flow 981/100 = 9.81 neurons per 100 meters, etc.
Fig. 9 explores whether this is the case, by measuring the
network flow at various attenuation levels between 1.5−5 and
1.513, equally spaced on a logarithmic axis.

The specific attenuation levels used for the 14 different
modules in Section IV are indicated in the figure. At the
attenuation levels observed by modules 1–8, the network
behavior is indeed inversely proportional to the attenuation,
so that the reported flow values are around 1 as a proportion
of the “target flow”. However, for stronger attenuations the
behavior starts to break down. Between the attenuation levels
corresponding to the 8th and the 13th modules, there is an
increased spread in the observed flow values, and consequently
the grid module is less reliable as a path integrator. At yet
higher attenuation levels, the CAN barely seems affected by
the input signal and is unable to perform any path integration
at all. This phenomenon can account for the ineffectiveness
seen in Figs. 7 and 8 of adding any extra modules beyond 10.
The phenomenon corresponds to what Burak & Fiete refer to
as “pinning” of the network pattern at low velocities [11].

VI. AVOIDING PINNING

With this limited range of attenuation levels that the CAN
will accept, we will not be able to extend the navigational
range of the system no matter how many extra modules
we include. All of the large-scaled modules will experience
pinning and therefore not provide any useful navigational

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

40
-v

el
oc

ity
O

bs
er

ve
d

ne
tw

or
k

flo
w

(a
s

pr
op

or
tio

n
of

 ta
rg

et
 fl

ow
)

Path integration attenuation (~ grid scale)

2 3 4 5 6 7 8 9 10 11 12 13 14

Individual trials Mean Std.dev.

Fig. 9. Tracking the flow of the network pattern in a CAN-based grid module,
across a range of different attenuation levels for the velocity inputs to the
CAN. The attenuation is 1 for the smallest-scaled, i.e. the first, grid module.
To create larger grid scales, the velocity inputs are attenuated increasingly—
the attenuation levels corresponding to the 14 grid modules used in Fig. 7 are
marked by vertical lines. For each of 73 different attenuation levels, equally
spaced on a logarithmic scale from 1.5−5 to 1.513, 36 trials were conducted
in 10 degree increments. Each trial consisted of the agent making an outbound
excursion for 600 meters in the specified direction, with the velocity inputs
to the single grid module attenuated at the specified level, followed by a rest
phase. The flow of the pattern in the neural sheet of the CAN was tracked by
following the motion of one of the activity bumps in the sheet, and reported
as the number of neurons the pattern shifted in the x and the y directions. The
Euclidean distance of this pattern shift was considered the “observed network
flow” of the trial. The “target flow”, i.e. the amount of flow we would expect
for a given attenuation level if the module behaved completely linearly, was
calculated as the mean observed flow at x = 1 divided by the attenuation.
The outcome of each trial was plotted as the observed flow divided by the
target flow, and the goal is for these points to fall along y = 1. The mean
across the 36 trials for each particular attenuation level is shown as a dark
line, and the corresponding std.dev. is shown on a separate y axis for clarity.

signal for their respective scales. In order to extend our grid
cell-based navigation model to longer ranges, we thus need to
solve the problem of implementing CAN modules for large
grid scales while avoiding pinning. The issue at hand is that
the input signals to the network simply get too weak for the
network dynamics to be able to respond, i.e. for the network
pattern to reliably shift to adjacent states. As an example, the
attenuated velocity signal that reaches the 14th module is only
1.5−13 ≈ 0.005, i.e. half a percent, in strength compared to
what the first module receives. However, we have implemented
all of the CAN modules using identical network dynamics.
Implicitly we therefore require our CAN modules to respond
proportionally for inputs across several orders of magnitude,
which is quite a tall order. In this section we will consider a
few options for solving this problem.

One class of candidate solutions is to expand the CAN to
make it better equipped to respond to input levels from a wider
range. In this paper we will consider the effects of increasing
the size of the CAN’s neural sheet, i.e. increasing the number
of neurons that participate in the grid module. The idea is that
the CAN might get a better response range the more neurons
it contains—the weak input signal reaches a larger number of
neurons, thus the chances might be higher that the collective
response of the network will be able to overcome the pinning
phenomenon. We will test the effects of increasing the neural
sheet size from 402 neurons to 482, 562 and 642 neurons.

The other class of solutions we will consider is to adjust the

(a)

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

48
-v

el
oc

ity
O

bs
er

ve
d

ne
tw

or
k

flo
w

(a
s

pr
op

or
tio

n
of

 ta
rg

et
 fl

ow
)

2 3 4 5 6 7 8 9 10 11 12 13 14

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

56
-v

el
oc

ity
O

bs
er

ve
d

ne
tw

or
k

flo
w

(a
s

pr
op

or
tio

n
of

 ta
rg

et
 fl

ow
)

2 3 4 5 6 7 8 9 10 11 12 13 14

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

64
-v

el
oc

ity
O

bs
er

ve
d

ne
tw

or
k

flo
w

(a
s

pr
op

or
tio

n
of

 ta
rg

et
 fl

ow
)

Path integration attenuation (~ grid scale)

2 3 4 5 6 7 8 9 10 11 12 13 14

(b)

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

40
-d

et
er

m
in

is
tic

O
bs

er
ve

d
ne

tw
or

k
flo

w
(a

s
pr

op
or

tio
n

of
 ta

rg
et

 fl
ow

)

2 3 4 5 6 7 8 9 10 11 12 13 14

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

40
-p

oi
ss

on
-m

od
ul

e
O

bs
er

ve
d

ne
tw

or
k

flo
w

(a
s

pr
op

or
tio

n
of

 ta
rg

et
 fl

ow
)

2 3 4 5 6 7 8 9 10 11 12 13 14

 0
 0.5

 1
 1.5

 1 10 100
 0
 0.3
 0.6

More attenuation/
larger grid scales

Less attenuation/
smaller grid scales

40
-p

oi
ss

on
-n

eu
ro

n
O

bs
er

ve
d

ne
tw

or
k

flo
w

(a
s

pr
op

or
tio

n
of

 ta
rg

et
 fl

ow
)

Path integration attenuation (~ grid scale)

2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 10. Tracking the network flow under our various proposed solution schemes. Experiments were conducted as in Fig. 9, but with the model configured
as indicated in bold to the left of each figure. “Target flow” is based on values in Fig. 9. (a) Trials with the number of neurons in the CAN module increased
from 402 to 482, 562 or 642. (b) Trials with attenuation implemented through other means than by scaling the input velocity. Legend as in Fig. 9.

update rates of the grid cells as a function of the attenuation
level—essentially to “subsample” the sequence of velocity
values provided to the grid cells. Take our previous example of
a module that shifts its network pattern 981 neurons per 100
meters, whose grid pattern we now want to scale up by a factor
of 10; our current baseline approach is to achieve this grid
scaling by dividing the input speed by 10. However, assuming
that the network response correctly reflects the time integral of
the input signal, an equivalent way of obtaining the same effect
should be to use the original strength for the input signal, but to
only update the network a tenth as often. From the perspective
of the CAN module, the input history will reflect moving at
full speed for 10 meters, rather than moving at 1/10th speed
for 100 meters. However, because the agent will in fact have
moved 100 meters spatially, the module’s output should appear
10 times stretched across space, as intended.

There are several ways to go about implementing this basic
idea. One is to update the entire module on fixed, repeating
timestep intervals, and to skip updating the module at all
other timesteps. We refer to this as the “deterministic” update
mode. Two aspects of the deterministic update mode motivate
a further development. First, this update mode is not able
to generate all possible grid scales—there is e.g. no way
to achieve an attenuation of 1.5 with this scheme (the skip
interval necessarily has to be an integer, so the first possible
skip amount beyond 0 is 1, skipping every other network
update and resulting in an attenuation of 2). Second, with a

deterministic update mode the system will be susceptible to
failure in cases e.g. where the agent moves in periodic patterns
that match the module’s update rate. For example, if the agent
follows a movement pattern that cycles every 10 timesteps, a
module that updates precisely every 10th timestep will not be
able to adequately sample the full trajectory of the agent.

To alleviate this, we introduce stochasticity into our update
rule. Instead of calculating a discrete, deterministic update
interval from the desired attenuation level, we calculate an
update probability instead. At every timestep of the model,
the entire module is updated by chance according to that
update probability. Because this is a memoryless criterion—
not relying on the model’s timestep counter, as the determin-
istic mode does—we call this the “poisson-module” update
mode. This scheme should solve our two reservations about
the deterministic update mode. An attenuation of 1.5 would
be achieved by updating the module with a probability of
1/1.5 ≈ 0.67 on every timestep, etc. Due to the probabilistic
nature of the update rule, it should not be vulnerable to
periodic fluctuations in the animal’s velocity.

In both of these update modes, for strong attenuations, the
module might go a large number of timesteps between each
update and thus miss out on a substantial amount of velocity
information. As our final proposed update scheme, we suggest
to apply the probabilistic update rule individually to each
neuron on every timestep, rather than to the module as a whole.
Each neuron should over time experience the same update rate

 0.001

 0.01

 0.1

 1

 1 10 100

C
PU

 s
ec

on
ds

 e
la

ps
ed

pe
r s

im
ul

at
ed

 s
ec

on
d

Path integration attenuation (~ grid scale)

 0.0050 40-deterministic
 0.0030 40-poisson-module
 0.0048 40-poisson-neuron

 0.1087 48-velocity
 0.2038 56-velocity
 0.3940 64-velocity

 0.0558 40-velocity

Fig. 11. CPU demand for the various schemes presented in Figs. 9 and 10.
Mean CPU seconds per simulated seconds across trials for each attenuation
level and model configuration. The labels to the right show the mean values
at the rightmost data points.

as with the module-wide probabilistic update rule, but because
it is applied individually to each neuron every timestep, there
might potentially be an active subset of neurons in any given
timestep. We term this the “poisson-neuron” update mode.

To evaluate the effect of these proposed solution schemes,
Fig. 10 shows the results of performing the same experiment
as in Section V for each of the following six configurations:

48-velocity, 56-velocity, 64-velocity:
Velocity-based attenuation, i.e. the original approach
used in earlier sections of this paper, but with the
number of neurons in the CAN increased from 402 to
respectively 482, 562 and 642.

40-deterministic, 40-poisson-module, 40-poisson-neuron:
Subsampling-based attenuation as described above,
while leaving the CAN size unchanged at 402.

From Fig. 10a we can see that increasing the number of
neurons in the CAN module does help to increase the range
of viable attenuation levels, and thus the range of grid scales
attainable. However, the improvement occurs at the wrong
end of the scale, for attenuation levels less than 1. These
attenuation levels would be used to produce smaller-scaled
grid modules, but there is not any major improvement for the
high attenuation levels, which is what we need in order to
increase the overall usable range of the system. Fig. 10b shows
the results from the update modes based on subsampling. The
deterministic mode, as expected, shows artifacts from only be-
ing able to correctly represent integral attenuation levels. Both
the per-module and per-neuron probabilistic update modes
show promising results; for all attenuation levels from 1 and
up, the observed network flows are close to the desired target
flows needed to produce the intended grid scales. Neither of
the subsampling-based update modes are built to adhere to
attenuation levels less than 1, which would require updating
the modules/neurons more often than once per timestep.

Fig. 11 shows timing results obtained during the trials in
Figs. 9 and 10. For each trial the amount of CPU seconds
elapsed per simulated outbound second was calculated, and
these values were then averaged across trials for each attenu-
ation value, for each tested model configuration. As expected,
the CPU time for the velocity-based configurations is constant
as the attenuation level changes, because the same amount

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

2
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

4
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

6
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

8
m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

10
 m

od
ul

es
:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256
12

 m
od

ul
es

:

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 2 4 8 16 32 64 128 256

14
 m

od
ul

es
:

Goal distance (meters)

Fig. 12. Same experimental setup as in Fig. 7, but now using the “poisson-
neuron” update mode. Legend as in Fig. 4.

of calculation takes place regardless of the attenuation. Note,
however, that there is a substantial increase in CPU time going
from 402 neurons to larger CAN modules. For all of the
subsampling-based configurations, the CPU time decreases as
the attenuation grows.

VII. SUCCESSFUL LONG-RANGE NAVIGATION

The results in the previous section lead us to favor the
“poisson-module” and “poisson-neuron” update modes—as
shown in Fig. 10b they are both able to represent large grid
scales, and as shown in Fig. 11 they both require gradually less
computational time as the grid scale increases. Future work
should characterize whether there is any substantial difference
between the two update modes e.g. in their ability to handle
more fluctuating trajectories than the straight lines tested here,
but for now we will proceed with the “poisson-neuron” update
mode as our choice to evaluate in the full navigational system.

We re-ran the experiments from Section IV using the
“poisson-neuron” update mode, with the results corresponding
to Figs. 7 and 8 shown respectively in Figs. 12 and 13.
Particularly comparing Figs. 8a and 13a, we can see that
the shortfall previously experienced at 12 and 14 modules
has been resolved—the viable range keeps growing expo-
nentially as more modules are added beyond 10. Comparing

(a)

1 m.

10 m.

100 m.

 2 4 6 8 10 12 14

U
sa

bl
e

ra
ng

e
Projected
Observed

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 2 4 6 8 10 12 14

C
PU

 s
ec

on
ds

 e
la

ps
ed

pe
r s

im
ul

at
ed

 s
ec

on
d

Module count

Outbound
Return

Fig. 13. Aggregate results as in Fig. 8, but now based on the experiment
shown in Fig. 12, where the “poisson-neuron” update mode is used.

Figs. 8b and 13b we can see that the updated model requires
less CPU time than before, and that the growth is at most
linear in the number of grid modules added to the system.

VIII. DISCUSSION

The basis for this project was a grid cell-based neural
navigation system capable of vector navigation based on path
integration processes in a geometric progression of grid mod-
ules [6]. We sought to determine whether such a system, based
on CANs and nested decoding of grid cells, can support vector
navigation over long distances. We found that the geometric
progression of grid scales is interrupted due to “pinning”
of network patterns in the CAN modules at the low input
velocities used to implement large grid scales. Though this
work specifically used a CAN grid cell model, the key issue
of accommodating strong attenuation may also be relevant for
the dynamics in other grid cell models. We assessed several
candidate solutions and found that a probabilistic update rule
in each grid module/grid cell can successfully implement large
grid scales. Using this new approach, the system restored its
exponential growth in range as the number of grid modules
increases, enabling navigation beyond ∼100 meters as seen in
these experiments and expectedly to much farther distances.

Bush et al. [15] demonstrated successful vector navigation
with grid cells over distances of hundreds of meters, albeit
in a setup where the grid cell signal was externally generated
and thus would not suffer any issues arising from a neural path
integration process. In any case, their largest grid scale is only
∼5 meters, the large final navigational range achieved by using
a decoder capable of utilizing the “combinatorial” view of the
grid cell code. In our present work we show that navigation
at distances of ∼100 meters can also be accomplished when
taking a “nested” view of the grid cell code and producing the
grid cell signals in path integrating neural networks.

We saw an exponential growth in viable range as extra grid
modules were added, with at most a linear growth in CPU

time. We have thus demonstrated a grid cell-based neural nav-
igation system where the CPU requirements are logarithmic
in the desired navigational range. This is encouraging for the
prospects for implementing this system to run in real time on
a robot. For such an application it would also be natural to
integrate additional spatial neurons, such as place cells.

ACKNOWLEDGEMENT

Thanks to Keith Downing for helpful feedback on this work.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] D. L. Yamins and J. J. DiCarlo, “Using goal-driven deep learning models
to understand sensory cortex,” Nat. Neurosci., vol. 19, no. 3, pp. 356–
365, 2016.

[5] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[6] V. Edvardsen, “Goal-directed navigation based on path integration
and decoding of grid cells in an artificial neural network,” Natural
Computing, 2016.

[7] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat,” Brain
Res., vol. 34, no. 1, pp. 171–175, 1971.

[8] J. S. Taube, R. U. Muller, and J. B. Ranck, “Head-direction cells
recorded from the postsubiculum in freely moving rats. i. description
and quantitative analysis,” J. Neurosci., vol. 10, no. 2, pp. 420–435,
1990.

[9] T. Solstad, C. N. Boccara, E. Kropff, M.-B. Moser, and E. I. Moser,
“Representation of geometric borders in the entorhinal cortex,” Science,
vol. 322, no. 5909, pp. 1865–1868, 2008.

[10] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser,
“Microstructure of a spatial map in the entorhinal cortex,” Nature, vol.
436, no. 7052, pp. 801–806, 2005.

[11] Y. Burak and I. R. Fiete, “Accurate path integration in continuous
attractor network models of grid cells,” PLoS Comput. Biol., vol. 5,
no. 2, 2009.

[12] L. M. Giocomo, M.-B. Moser, and E. I. Moser, “Computational models
of grid cells,” Neuron, vol. 71, no. 4, pp. 589–603, 2011.

[13] M. Milford and G. Wyeth, “Persistent navigation and mapping using a
biologically inspired SLAM system,” Int. J. Robot. Res., vol. 29, no. 9,
pp. 1131–1153, 2010.

[14] F. Carpenter and C. Barry, “Distorted grids as a spatial label and metric,”
Trends Cogn. Sci., vol. 20, no. 3, pp. 164–167, 2016.

[15] D. Bush, C. Barry, D. Manson, and N. Burgess, “Using grid cells for
navigation,” Neuron, vol. 87, no. 3, pp. 507–520, 2015.

[16] M. Geva-Sagiv, L. Las, Y. Yovel, and N. Ulanovsky, “Spatial cognition
in bats and rats: from sensory acquisition to multiscale maps and
navigation,” Nat. Rev. Neurosci., vol. 16, no. 2, pp. 94–108, 2015.

[17] H. Stensola, T. Stensola, T. Solstad, K. Frøland, M.-B. Moser, and E. I.
Moser, “The entorhinal grid map is discretized,” Nature, vol. 492, no.
7427, pp. 72–78, 2012.

[18] I. R. Fiete, Y. Burak, and T. Brookings, “What grid cells convey about
rat location,” J. Neurosci., vol. 28, no. 27, pp. 6858–6871, 2008.

[19] X.-X. Wei, J. Prentice, and V. Balasubramanian, “A principle of economy
predicts the functional architecture of grid cells,” eLife, vol. 4, 2015.

[20] S. Sreenivasan and I. Fiete, “Grid cells generate an analog error-
correcting code for singularly precise neural computation,” Nat. Neu-
rosci., vol. 14, no. 10, pp. 1330–1337, 2011.

[21] M. Stemmler, A. Mathis, and A. V. Herz, “Connecting multiple spatial
scales to decode the population activity of grid cells,” Sci. Adv., vol. 1,
no. 11, p. e1500816, 2015.

