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Abstract    
 

The main goal of this thesis has been to further explore gold(I) catalyzed cyclization reactions 

including propargyl acetals. Gold(I) catalysts have a strong affinity to triple bonds, and alkyne-

gold complexes are readily formed. 

 

Both propargyl esters and acetals have previously been investigated in gold(I) catalyzed 

reactions. These propargylic substrates undergo intramolecular rearrangements to form gold 

carbenoid intermediates IVa-b, which exhibit strong electrophilic character and are activated for 

nucleophillic attacks.  

 

 
Propargyl esters have previously proven to undergo gold(I) catalyzed [2+1] cyclization reactions 

with vinyl esters and amides while propargyl acetals have shown to undergo gold(I) catalyzed 

[3+2] cyclization reactions with the same substrates. The difference in chemoselectivity is due to 

the electronic properties of the OR-groups in the gold carbenoid intermediates IVa-b.  

Propargyl acetals have proven to be more reactive than propargyl esters and thus new reactions 

including these species were investigated further. Propargyl acetals 5a-c were synthesized in 

acid catalyzed reactions between propargyl alcohols 3a-c and 1-methoxy-2-propene. Non-

commercial propargyl alcohols 3b-c were formed in a Grignard reaction with benzylic aldehydes 

1a-b.  

 

 

 
1-Phenylprop-1-yne 6 does not exhibit great nucleophilicity, but in the presence of gold(I) 

activated propargyl acetals, it has shown to readily undergo cyclization reactions.  

In this thesis, propargyl acetals 5a-d were treated with 1-phenylprop-1-yne 6 in gold(I) 

catalyzed reactions to readily form different cyclization products 7a-c, 8a-b and 10a-d by new 

tandem cyclization reactions.  
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Propargyl acetals 5a and 5d provided approximately the same product compositions, 

respectively products 7a-c and 10b-d, with each fraction yielding 3-12%. Propargyl acetal 5d 

gave one additional product 10a which was isolated in 7% yield. Product 10a was generated by 

following a different reaction mechanism than for the formation of 10b-d.  

The reaction with propargyl acetal 5b was more regio- and stereospecific as it provided one 

major product 8a in 27% yield. Additionally, another stereoisomer 8b was obtained in 5% yield.         

Propargyl acetal 5c did not provide any tandem cyclization products, but by following a known 

[3+2] cycloaddition, product 9 was formed in 15% yield.  

Possible reaction mechanisms have been proposed for the formation of 7a-c, 8a-b, 10b-d and 

10a respectively. All products 7-10 were characterized by 1D and 2D NMR experiments, IR and 

MS. NOESY experiments were of great importance when distinguishing diastereomers.   
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Sammendrag 
 

Hovedmålet med denne masteroppgaven har vært å utforske nye gullkatalyserte reaksjoner med 

propargylacetaler. Gull(I)katalysatorer har sterk affinitet til trippelbindinger, og alkyn-

gullkomplekser dannes svært raskt.  

 

Både propargylestere og -acetaler har tidligere blitt forsket på i gull(I)katalyserte reaksjoner. 

Disse propargylsubstratene gjennomfører intramolekulære omleiringer for å danne 

gullkarbenoid-komplekser. Disse kompleksene har en sterk elektrofil karakter og er aktivert for 

nukleofile angrep. 

 

 
Propargylestere har tidligere bevist at de gjennomgår gull(I)katalyserte [2+1] 

sykliseringsreaksjoner med vinylestere og -amider. Propargylacetaler har derimot gjennomgått 

gullkatalyserte [3+2] sykliseringsreaksjoner med de samme substratene. Denne forskjellen i 

regioselektivitet skyldes elektrontettheten i OR-gruppen og i hvilken grad den kan stabilisere 

den delokaliserte positive ladningen i intermediatet IVb.  

Propargylacetaler har vist seg å være mer reaktive enn propargylestere. Derfor er reaksjoner 

med disse substratene mest interessante å utforske videre. Propargylacetaler 5a-c ble 

syntetisert i en syrekatalysert reaksjon mellom propargylalkoholer 3a-c og 1-metoksy-2-

propen. Propargylalkoholene 3b-c ble dannet i en Grignardreaksjon med bensyliske aldehyder.  

 

 

 
1-Phenylprop-1-yn 6 er ingen sterk nukleofil, men har gjennomgått raske sykliseringsreaksjoner 

med gullkarbenoider IVa-IVb. 

I dette studiet har gull(I)katalyserte reaksjoner mellom propargylacetaler 5a-d og 1-

Phenylprop-1-yn 6 blitt gjennomført og flere interessante sykloaddisjonsprodukter 7a-c, 8a-b 

og 10a-d har blitt dannet gjennom nye tandem sykliseringsreaksjoner. 
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Reaksjoner med propargylacetalene 5a og 5d ga omtrent samme produktsammensetning, 

henholdsvis 7a-c og 10b-d, hvor hver fraksjon ga utbytte på mellom 3 og 12%. I reaksjonen med 

propargylacetal 5d ble i tillegg et annet produkt 10a isolert i et utbytte på 7%. Produkt 10a viste 

seg også å være et tandem sykliseringsprodukt, men ble dannet via en annen 

reaksjonsmekanisme enn produktene 10b-d. 

Reaksjonen med propargylacetal 5b var både mer regio- og stereoselektiv enn reaksjonene med 

de andre acetalene, da den ga et hovedprodukt 8a i 27% utbytte. I tillegg ble et annet produkt 8b 

isolert (5%). 

Propargylacetal 5c ga ingen tandem sykliseringsprodukter i gullkatalysert reaksjon med 

phenylpropynet 6, men heller et sykloaddisjonsprodukt 9 (15%) ble dannet ved å følge en kjent 

[3+2] sykliseringsmekanisme.  

Mulige reaksjonsmekanismer har blitt utformet for dannelsen av de nye tandem 

sykliseringsproduktene 7a-c, 8a-b, 10b-d samt 10a. Alle produkter 7-10 ble karakterisert av 1D 

og 2D NMR eksperimenter, IR og MS. NOESY eksperimenter var til stor hjelp når forskjellige 

diastereomerer skulle skilles fra hverandre. 
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Symbols and abbrevations 
 

°C  degrees Celsius 
Ac  acyl 
Ar  aryl 
Bo  Magnetic field 
calcd  calculated 
Cp  cyclopentadienyl 
COSY  Correlated Spectroscopy 
𝛿  chemical shift (ppm) 
𝛿  partially induced charge 
d  doublet (NMR) 
DCD  Dewar-Chatt-Duncanson (model) 
DCE  dichloroethane 
DCM  dichloromethane 
e.g.  for example 
EI  Electron Impact (MS) 
eq  equivalent 
ERG  Electron Releasing Group 
ESI  Electron Spray Impact (MS) 
Et  ethyl 
EtOAc  ethyl acetate 
EVE  Ethyl Vinyl Ether 
EWG  Electron Withdrawing Group 
Φ  torsional angle  
FID  Flame Ionization Detector 
g  gram(s) 
GLC  Gas Liquid Chromatography 
h  hour(s) 
HMBC  Heteronuclear Multi Bond Correlation 
HR  High Resolution (MS) 
HSQC  Heteronuclear Single Quantum Coherence 
Hz  Herz 
i-Pr  isopropyl 
IR  infrared spectroscopy 
J  coupling constant (Hz) 
M  Molar 
m  multiplet (NMR) 
μ  micro 
Me  methyl 
mg  milligram(s) 
MHz  Mega Herz 
min  minute(s) 
mL  milli Litre(s) 
mmol  millimoles 
MOP  methoxy propene 
MS  Mass Spectrometry 
nc  no conversion  
NHC  N-heterocyclic carbene 
NMR  nuclear magnetic resonance (spectroscopy)   
NOE  Nuclear Overhauser Effect 
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NOESY  Nuclear Overhauser Effect SpectroscopY 
obsd  observed 
Ph  phenyl 
PhD  Doctor of Philosophy 
Piv  pivaloyl 
ppm  parts per million 
PPTS  Pyridinium p-toluenesulfonate 
PTSA  Pyridinium p-toluenesulfonic acid 
r.t.  room temperature 
Rf  Retardation factor (TLC) 
t  triplet 
t-Bu  tert butyl 
THF  tetrahydrofuran 
TLC  Thin Layer Chromatography 
TM  transition metal 
TMS  TriMethylSilyl 
Tol  toluyl 
Ts  tosyl  
UV  UltraViolet  
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Chapter 1 

Introduction 
 

The research group of Anne Fiksdahl has over the last years explored the field of gold(I) 

catalyzed cyclization reactions. Propargyl esters treated with vinylic compounds have proven to 

undergo [2+1] cyclopropanation reactions to form cyclopropane units. Reactions between 

propargyl acetals and the same substrates followed a [3+2] cyclization mechanism.18, 48 Tandem 

cycilization reactions between two propargyl acetal units and one unit of an olefinic ester have 

recently been discovered in the Fiksdahl group.21 

 
The chemoselectivity of the propargyl substrates is due to the electronic properties of the OR’-

group. In the gold carbenoid complex derived from acetals, the delocalized positive charge in 

intermediate IVa is stabilized by the electron donating alkoxy group (OR-group), which allows 

C-1, C-2 and C-3 to be included in the following cyclization reaction. In the case of propargyl 

esters, the electron withdrawing O-acyl group deactivates C-1 and C-2, allowing only C-3 to be 

included in the cyclization reaction.  

 

 
Recently, diarylic imines have proven to give 7-membered benzazepine heterocyclic products35 

in [5+2] cycloaddition reactions with propargyl acetals.  

 

1.1 Aim of project 
 
The propargyl acetals have proven to be more reactive than the propargyl esters,18 and reactions 

with these species would therefore be interesting to investigate further. In order to study 

reactions with other multiple bond reactants, the aim of this project is to investigate new gold(I) 
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catalyzed reactions between aromatic propargyl acetals and 1-phenylprop-1-yne. By 

characterizing the stereo- and regiochemistry of the products, the reaction pathways can be 

determined.  
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Chapter 2 

Theory 
 

2.1 Use of transition metals in organic synthesis 
 
In 1757, Loius-Claude de Gassicourt44 did an experiment in which he was trying to make cobalt-

containing inks from arsenic-containing cobalt salts. During this experiment he discovered the 

ill-smelling Cadet’s liquid which was synthesized from potassium acetate and arsenic trioxide. 

This liquid contained a mixture of cacodyl and cacodyl oxide which were the first organometallic 

substances prepared. Since this discovery, the use of organometallic compounds has been 

important among chemists.  

A key event in organometallic catalysis was the discovery of Zeise’s salt56 in 1825. Its inventor, W. 

C. Zeise, was investigating the reaction of K2(PtCl4) in boiling ethanol and the product he 

observed contained ethylene. This was the first π-complex ever discovered.  

 

 

Figure 2.1: A: Cadet’s liquid and B; Zeise’s salt 

 
 

Chemists could not properly describe the structure of the salt until the advent of x-ray 

diffraction in the 20th century.2 This metal complex with a η2-ligand was important in the 

understanding of hapticity in chemistry. M. J. S. Dewar 7 described in the 1940s the bonding of an 

olefin coordinated to copper(I) and silver(I). J. Chatt and L. A. Duncanson19 used this model to 

describe the bonding in Zeise’s salt. In transition metal (TM) complexes, the Dewar-Chatt-

Duncanson (DCD) model describes how the olefin acts as an electron donor and acceptor at the 

same time.  
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Figure 2.2: Interactions between a TM and its 𝜂2 ligand 

 

Figure 2.2a shows, according to the DCD–model, how the olefin ligand donates electrons from 

from its occupied π-bonding orbital to the free 2z
d

-orbital of the metal. In the complex this 

orbital interaction has a σ–character. The metal acceptor is mainly the 2z
d

-orbital of the metal. 

The back-donation from the TM to the ligand (Figure 2.2b) takes place via a d-π* interaction 

between the filled d-orbital of the metal and the empty π*-orbital of the olefin. All together these 

interactions weakens the C-C bond in the olefin. The main problem for describing the nature of 

the bonding between a TM and an unsaturated ligand, where a C–C double bond is included, is to 

determine if the complex should be described by the DCD–model or as a metallo-cyclopropane 

derivate (Figure 2.3).  

 

Figure 2.3: Metallo-cyclopropane 

 

The first reliable studies of this problem were published by Steigerwald and Goddard in 1985.50 

They concluded, by investigating C–C bond lengths of the ligand, that there are three factors that 

determine if a donor–acceptor complex is formed; the metal has low–lying electronic states with 

doubly occupied d–orbitals, the C=C π-bond is strong and the σ–bond between the TM and the 

ligand is strong.  

In 1912, F. Grignard received the Nobel Prize in chemistry15 for his discovery of the Grignard 

reaction and reagents. In the reaction, aryl-or alkyl–magnesium halides react with an aldehyde 

or a ketone29 to form alcohols. The reaction is important in organic synthesis for formation of 

new C-C bonds. The Grignard reagents have also been proven to undergo transmetallation in 

cross coupling reactions including palladium52 among other TMs.   

In the 1950s, two individual groups22, 32 reported that they had obtained a product with light 

orange powder and “remarkable stability”. The structure of the compound was determined by R. 

B. Woodward and G. Wilkinson55 in 1952 and later confirmed by NMR and X-ray crystallography.9 

What was discovered was ferrocene (Figure 2.4), a very stable organometallic compound with a 

sandwich structure consisting of an Iron(II) cation and two anionic cyclopentadienyl (Cp) rings.  



19 
 

 

Figure 2.4: Ferrocene 

 

In order for the compound to be neutral, the Cp rings have one negative charge each, making 

both of them donate 6 π-electrons. Combined with the 6 d–electrons on Fe2+ the complex attains 

an 18-electron configuration. The general name for these sandwich compounds are metallocenes 

and they are used in different reactions such as Ziegler Natta polymerization43 and as an agent in 

cancer treatment.25  

In 1961, L. Vaska et.al. reported a new organometallic compound54 which was given the name 

Vaska’s complex. It’s known for the reversible addition of O2 and series of oxidative addition 

reactions due its coordinative unsaturation. Studies on this complex; its great reactivity at 

normal conditions, have contributed to a greater understanding and study of different processes 

in catalysis.53  

Throughout the 60s and 70s several homogenous catalysts containing TMs were synthesized. 

The Wilkinson’s catalyst38 was the first homogeneous olefin hydrogenation catalyst, H. Kagan 

reported the first efficient enantioselective asymmetric Rh(I) hydrogenation catalyst.20 Today 

organometallic catalysis is still popular and one of the fastest growing areas in this field is the 

organogold compounds.1, 16, 49, 57 

 

2.2 Organogold chemistry 
 
Since the first organogold compound, the gold carbene Au2C2, was discovered in 1900,31 the use 

of gold in organometallic chemistry has been a popular field, especially during the last years.1, 16, 

49, 57 Gold(I)–and gold(III)–complexes are the most attractive due to their electron configuration. 

Use of these catalysts in synthesis is popular because of the mild reaction conditions required 

and their product selectivity. 

In the beginning of the 20th century, organogold complexes including dialkyl substituents were 

prepared, but they were very unstable. G. E. Coates managed later to prepare stable derivatives 

by addition of tertiary phosphine ligands.4 The phosphine ligand acts as a π-acceptor and a σ-

donor through its lone pair electrons as shown in Figure 2.5. 
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Figure 2.5: Figure a shows the 𝝈–bond between the lone pair on phosphorus and the empty orbital on the 
metal. Figure b shows the 𝝅–backdonation  from the metal to the 𝝈* orbitals on Phosphorus 37 

 
 
Use of tertiary phosphine ligands on gold(I)–and gold(III) complexes are attractive due to the 

thermal stability of the gold-phosphorus bond.41  

The bonding between TMs and π–ligands such as alkenes and alkynes is usually described by the 

DCD–model. Four different principle components can contribute to the bonding of alkynes as 

ligands as seen in Figure 2.6. 

 

 

Figure 2.6: The four principles of bonding between a TM and an alkyne ligand.12 The σ–and the π–
interactions are the main contributors to the bonding. 

 

For the gold(I)–acetylene complex ([Au+-C2H2]), σ–bonding contributes 65% to the bond 

strength while the π–bonding only contributes 25%. This makes the alkyne mainly a σ–donor 

and not so great a π–acceptor towards gold(I). For this reason, alkynes are easily activated by 

gold(I)–catalysts and the gold–alkyne complex gains an electrophilic character.  

Addition reactions to alkynes with a Brønsted acid as catalyst requires harsh conditions and 

many by-products may be formed from the carbocation intermediate. By replacing the proton 

with a softer isolobal catalyst, such as LAu+, formation of the desired product is much easier to 

achieve. The Au(I)–catalyst has high affinity to the π–system of the alkyne but has the advantage 

of being easily cleaved off at the labile metal-carbon bond.12  

Gold(I) catalysts are not very sensitive towards air because of the high oxidation potential from 

+I to +III. In addition, water, alcohols and oxygen are better tolerated during the reaction due to 

gold carbenoid intermediates. The gold carbenoid is stabilized by backbonding from the 

metal/ligands.  
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Figure 2.7: Dominant bonding in a Fischer–type carbene complex 12 

 

These carbenoid and non-classical carbocation intermediates, which are involved in gold 

catalyzed reactions, often lead to high product selectivity. In addition, the carbon-gold bond is 

labile towards protodeauration, which regenerates the catalyst.  

Some of the most popular gold catalyst includes phosphines and N-heterocyclic carbene (NHC) 

ligands and examples of these are presented in Figure 2.8. 

 

 
Figure 2.8: Some homogenous gold catalysts14 

 

2.3 Gold(I) catalyzed cyclization reactions 
 
Several research groups have demonstrated that propargyl esters can, in presence of gold(I), 

undergo an intramolecular transformation to generate gold complex intermediates.5, 6, 27, 48 

Additionally, the Fiksdahl group has studied the reactivity of propargyl acetals.18, 21 The 

propargyl acetals generate similar intermediates as propargyl esters as shown in Scheme 2.1.  

 

 
Scheme 2.1: Gold(I) activation of propargyl esters and acetals18 
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By performing a 1,2 O-acyl (for esters)/O-alkyl (for acetals) shift, the gold carbenoid complex 

IVa-b is generated. The positive charge is highly delocalized, but can be stabilized by an electron 

releasing OR’ group as in the case of propargyl acetals. Allene-gold complexes IVc are formed by 

an intramolecular 1,3 shift in the propargyl ester/acetal.  

Depending on the propargyl substrate, the gold complex intermediates IVa-c can undergo 

cycloadditions with different vinylic substrates V such as vinyl ethers and amides48 and different 

interesting cyclic products VI-VIII can be formed.  

 

2.3.1 [2+1] Cycloaddition reactions 

 
Formal [2+1] cycloaddition reactions generate cyclopropane units, as seen in Scheme 2.1. These 

units can be found in several naturally occurring products with different biological properties8 

and are also used in a number of interesting chemical transformations.28, 34, 51 Gold(I) catalyzed 

cyclopropanations between propargyl esters and vinyl esters have previously been reported by 

the group of Fiksdahl.48 Reactions between propargyl esters and vinyl acetates were catalyzed 

with 5 mol% of catalyst Ib. The product showed formation of cyclopropane derivatives.                                     

  

 

Scheme 2.2: Formation of a cyclopropane compound. 

 
 

The reaction presented in Scheme 2.2 is an example of a [2+1] cycloaddition reaction and the 
mechanism appears to go via the gold carbenoid intermediate IVb26 and is described in Scheme 
2.3. The stereochemical conformations of the cyclopropane compound VIa were dependent on 
the bulkiness of the substituents on the vinyl esters Va. 
 
 

 

Scheme 2.3: Mechanism of [2+1] cycloaddition via a gold(I) carbenoid intermediate IVb. 

 
 
It is known that aryl propargyl esters IIa can undergo intramolecular cyclization reactions with 

a gold allene IVc or a gold carbenoid IVa-b intermediate to form indenes IX.36 The reactions 

performed by the group of Fiksdahl, presented in Scheme 2.2, also showed formation of these 

compounds, but only in the range of 10% 48 
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Scheme 2.4: Intramolecular cyclization reaction to form indenes IX 48 

 

2.3.2 [3+2] Cycloaddition reactions 

 
Different propargyl esters II were treated with a variety of both vinyl-esters and sulfonamides 

by the group of Fiksdahl48 as mentioned in the last Section. An unexpected result was observed 

in a few of the cases with vinyl sulfamides Vb. The reaction did not provide cyclopropanes but 

rather cyclopentenes X instead. One of the examples is shown in Scheme 2.5.  

 

Scheme 2.5: Gold(I) catalyzed [3+2] cycloaddition 

 

Nevado have reported a phosphate-gold catalyzed cyclopentaannulation of olefins with 

propargyl esters. The initially formed cyclopropylvinyl esters appared to undergo a ring 

expansion at higher temperatures to provide trans-cyclopentenyl esters.13 However, further 

investigation done by the group of Fiksdahl indicated that the cyclopentene products produced 

in her group did not go through a ring expansion, but rather a direct [3+2] cycloaddition.48  

These diverse observations indicate that the positive charge on the gold carbenoid IVa-b is 

highly delocalized and that the mechanism is controlled by steric and electronic factors. The 

resonance is shown in Scheme 2.1. 

Propargyl acetals III are also known to undergo an intramolecular rearrangement to provide 

gold carbenoid complexes IVaa-ab.57 This rearrangement follows approximately the same 

mechanism as in the case of esters (Scheme 2.1), but during the internal rearrangement in 

propargyl acetals, one unit of acetone is cleaved off during the activation with the gold. This 

mechanism is described in Scheme 2.6. 

  

 
Scheme 2.6: Gold(I) activation of a propargyl acetal. 
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By changing from propargyl esters II to propargyl acetals III, the reactivity of the propargyl 

moiety increased drastically, resulting in a reduction of reaction times. The high reactivity of the 

propargyl acetal may be due to the electron releasing alkoxy (OR2) substituent which can 

stabilize the positive charge in the gold carbenoid intermediate IVaa.18  

Reactions between propargyl acetals IIIa and vinyl compounds Vc mainly undergo a direct [3+2] 

cycloaddition to form cyclopentenes XI.18 The difference in chemoselectivity for propargyl 

acetals is probably due to the methoxy group which activates the double bond to take part in the 

cyclization reaction as described in Scheme 2.7. In the field of gold chemistry, propargyl acetals 

are exclusively studied by the group of A. Fiksdahl.  

 

 

Scheme 2.7: Gold(I) catalyzed [3+2] cycloaddition reaction via intermediate IVb.18 

 

Recent investigation performed by Gung et.al. includes reactions between propargyl esters IIb 

and cyclic vinyl ethers Vd.5 Dependent on the ring size of the vinyl ether, different amounts of 

both the cyclopentenation and cyclopropanation products were formed. One of their reactions is 

presented in Scheme 2.8. 

 

Scheme 2.8: Reaction performed by Gung et.al.. Both the [3+2] cycloaddition product and [2+1] 
cycloaddition product was obtained. 

 

The ratio between the products in Scheme 2.8 was 33:67. The [3+2] cycloaddition product XIIa 

was observed only as the cis isomer with respect to the methoxy- and the phenyl group. In other 

reactions the cis/trans ratio would vary.  

Another interesting point mentioned in the paper by Gung et.al5 is the ring current effects which 

influences the 1H chemical shift values of substituents located nearby phenyl rings in the 

molecule. In the case of the [3+2] cyclization product in Scheme 2.8, the methoxy group and the 

phenyl ring is located syn to each other and hence the methoxy group gets an increased δ-value 

relative to its normal chemical shift. The induced ring currents11 occur when a molecule with 

delocalized π–electrons is placed in a magnetic field, such as in a NMR device. The ring current 

generates an additional magnetic field as described in Figure 2.9. This leads to regions of 

increased and reduced shielding in the vicinity of the aromatic ring. For this reason the aromatic 
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hydrogen atoms, which are in a position where the lines of force increase the Bo field, will have 

increased shift values relative to e.g. hydrogen atoms in an alkene. 

 

Figure 2.9: A: Zones of increased (+) and decreased (-) shielding in an external magnetic field Bo caused by 
ring current effects. B: In [18]-annulene the six inner hydrogen atoms are highly shielded by the ring current 

effects and hence their shifts (ppm) are very low 

   
 

2.3.3 [5+2] cyclization reactions 

 
Gold-activated alkynes are good electrophiles for both sp2- and sp3-hybridized heteroatom 

nucleophiles, which allow a diversity of heterocycles to be formed.45 Gold(I) catalyzed reactions 

between propargyl acetals IIIa and diarylic imines XII are currently proven, by the Fiksdahl 

group, to give benzazepine heterocycle derivatives XIII in 60-80% yields (Scheme 2.9).35 The 

formation of product XIII appears to go via the gold carbenoid intermediate IVba. 

 

 

Scheme 2.9: [5+2] cyclization reaction between propargyl acetals and diaryl imines to form benzazepine 
heterocycle derivatives. 

 

The benzazepine heterocycles XIII contain a framework which is observed in bioactive natural 

products and pharmaceuticals.17, 47 Syntheses of these types of compounds are consequently of 

great interest.  

Several gold(I) catalyzed experiments with propargylic acetals and diaryl imines were 

conducted to find the optimized catalyst for the [5+2] cyclization reaction.35 The most efficient 

catalyst Ic is presented in Scheme 2.10. The active catalyst Ic is generated in situ by counter ion 

exchange. 
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Scheme 2.10: Generation of the optimized gold(I) catalyst for [5+2] cycloadditions 

 

Until now, no research has been done on the gold(I) catalyzed [5+2] cycloaddition between 

propargyl acetals and imines, but a proposed mechanism has been developed be the Fiksdahl 

group and is presented in Scheme 2.11.35  

 

 

Scheme 2.11: Proposed reaction mechanism of the [5+2] cyclization reaction between propargylic acetals 
and imines. 

 

Scheme 2.12 shows a deuterium labeling experiment35 in which incorporation of one deuterium 

on the 3-position of the 7–membered heterocycle d5-XIII is shown. This is in accordance with an 

o–phenyl proton shift after the protodeauration step. Cyclization through an electrophilic 

aromatic Mannich–type reaction occurs and the benzene–ring regains its aromaticity.    

 

 

Scheme 2.12: Deuterium labeling experiment to determine the proton shift in the [5+2] cyclization reaction 

 
 

2.4 Synthesis of propargyl alcohols and acetals    
 
As previously stated, propargyl acetals are much more reactive than the corresponding ester, 

and are therefore more interesting to use in further research on gold(I) catalyzed cyclization 

reactions. Propargyl acetals are synthesized from propargyl alcohols and not many of them are 
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commercially available. One efficient reaction to form propargyl alcohols is a through a Grignard 

reaction with aldehydes42 as presented in Scheme 2.13. Aryl substituted propargyl alcohols and 

acetals have shown to control the stereoselectivity18 and are hence of the greatest interest.  

 

 

Scheme 2.13: Synthesis of propargyl alcohols 

 

As mentioned in Section 2.2, the Grignard reaction is an important tool for the formation of C–C 

bonds. THF is often used as a solvent in these reactions, as it forms a more stable complex with 

the Grignard reagent than e.g. diethyl ether.3 THF is also preferred due to its hygroscopic 

properties, which excludes side reactions between the Grignard reagent and water. The 

mechanism of the Grignard reaction is presented in Scheme 2.14.    

 

 

Scheme 2.14: Mechanisms of the Grignard reaction3 

 

The reactions between propargyl alcohols and vinyl ethers to form propargyl acetals III are 

shown in Scheme 2.15. 

 

Scheme 2.15: Synthesis of propargyl acetals.57 

 

This reaction is acid catalyzed by pyridinium p-toluensulfonate (PPTS) which is found to be 

weaker and can be used in milder conditions than the corresponding p–toluensulfonic acid 

(PTSA).33 Propargyl acetals derived from methoxy propene (MOP) have been shown to favor 

cyclization reactions more than in the case of ethyl vinyl ether (EVE).18 The reaction mechanism 

for the synthesis of propargyl acetals is described in Scheme 2.16: 
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Scheme 2.16: Mechanism for the acid catalyzed formation of acetals.10 

 

2.5 NMR applications 11 

 
In 1946 two research groups independently observed nuclear magnetic resonance signals for 

the first time. Respectively F. Bloch and E.M. Purcell were awarded the Nobel Prize for Physics in 

1952 for their discovery. During the first three decades all NMR spectroscopy measurements 

relied on one-dimensional (1D) modes of observation. Two-dimensional (2D) NMR experiments 

were developed during the 1970’s and started a new area in NMR spectroscopy. The advantage 

of 2D NMR spectra is that they show 1H vs. 1H or 1H vs. 13C chemical shift correlations, which are 

great tools when solving regio- and stereochemistry of organic molecules.  

2D NMR experiments include COSY, HSQC, HMBC and NOESY among others. Both COSY and 

NOESY spectra show 1H vs. 1H interactions. The difference between them is that COSY shows 

correlations via spin-spin coupling in the molecule, while NOESY spectra show protons that are 

close through space. HSQC shows C-H correlations via one-bond carbon-proton coupling and 

HMBC shows C-H correlations via long-range C-H coupling.  

NOESY experiments are important tools when solving stereochemistry in molecules. The [3+2] 

cyclization product XIIa in Scheme 2.8 is a bicyclic compound with three stereogenic centers. 

The compound can potentially have four different diastereoisomers (with corresponding 

enantiomers). Two enantiomers dissolved in an achiral solvent will have identical NMR spectra 

and can’t be distinguished.  

Scalar couplings between nuclei are indirect couplings transmitted through chemical bonds. 

Vicinal couplings, 3J(H,H), show couplings between protons separated by three bonds.  They are 

influenced by e.g. substituents and the torsional angle φ. A greater understanding of vicinal 

couplings was made by M. Karplus. The Karplus curve shows the relationship between 3J(H,H) 

(Hz) and the torsional angle φ, and is presented in Figure 2.10. The plot describes how the 

coupling constants are largest for φ = 0° or 180°, and smallest for φ = 90°.  
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Figure 2.10: The Karplus curve 

 

In saturated systems couplings through more than three bonds are often less than 1 Hz. 

However, in allylic compounds, the 4J(H,H) couplings can become quite large. These couplings 

are highly dependent on the angle φ between the C-H bond and the axis of the π-orbital in the 

double bond as shown in Figure 2.11 

 

 

Figure 2.11: The angle φ between the C-H bond and the axis of the π-orbital in the double bond determines 
the couplings in allylic systems. 

 

The closer the angle φ is to 0°, the larger will the coupling be. Couplings through five or more 

bonds can rarely be seen.  
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Chapter 3 

Results and discussion 
 

This chapter is divided in three parts. The first part covers the synthesis of starting materials 

and is presented in Section 3.1. This part consists of synthesis of propargyl alcohols and acetals. 

The major work is presented in Section 3.2, where details of all the gold(I) catalyzed cyclization 

reactions are presented. Finally, in Section 3.3, suggestions for further development in this field 

are given.  

All new compounds have been fully characterized by NMR, IR and MS. Different stereoisomers 

were distinguished by 2D NOESY experiments and are presented in this chapter. The shift values 

of 1H and 13C are given in blue and red, respectively. Experimental data and characterization 

details are given in Chapter 5.  

 

3.1 Synthesis of starting materials 

3.1.1 Synthesis of propargyl alcohols 

 
The propargyl alcohols 3b-c were synthesized according to a similar procedyre.42 Propargyl 

alcohol 3a was commercially available. All details and results of these syntheses are given in 

Table 3.1. 
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Table 3.1: Synthesis of propargyl alcohols 

 

 

Entry Aldehyde Propargyl alcohol Yield [%] 

    

1 
 

1a 
 

3b 

54 

   
 

2 

 

 
1b 

 

 
3c 

 
 
- 
 

 
  

 

 
  

 

 

The substituted benzaldehydes 1a-b were treated with a 0.5 M solution of the Grignard reagent 

2 in THF. This Grignard reaction was described in Section 2.4. Since this is an exothermic 

reaction,39 the temperature was kept low while adding the benzaldehyde 1a-b to the Grignard 

reagent. A saturated solution of ammonium chloride was added to quench the reaction. 

The literature based procedure proved not to work as well for aldehyde 1b (Entry 2). The solid 

p-nitrobenzaldehyde 1b did not dissolve easily in THF. Fortunately, this did not seem to affect 

the conversion of aldehyde 1b or the reaction time (monitored by GLC). However, in the work 

up of the product crude, the extraction proved to be difficult with the literature procedure. The 

product was probably less soluble in diethyl ether than the literature substrate. A more polar 

solvent, such as ethyl acetate or dichloromethane, should be used for this substrate. No flash 

chromatography was performed for purification of the product 3c, as the proton NMR analysis of 

the crude product indicated that the correct product 3c had been obtained.23 The crude product 

was used in further synthesis.     

 

3.1.2 Synthesis of propargyl acetals 

 
All details and results of the syntheses of propargyl acetals 5a-c are given in Table 3.2. 
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Table 3.2: Synthesis of propargyl acetals 

 

 

Entry Propargyl alcohol Propargyl acetal Yield [%] 

   
 

1 
 

3a  
5a 

77 

   
 

 
2 

 
 

 
3b 

 
5b 

 
 

63 
 

   
 

   
 

3 
 

3c  
  5c 

 
31i 

 

   
 

i  Yield over two steps from aldehyde 1b. 

 

Syntheses of propargyl acetals 5a-b have previously been reported and these compounds have 

been used in gold(I) catalyzed reactions.21 The reaction mechanism for the acid catalyzed 

formation of propargyl acetals was described in Section 2.4. Due to the unstability of the acetals 

5a-c, which tended to decompose to alcohols 3a-c at room temperature, these reactions had to 

be performed under inert conditions. The observed yields of propargyl acetals 5a-b are in 

accordance with, or better than literature.21  

Synthesis of propargyl acetal 5c was performed according to the same procedure as for 

propargyl acetals 5a-b. The low total yield of 5c may be due to the challenges in the work-up of 

propargyl alcohol 1b and also that the impurities in the product crude of 1b have affected the 

reaction and formation of 5c. Due to time limitations the reaction was not repeated. However, 

sufficient amount of the product 5c was produced to continue with further syntheses.  
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3.2 Gold(I) catalyzed reactions 
 
All details and results of the gold(I) catalyzed reactions are summerized in Table 3.3. Due to 

optimization studies previously carried out in this group regarding gold(I) catalyzed [2+1] and 

[3+2] cycloaddition reactions, gold catalyst Ib was used in Entries I-IV (Figure 3.1).18 Counter 

ions such as hexafluorantimonate(V) or bis(trifluoromethylsulfonyl)amide combined with the 

gold(I) complexes seemed to be important, as no reaction took place where they were not 

present.  

All experiments showed immediate and full conversion of the propargyl acetals 5a-d, with a 

corresponding color change in the reaction flask. All the reactions were allowed to stir for 15 

minutes before being quenched with triethylamine.   

 

 

Figure 3.1: Gold catalyst Ib 

 

All the gold(I) catalyzed reactions were carried out with three equivalents of 1-phenyl-prop-1-

yne 6. Recent research in the group indicates that some of the propargyl acetals undergo a 

dimerization in the presence of gold(I) catalysts, hence, an excess of the phenyl propyne is 

desirable to use.       

All assignments of stereo- and regiochemistry of products 7-10 are based on 1H, 13C and 2D 

correlation NMR spectroscopy. The low yields observed of many of the products, and the fact 

that these reactions were conducted in small scale (100 mg), gave challenges due to weak NMR 

spectra. Due to the low natural abundance of 13C, some spectra were difficult to analyze. Hence, 

full characterization of some of the products was not possible at this time.   

Once the identity of the products formed had been established, a screening of different gold(I) 

and gold(III) catalysts was carried out. These reactions are described in Subsection 3.2.6 in this 

Chapter.  
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Table 3.3: Gold(I) catalyzed reactions 

 

 

 
Propargyl acetal Cyclization product 

Yield 
[%] 

   
 

Reaction  
I 

 

 
5a 

 
7a 

3 

  
 
 

 

  

 
7b 

 
 

 
7c 

 

3 
 
 
 
 
 
 

10 

Reaction  
II 

 
 
 

 
5b 

8a 
 

 
 

27 
 

  

 

 
8b 

 

 
 

5 
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Table 3.3 continuation: Gold(I) catalyzed reactions 

 
Propargyl acetal Cyclization product 

Yield     
[%] 

   
 

Reaction 
III 

 

 
5c 

 

 

15 

  
9 
 

 

Reaction 
IV 

 
 
 
 

 
5d 

 

 
10a 

 
 

 
7 
 
 

  

 
10b 

 
 

 
10c 

 
 

 
10d 

 

 
6 
 
 

 

 

4 

 

 

 

 

12 
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3.2.1 Reaction I 

 
The reaction between the unsubstituted propargyl acetal 5a and phenylpropyne 6 was the first 
reaction conducted in this thesis and is presented in Scheme 3.1. 
 

 

Scheme 3.1: Reaction I. 

 

Monitored by GLC, it was clear that the reaction was complete after 15 minutes. Both TLC and 

GLC showed several products. A sketch of the TLC is presented in Figure 3.2 

 

 
Figure 3.2: TLC of product crude in reaction I. Eluent 15:1 pentane:ethyl acetate 

 

 
The two lower spots on the TLC in Figure 3.2 were given our attention, as they gave the purest 
1H NMR spectra after isolation. The spot with Rf = 0.42 appeared to consist of two isomers but 

the lowest spot (Rf = 0.34) consisted of one, pure compound. It became clear after 1H NMR, 13C 

NMR, 2D correlation NMR (Appendix H) and mass spectrometry that the product 7c was a result 

of a tandem cyclization reaction containing two units of the propargyl acetal 5a and one unit of 

the phenylpropyne 6. None of the previous tandem cyclization reactions proposed by this group, 

presented in section 2.3, could describe the formation of the new tandem cyclization product 7c.  

A new reaction mechanism was proposed and is presented in Scheme 3.2. 
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Scheme 3.2: Proposed reaction mechanism of the tandem cyclization reactions resulting in several products 
presented in Table 3.3 

 

In the first step (A) the gold catalyst activates the propargylic acetal into the allenic intermediate 

IVca, which is described in Scheme 2.6, by a 1,3 intramolecular alkoxy shift. This is followed by a 

[2+2] cycloaddition reaction (B) with the phenyl propyne 6 by activation from the terminal 

methoxy group. A similar four membered ring (as XIVa) was previously formed and isolated by 

this group.18  In the next steps (C, D) a intramolecular rearrangement, including a double proton 

shift, occurs, induced by the formation of a substituted 1,3 pentadiene, due to less ring strain. In 

the final step (E) of the tandem cyclization process, there is a [3+2] cycloaddition between the 

five membered ring XIVc and the gold-complex IVba which follows the reaction mechanism 

presented in Scheme 2.7.  

This mechanism was proposed by Prof. Anne Fiksdahl and Post Doc. Naseem Iqbal, and 1D and 

2D NMR experiments of product 7c support the proposed regiochemistry. It was established 

that two protons were attached to sp3 hybridized carbon atoms, and two benzylic protons were 

attached to sp2 hybridized carbon atoms because of the correlated 13C shift values observed in 

HSQC (Appendix H-3). HMBC- and COSY spectra (Appendices H-4, H-5) was very helpful when 

solving the structure of the molecule skeleton. HMBC and COSY correlations of compound 7c are 

presented in Figure 3.3. 
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Figure 3.3: Chemical shifts and HMBC/COSY correlations in the skeleton of compound 7c. 

 

The strong COSY correlations between the protons shown in Figure 3.3 are a bit surprising as 

they are separated by four bonds, but it may be due to long range couplings which were 

described in Section 2.5. In some of the products, a splitting between these protons was 

observed in the proton specter as well.  

The isomers 7a-b with Rf=0.42 in Figure 3.2 proved to be more difficult to separate from each 

other, but was accomplished after extensive testing of several eluent systems. The final eluent 

system was 50:1 pentane:THF. Both isomers 7a-b showed similarities with 7c in 13C NMR and in 

the 2D correlation NMR spectra, so it was established that they both were different 

stereoisomers of product 7c. Though the 1H shifts seemed to differ, but this is probably due to 

the stereochemistry and ring current effects as described in the latter part of Section 2.3.  

The proposed product in Figure 3.3 has four stereogenic centers, and the stereochemistry of the 

isolated products (enantiomers are not desired to distinguish in this synthetic field, hence the 

relative stereochemistry in the figures) were determined by NOESY experiments. What was 

obvious from NOESY of all three compounds 7a-c was that there was no correlation between the 

methyl group (1H δ = 1.05 ppm) and the methoxy group (1H δ = 3.08 ppm). Hence, they had to 

have a trans configuration relatively to each other. Figures 3.4-3.6 show the different isomers 

obtained from Reaction I. 

 

 

Figure 3.4: Chemical shifts and NOE correlations of compound 7a 
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The NOESY specter (Appendix H-7) of compound 7a showed clear correlation between the two 

benzylic protons as well as a strong signal between the methoxy group (1H δ = 3.08 ppm) and 

the benzylic proton (1H δ = 3.62 ppm). From 3D projections of the molecule, all these three 

groups should have cis configuration relative to each other. This is a possible isomer, but the 

reason for the uncertainty about the stereochemistry in 7a will be discussed later in this Chapter 

(Subsection 3.2.2).   

 

 

Figure 3.5: Chemical shifts and NOE correlations of compound 7b 
 

 

The NOESY specter (Appendix H-7) of compound 7b showed clear correlation between the 

methyl group (1H δ = 0.49 ppm) and the benzylic proton (1H δ = 3.77 ppm), and also between the 

methoxy group (1H δ = 3.21 ppm) and the other benzylic proton (1H δ = 3.81 ppm). Additionally, 

no signal between the two benzylic protons was observed. Hence, the stereochemistry presented 

in Figure 3.5 seemed appropriate. There was observed a small correlation between the methyl 

group (1H δ = 0.49 ppm) and the benzylic proton (1H δ = 3.81 ppm), but this can be due to their 

neighboring positions. The low shift of the methyl group in 7b compared to 7a and 7c may be 

due to the ring current effects caused by the neighboring phenyl group. 

 

 

Figure 3.6: Chemical shifts and NOE correlations of compound 7c 

The NOESY specter (Appendix H-6) of compound 7c showed clear correlation between the 

methyl group (1H δ = 0.99 ppm) and both of the benzylic protons, hence cis configuration 

between these three groups was interpreted. The NOESY also indicated correlation between the 
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methoxy group (1H δ = 3.16 ppm) and the benzylic proton (1H δ = 3.52 ppm), even though they 

are proposed to be trans to each other, but due to the flexibility of the molecule and free rotation 

of the methoxy group, this seems possible. In the other two isomers 7a-b, the aromatic shifts 

were difficult to distinguish. However, in product 7c five aromatic protons stood out and clearly 

belonged to the same aromatic system. 2D COSY and NOESY experiments confirmed this 

(Appendices H-4, H-6). These deviations may also be due to the ring current effects.   

The different stereochemistry of the complex bicyclic molecules is hard to understand from 2D 

drawings, hence, better understanding was achieved by building the different stereoisomers. A 

3D model (from ChemDraw Ultra 12.0) of product 7c is shown in Figure 3.7. 

 

 

Figure 3.7: A 3D model of compound 7c, showing NOE correlations between the methyl group and the two 
benzylic protons. 

 

It was desirable to repeat Reaction I, but with different substituents on the aromatic part of the 

propargylic acetal (5b-d), to see if similar products were produced. To easier recognize each 

isomer in later reactions, some unique features were focused on in every one of them; In 7a one 

benzylic proton had a higher shift than in the other isomers (1H δ = 4.70 ppm), in 7b the methyl 

group was assigned a very low proton shift (1H δ = 0.49 ppm) and in 7c a unique doublet (with a 

minor splitting) was observed (1H δ = 6.31 ppm).  

 

3.2.2 Reaction II 

 
With a greater understanding of what kind of products to expect, Reaction II (Scheme 3.3) was 

conducted. Propargyl acetal 5b and phenylpropyne 6 were mixed with the gold(I) catalyst and 

the reaction was monitored by GLC and TLC. 

  

 

Scheme 3.3: Reaction II. 
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Unlike Reaction I, one major peak (and several minor) was observed in GLC. After column 

chromatography, it became clear that there was one major product 8a in this reaction, which 

yielded 27 %. Only this product was successfully isolated, but a mixture containg 61% of product 

8b was pure enough to recognize some familiar features in the 1H NMR spectrum.    

  

 
Figure 3.8: Chemical shifts and NOE correlations of compound 8a. 

 

The structure and NOE correlations of the major product 8a (Appendix I) is presented in Figure 

3.8. By comparing 13C NMR shifts and 2D correlation NMR with compounds 7a-c, it was 

established that product 8a shared their regiochemistry. Nevertheless, 1H NMR did not match 

any of the three products 7a-c, indicating formation of a new isomer. With the assumption of the 

bridged methoxy- and the methyl group having trans configuration relatively to each other, four 

different isomers are possible. As mentioned in the previous section, the stereochemistry of 

compound 7a could not be determined. This is because, by interpretation of NOESY spectra 

(Appendices H-7. I-6), the stereochemistry of isomers 8a and 7a can not be distinguished. In 

both cases strong correlations between the benzylic protons are observed. There is no 

possibility for this in both of the two possible remaining isomers.    

By introducing a methoxy group in the para position on the phenylic propargyl acetal, the 

electron density of the acetal increases. This apparently affects the stereoselectivity of the 

reaction (as product 8a yielded 27%). The final cycloaddition (step E in Scheme 3.2) in the 

tandem cyclization process is believed to go through a direct [3+2] cyclization reaction. The 

additional p-OMe group on the phenyl ring of the intermediate IVa increases its electron density, 

which may increase the speed in the final step (E). For this reason, one major product 8a is 

formed. 

In addition, one other product 8b was isolated in a mixture of different compounds. A PhD 

student46 in the group managed to isolate the compound with a much greater grade of purity, 

which is shown in the 1D and 2D NMR spectra taken. These spectra were of great help when 

assigning 1H and 13C NMR shifts of this product. Figure 3.9 shows stereochemistry and chemical 

shifts of product 8b. 
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Figure 3.9: Chemical shifts and NOE correlations of compound 8b. 

 

It was readily established that compound 8b was an analogue of compound 7c by recognition of 

the unique doublet (1H δ = 6.37 ppm) and NOE correlations (Appendices J-1 and J-6).  

In the proton and carbon NMR spectra for compounds 8a and 8b there can be observed a major 

impurity (1H δ (ppm) = 6.98, 5.01, 2.27, 1.43, 13C δ (ppm) = 151.5, 135.8, 128.3, 125.5, 34.2, 30.3, 

21.2). This was later established as being the stabilizing agent butylhydroxytoluene in THF, 

which was used in purification chromatography. Once this was realized, dry THF from the MB 

SPS-800 Solvent Purification System or 2-methyl tetrahydrofuran was used instead.  

 

3.2.3 Reaction III 

 
Scheme 3.4 shows Reaction III. 

 

 

Scheme 3.4: Reaction III. 

 

The electron releasing p-OMe substituent seemed to affect the stereoselectivity of the reaction, 

and, thus, it was considered to be interesting to introduce a strong electron withdrawing group 

on the aromatic part of the propargyl acetal. The propargylic acetal 5c was treated with 

phenylpropyne 6 in a gold(I) catalyzed reaction. GLC of the product mixture did not show 

similar pattern as the two previous reactions. There were indications of a much smaller 

molecule 9 being the major product. Figure 3.10 shows the structure of the proposed pentadiene 

product.  
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Figure 3.10: Chemical shifts and 2D NMR correlations of compound 9. 

 
 

The structure of product 9 seemed similar to the five membered ring intermediate XIVc from 

the reaction mechanism presented in Scheme 3.2. However, after interpreting HMBC and NOESY 

spectra (Appendices K-4, K-5), it was established that the formation of product 9 went by 

intermediate XVIb. Intermediate XVIb was formed by a [3+2] cyclization reaction between gold 

carbenoid complex IVbb and phenylpropyne 6. The presented mechanism (Scheme 3.5) is 

similar to the one presented in Scheme 2.7 in Subsection 2.3.2 in the theory part.   

 

 

Scheme 3.5: 1. Step of the reaction pathway for product 9 

 

From studies of the NOESY and HMBC 2D correlation NMR spectra, it became obvious that there 

was a proton shift of the benzylic proton Ha. This proton shift and the proposed underlying 

forces for this mechanism are shown in Scheme 3.6.   

 

 

Scheme 3.6: Mechanism of the intramolecular H-shift in product 9 and resonance due to the conjugated 
system. 
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The reason for the proton shift in product 9 may be due to the electron withdrawing nitro group 

which makes the proton more acidic. The p-nitro phenyl group is now in direct conjugation with 

the quaternary carbon that the methyl group is attached to. This explains the high shift of the 

quaternary carbon (13C δ = 155.3 ppm) in resonance structure XVIc. 

In an attempt to see if a tandem cyclization product could be generated, the electron deficient 

product 9 was mixed with the electron rich propargyl acetal 5b. However, no further cyclization 

took place, as no such products were observed. Current research, done by a PhD student in the 

group,46 indicates that product 9 undergoes further cyclization with the electron deficient 

propargyl acetal 5c. However, no products have been characterized yet. This result can be 

explained by the fact that the electron deficient nucleophile 9 needs an even stronger 

electrophilic reactant such as propargyl acetal 5c for cyclization to occur.   

The reaction with the propargyl acetal 5c did not undergo the same tandem cyclization reactions 

as acetals 5a and 5b. This can be explained by the electron-withdrawing nature of the p-nitro 

phenyl group, which deactivates compound 9 sufficiently to favor formation of this 

“intermediate” rather than products similar to Reactions I and II.  

This reaction shows that, even by using highly deactivated propargyl acetals, cyclization still 

occurs. This is an interesting evidence of the strong ability of the gold(I) catalyst to activate even 

less reactive substrates.  

 

3.2.4 Reaction IV 

 
The divergent results of Reaction III made it interesting to introduce other electron withdrawing 

groups on the propargyl acetal reagent. The p-Cl substituted propargyl acetal 5d was mixed with 

phenylpropyne 6 in the gold(I) cayalyzed reaction as presented in Scheme 3.7. 

 

 Scheme 3.7: Reaction IV. 

 

The reaction was monitored by GLC and TLC and showed a quite similar product composition as 

observed in Reaction I. The TLC is presented in Figure 3.11. 
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Figure 3.11: TLC of product crude in reaction I. Eluent 10:1 pentane:ethyl acetate 

 
 
Four different products 10a-d were isolated and characterized in this reaction. 10b-d appeared 

to be analogous to compounds 7a-c. The unique features, which were explained in the latter part 

of Subsection 3.2.1, were recognized in these three products. Chemical shifts and proposed 

stereochemistry of compounds 10b-d are presented in Figures 3.12-3.14. 

  

 

Figure 3.12: Chemical shifts and NOE correlations of compound 10b. 

 
 
The stereochemistry of compound 10b could not be determined, as was the case for compound 

7a, due to insufficient data to distinguish these two compounds from product 8a.  

 

 

Figure 3.13: Chemical shifts and NOE correlations of compound 10c. 
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Figure 3.14: Chemical shifts and NOE correlations of compound 10d. 

 

Products 10b and 10d were successfully isolated, but product 10c could only be obtained in a 

mixture with product 10b. Compound 10c could still be partially characterized by comparison 

of NMR data of the mixture of 10b and 10c and NMR data of the pure compound 10b 

(Appendices M, N).  

Much effort was spent on elucidating the regio- and stereochemistry of products 7a-c and 10b-

d. With this work accomplished, the new focus was on the upper spots observed on the TLC in 

Figure 3.11. Product 10a was isolated in a relatively good yield (7%) compared to the other 

products. From 1H and 13C NMR experiments (Appendices L-1, L-2) it could be concluded that 

product 10a also was a result of a tandem cyclization reaction. However, this product seemed to 

have a different regiochemistry than the previous products 10b-d.   

 

 

Figure 3.15: Chemical shifts and NOE correlations of compound 10a. 

 

In the HSQC (Appendix L-3) of product 10a it was observed that three protons were attached to 

sp3-hybridized carbon atoms, which differed from products 10b-d. By analyzing 2D correlation 

NMR spectra, Prof. A. Fiksdahl proposed the structure presented in Figure 3.15. Product 10a is 

most likely produced through a [3+2] cycloaddition to form the five membered intermediate 

XVIb similar to Step 1 in the formation product 9 (Scheme 3.5). Then a second [3+2] cyclization 

reaction, similar to the last step (E) of the tandem cyclization reaction presented in Scheme 3.1, 

occurs to form product 10a.  
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The stereochemistry in product 10a seems to be quite similar to the compound synthesized by 

Gung et.al5 which was described in Scheme 2.8 in Subsection 2.3.2 in the Theory part. 

 

3.2.5 Deuterium labeled experiment 

 
As a mechanism for the formation of compounds 7a-c, 8a-b and 10b-d was proposed, it was 

appropriate to perform a deuterium labeled experiment to confirm it. A rough sketch of the 

complete syntheses is presented in Scheme 3.8. 

 

 

Scheme 3.8: Deuterium labeled experiment 

 

The deutarated propargyl alcohols d-3a1 and d-3a2 were prepared in accordance to literature. 
30 From 1H and 13C NMR spectra it was obvious that a mixture of these two compounds was 

obtained (Appendices P-1, P-2). Full conversion of the propargylic alcohol 3a was not achieved; 

hence, small traces of undeuterated products would occur throughout the following syntheses. 

The observed triplets in the 13C NMR spectrum of d-3a1-2 (13C δ (ppm) = 83.0, 74.5) (which also 

are observed in the 13C NMR spectrum of d-5a) are due to the splitting between 13C and 2D, as 

the carbon NMR experiment is not decoupled regarded to deuterium. This is explained in Figure 

3.16. 

 

 

Figure 3.16: Coupling constants of triplets observed in 13C NMR spectrum for deuterated 

compounds d-3a1-2. 

 
The coupling between deuterium and the non-terminal carbon in compounds d-3a1-2 (13C δ = 

83.0 ppm), 2J(C,D)=7.4 Hz, occurs probably due to the tight triple bond, which allows the 

distance between the two nuclei to be shorter.  
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The deuterated propargylic acetal d-5a was synthezised following a known procedure 21 and 

was used in the synthesis of d2-7a-c. It would be interesting to see if the 1H NMR signals of the 

methine protons in products 7a-c would be absent. The 1H NMR spectrum of d2-7c (Appendix R-

1) shows only traces of the actual 1H NMR signals of H-3 and H-6 (1H δ (ppm) = 6.64, 5.66) for 

compound 7c. Similar observations were made for compounds d2-7a and d2-7b. This supports 

the proposed reaction mechanism presented in Scheme 3.2.  

 

3.2.6 Optimization reactions 

 
Several gold(I) catalyzed cyclization reactions involving propargyl acetals and esters have  been 

performed by the group of Fiksdahl.21,18 Optimization reactions considering both the catalyst and 

solvents has previously been conducted on different cyclization reactions.18, 35 Based on these 

results, catalyst Ib was used in Reactions I-IV in this thesis as well. After isolation and 

characterization of the unexpected complex products had been carried out to the best of our 

abilities, a range of different catalysts were screened to see if this could have an effect on yields 

and stereo-/regioselectivity. The results of these screening reactions are presented in Table 3.4.  

 
Table 3.4: Optimization studies of gold(I) catalyzed cyclization reactions 

 
Entry Catalyst  Time Conversiona 

1 Au(I)[P(t-Bu)2(o-biphenyl)CH3CN]SbF6 Ib 15 min 99% 

2 Au(I)[P(t-Bu)2(o-biphenyl)Cl Id 24 h nc 

3 Au(I)[P(t-Bu)2(o-biphenyl)Cl+AgSbF6 Ic 1 h 80% 

4 Au(I)[P(t-Bu)2(o-biphenyl)Cl+AgNTf2 Ie 15 min 99% 

5 Au(I)(PPh3)Cl+AgSbF6 If 15 min ncb 

6 Au(I)(PPh3)Cl Ig 24 h nc 

7 PicAu(III)Cl2 Ih 15 min 99% 

8 AgSbF6 Ii 15 min ncb 

9 AgNTf2 Ij 15 min ncb 
                    aObserved by GLC, bfull conversion of propargyl acetal 5b, but not to desired products. 

 
Gold(I) catalyst Ib is used in all cyclization reactions in this thesis. Additionally, gold(I) catalysts 

Ic and Ie provided high yields of the tandem cyclization products 8a-b. The active gold(I) 

catalysts Ic and Ie are formed by an ion exchange reaction which was presented in Scheme 2.10 

in Subsection 2.3.3. What is common for the three catalysts Ib, Ic and Ie is the presence of 

counter ions. Counter ions appeared to be important in order of cyclization reactions take place. 

In the case of gold(I) catalyst, where no counter ion is present, no conversion was observed. 

Similar results have previously been observed in the Fiksdahl group18, 35.  

The high activity of gold(III) catalyst Ih was a bit surprising, as it previously had only given 

moderate yields in cyclization reactions reported by the group. Silver(I) catalysts Ii and Ij gave 
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full conversion of the propargyl acetal 5b in 15 minutes, but the desired products 8a-b were not 

formed. A PhD student in the group46 carried out the reaction with silver(I) catalyst Ii in a bigger 

scale and isolated the major product XVII in 25% yield. 

 

Scheme 3.9: Mechanism for the silver(I) catalyzed formation of product XVII 

 

The silver(I) catalyst have higher affinity to the oxygen atom rather than to the triple bond and 

will function as a Lewis acid towards oxygen. C-1 is then activated for nucleophile attack and a 

1,1 shift of the alkoxy (OMe) occurs to form product XVII. Silver(I) activation of propargyl 

alcohols to form propargyl ethers have previously been reported40.  

Gold(I) catalyst If gave full conversion after 15 minutes, but desired products were not 

observed. By comparison of peaks in GLC, a product similar to XVII may have been produced.  

 

3.3 Further work 
 
The experimental work in the present project was quite time consuming and the main focus was 

to purify and characterize the new obtained products from Reactions I-IV. Real yields may be 

higher since the objective was to obtain sufficiently pure products for characterization. Product 

isolation and purification was at times challenging and due to time limitations, all reactions and 

the following purifications could not be repeated.  

In Reaction I, there are indications of the formation of analogues to both product 8a, which was 

observed in Reaction II, and product 10a, which was observed in Reaction IV. The analogue to 

product 8a was also observed (but not isolated) in Reaction IV. A repetition of Reaction I and IV, 

perhaps with bigger amounts of starting materials 5a-c and 6, should be conducted, as the 

product compositions in these two reactions seems to be quite complex.  

It may be desirable to introduce other ERG or EWG on the propargyl acetal to see if similar regio- 

and stereoselectivity, as observed in respectively Reaction II and III, will occur. It may also be of 

interest to polarize the phenylpropyne 6 with both EWG and ERG to see if that may affect the 

product selectivity. Additionally, introduction of bulky substituents on the aromatic part of the 

propargyl acetals or phenylalkyne 6 may contribute to higher chemoselectivity. 
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Chapter 4 

Conclusion 
 

Propargyl alcohols 3b-c were synthesized through a Grignard reaction. Propargyl alcohol 3b was 

isolated in 54% yield. 

Propargyl acetals 5a-c were synthesized in acid catalyzed reactions from propargyl alcohols 3a-

c. Propargyl acetals 5a and 5b were isolated in 63% and 77% yields, respectively.  

Previously, gold(I) catalyzed [2+1], [3+2] and [5+2] cyclization reactions have been performed. 

Propargyl acetals and esters have proven to undergo intramolecular rearrangements to form 

gold carbenoid and allene intermediates IVa-c. Depending on the nature of the substrates, these 

intermediates undergo different cyclization reactions to form cyclic products. In this thesis, 

further investigation on gold(I)-catalyzed reactions of propargyl acetals has been done. 

Propargyl acetals 5a-d were treated with 1-phenylprop-1-yne 6 in the presence of gold(I) 

catalyst Ib, and, depending on the electronic character of the propargyl acetal, a number of 

cyclization products 7-10 were formed. 

 

The hypothesis that the gold(I)-activated intermediates IVa-c, generated from propargyl acetals, 

seem to be highly reactive towards unsaturated species was confirmed, as they would undergo 

cyclization reactions even with the poor nucleophillic 1-phenylprop-1-yne 6. 

The chemoselectivity of the reactions proved to vary. In reactions I and IV, products with 

different regio- and stereochemistry were formed.  Tandem cyclization products 7a-c and 10b-

d, respectively, were diastereomers and followed the same reaction mechanism. Tandem 

cyclization product 10a contained a different regiochemistry and followed a different cyclization 

mechanism.. The analogue compounds 7c and 10d were the major products, yielding 10% and 

12% respectively, in both reactions. This was also confirmed by GLC of the crude product 

mixture.    
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There were indications of several tandem cyclization products being produced in the reaction 

with propargyl acetal 5b as well, but in this case, only one major product 8a, which yielded 27%, 

and a minor product 8b, which yielded 5%, were isolated. The introduction of an electron 

donating substituent on the aromatic part of the propargyl acetal, appeared to drastically 

increase the product selectivity of the reaction.   

The highly deactivated propargyl acetal 5c did not undergo a tandem cyclization reaction, but 

rather a single [3+2] cycloaddition. The formation of this product did not follow the same 

mechanism as some of the major products in the other reactions. 

In conclusion, there is still more to be investigated in this exciting area of chemistry. 

  



53 
 

 

Chapter 5 

Experimental 
 

5.1 General methods 
 
All reactions were performed under inert atmosphere. Solvents and reagents were of synthetic 
grade and were used directly as supplied from the manufacturer. Dry DCM and THF were 
obtained from a MB SPS-800 Solvent Purification System (MBraun), and were used directly in 
the experiments. Thin layer chromatography (TLC) was performed on Merck TLC aluminium 
sheets, Silica gel 60 F254. The TLC plates were developed by UV-light and a solution of p-
anisaldehyde stain (5 ml conc. H2SO4, 1.5 ml absolute acetic acid and 3.7 ml p-anisaldehyde in 
137 ml absolute ethanol) with heating. Gas liquid chromatography (GLC) was performed on a 
Varian CP-3800 with a FID detector to monitor reactions and observe product selectivity. 
Supelco VersaFlash system with Versaflash cartridges with 20-45 or 45-75 μm spherical silica 
based on porous (70 °A) particles was used for flash chromatography.  
 
Infrared spectrometry (IR) was performed on a Nicolet 20SXC FT-IR spectrometer. The spectra 
were analyzed using EZ OMNIC software.  Mass spectrometry (MS) with electron ionization (EI) 
was performed on a MAT 95XL instrument (TermoQuest Finnigan). Mass spectra with electron 
spray ionization (ESI) were recorded by Sintef on an Agilent O-ToF instrument. All mass spectra 
are high resolution (HR-MS).  
 
1D NMR spectra were recorded on Avance DPX 300 MHz and 400 MHz (Bruker) spectrometers. 
2D spectra were recorded on the Avance DPX 400 (Bruker) spectrometer. All samples were 
dissolved in deuterated chloroform with an internal standard of TMS. Spectra were analyzed 
using TopSpin NMR software (Version 3.0.b.8). Chemical shifts (𝛿) are given as parts per million 
(ppm) and coupling constants (J) are given in Hertz (Hz). The peaks are given as singlets (s), 
doublets (d), triplets (t), quintets (quin), multiplets (m), or as a combination of these. 2D 
experiments were used to determine the chemical shifts and the configuration of the obtained 
products. 
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5.2 Preparation of starting materials 

5.2.1 General procedure A: Synthesis of propargyl alcohols 

 

 

Propargyl alcohols 3b-c were synthesized according to known procedure42 

Ethynylmagnesium bromide 2 (O.5 M in THF) was cooled to -20 °C and the relevant aldehyde 1a-
b was dissolved in THF (10 ml) and added drop wise. The reaction was stirred for 30 minutes at 
room temperature, monitored by TLC and GLC. A saturated solution of NH4Cl in water was 
added to the reaction flask. The mixture was filtered, diluted with diethyl ether (20 ml) and the 
water phase was extracted with diethyl ether (20 ml). The combined organic phases were dried 
over anhydrous sodium sulfate and concentrated in vacuo. The alcohol 3b-c was isolated by flash 
chromatography using an appropriate eluent system.  

 

1-(4-Methoxyphenyl)prop-2-yn-1-ol 

 

Compound 3b was synthesized according to General procedure A, using 1-4-

methoxybenzaldehyde 1a (1.0 g, 7.3 mmol) and ethynylmagnesium bromide 2 (18.4 ml, 0.5 M). 

Flash chromatography with an isocratic eluent of 3:1 pentane:ethyl acetate was used to isolate 

1-(4-methoxyphenyl)prop-2-yn-1-ol 3b (650 mg, 54 %) as a yellow oil. 

1H NMR (400 MHz, CDCl3-TMS) (Appendix A-1) δ (ppm) 7.47 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, J = 
8.7 Hz), 5.40 (s, 1H), 3.81 (s, 3H), 2.66 (d, 1H, J = 2.2 Hz), 2.30 (d, 1H, J = 4.1 Hz);  
13C NMR (400 MHz, CDCl3-TMS) (Appendix A-2) δ (ppm) 159.8 (1C), 132.4 (1C), 128.1 (2C), 
114.0 (2C), 83.7 (1C), 74.6 (1C), 64.0 (1C), 55.3 (1C).  
Both 1H – and 13 C – NMR shifts are consistent with literature.24                                               
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1-(4-Nitrophenyl)prop-2-yn-1-ol 

 

Compound 3c was synthesized according to General procedure A, using 4-nitrobenzaldehyde 1b 

(1.0 g, 6.6 mmol) and ethynylmagnesium bromide 2 (16.5 ml, 0.5 M). The crude product was 

used further without purification via chromatography after NMR analysis (741 mg) as a yellow 

solid. 

1H NMR (400 MHz, CDCl3-TMS) (Appendix B-1) δ (ppm) 8.26 (d, 2H, J = 8.8 Hz), 7.74 (d, 2H, J = 
8.6 Hz), 5.60-5.57 (m, 1H), 2.74 (d, 1H, J = 2.3 Hz), 2.37 (d, 1H, J = 5.8 Hz);  
13C NMR (400 MHz, CDCl3-TMS) (Appendix B-2) δ (ppm) 147.9 (1C), 146.6 (1C), 127.4 (2C), 
123.9 (2C), 82.3 (1C), 76.0 (1C), 63.4 (1C).  
Both 1H – and 13 C – NMR shifts are consistent with literature.23 
 

5.2.2 General procedure B: Synthesis of propargyl acetals21 

 

 

The required propargyl acetal 5a-c was synthesized according to literature.21 

A mixture of the relevant propargyl alcohol 3a-c and the 2-methoxyprop-1-ene 4 was cooled to 0 
°C. Catalytic amounts of Pyridinium p-toluenesulfonate were added and the reaction mixture was 

stirred for 2 hours at room temperature, monitored by TLC and GLC. The crude was diluted with 

diethyl ether (20 ml) and washed with water (3 x 20 ml) and brine (20 ml). The combined 

organic phases were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. 

The propargyl acetal 5a-c was isolated by flash chromatography using an appropriate eluent 

system.  
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(1-((2-Methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene 

 

Compound 5a was synthesized according to General procedure B, using 1-phenylprop-2-yn-1-ol 

1a (513 mg, 3.88 mmol) and 2-methoxyprop-1-ene 4 (5 mL, 52.21 mmol). Flash 

chromatography with an isocratic eluent of 80:1 pentane:ethyl acetate was used to isolate (1-

((2-methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene 5a (601 mg, 77%) as a clear oil. 

1H NMR (400 MHz, CDCl3-TMS) (Appendix C-1) δ (ppm) 7.49 (d, 2H, J = 7.2 Hz), 7.38-7.28 (m, 
3H), 5.42 (d, 1H, J = 2.1), 3.18 (s, 3H), 2.53 (d, 1H, J = 2.2 Hz), 1.55 (s, 3H), 1.33 (s, 3H);  
13C NMR (400 MHz, CDCl3-TMS) (Appendix C-2) δ (ppm) 140.3 (1C), 128.5 (2C), 128.0 (1C), 
126.9 (2C), 101.9 (1C), 84.5 (1C), 73.7 (1C), 62.6 (1C), 49.5 (1C), 25.4 (1C), 25.0 (1C).  
Both 1H – and 13 C – NMR shifts are consistent with literature.21 

 

1-Methoxy-4-(1-((2-methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene 

 
 
Compound 5b was synthesized according to General procedure B, using 1-(4-

methoxyphenyl)prop-2-yn-1-ol 3b (506 mg, 3.12 mmol) and 2-methoxyprop-1-ene 4 (5 mL, 

52.21 mmol). Flash chromatography with an isocratic eluent of 40:1 pentane:ethyl acetate was 

used to isolate 1-methoxy-4-(1-((2-methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene 5b (454 

mg, 63%) as a clear oil. 

1H NMR (400 MHz, CDCl3-TMS) (Appendix D-1) δ (ppm) 7.41 (d, 2H, J = 8.6 Hz), 6.89 (d, 2H, J = 
8.7 Hz), 5.37 (d, 1H, J = 2.1 Hz), 3.80 (s, 3H), 3.18 (s, 3H), 2.53 (d, 1H, J = 2.2 Hz), 1.53 (s, 3H), 1.33 
(s, 3H);  
13C NMR (400 MHz, CDCl3-TMS) (Appendix D-2) δ (ppm) 159.4 (1C), 132.5 (1C), 128.3 (2C), 

113.9 (2C), 101.8 (1C), 84.7 (1C), 73.5 (1C), 62.2 (1C), 55.3 (1C), 49.5 (1C), 25.4 (1C), 25.0 (1C). 

Both 1H- and 13 C NMR shifts are consistent with literature.21 
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1-(1-((2-Methoxypropan-2-yl)oxy)prop-2-yn-1-yl)-4-nitrobenzene 

 
 
Compound 5c was synthesized according to General procedure B, using 1-(4-nitrophenyl)prop-

2-yn-1-ol 3c (519 mg, 2.93 mmol) and 2-methoxyprop-1-ene 4 (5 mL, 52.21 mmol). Flash 

chromatography with an isocratic eluent of 50:1 pentane:ethyl acetate was used to isolate the 

product 5c (523 mg, over two steps from 1c: 31%) as an off white oil.  

Rf = 0.38 (10:1 Pentane:EtOAc); 
HRMS (EI) calcd for [M-CH3O]+ 218.0817, obsd 218.0815; 
1H NMR (400 MHz, CDCl3-TMS) (Appendix E-1) δ (ppm) 8.23 (d, 2H, J = 8.8 Hz), 7.68 (d, 2H, J = 
8.7 Hz), 5.53 (d, 1H, J = 2.1 Hz), 3.18 (s, 3H), 2.59 (d, 1H, J = 2.2 Hz), 1.56 (s, 3H), 1.34 (s, 3H); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix E-2) δ (ppm) 147.6 (1C), 147.3 (1C), 127.6 (2C), 
123.8 (2C), 102.3 (1C), 83.1 (1C), 74.8 (1C), 61.6 (1C), 49.6 (1C), 25.3 (1C), 24.8 (1C); 
IR (thin film, cm−1) (Appendix E-4) 3257, 2992, 2940, 2857, 1517, 1343, 1211, 1186, 1145, 1030, 
852, 701. 

 

5.3 Gold catalyzed reactions 

5.2.3  General procedure C: Gold catalyzed tandem cyclization reactions  

 

 

The relevant propargyl acetal 5a-d (1 eq.) and prop-1-yn-1-ylbenzene 6 (3 eq.) were separately 

dissolved in dichloromethane (1.7mL each) and added to a solution of the catalyst (Ib) (5 mol%) 

in dichloromethane (1.7mL) simultaneously. The reaction was stirred for 15 min at room 

temperature, monitored by TLC and GLC. The reaction mixture was filtered through celite and 

concentrated in vacuo. The products 7-10 were isolated by flash chromatography using an 

appropriate eluent system.  
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Reaction I 

 

 

Compounds 7a-c were synthesized according to General procedure C, using propargylic acetal 

5a (108 mg, 0.53 mmol) and prop-1-yn-1-ylbenzene 6 (185 mg, 1.59 mmol). Flash 

chromatographies with isocratic eluents of 100:1 pentane:ethyl acetate/50:1 

pentane:tetrahydrofuran were used to isolate the products 7a-c. 

 

2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene 

 

 
 

2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene 7a (3 mg, 3 %) was 

isolated as an off white liquid. 

Rf = 0.29 (20:1 Pentane:THF); 
HRMS (EI) calcd for C29H28O2 [M*+] 408.2089, obsd 408.2090;   
1H NMR (400 MHz, CDCl3-TMS) (Appendix F-1) δ (ppm) 7.09-6.95 (m, 15H), 6.26-6.25 (m, 1H), 
5.72 (s, 1H), 4.70 (s, 1H), 3.62 (s, 1H), 3.59 (s, 3H), 3.08 (s, 3H), 1.05 (d, 3H, J = 1.4 Hz); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix F-2) δ (ppm) 156.6 (1C), 139.7 (1C), 138.8 (1C), 
138.3 (1C), 137.8 (1C), 135.4 (1C), 129.6 (2C), 128.8 (2C), 127.6 (4C) 127.2 (4C), 126.5 (1C), 
125.9 (1C), 125.7 (1C), 106.3 (1C), 86.4 (1C), 71.5 (1C), 66.6 (1C), 54.4 (1C), 51.4 (1C), 51.3 (1C), 
16.7 (1C); 
IR (cm-1) (thin film, cm−1) (Appendix F-6): 2987, 2955, 2925, 2587, 1490, 1454, 1376, 1183, 
1147, 1068, 1013, 872.  
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(1S,3aR,4R,6aS)-2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-

tetrahydropentalene 

 

(1S,3aR,4R,6aS)-2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene 7b (3 

mg, 3 %) was isolated as an off white liquid. 

Rf = 0.23 (20:1 Pentane:THF); 
HRMS (EI) calcd for C29H28O2 [M*+] 408.2089, obsd 408.2086;   
1H NMR (400 MHz, CDCl3-TMS) (Appendix G-1) δ (ppm) 7.68-6.84 (m, 15H), 6.53 (m, 1H), 6.59 
(s, 1H), 3.81 (s, 1H), 3.77 (s, 1H), 3.51 (s, 3H), 3.21 (s, 3H), 0.49 (s, 3H); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix G-2) δ (ppm) 156.6 (1C), 142.1 (1C), 140.5 (1C), 
139.5, 137.6, 128.2, 127.9, 127.6, 127.1, 127.0, 126.4, 106.2 (1C), 100.0, 87.1 (1C), 61.1 (1C), 54.8 
(1C), 54.6 (1C), 54.6 (1C), 51.7 (1C), 20.8 (1C); 
13C NMR does not give sufficient information to assign all the carbon shifts 
IR (cm-1) (thin film, cm−1) (Appendix G-4): 2954, 2924, 2869, 2853, 1492, 1453, 1230, 1097, 699, 
581, 570.  
 
 

(1S,3aR,4S,6aS)-2,6a-dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-

tetrahydropentalene 

 

(1S,3aR,4S,6aS)-2,6a-dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene 7c 

(10 mg, 10 %) was isolated as an off white liquid. 

Rf = 0.34 (15:1 Pentane:EtOAc) 
HRMS (EI) calcd for C29H28O2 [M*+]  
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1H NMR (400 MHz, CDCl3-TMS) (Appendix H-1) δ (ppm) 7.61-7.13 (m, 10H), 7.00-6.96 (m, 1H), 
6.92-6.88 (m, 2H), 6.64 (s, 1H), 6.32-6.30 (m, 2H), 5.66 (s, 1H), 3.66 (s, 1H), 3.53 (s, 3H), 3.52 (s, 
1H), 3.16 (s, 3H), 0.99 (s, 3H); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix H-2) δ (ppm) 156.8 (1C), 142.0 (1C), 138.7 (1C), 
138.1 (1C), 138.0 (1C), 136.1 (1C), 132.0 (2C), 128.2 (2C), 128.1 (2C) 127.8 (2C), 127.6 (2C), 
127.4 (2C), 127.0 (1C), 126.7 (1C), 126.5 (1C), 105.3 (1C), 86.1 (1C), 72.3 (1C), 57.5 (1C), 57.2 
(1C), 54.5 (1C), 51.2 (1C), 20.8 (1C); 
IR (cm-1) (thin film, cm−1) (Appendix H-8): 3012, 2952, 2925, 1646, 1490, 1453, 1231, 1096, 
1032, 751.  
 
MS data was lost due to unknown reasons.  

 

Reaction II 

 

 

Compounds 8a-b were synthesized according to General procedure C, using propargylic acetal 

5b (154 mg, 0.64 mmol) and prop-1-yn-1-ylbenzene 6 (224 mg, 1.92 mmol). Flash 

chromatography with an isocratic eluent of 20:1 pentane:ethyl acetate was used to isolate the 

products 8a-b. 

 

2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-1,3a,4,6a-

tetrahydropentalene 

 
 
2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-1,3a,4,6a-tetrahydropentalene 

8a (41 mg, 27%) was isolated as an off white liquid. 

 
Rf = 0.24 (10:1 Pentane:EtOAc); 
HRMS (EI) calcd for C31H32O4 [M*+] 468.2301, obsd 468.2299;  
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1H NMR (400 MHz, CDCl3-TMS) (Appendix I-1) δ (ppm) 7.53-7.06 (m, 3H), 7.33 (d, 4H, J = 4.3 
Hz), 6.94 (d, 2H, J = 8.6 Hz), 6.77 (d, 4H, J = 8.6 Hz), 5.37 (s, 1H), 5.33 (s, 1H), 4.09 (s, 1H), 3.76 (s, 
3H), 3.74 (s, 3H), 3.54 (s, 3H), 3.35 (s, 1H), 3.02 (s, 3H), 1.02 (s, 3H); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix I-2) δ (ppm) 158.3 (1C), 158.2 (1C), 158.2 (1C), 152.6 
(1C), 136.3 (1C), 130.3 (2C), 128.4 (2C), 128.2 (2C), 127.3 (2C), 127.0 (2C), 126.9 (1C), 113.2 
(2C), 113.1 (2C), 109.6 (1C), 90.1 (1C), 69.0 (1C), 55.1 (1C), 55.1 (1C), 54.6 (1C), 51.1 (1C), 49.9 
(1C), 49.4 (1C), 25.6 (1C), 20.5 (1C); 
IR (cm-1) (thin film, cm−1) (Appendix I-7): 2919, 2824, 1644, 1610, 1509, 1243, 1177, 1124, 
1034, 903, 826, 730, 699.  
 
 

(1S,3aR,4S,6aS)-2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-

1,3a,4,6a-tetrahydropentalene 

 
 
(1S,3aR,4S,6aS)-2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-1,3a,4,6a-

tetrahydropentalene 8b (12 mg, 61% purity, 5%) was isolated as an off white liquid. 

Rf = 0.14 (10:1 Pentane/EtOAc); 
HRMS (EI) calcd for C31H32O4 [M*+] 468.2301, obsd 468.2299;   
1H NMR (400 MHz, CDCl3-TMS) (Appendix J-1) δ (ppm) 7.53-6.72 (m, 8H), 7.01-6.98 (m, 1H), 
6.96-6.92 (m, 2H), 6.61 (s, 1H), 6.37 (d, 2H, J = 7.2 Hz), 5.63 (s, 1H), 3.74 (s, 3H), 3.74 (s, 3H), 3.60 
(s, 1H), 3.53 (s, 3H), 3.45 (s, 1H), 3.16 (s, 3H), 0.98 (s, 3H); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix J-2) δ (ppm) 158.8 (1C), 158.3 (1C), 156.8 (1C) 142.1 
(1C), 138.0 (1C), 136.2 (1C), 132.9 (2C), 130.9 (1C), 130.2 (1C), 128.9 (2C), 127.6 (2C) 127.4 
(2C), 126.5 (1C), 113.2 (4C), 105.3 (1C), 86.0 (1C), 71.4 (1C), 57.2 (1C), 56.6 (1C), 55.4 (1C), 55.1 
(1C), 54.5 (1C), 51.2 (1C), 20.8 (1C); 
IR (cm-1) (Appendix J-7)  
 

Reaction III 
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Compound 9 was synthesized according to General procedure C, using propargylic acetal 5c 

(202 mg, 0.81 mmol) and prop-1-yn-1-ylbenzene 6 (284 mg, 2.43 mmol). Flash chromatography 

with an isocratic eluent of 60:1 pentane:ethyl acetate was used to isolate product 9. 

1-(3-Methoxy-4-methyl-5-phenylcyclopenta-1,3-dien-1-yl)-4-nitrobenzene 

 

 

1-(3-Methoxy-4-methyl-5-phenylcyclopenta-1,3-dien-1-yl)-4-nitrobenzene 9 (18 mg, 15 %) was 

isolated as an orange solid. 

 
Rf = 0.43 (5:1 Pentane:EtOAc); 
HRMS (EI) calcd for C19H17NO3 [M*+] 308.1287, obsd 308.1287; 
1H NMR (400 MHz, CDCl3-TMS) (Appendix K-1) δ (ppm) 7.97 (d, 2H, J = 9.2 Hz), 7.56 (d, 2H, J = 
9.1 Hz), 7.27-7.08 (m, 5H), 6.34 (s, 1H), 4.27 (s, 1H), 4.04 (s, 3H), 1.86 (d, 3H, J = 1.3 Hz) 
13C NMR (400 MHz, CDCl3-TMS) (Appendix K-2) δ (ppm) 162.7 (1C), 155.3 (1C), 143.3 (1C), 
141.7 (1C), 138.5 (1C), 129.0 (2C), 127.8 (2C), 127.0 (1C), 125.2 (2C), 123.7 (2C), 120.0 (1C), 
116.5 (1C), 58.5 (1C), 58.1 (1C), 15.5 (1C); 
IR (cm-1) (thin film, cm−1) (Appendix K-6): 2924, 2841, 1589, 1515, 1331, 1315, 1107, 852, 752, 
735, 699. 
 

Reaction IV 

 

 

Compounds 10a-d were synthesized according to General procedure C, using propargylic acetal 

5d (110 mg, 0.46 mmol) and prop-1-yn-1-ylbenzene 6 (161 mg, 1.38 mmol). Flash 

chromatography with an isocratic eluent of 100:1 pentane:ethyl acetate was used to isolate the 

products 10a-d. 
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(1S,3aR,6S,6aS)-1,6-bis(4-Chlorophenyl)-5,6a-dimethoxy-2-methyl-3-phenyl-1,3a,6,6a-

tetrahydropentalene 

 

(1S,3aR,6S,6aS)-1,6-bis(4-Chlorophenyl)-5,6a-dimethoxy-2-methyl-3-phenyl-1,3a,6,6a-

tetrahydropentalene 10a (7 mg, 7 %) was isolated as an off white liquid. 

Rf = 0.58 (10:1 Pentane:EtOAc) 
HRMS (EI) calcd for C29H26Cl2O2 [M*+] 477.1385, obsd 477.1388; 
1H NMR (400 MHz, CDCl3-TMS) (Appendix L-1) δ (ppm) 7.41 (d, 4H, J = 4.3 Hz), 7.29-7.12 (m, 
9H), 4.78 (s, 1H), 4.32 (s, 1H), 4.03 (s, 1H), 3.99 (s, 1H), 3.58 (s, 3H), 2.64 (s, 3H), 1.68 (s, 3H); 
13C NMR (400 MHz, CDCl3-TMS) (Appendix L-2) δ (ppm) 159.3 (1C), 138.1 (1C), 137.1 (1C), 
137.1 (1C), 136.2 (1C), 135.1 (1C), 132.5 (1C), 131.4 (2C), 130.8 (2C), 128.3 (2C), 128.2 (2C), 
128.2 (2C), 128.1 (2C), 127.8 (2C), 96.1 (1C), 93.1 (1C), 66.1 (1C), 59.5 (1C), 56.6 (1C), 56.0 (1C), 
54.7 (1C), 14.4 (1C); 
IR (cm-1) (thin film, cm−1) (Appendix L-7): 2950, 2919, 1646, 1490, 1340, 1225, 1090, 1014, 701. 
 
 

1,5-bis(4-Chlorophenyl)-2,6a-dimethoxy-3a-methyl-4-phenyl-1,3a,4,6a-

tetrahydropentalene 

 

A mixture of products 10b and 10c (10 mg, 64% of 10b and 36% of 10c) were isolated as an off 
white liquid. 
 
Rf = 0.23 (10:1 Pentane:EtOAc); 
HRMS (EI) calcd for C29H28O2Cl2 [M*+] 476.1310, obsd 476.1309;   
1H NMR (400 MHz, CDCl3-TMS) (Appendix M-1 and N-1) δ (ppm) 7.19-7.00 (m, 7H), 7.06 (d, 4H, J 
= 8.4 Hz), 6.88 (d, 2H, J = 8.6 Hz), 6.26-6.25 (m, 1H), 5.70 (s, 1H), 4.64 (s, 1H), 3.58 (s, 3H), 3.07 
(s, 3H), 1.09 (d, 3H, J = 1.3 Hz); 
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13C NMR (400 MHz, CDCl3-TMS) (Appendix M-2) δ (ppm) 138.6 (1C), 106.3 (1C), 70.7 (1C), 54.5 
(1C), 51.5 (1C), 50.8 (1C), 17.0 (1C);  
13C NMR does not give sufficient information to assign all the carbon shifts 
IR (cm-1) (thin film, cm−1) (Appendix M-7): 2955, 2923, 2867, 1490, 1257, 1091, 1014, 817, 742, 
703, 568.  
 

(1S,3aR,4R,6aS)-2,6a-dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-

tetrahydropentalene 

 

A mixture of products 10b and 10c (10 mg, 64% of 10b and 36% of 10c) were isolated as an off 
white liquid. 
 

Rf = 0.29 (10:1 Pentane:THF) 
HRMS (EI) calcd for C29H26O2Cl2 [M*+] 476.1310, obsd 476.1310;   
1H NMR (400 MHz, CDCl3-TMS) (Appendix M-1) δ (ppm) 7.68-6.84 (m, 15H), 6.53 (m, 1H), 6.59 
(s, 1H), 3.81 (s, 1H), 3.77 (s, 1H), 3.51 (s, 3H), 3.21 (s, 3H), 0.49 (s, 3H) 
13C NMR (400 MHz, CDCl3-TMS) (Appendix M-2) δ (ppm) 156.6 (1C), 142.1 (1C), 140.5 (1C), 
139.5, 137.6, 128.2, 127.9, 127.6, 127.1, 127.0, 126.4, 106.2 (1C), 100.0, 87.1 (1C), 61.1 (1C), 54.8 
(1C), 54.6 (1C), 54.6 (1C), 51.7 (1C), 20.8 (1C); 
13C NMR does not give sufficient information to assign all the carbon shifts. 
IR (cm-1) (thin film, cm−1) (Appendix M-7): 2955, 2923, 2867, 1490, 1257, 1091, 1014, 817, 742, 
703, 568.  
 
 

(1S,3aR,4S,6aS)-1,5-bis(4-Chlorophenyl)-2,6a-dimethoxy-3a-methyl-4-phenyl-1,3a,4,6a-

tetrahydropentalene 
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(1S,3aR,4S,6aS)-1,5-bis(4-Chlorophenyl)-2,6a-dimethoxy-3a-methyl-4-phenyl-1,3a,4,6a-

tetrahydropentalene 10d (12 mg, 12%) was isolated as an off white liquid. 

Rf = 0.19 (10:1 Pentane/EtOAc); 
HRMS (EI) calcd for C29H26O2Cl2 [M.+] 476.1310, obsd 476.1309;   
1H NMR (400 MHz, CDCl3-TMS) (Appendix O-1) δ (ppm) 7.55-7.07 (m, 8H), 7.05-7.01 (m, 1H), 
6.98-6.95 (m, 2H), 6.63 (s, 1H), 6.39-6.37 (m, 2H), 5.64 (d, 1H, J = 1.1 Hz), 3.61 (s, 1H), 3.52 (s, 
3H), 3.47 (s, 1H), 3.14 (s, 3H), 0.99 (s, 3H) 
13C NMR (400 MHz, CDCl3-TMS) (Appendix O-2) δ (ppm) 156.4 (1C), 141.5 (1C), 138.1 (1C), 
137.1 (1C), 136.4 (1C), 135.7 (1C), 133.2 (2C), 133.0 (1C), 132.6 (1C) 129.5 (2C), 128.2 (2C), 
128.1 (2C), 127.6 (2C), 127.4 (2C), 126.9 (1C), 105.3 (1C), 85.9 (1C), 71.4 (1C), 57.0 (1C), 56.8 
(1C), 54.5 (1C), 51.3 (1C), 20.9 (1C); 
IR (cm-1) (thin film, cm−1) (Appendix O-7): 2919, 2839, 1639, 1490, 1445, 1226, 1091, 1014, 838, 
813, 741, 702. 
 
 

5.4 Deuterated experiment 
 

Proton-deuterium exchange on propargyl alcohol 3a 

 

 
 
The propargyl alcohol 3a (511 mg, 3.87 mmol) was added to a solution of D2O (10 ml) and K2CO3 
(548 mg, 3.97 mmol) and the reaction mixture was stirred for one hour. The water phase was 
extracted with dichloromethane (3*10 ml) and the combined organic phases were dried over 
anhydrous sodium sulfate and concentrated in vacuo.  An unpurified mixture of the products d-
3a1-2 (454 mg) was obtained as a yellow oil. 
 
Both 1H- and 13 C NMR shifts (Appendix P-1, P-2) are consistent with literature.30 

 

Deuteurated propargyl acetal 
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Compound d-5a was synthesized according to General procedure B, using the mixture of 

propargyl alcohols d-3a1-2 (430 mg, 3.25 mmol) and 2-methoxyprop-1-ene (4) (5 mL, 52.21 

mmol). The unpurified product d-5a (353 mg) was obtained as a yellow oil. 

1H NMR (400 MHz, CDCl3-TMS) (Appendix Q-1) δ (ppm) 7.49 (d, 2H, J = 7.2 Hz), 7.37-7.27 (m, 
3H), 5.42 (s, 1H), 3.18 (s, 3H), 1.54 (s, 3H), 1.33 (s, 3H);  
13C NMR (400 MHz, CDCl3-TMS) (Appendix Q-2) δ (ppm) 140.2 (1C), 128.5 (2C), 127.9 (1C), 
126.8 (2C), 101.8 (1C), 84.0 (1C), 73.4 (1C), 62.5 (1C), 49.4 (1C), 25.4 (1C), 24.9 (1C);  
Both 1H- and 13 C NMR shifts are consistent with literature.21 

 

Gold(I) catalyzed cyclization reaction with deutirized propargyl acetal d-5a 

 

 

Compounds d2-7a-c were synthesized according to General procedure C, using the propargylic 

acetal d-5a (160 mg, 0.78 mmol) and prop-1-yn-1-ylbenzene 6 (274 mg, 2.35 mmol). Flash 

chromatography with an isocratic eluent of 70:1 pentane:methyl tetrahydrofuran was used to 

isolate the products d2-7a-c. 

1H NMR data for compound d2-7c: 

1H NMR (400 MHz, CDCl3-TMS) (Appendix H-1) δ (ppm) 7.61-7.13 (m, 10H), 7.00-6.96 (m, 1H), 
6.92-6.88 (m, 2H), 6.32-6.30 (m, 2H), 3.66 (s, 1H), 3.53 (s, 3H), 3.52 (s, 1H), 3.16 (s, 3H), 0.99 (s, 
3H); 
 
Only traces of the two peaks (1H δ (ppm) = 6.64, 5.66) in product 7c can be observed in the 1H 
NMR spectrum for the deuterated product d2-7c. 
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A Propargyl alcohol 3b 

A-1 1H NMR of propargyl alcohol 3b 
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A-2 13C NMR of propargyl alcohol 3b 
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B Propargyl alcohol 3c  

B-1 1H NMR of propargyl alcohol 3c 
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B-2 13C NMR of propargyl alcohol 3c 
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C Propargyl acetal 5a 

C-1 1H NMR of propargyl acetal 5a 
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C-2 13C NMR of propargyl acetal 5a 
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D Propargyl acetal 5b 

D-1 1H NMR of propargyl acetal 5b 
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D-2 13C NMR of propargyl acetal 5b 
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E Propargyl acetal 5c 

E-1 1H NMR of Propargyl acetal 5c 
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E-2 13C NMR of propargyl acetal 5c 
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E-3 HSQC of propargyl acetal 5c 
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E-4  IR of propargyl acetal 5c 
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F Cyclization product 7a 

F-1 1H NMR of cyclization product 7a 
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F-2 13C NMR of cyclization product 7a 
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F-3 HSQC of cyclization product 7a 
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F-4 COSY of cyclization product 7a 
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F-5 HMBC of cyclization product 7a 
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F-6  IR of cyclization product 7a 
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G Cyclization product 7b 

G-1 1H NMR of cyclization product 7b 
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G-2 13C NMR of cyclization product 7b 
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G-3 HSQC of cyclization product 7b 
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G-4  IR of cyclization product 7b 
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H Cyclization product 7c 

H-1 1H NMR of cyclization product 7c 
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H-2 13C NMR of cyclization product 7c 
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H-3 HSQC of cyclization product 7c 
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H-4 COSY of cyclization product 7c 
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H-5 HMBC of cyclization product 7c 
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H-6  NOESY of cyclization product 7c 
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H-7a    NOESY of cyclization products 7a-c 
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H-7b    NOESY of cyclization products 7a-c  
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H-8  IR of cyclization product 7c 
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I Cyclization product 8a 

I-1 1H NMR of cyclization product 8a 

 



102 
 

I-2 13C NMR of cyclization product 8a 
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I-3 HSQC of cyclization product 8a 
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I-4 COSY of cyclization product 8a 
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I-5 HMBC of cyclization product 8a 
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I-6  NOESY of cyclization product 8a 
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I-7  IR of cyclization product 8a 
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J Cyclization product 8b 

J-1 1H NMR of cyclization product 8b 

 



109 
 

J-2 13C NMR of cyclization product 8b 
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J-3 HSQC of cyclization product 8b 
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J-4  COSY of cyclization product 8b 
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J-5  HMBC of cyclization product 8b 
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J-6  NOESY of cyclization product 8b 
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J-7  IR of cyclization product 8b 
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K Cyclization product 9 

K-1 1H NMR of cyclization product 9 
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K-2 13C NMR of cyclization product 9 
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K-3 HSQC of cyclization product 9 
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K-4  HMBC of cyclization product 9 
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K-5  NOESY of cyclization product 9 
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K-6  IR of cyclization product 9 
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L Cyclization product 10a 

L-1 1H NMR of cyclization product 10a 
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L-2 13C NMR of cyclization product 10a 
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L-3 HSQC of cyclization product 10a 
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L-4  COSY of cyclization product 10a 
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L-5  HMBC of cyclization product 10a 

 



126 
 

L-6  NOESY of cyclization product 10a 
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L-7  IR of cyclization product 10a 
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M Cyclization products 10b-c 

M-1 1H NMR of cyclization products 10b-c 
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M-2 13C NMR of cyclization products 10b-c 
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M-3  HSQC of cyclization products 10b-c 
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M-4  COSY of cyclization products 10b-c 
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M-5  HMBC of cyclization products 10b-c 
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M-6  NOESY of cyclization products 10b-c 
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M-7  IR of cyclization products 10b-c 
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N Cyclization product 10b 

N-1 1H NMR of cyclization product 10b 
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O Cyclization product 10d 

O-1 1H NMR of cyclization product 10d 
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O-2 13C NMR of cyclization product 10d 
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O-3 HSQC of cyclization product 10d 
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O-4 COSY of cyclization product 10d 
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O-5 HMBC of cyclization product 10d 
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O-6 NOESY of cyclization product 10d 
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O-7  IR of cyclization product 10d 

 



143 
 

P Propargyl alcohols d-3a1-2 

P-1 1H NMR of propargyl alcohols d-3a1-2 
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P-2 13C NMR of propargyl alcohols d-3a1-2 
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Q Propargyl acetal d-5a 

Q-1 1H NMR of propargyl acetal d-5a 
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Q-2 13C NMR of propargyl acetal d-5a 
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R Deuterated cyclization product d2-7c 

R-1 1H NMR of deuterated cyclization product d2-7c 
 

 


