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Abstract

The main goal of this thesis has been to further explore gold(I) catalyzed cyclization reactions
including propargyl acetals. Gold(I) catalysts have a strong affinity to triple bonds, and alkyne-
gold complexes are readily formed.

+
_ [Au] __
R——R; ==
\ +

[Au]

Both propargyl esters and acetals have previously been investigated in gold(I) catalyzed
reactions. These propargylic substrates undergo intramolecular rearrangements to form gold
carbenoid intermediates IVa-b, which exhibit strong electrophilic character and are activated for
nucleophillic attacks.
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Propargyl esters have previously proven to undergo gold(I) catalyzed [2+1] cyclization reactions
with vinyl esters and amides while propargyl acetals have shown to undergo gold(I) catalyzed
[3+2] cyclization reactions with the same substrates. The difference in chemoselectivity is due to
the electronic properties of the OR-groups in the gold carbenoid intermediates IVa-b.

Propargyl acetals have proven to be more reactive than propargyl esters and thus new reactions
including these species were investigated further. Propargyl acetals 5a-c were synthesized in
acid catalyzed reactions between propargyl alcohols 3a-c and 1-methoxy-2-propene. Non-
commercial propargyl alcohols 3b-c were formed in a Grignard reaction with benzylic aldehydes
1a-b.
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1-Phenylprop-1-yne 6 does not exhibit great nucleophilicity, but in the presence of gold(I)
activated propargyl acetals, it has shown to readily undergo cyclization reactions.

In this thesis, propargyl acetals 5a-d were treated with 1-phenylprop-1-yne 6 in gold(I)
catalyzed reactions to readily form different cyclization products 7a-c, 8a-b and 10a-d by new
tandem cyclization reactions.
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5a: R=H 6

7a-c: R=H
5b: R=0Me 8ab: R=OMe 10a: R=Cl 9:R=NO,
5¢: R=NO, 10b-d: R=Cl
5d: R=Cl

Propargyl acetals 5a and 5d provided approximately the same product compositions,
respectively products 7a-c and 10b-d, with each fraction yielding 3-12%. Propargyl acetal 5d
gave one additional product 10a which was isolated in 7% yield. Product 10a was generated by
following a different reaction mechanism than for the formation of 10b-d.

The reaction with propargyl acetal 5b was more regio- and stereospecific as it provided one
major product 8a in 27% yield. Additionally, another stereoisomer 8b was obtained in 5% yield.

Propargyl acetal 5c did not provide any tandem cyclization products, but by following a known
[3+2] cycloaddition, product 9 was formed in 15% yield.

Possible reaction mechanisms have been proposed for the formation of 7a-c, 8a-b, 10b-d and
10a respectively. All products 7-10 were characterized by 1D and 2D NMR experiments, IR and
MS. NOESY experiments were of great importance when distinguishing diastereomers.



Sammendrag

Hovedmalet med denne masteroppgaven har vert a utforske nye gullkatalyserte reaksjoner med
propargylacetaler. Gull(I)katalysatorer har sterk affinitet til trippelbindinger, og alkyn-
gullkomplekser dannes sveert raskt.
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Bade propargylestere og -acetaler har tidligere blitt forsket pa i gull(I)katalyserte reaksjoner.
Disse propargylsubstratene gjennomfgrer intramolekuleere omleiringer for & danne
gullkarbenoid-komplekser. Disse kompleksene har en sterk elektrofil karakter og er aktivert for
nukleofile angrep.
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Propargylestere har tidligere bevist at de gjennomgar gull(I)katalyserte [2+1]
sykliseringsreaksjoner med vinylestere og -amider. Propargylacetaler har derimot gjennomgatt
gullkatalyserte [3+2] sykliseringsreaksjoner med de samme substratene. Denne forskjellen i
regioselektivitet skyldes elektrontettheten i OR-gruppen og i hvilken grad den kan stabilisere
den delokaliserte positive ladningen i intermediatet IVb.

Propargylacetaler har vist seg a veere mer reaktive enn propargylestere. Derfor er reaksjoner
med disse substratene mest interessante a utforske videre. Propargylacetaler 5a-c ble
syntetisert i en syrekatalysert reaksjon mellom propargylalkoholer 3a-c og 1-metoksy-2-
propen. Propargylalkoholene 3b-c ble dannet i en Grignardreaksjon med bensyliske aldehyder.
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1-Phenylprop-1-yn 6 er ingen sterk nukleofil, men har gjennomgatt raske sykliseringsreaksjoner
med gullkarbenoider IVa-IVb.

[ dette studiet har gull(I)katalyserte reaksjoner mellom propargylacetaler 5a-d og 1-
Phenylprop-1-yn 6 blitt gjennomfgrt og flere interessante sykloaddisjonsprodukter 7a-c, 8a-b
og 10a-d har blitt dannet gjennom nye tandem sykliseringsreaksjoner.
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Reaksjoner med propargylacetalene 5a og 5d ga omtrent samme produktsammensetning,
henholdsvis 7a-c og 10b-d, hvor hver fraksjon ga utbytte pa mellom 3 og 12%. I reaksjonen med
propargylacetal 5d ble i tillegg et annet produkt 10a isolert i et utbytte pa 7%. Produkt 10a viste
seg ogsa a veere et tandem sykliseringsprodukt, men ble dannet via en annen
reaksjonsmekanisme enn produktene 10b-d.

Reaksjonen med propargylacetal 5b var bade mer regio- og stereoselektiv enn reaksjonene med
de andre acetalene, da den ga et hovedprodukt 8a i 27% utbytte. I tillegg ble et annet produkt 8b
isolert (5%).

Propargylacetal 5c¢ ga ingen tandem sykliseringsprodukter i gullkatalysert reaksjon med
phenylpropynet 6, men heller et sykloaddisjonsprodukt 9 (15%) ble dannet ved a fglge en kjent
[3+2] sykliseringsmekanisme.

Mulige reaksjonsmekanismer har blitt utformet for dannelsen av de nye tandem
sykliseringsproduktene 7a-c, 8a-b, 10b-d samt 10a. Alle produkter 7-10 ble karakterisert av 1D
og 2D NMR eksperimenter, IR og MS. NOESY eksperimenter var til stor hjelp nar forskjellige
diastereomerer skulle skilles fra hverandre.
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Symbols and abbrevations

ESI

EtOAc
EVE
EWG

FID
GLC

HMBC
HR
HSQC
Hz
i-Pr

MHz
min
mL
mmol
MOP
MS
nc
NHC
NMR
NOE

degrees Celsius

acyl

aryl

Magnetic field

calculated

cyclopentadienyl

Correlated Spectroscopy
chemical shift (ppm)
partiallyinduced charge
doublet (NMR)
Dewar-Chatt-Duncanson (model)
dichloroethane
dichloromethane

for example

Electron Impact (MS)
equivalent

Electron Releasing Group
Electron Spray Impact (MS)
ethyl

ethyl acetate

Ethyl Vinyl Ether

Electron Withdrawing Group
torsional angle

Flame Ionization Detector
gram(s)

Gas Liquid Chromatography
hour(s)

Heteronuclear Multi Bond Correlation
High Resolution (MS)
Heteronuclear Single Quantum Coherence
Herz

isopropyl

infrared spectroscopy
coupling constant (Hz)
Molar

multiplet (NMR)

micro

methyl

milligram(s)

Mega Herz

minute(s)

milli Litre(s)

millimoles

methoxy propene

Mass Spectrometry

no conversion
N-heterocyclic carbene
nuclear magnetic resonance (spectroscopy)
Nuclear Overhauser Effect
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NOESY
obsd
Ph
PhD
Piv
ppm
PPTS
PTSA
r.t.

R¢

t-Bu
THF
TLC
T™
TMS
Tol
Ts
uv

Nuclear Overhauser Effect SpectroscopY
observed

phenyl

Doctor of Philosophy

pivaloyl

parts per million

Pyridinium p-toluenesulfonate
Pyridinium p-toluenesulfonic acid
room temperature

Retardation factor (TLC)

triplet

tert butyl

tetrahydrofuran

Thin Layer Chromatography
transition metal

TriMethylSilyl

toluyl

tosyl

UltraViolet
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Chapter 1

Introduction

The research group of Anne Fiksdahl has over the last years explored the field of gold(I)
catalyzed cyclization reactions. Propargyl esters treated with vinylic compounds have proven to
undergo [2+1] cyclopropanation reactions to form cyclopropane units. Reactions between
propargyl acetals and the same substrates followed a [3+2] cyclization mechanism.!8 48 Tandem
cycilization reactions between two propargyl acetal units and one unit of an olefinic ester have
recently been discovered in the Fiksdahl group.2!

R, OR'
OR . . .
Ry, ORs Ry [Au]* R Rs Rt
R/\ " g Ry * Ry TR
1 AN Rs DCM/toluene R, R, R, Rg (ZJR' Rs
R,

The chemoselectivity of the propargyl substrates is due to the electronic properties of the OR’-
group. In the gold carbenoid complex derived from acetals, the delocalized positive charge in
intermediate IVa is stabilized by the electron donating alkoxy group (OR-group), which allows
C-1, C-2 and C-3 to be included in the following cyclization reaction. In the case of propargyl
esters, the electron withdrawing O-acyl group deactivates C-1 and C-2, allowing only C-3 to be
included in the cyclization reaction.

Ry, JOR Ry 2 OR —_ R 2 OR

v, 1,2 - shift > Ry ==

R = | R A 3 =[Au]"*
+ ,’><\
[Au] IVa IVb

Recently, diarylic imines have proven to give 7-membered benzazepine heterocyclic products3>
in [5+2] cycloaddition reactions with propargyl acetals.

1.1 Aim of project
The propargyl acetals have proven to be more reactive than the propargyl esters,8 and reactions

with these species would therefore be interesting to investigate further. In order to study
reactions with other multiple bond reactants, the aim of this project is to investigate new gold(I)
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catalyzed reactions between aromatic propargyl acetals and 1-phenylprop-1-yne. By
characterizing the stereo- and regiochemistry of the products, the reaction pathways can be
determined.

+
// 5 mol% [Au]-catalyst
* > Cyclization products?
N
R
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Chapter 2

Theory

2.1 Use of transition metals in organic synthesis

In 1757, Loius-Claude de Gassicourt** did an experiment in which he was trying to make cobalt-
containing inks from arsenic-containing cobalt salts. During this experiment he discovered the
ill-smelling Cadet’s liquid which was synthesized from potassium acetate and arsenic trioxide.
This liquid contained a mixture of cacodyl and cacodyl oxide which were the first organometallic
substances prepared. Since this discovery, the use of organometallic compounds has been
important among chemists.

A key event in organometallic catalysis was the discovery of Zeise’s salt5¢ in 1825. Its inventor, W.
C. Zeise, was investigating the reaction of K;(PtCls) in boiling ethanol and the product he
observed contained ethylene. This was the first m-complex ever discovered.

A
H3G LH; HiC,, O CHj
As—As Af 115
4 “
HaC CH; CH;  CHs
B H
Hag o a
= +
Pt—l K
] IH \Cl
H

Figure 2.1: A: Cadet’s liquid and B; Zeise’s salt

Chemists could not properly describe the structure of the salt until the advent of x-ray
diffraction in the 20t century.?2 This metal complex with a n?-ligand was important in the
understanding of hapticity in chemistry. M. J. S. Dewar 7 described in the 1940s the bonding of an
olefin coordinated to copper(l) and silver(I). J. Chatt and L. A. Duncanson!® used this model to
describe the bonding in Zeise’s salt. In transition metal (TM) complexes, the Dewar-Chatt-
Duncanson (DCD) model describes how the olefin acts as an electron donor and acceptor at the
same time.
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o - donation T - acceptance

a H H b H H
<0 5 -
Metal H\\ H Olefin Metal H\ H Olefin

Figure 2.2: Interactions between a TM and its 772 ligand

Figure 2.2a shows, according to the DCD-model, how the olefin ligand donates electrons from
from its occupied m-bonding orbital to the free d. -orbital of the metal. In the complex this

orbital interaction has a o-character. The metal acceptor is mainly the dy. -orbital of the metal.
The back-donation from the TM to the ligand (Figure 2.2b) takes place via a d-m* interaction
between the filled d-orbital of the metal and the empty m*-orbital of the olefin. All together these
interactions weakens the C-C bond in the olefin. The main problem for describing the nature of
the bonding between a TM and an unsaturated ligand, where a C-C double bond is included, is to
determine if the complex should be described by the DCD-model or as a metallo-cyclopropane
derivate (Figure 2.3).

Figure 2.3: Metallo-cyclopropane

The first reliable studies of this problem were published by Steigerwald and Goddard in 1985.50
They concluded, by investigating C-C bond lengths of the ligand, that there are three factors that
determine if a donor-acceptor complex is formed; the metal has low-lying electronic states with
doubly occupied d-orbitals, the C=C m-bond is strong and the o-bond between the TM and the
ligand is strong.

In 1912, F. Grignard received the Nobel Prize in chemistry?!s for his discovery of the Grignard
reaction and reagents. In the reaction, aryl-or alkyl-magnesium halides react with an aldehyde
or a ketone?® to form alcohols. The reaction is important in organic synthesis for formation of
new C-C bonds. The Grignard reagents have also been proven to undergo transmetallation in
cross coupling reactions including palladium>2 among other TMs.

In the 1950s, two individual groups?2 32 reported that they had obtained a product with light
orange powder and “remarkable stability”. The structure of the compound was determined by R.
B. Woodward and G. Wilkinson55 in 1952 and later confirmed by NMR and X-ray crystallography.®
What was discovered was ferrocene (Figure 2.4), a very stable organometallic compound with a
sandwich structure consisting of an Iron(II) cation and two anionic cyclopentadienyl (Cp) rings.

18
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Figure 2.4: Ferrocene

In order for the compound to be neutral, the Cp rings have one negative charge each, making
both of them donate 6 m-electrons. Combined with the 6 d-electrons on Fe2* the complex attains
an 18-electron configuration. The general name for these sandwich compounds are metallocenes
and they are used in different reactions such as Ziegler Natta polymerization*3 and as an agent in
cancer treatment.25

In 1961, L. Vaska et.al. reported a new organometallic compound>* which was given the name
Vaska’s complex. 1t's known for the reversible addition of O; and series of oxidative addition
reactions due its coordinative unsaturation. Studies on this complex; its great reactivity at
normal conditions, have contributed to a greater understanding and study of different processes
in catalysis.>3

Throughout the 60s and 70s several homogenous catalysts containing TMs were synthesized.
The Wilkinson’s catalyst38 was the first homogeneous olefin hydrogenation catalyst, H. Kagan
reported the first efficient enantioselective asymmetric Rh(I) hydrogenation catalyst.20 Today
organometallic catalysis is still popular and one of the fastest growing areas in this field is the
organogold compounds.1. 16.49,57

2.2 Organogold chemistry

Since the first organogold compound, the gold carbene Au.C;, was discovered in 1900,31 the use
of gold in organometallic chemistry has been a popular field, especially during the last years.L 16.
49,57 Gold(I)-and gold(III)-complexes are the most attractive due to their electron configuration.
Use of these catalysts in synthesis is popular because of the mild reaction conditions required
and their product selectivity.

In the beginning of the 20t century, organogold complexes including dialkyl substituents were
prepared, but they were very unstable. G. E. Coates managed later to prepare stable derivatives
by addition of tertiary phosphine ligands.# The phosphine ligand acts as a m-acceptor and a o-
donor through its lone pair electrons as shown in Figure 2.5.
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a b
—_— -
R:P M R:P M

Figure 2.5: Figure a shows the o-bond between the lone pair on phosphorus and the empty orbital on the
metal. Figure b shows the 7r-backdonation from the metal to the o* orbitals on Phosphorus 37

Use of tertiary phosphine ligands on gold(I)-and gold(Ill) complexes are attractive due to the
thermal stability of the gold-phosphorus bond.#!

The bonding between TMs and m-ligands such as alkenes and alkynes is usually described by the
DCD-model. Four different principle components can contribute to the bonding of alkynes as
ligands as seen in Figure 2.6.

Metal Alkyne ligand

)
dxy 8 -=- > th

T

W B8 = m

Figure 2.6: The four principles of bonding between a TM and an alkyne ligand.’? The o-and the m—
interactions are the main contributors to the bonding.

For the gold(I)-acetylene complex ([Au*-C:H:]), o-bonding contributes 65% to the bond
strength while the m-bonding only contributes 25%. This makes the alkyne mainly a o-donor
and not so great a m-acceptor towards gold(I). For this reason, alkynes are easily activated by
gold(I)-catalysts and the gold-alkyne complex gains an electrophilic character.

Addition reactions to alkynes with a Brgnsted acid as catalyst requires harsh conditions and
many by-products may be formed from the carbocation intermediate. By replacing the proton
with a softer isolobal catalyst, such as LAu*, formation of the desired product is much easier to
achieve. The Au(I)-catalyst has high affinity to the m-system of the alkyne but has the advantage
of being easily cleaved off at the labile metal-carbon bond.12

Gold(I) catalysts are not very sensitive towards air because of the high oxidation potential from
+[ to +III. In addition, water, alcohols and oxygen are better tolerated during the reaction due to
gold carbenoid intermediates. The gold carbenoid is stabilized by backbonding from the
metal/ligands.

20



Metal Carbene fragment

n R
X —— §~r
e} R
PO =—— oy

Figure 2.7: Dominant bonding in a Fischer-type carbene complex 12

These carbenoid and non-classical carbocation intermediates, which are involved in gold
catalyzed reactions, often lead to high product selectivity. In addition, the carbon-gold bond is
labile towards protodeauration, which regenerates the catalyst.

Some of the most popular gold catalyst includes phosphines and N-heterocyclic carbene (NHC)
ligands and examples of these are presented in Figure 2.8.

i-Pr - i-Pr + -
r t-Bu —‘ SbFe

N t-Bu—P—Au—N=—

Au
ipr | iPr Q <
cl

Ia Ib
Figure 2.8: Some homogenous gold catalysts4

2.3 Gold(I) catalyzed cyclization reactions

Several research groups have demonstrated that propargyl esters can, in presence of gold(I),
undergo an intramolecular transformation to generate gold complex intermediates.5. 6. 27. 48
Additionally, the Fiksdahl group has studied the reactivity of propargyl acetals.18 21 The
propargyl acetals generate similar intermediates as propargyl esters as shown in Scheme 2.1.
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R (5“< 1,2-shif Ry oK = RR1 OR'
1/,' 1 6) ,2-shift R2>_—_;\\&[Au] ZX R
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+
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Prop. acetals - Ry
R, OR' =< Ry
Ry, (()‘A{\ R 1,3-shift R >;/ V R3 Rz/ﬁiOR'
;gi 0- —_— 2 ! — = . o
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“[Au]l V3 IV 3
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Scheme 2.1: Gold(I) activation of propargyl esters and acetals!8
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By performing a 1,2 O-acyl (for esters)/0-alkyl (for acetals) shift, the gold carbenoid complex
IVa-b is generated. The positive charge is highly delocalized, but can be stabilized by an electron
releasing OR’ group as in the case of propargyl acetals. Allene-gold complexes IVc are formed by
an intramolecular 1,3 shift in the propargyl ester/acetal.

Depending on the propargyl substrate, the gold complex intermediates IVa-c can undergo
cycloadditions with different vinylic substrates V such as vinyl ethers and amides#8 and different
interesting cyclic products VI-VIII can be formed.

2.3.1 [2+1] Cycloaddition reactions

Formal [2+1] cycloaddition reactions generate cyclopropane units, as seen in Scheme 2.1. These
units can be found in several naturally occurring products with different biological properties8
and are also used in a number of interesting chemical transformations.28 3451 Gold(I) catalyzed
cyclopropanations between propargyl esters and vinyl esters have previously been reported by
the group of Fiksdahl.*8 Reactions between propargyl esters and vinyl acetates were catalyzed
with 5 mol% of catalyst Ib. The product showed formation of cyclopropane derivatives.

OAc
R, OAc ﬁ/ R, [Au]* R OAc
R & : g A
1 \\ OAc DCM/toluene, r.t., 1-4 hours R,
| Va Via

Scheme 2.2: Formation of a cyclopropane compound.

The reaction presented in Scheme 2.2 is an example of a [2+1] cycloaddition reaction and the
mechanism appears to go via the gold carbenoid intermediate IVb2¢ and is described in Scheme
2.3. The stereochemical conformations of the cyclopropane compound VIa were dependent on
the bulkiness of the substituents on the vinyl esters Va.

OAc
—\ X\ 4
o+ Va — » Ry =I[Au] —_— Via
Ry
IVb BN
OAc
Va

Scheme 2.3: Mechanism of [2+1] cycloaddition via a gold(1) carbenoid intermediate IVb.

It is known that aryl propargyl esters Ila can undergo intramolecular cyclization reactions with
a gold allene IVc or a gold carbenoid IVa-b intermediate to form indenes IX.3¢ The reactions
performed by the group of Fiksdahl, presented in Scheme 2.2, also showed formation of these
compounds, but only in the range of 10% 48
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Scheme 2.4: Intramolecular cyclization reaction to form indenes IX 48

2.3.2 [3+2] Cycloaddition reactions

Different propargyl esters Il were treated with a variety of both vinyl-esters and sulfonamides
by the group of Fiksdahl*® as mentioned in the last Section. An unexpected result was observed
in a few of the cases with vinyl sulfamides Vb. The reaction did not provide cyclopropanes but
rather cyclopentenes X instead. One of the examples is shown in Scheme 2.5.

OPi + PivO
v —\ _Ts [Au]
+ N
P ™" / DCM Ph NS
Ila Vb X

Scheme 2.5: Gold(I) catalyzed [3+2] cycloaddition

Nevado have reported a phosphate-gold catalyzed cyclopentaannulation of olefins with
propargyl esters. The initially formed cyclopropylvinyl esters appared to undergo a ring
expansion at higher temperatures to provide trans-cyclopentenyl esters.!3 However, further
investigation done by the group of Fiksdahl indicated that the cyclopentene products produced
in her group did not go through a ring expansion, but rather a direct [3+2] cycloaddition.*8
These diverse observations indicate that the positive charge on the gold carbenoid IVa-b is
highly delocalized and that the mechanism is controlled by steric and electronic factors. The
resonance is shown in Scheme 2.1.

Propargyl acetals III are also known to undergo an intramolecular rearrangement to provide
gold carbenoid complexes IVaa-ab.5” This rearrangement follows approximately the same
mechanism as in the case of esters (Scheme 2.1), but during the internal rearrangement in
propargyl acetals, one unit of acetone is cleaved off during the activation with the gold. This
mechanism is described in Scheme 2.6.

07 0R, ﬂ 0 (032 1,2 shift j%\)olz\z( 1 \.—lgoiz Rl\zgiz
Rl)\Rz HAu]’ \\OR3 [Ru] ﬁ: [A“]‘ o JfAu] *
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(?)toﬁzz L //\
\//\
Ry 1Al IVca

Scheme 2.6: Gold(1) a:tivation of a propargyl acetal.
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By changing from propargyl esters II to propargyl acetals III, the reactivity of the propargyl
moiety increased drastically, resulting in a reduction of reaction times. The high reactivity of the
propargyl acetal may be due to the electron releasing alkoxy (ORz) substituent which can
stabilize the positive charge in the gold carbenoid intermediate IVaa.18

Reactions between propargyl acetals Illa and vinyl compounds Vc mainly undergo a direct [3+2]
cycloaddition to form cyclopentenes XI.18 The difference in chemoselectivity for propargyl
acetals is probably due to the methoxy group which activates the double bond to take part in the
cyclization reaction as described in Scheme 2.7. In the field of gold chemistry, propargyl acetals
are exclusively studied by the group of A. Fiksdahl.

OMe R, / OMe

Ry
OJ<O Me + Rz>’—_;\&[Au] R, ) A [AuT Re e
) [Au] IVba ) el sz
'R AN . —= R(;(/ R3X
2 R;X Vc R X/'\ v 3 3
34 C

Ila 1,2 shift XI

Scheme 2.7: Gold(I) catalyzed [3+2] cycloaddition reaction via intermediate IVb.18

Recent investigation performed by Gung et.al. includes reactions between propargyl esters Ilb
and cyclic vinyl ethers Vd.> Dependent on the ring size of the vinyl ether, different amounts of
both the cyclopentenation and cyclopropanation products were formed. One of their reactions is
presented in Scheme 2.8.

+
)=0 [Au]
0 + &OMe _— 0 +
P DCM, rt. J—Tol
PH
Ib

vd XIla

33% 67%

Scheme 2.8: Reaction performed by Gung et.al.. Both the [3+2] cycloaddition product and [2+1]
cycloaddition product was obtained.

The ratio between the products in Scheme 2.8 was 33:67. The [3+2] cycloaddition product XIla
was observed only as the cis isomer with respect to the methoxy- and the phenyl group. In other
reactions the cis/trans ratio would vary.

Another interesting point mentioned in the paper by Gung et.als is the ring current effects which
influences the 'H chemical shift values of substituents located nearby phenyl rings in the
molecule. In the case of the [3+2] cyclization product in Scheme 2.8, the methoxy group and the
phenyl ring is located syn to each other and hence the methoxy group gets an increased &-value
relative to its normal chemical shift. The induced ring currents!! occur when a molecule with
delocalized m-electrons is placed in a magnetic field, such as in a NMR device. The ring current
generates an additional magnetic field as described in Figure 2.9. This leads to regions of
increased and reduced shielding in the vicinity of the aromatic ring. For this reason the aromatic
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hydrogen atoms, which are in a position where the lines of force increase the B, field, will have
increased shift values relative to e.g. hydrogen atoms in an alkene.

+8.9

Figure 2.9: A: Zones of increased (+) and decreased (-) shielding in an external magnetic field B, caused by
ring current effects. B: In [18]-annulene the six inner hydrogen atoms are highly shielded by the ring current
effects and hence their shifts (ppm) are very low

2.3.3 [5+2] cyclization reactions

Gold-activated alkynes are good electrophiles for both sp2- and sp3-hybridized heteroatom
nucleophiles, which allow a diversity of heterocycles to be formed.*s Gold(I) catalyzed reactions
between propargyl acetals Illa and diarylic imines XII are currently proven, by the Fiksdahl
group, to give benzazepine heterocycle derivatives XIII in 60-80% yields (Scheme 2.9).35 The
formation of product XIII appears to go via the gold carbenoid intermediate IVba.

R, OMe

07 “0Me @ (Au] (:(C?Ng
+ C~N _ >
©)\ solvent Q
X1 P h\ngMe
Ry

Illa (Au] Ry XIII

IVba

Scheme 2.9: [5+2] cyclization reaction between propargyl acetals and diaryl imines to form benzazepine
heterocycle derivatives.

The benzazepine heterocycles XIII contain a framework which is observed in bioactive natural
products and pharmaceuticals.1”. 47 Syntheses of these types of compounds are consequently of
great interest.

Several gold(I) catalyzed experiments with propargylic acetals and diaryl imines were
conducted to find the optimized catalyst for the [5+2] cyclization reaction.3s The most efficient
catalyst Ic is presented in Scheme 2.10. The active catalyst Ic is generated in situ by counter ion
exchange.
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Scheme 2.10: Generation of the optimized gold(]) catalystfor [5+2] cycloadditions

Until now, no research has been done on the gold(I) catalyzed [5+2] cycloaddition between
propargyl acetals and imines, but a proposed mechanism has been developed be the Fiksdahl
group and is presented in Scheme 2.11.35

>( B IVba N
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XIII R, H R;
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Scheme 2.11: Proposed reaction mechanism of the [5+2] cyclization reaction between propargylic acetals
and imines.

Scheme 2.12 shows a deuterium labeling experiment35 in which incorporation of one deuterium
on the 3-position of the 7-membered heterocycle ds-XIII is shown. This is in accordance with an
o-phenyl proton shift after the protodeauration step. Cyclization through an electrophilic
aromatic Mannich-type reaction occurs and the benzene-ring regains its aromaticity.

[Au]

D OMe
D. CHO —MgBr OMe
T x
D D -20°C THF PPTS DCM 15min

0 85%
D 78% 76%

Scheme 2.12: Deuterium labeling experiment to determine the proton shift in the [5+2] cyclization reaction

2.4 Synthesis of propargyl alcohols and acetals

As previously stated, propargyl acetals are much more reactive than the corresponding ester,
and are therefore more interesting to use in further research on gold(I) catalyzed cyclization
reactions. Propargyl acetals are synthesized from propargyl alcohols and not many of them are
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commercially available. One efficient reaction to form propargyl alcohols is a through a Grignard
reaction with aldehydes*? as presented in Scheme 2.13. Aryl substituted propargyl alcohols and
acetals have shown to control the stereoselectivity!8 and are hence of the greatest interest.

0 OH

| i
MgBr
r Z =
R THF, 30 min, r.t. R

Scheme 2.13: Synthesis of propargyl alcohols

3

As mentioned in Section 2.2, the Grignard reaction is an important tool for the formation of C-C
bonds. THF is often used as a solvent in these reactions, as it forms a more stable complex with
the Grignard reagent than e.g. diethyl ether.3 THF is also preferred due to its hygroscopic
properties, which excludes side reactions between the Grignard reagent and water. The
mechanism of the Grignard reaction is presented in Scheme 2.14.

MgBr

(6] /
§/H 0 H/\ H/H,0 9 H MgBr(OH)
v\ — Ar — L 2y Ar)\ + g
ArBng — \\ N

Scheme 2.14: Mechanisms of the Grignard reaction3

The reactions between propargyl alcohols and vinyl ethers to form propargyl acetals III are

shown in Scheme 2.15.
/FR
OH PPTS 0 f

)\ * )J\ - = OR
R R OR - )\
R 2 1 2-3h,rt R ™

MOP: R; = Me, R, = Me m
EVE:R; =Et, R, =H

7

Scheme 2.15: Synthesis of propargyl acetals.>”

This reaction is acid catalyzed by pyridinium p-toluensulfonate (PPTS) which is found to be
weaker and can be used in milder conditions than the corresponding p-toluensulfonic acid
(PTSA).33 Propargyl acetals derived from methoxy propene (MOP) have been shown to favor
cyclization reactions more than in the case of ethyl vinyl ether (EVE).18 The reaction mechanism
for the synthesis of propargyl acetals is described in Scheme 2.16:
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Scheme 2.16: Mechanism for the acid catalyzed formation of acetals.1?

2.5 NMR applications 11

In 1946 two research groups independently observed nuclear magnetic resonance signals for
the first time. Respectively F. Bloch and E.M. Purcell were awarded the Nobel Prize for Physics in
1952 for their discovery. During the first three decades all NMR spectroscopy measurements
relied on one-dimensional (1D) modes of observation. Two-dimensional (2D) NMR experiments
were developed during the 1970’s and started a new area in NMR spectroscopy. The advantage
of 2D NMR spectra is that they show 1H vs. 1H or 1H vs. 13C chemical shift correlations, which are
great tools when solving regio- and stereochemistry of organic molecules.

2D NMR experiments include COSY, HSQC, HMBC and NOESY among others. Both COSY and
NOESY spectra show H vs. 'H interactions. The difference between them is that COSY shows
correlations via spin-spin coupling in the molecule, while NOESY spectra show protons that are
close through space. HSQC shows C-H correlations via one-bond carbon-proton coupling and
HMBC shows C-H correlations via long-range C-H coupling.

NOESY experiments are important tools when solving stereochemistry in molecules. The [3+2]
cyclization product XIla in Scheme 2.8 is a bicyclic compound with three stereogenic centers.
The compound can potentially have four different diastereoisomers (with corresponding
enantiomers). Two enantiomers dissolved in an achiral solvent will have identical NMR spectra
and can’t be distinguished.

Scalar couplings between nuclei are indirect couplings transmitted through chemical bonds.
Vicinal couplings, 3/(H,H), show couplings between protons separated by three bonds. They are
influenced by e.g. substituents and the torsional angle ¢. A greater understanding of vicinal
couplings was made by M. Karplus. The Karplus curve shows the relationship between 3J(H,H)
(Hz) and the torsional angle ¢, and is presented in Figure 2.10. The plot describes how the
coupling constants are largest for ¢ = 0° or 180°, and smallest for ¢ = 90°.
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Figure 2.10: The Karplus curve

In saturated systems couplings through more than three bonds are often less than 1 Hz.
However, in allylic compounds, the 4/(H,H) couplings can become quite large. These couplings
are highly dependent on the angle ¢ between the C-H bond and the axis of the m-orbital in the
double bond as shown in Figure 2.11

O
I
. H
4
H /, //,' \\\\\\

Rd

Figure 2.11: The angle ¢ between the C-H bond and the axis of the m-orbital in the double bond determines
the couplings in allylic systems.

The closer the angle ¢ is to 0°, the larger will the coupling be. Couplings through five or more
bonds can rarely be seen.
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Chapter 3

Results and discussion

This chapter is divided in three parts. The first part covers the synthesis of starting materials
and is presented in Section 3.1. This part consists of synthesis of propargyl alcohols and acetals.
The major work is presented in Section 3.2, where details of all the gold(I) catalyzed cyclization
reactions are presented. Finally, in Section 3.3, suggestions for further development in this field
are given.

All new compounds have been fully characterized by NMR, IR and MS. Different stereoisomers
were distinguished by 2D NOESY experiments and are presented in this chapter. The shift values
of 1H and 13C are given in blue and red, respectively. Experimental data and characterization
details are given in Chapter 5.

3.1 Synthesis of starting materials
3.1.1 Synthesis of propargyl alcohols

The propargyl alcohols 3b-c were synthesized according to a similar procedyre.42 Propargyl
alcohol 3a was commercially available. All details and results of these syntheses are given in
Table 3.1.
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Table 3.1: Synthesis of propargyl alcohols

Q OH
O - e s
R THF, 30 min, r.t. R
1a-b 2 3b-c
Entry Aldehyde Propargyl alcohol Yield [%]
0 OH
1 /@2 /Q)\ 54
MeO MeO
1a 3b
? OH
O,N O,;N
1b 3c

The substituted benzaldehydes 1a-b were treated with a 0.5 M solution of the Grignard reagent
2 in THF. This Grignard reaction was described in Section 2.4. Since this is an exothermic
reaction,3® the temperature was kept low while adding the benzaldehyde 1a-b to the Grignard
reagent. A saturated solution of ammonium chloride was added to quench the reaction.

The literature based procedure proved not to work as well for aldehyde 1b (Entry 2). The solid
p-nitrobenzaldehyde 1b did not dissolve easily in THF. Fortunately, this did not seem to affect
the conversion of aldehyde 1b or the reaction time (monitored by GLC). However, in the work
up of the product crude, the extraction proved to be difficult with the literature procedure. The
product was probably less soluble in diethyl ether than the literature substrate. A more polar
solvent, such as ethyl acetate or dichloromethane, should be used for this substrate. No flash
chromatography was performed for purification of the product 3¢, as the proton NMR analysis of
the crude product indicated that the correct product 3¢ had been obtained.?3 The crude product
was used in further synthesis.

3.1.2 Synthesis of propargyl acetals

All details and results of the syntheses of propargyl acetals 5a-c are given in Table 3.2.
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Table 3.2: Synthesis of propargyl acetals

o
0

OH
PPTS
o
AN
/©)\ OMe 2h,rt. /©)\
R
3a-c 4

R

5a-c

Entry Propargyl alcohol Propargyl acetal Yield [%]

oH X

o}
N
A
1 ©)\ ©)\% 77

3
a 5a
OH o OMe
MeO ©
3b 5b

oH -

o i

\ .
3 N T 31
02N /@)\\

3c

I Yield over two steps from aldehyde 1b.

Syntheses of propargyl acetals 5a-b have previously been reported and these compounds have
been used in gold(I) catalyzed reactions.?! The reaction mechanism for the acid catalyzed
formation of propargyl acetals was described in Section 2.4. Due to the unstability of the acetals
5a-c, which tended to decompose to alcohols 3a-c at room temperature, these reactions had to
be performed under inert conditions. The observed yields of propargyl acetals 5a-b are in
accordance with, or better than literature.2!

Synthesis of propargyl acetal 5c was performed according to the same procedure as for
propargyl acetals 5a-b. The low total yield of 5¢ may be due to the challenges in the work-up of
propargyl alcohol 1b and also that the impurities in the product crude of 1b have affected the
reaction and formation of 5c. Due to time limitations the reaction was not repeated. However,
sufficient amount of the product 5¢ was produced to continue with further syntheses.
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3.2 Gold(I) catalyzed reactions

All details and results of the gold(I) catalyzed reactions are summerized in Table 3.3. Due to
optimization studies previously carried out in this group regarding gold(I) catalyzed [2+1] and
[3+2] cycloaddition reactions, gold catalyst Ib was used in Entries I-IV (Figure 3.1).18 Counter
ions such as hexafluorantimonate(V) or bis(trifluoromethylsulfonyl)amide combined with the
gold(I) complexes seemed to be important, as no reaction took place where they were not
present.

All experiments showed immediate and full conversion of the propargyl acetals 5a-d, with a
corresponding color change in the reaction flask. All the reactions were allowed to stir for 15
minutes before being quenched with triethylamine.

- + -
t Bu\ j SbF,
t-Bu—P—Au—N=

‘—\
\ W/

Figure 3.1: Gold catalyst Ib

All the gold(I) catalyzed reactions were carried out with three equivalents of 1-phenyl-prop-1-
yne 6. Recent research in the group indicates that some of the propargyl acetals undergo a
dimerization in the presence of gold(I) catalysts, hence, an excess of the phenyl propyne is
desirable to use.

All assignments of stereo- and regiochemistry of products 7-10 are based on H, 13C and 2D
correlation NMR spectroscopy. The low yields observed of many of the products, and the fact
that these reactions were conducted in small scale (100 mg), gave challenges due to weak NMR
spectra. Due to the low natural abundance of 13C, some spectra were difficult to analyze. Hence,
full characterization of some of the products was not possible at this time.

Once the identity of the products formed had been established, a screening of different gold(I)
and gold(1III) catalysts was carried out. These reactions are described in Subsection 3.2.6 in this
Chapter.
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Table 3.3: Gold(I) catalyzed reactions

t-Bu 1 swrs
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Propargyl acetal Cyclization product (%]
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Table 3.3 continuation: Gold(I) catalyzed reactions

Yield

Propargyl acetal Cyclization product [%]
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3.2.1 Reactionl

The reaction between the unsubstituted propargyl acetal 5a and phenylpropyne 6 was the first
reaction conducted in this thesis and is presented in Scheme 3.1.

©Bu, I svre
t-Bu—pP—Au—N=

OG0
) = \ %%
\\ 15 min, r.t.

Scheme 3.1: Reaction L

Monitored by GLC, it was clear that the reaction was complete after 15 minutes. Both TLC and
GLC showed several products. A sketch of the TLC is presented in Figure 3.2

)

)

0 R;=042 7a+7b
) Ri=0,34 7¢

A

Figure 3.2: TLC of product crude in reaction I. Eluent 15:1 pentane:ethyl acetate

The two lower spots on the TLC in Figure 3.2 were given our attention, as they gave the purest
1H NMR spectra after isolation. The spot with Rf = 0.42 appeared to consist of two isomers but
the lowest spot (Rf = 0.34) consisted of one, pure compound. It became clear after tH NMR, 13C
NMR, 2D correlation NMR (Appendix H) and mass spectrometry that the product 7c was a result
of a tandem cyclization reaction containing two units of the propargyl acetal 5a and one unit of
the phenylpropyne 6. None of the previous tandem cyclization reactions proposed by this group,
presented in section 2.3, could describe the formation of the new tandem cyclization product 7c.

A new reaction mechanism was proposed and is presented in Scheme 3.2.
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Scheme 3.2: Proposed reaction mechanism of the tandem cyclization reactions resulting in several products
presented in Table 3.3

In the first step (4) the gold catalyst activates the propargylic acetal into the allenic intermediate
IVca, which is described in Scheme 2.6, by a 1,3 intramolecular alkoxy shift. This is followed by a
[2+2] cycloaddition reaction (B) with the phenyl propyne 6 by activation from the terminal
methoxy group. A similar four membered ring (as XIVa) was previously formed and isolated by
this group.!8 In the next steps (C, D) a intramolecular rearrangement, including a double proton
shift, occurs, induced by the formation of a substituted 1,3 pentadiene, due to less ring strain. In
the final step (E) of the tandem cyclization process, there is a [3+2] cycloaddition between the
five membered ring XIVc and the gold-complex IVba which follows the reaction mechanism
presented in Scheme 2.7.

This mechanism was proposed by Prof. Anne Fiksdahl and Post Doc. Naseem Igbal, and 1D and
2D NMR experiments of product 7c support the proposed regiochemistry. It was established
that two protons were attached to sp3 hybridized carbon atoms, and two benzylic protons were
attached to sp? hybridized carbon atoms because of the correlated 13C shift values observed in
HSQC (Appendix H-3). HMBC- and COSY spectra (Appendices H-4, H-5) was very helpful when
solving the structure of the molecule skeleton. HMBC and COSY correlations of compound 7c are
presented in Figure 3.3.
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Figure 3.3: Chemical shifts and HMBC/COSY correlations in the skeleton of compound 7c.

The strong COSY correlations between the protons shown in Figure 3.3 are a bit surprising as
they are separated by four bonds, but it may be due to long range couplings which were
described in Section 2.5. In some of the products, a splitting between these protons was
observed in the proton specter as well.

The isomers 7a-b with R=0.42 in Figure 3.2 proved to be more difficult to separate from each
other, but was accomplished after extensive testing of several eluent systems. The final eluent
system was 50:1 pentane:THF. Both isomers 7a-b showed similarities with 7c in 13C NMR and in
the 2D correlation NMR spectra, so it was established that they both were different
stereoisomers of product 7c. Though the 1H shifts seemed to differ, but this is probably due to
the stereochemistry and ring current effects as described in the latter part of Section 2.3.

The proposed product in Figure 3.3 has four stereogenic centers, and the stereochemistry of the
isolated products (enantiomers are not desired to distinguish in this synthetic field, hence the
relative stereochemistry in the figures) were determined by NOESY experiments. What was
obvious from NOESY of all three compounds 7a-c was that there was no correlation between the
methyl group (H § = 1.05 ppm) and the methoxy group (1H 6 = 3.08 ppm). Hence, they had to
have a trans configuration relatively to each other. Figures 3.4-3.6 show the different isomers
obtained from Reaction I.

/ 106.3 7.09-6.95

7.09 - 6.95

7.09 - 6.95

7.09-6.95

7.09 - 6.95

Figure 3.4: Chemical shifts and NOE correlations of compound 7a
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The NOESY specter (Appendix H-7) of compound 7a showed clear correlation between the two
benzylic protons as well as a strong signal between the methoxy group (*H § = 3.08 ppm) and
the benzylic proton (*H & = 3.62 ppm). From 3D projections of the molecule, all these three
groups should have cis configuration relative to each other. This is a possible isomer, but the
reason for the uncertainty about the stereochemistry in 7a will be discussed later in this Chapter
(Subsection 3.2.2).

54.6 / 106.2 768 684 7.68-6.84

7.68-684 7.68-6.84 56.6 : 7.68-6.84

H 381
61.1

7.68 - 6.84

7.68 - 6.84

7.68 - 6.84

7b

Figure 3.5: Chemical shifts and NOE correlations of compound 7b

The NOESY specter (Appendix H-7) of compound 7b showed clear correlation between the
methyl group (1H & = 0.49 ppm) and the benzylic proton (H § = 3.77 ppm), and also between the
methoxy group (*H 6 = 3.21 ppm) and the other benzylic proton (H § = 3.81 ppm). Additionally,
no signal between the two benzylic protons was observed. Hence, the stereochemistry presented
in Figure 3.5 seemed appropriate. There was observed a small correlation between the methyl
group (H & = 0.49 ppm) and the benzylic proton (*H § = 3.81 ppm), but this can be due to their
neighboring positions. The low shift of the methyl group in 7b compared to 7a and 7c may be
due to the ring current effects caused by the neighboring phenyl group.

54.5 105.3 7.00 - 6.96
1265
0

6.92-6.88
127.4

Figure 3.6: Chemical shifts and NOE correlations of compound 7¢

The NOESY specter (Appendix H-6) of compound 7c¢ showed clear correlation between the
methyl group (H & = 0.99 ppm) and both of the benzylic protons, hence cis configuration
between these three groups was interpreted. The NOESY also indicated correlation between the
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methoxy group (1H 6 = 3.16 ppm) and the benzylic proton (H 6 = 3.52 ppm), even though they
are proposed to be trans to each other, but due to the flexibility of the molecule and free rotation
of the methoxy group, this seems possible. In the other two isomers 7a-b, the aromatic shifts
were difficult to distinguish. However, in product 7c five aromatic protons stood out and clearly
belonged to the same aromatic system. 2D COSY and NOESY experiments confirmed this
(Appendices H-4, H-6). These deviations may also be due to the ring current effects.

The different stereochemistry of the complex bicyclic molecules is hard to understand from 2D
drawings, hence, better understanding was achieved by building the different stereoisomers. A
3D model (from ChemDraw Ultra 12.0) of product 7c is shown in Figure 3.7.

Figure 3.7: A 3D model of compound 7c, showing NOE correlations between the methyl group and the two
benzylic protons.

It was desirable to repeat Reaction I, but with different substituents on the aromatic part of the
propargylic acetal (5b-d), to see if similar products were produced. To easier recognize each
isomer in later reactions, some unique features were focused on in every one of them; In 7a one
benzylic proton had a higher shift than in the other isomers (H § = 4.70 ppm), in 7b the methyl
group was assigned a very low proton shift (H § = 0.49 ppm) and in 7c a unique doublet (with a
minor splitting) was observed (1H 6 = 6.31 ppm).

3.2.2 Reaction Il

With a greater understanding of what kind of products to expect, Reaction II (Scheme 3.3) was
conducted. Propargyl acetal 5b and phenylpropyne 6 were mixed with the gold(I) catalyst and
the reaction was monitored by GLC and TLC.

tBu 1* bR
Bu—P— Au—N=
OMe T MeO Me ©
0 & )
\_Z

Z o
N - S
MeO 15 min, r.t. MeO O

5b 6 8a-b OMe

Scheme 3.3: Reaction II.
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Unlike Reaction I, one major peak (and several minor) was observed in GLC. After column
chromatography, it became clear that there was one major product 8a in this reaction, which
yielded 27 %. Only this product was successfully isolated, but a mixture containg 61% of product
8b was pure enough to recognize some familiar features in the tH NMR spectrum.

3.54 537
54,7 / 109.6 7.5132-67L.)06
H .

1.02

161'271 163'8.43 20.5 7'5132_7.73'06
- Me136.3
7.33
(284 127.0
3.74 158.3

158.3 3.76
OMe 55.1

8a
Figure 3.8: Chemical shifts and NOE correlations of compound 8a.

The structure and NOE correlations of the major product 8a (Appendix I) is presented in Figure
3.8. By comparing 13C NMR shifts and 2D correlation NMR with compounds 7a-c, it was
established that product 8a shared their regiochemistry. Nevertheless, 1H NMR did not match
any of the three products 7a-c, indicating formation of a new isomer. With the assumption of the
bridged methoxy- and the methyl group having trans configuration relatively to each other, four
different isomers are possible. As mentioned in the previous section, the stereochemistry of
compound 7a could not be determined. This is because, by interpretation of NOESY spectra
(Appendices H-7. I-6), the stereochemistry of isomers 8a and 7a can not be distinguished. In
both cases strong correlations between the benzylic protons are observed. There is no
possibility for this in both of the two possible remaining isomers.

By introducing a methoxy group in the para position on the phenylic propargyl acetal, the
electron density of the acetal increases. This apparently affects the stereoselectivity of the
reaction (as product 8a yielded 27%). The final cycloaddition (step E in Scheme 3.2) in the
tandem cyclization process is believed to go through a direct [3+2] cyclization reaction. The
additional p-OMe group on the phenyl ring of the intermediate IVa increases its electron density,
which may increase the speed in the final step (E). For this reason, one major product 8a is
formed.

In addition, one other product 8b was isolated in a mixture of different compounds. A PhD
student#¢ in the group managed to isolate the compound with a much greater grade of purity,
which is shown in the 1D and 2D NMR spectra taken. These spectra were of great help when
assigning 'H and 13C NMR shifts of this product. Figure 3.9 shows stereochemistry and chemical
shifts of product 8b.
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55.3

Figure 3.9: Chemical shifts and NOE correlations of compound 8b.

It was readily established that compound 8b was an analogue of compound 7c by recognition of
the unique doublet (H & = 6.37 ppm) and NOE correlations (Appendices J-1 and J-6).

In the proton and carbon NMR spectra for compounds 8a and 8b there can be observed a major
impurity (*H 6 (ppm) = 6.98, 5.01, 2.27, 1.43, 13C § (ppm) = 151.5, 135.8, 128.3, 125.5, 34.2, 30.3,
21.2). This was later established as being the stabilizing agent butylhydroxytoluene in THF,
which was used in purification chromatography. Once this was realized, dry THF from the MB
SPS-800 Solvent Purification System or 2-methyl tetrahydrofuran was used instead.

3.2.3 Reaction III

Scheme 3.4 shows Reaction III.

t-Bu 7t bR

OMe t-Bu—P— Au—N=
Ok @_/q Me ©

N\
. 4 A\ W4
NV c
N 15 min, r.t.
0,N
NO,

Scheme 3.4: Reaction III.

The electron releasing p-OMe substituent seemed to affect the stereoselectivity of the reaction,
and, thus, it was considered to be interesting to introduce a strong electron withdrawing group
on the aromatic part of the propargyl acetal. The propargylic acetal 5¢ was treated with
phenylpropyne 6 in a gold(I) catalyzed reaction. GLC of the product mixture did not show
similar pattern as the two previous reactions. There were indications of a much smaller

molecule 9 being the major product. Figure 3.10 shows the structure of the proposed pentadiene
product.
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Figure 3.10: Chemical shifts and 2D NMR correlations of compound 9.

The structure of product 9 seemed similar to the five membered ring intermediate XIVc from
the reaction mechanism presented in Scheme 3.2. However, after interpreting HMBC and NOESY
spectra (Appendices K-4, K-5), it was established that the formation of product 9 went by
intermediate XVIb. Intermediate XVIb was formed by a [3+2] cyclization reaction between gold
carbenoid complex IVbb and phenylpropyne 6. The presented mechanism (Scheme 3.5) is
similar to the one presented in Scheme 2.7 in Subsection 2.3.2 in the theory part.

IVbb Ha OMe
MeO
Ha

I ey ¥
XVIb

Scheme 3.5: 1. Step of the reaction pathway for product 9

From studies of the NOESY and HMBC 2D correlation NMR spectra, it became obvious that there
was a proton shift of the benzylic proton Ha. This proton shift and the proposed underlying
forces for this mechanism are shown in Scheme 3.6.

XVIb 9

Scheme 3.6: Mechanism of the intramolecular H-shift in product 9 and resonance due to the conjugated
system.
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The reason for the proton shift in product 9 may be due to the electron withdrawing nitro group
which makes the proton more acidic. The p-nitro phenyl group is now in direct conjugation with
the quaternary carbon that the methyl group is attached to. This explains the high shift of the
quaternary carbon (13C 6 = 155.3 ppm) in resonance structure XVIc.

In an attempt to see if a tandem cyclization product could be generated, the electron deficient
product 9 was mixed with the electron rich propargyl acetal 5b. However, no further cyclization
took place, as no such products were observed. Current research, done by a PhD student in the
group,* indicates that product 9 undergoes further cyclization with the electron deficient
propargyl acetal 5c. However, no products have been characterized yet. This result can be
explained by the fact that the electron deficient nucleophile 9 needs an even stronger
electrophilic reactant such as propargyl acetal 5c for cyclization to occur.

The reaction with the propargyl acetal 5c did not undergo the same tandem cyclization reactions
as acetals 5a and 5b. This can be explained by the electron-withdrawing nature of the p-nitro
phenyl group, which deactivates compound 9 sufficiently to favor formation of this
“intermediate” rather than products similar to Reactions [ and II.

This reaction shows that, even by using highly deactivated propargyl acetals, cyclization still
occurs. This is an interesting evidence of the strong ability of the gold(I) catalyst to activate even
less reactive substrates.

3.2.4 ReactionlV

The divergent results of Reaction III made it interesting to introduce other electron withdrawing
groups on the propargyl acetal reagent. The p-Cl substituted propargyl acetal 5d was mixed with
phenylpropyne 6 in the gold(I) cayalyzed reaction as presented in Scheme 3.7.

OMe tBu 17 sbFg
t-Bu—pP—Au—N=
(0]

/ —
7 @\\ 7/
/@)\\\ N ©/

Cl

15 min, r.t.

5d 6

Scheme 3.7: Reaction IV.

The reaction was monitored by GLC and TLC and showed a quite similar product composition as
observed in Reaction I. The TLC is presented in Figure 3.11.
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Figure 3.11: TLC of product crude in reaction I. Eluent 10:1 pentane:ethyl acetate

Four different products 10a-d were isolated and characterized in this reaction. 10b-d appeared
to be analogous to compounds 7a-c. The unique features, which were explained in the latter part

of Subsection 3.2.1, were recognized in these three products. Chemical shifts and proposed
stereochemistry of compounds 10b-d are presented in Figures 3.12-3.14.

/ 106.3 7.19-7.00

706  719-7.00 7.19-7.00

7.19-7.00
cl & >

7.06

Cl

Figure 3.12: Chemical shifts and NOE correlations of compound 10b.

The stereochemistry of compound 10b could not be determined, as was the case for compound
7a, due to insufficient data to distinguish these two compounds from product 8a.

54.6 / 106.2 7.61-6.77

208 7.61-6.77

7.61-6.77 . M
e‘\\ 7.61-6.77
~
\

H 369
60.4

Cl

7.61-6.77

7.61-6.77

10c a

Figure 3.13: Chemical shifts and NOE correlations of compound 10c.
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Figure 3.14: Chemical shifts and NOE correlations of compound 10d.

Products 10b and 10d were successfully isolated, but product 10c could only be obtained in a
mixture with product 10b. Compound 10c could still be partially characterized by comparison
of NMR data of the mixture of 10b and 10c and NMR data of the pure compound 10b
(Appendices M, N).

Much effort was spent on elucidating the regio- and stereochemistry of products 7a-c and 10b-
d. With this work accomplished, the new focus was on the upper spots observed on the TLC in
Figure 3.11. Product 10a was isolated in a relatively good yield (7%) compared to the other
products. From 1H and 13C NMR experiments (Appendices L-1, L-2) it could be concluded that
product 10a also was a result of a tandem cyclization reaction. However, this product seemed to
have a different regiochemistry than the previous products 10b-d.

3.58 7.29-7.12

Correlations in HMBC

Correlations in NOESY

Figure 3.15: Chemical shifts and NOE correlations of compound 10a.

In the HSQC (Appendix L-3) of product 10a it was observed that three protons were attached to
sp3-hybridized carbon atoms, which differed from products 10b-d. By analyzing 2D correlation
NMR spectra, Prof. A. Fiksdahl proposed the structure presented in Figure 3.15. Product 10a is
most likely produced through a [3+2] cycloaddition to form the five membered intermediate
XVIb similar to Step 1 in the formation product 9 (Scheme 3.5). Then a second [3+2] cyclization
reaction, similar to the last step (E) of the tandem cyclization reaction presented in Scheme 3.1,
occurs to form product 10a.

47



The stereochemistry in product 10a seems to be quite similar to the compound synthesized by
Gung et.al5> which was described in Scheme 2.8 in Subsection 2.3.2 in the Theory part.

3.2.5 Deuterium labeled experiment

As a mechanism for the formation of compounds 7a-c, 8a-b and 10b-d was proposed, it was
appropriate to perform a deuterium labeled experiment to confirm it. A rough sketch of the
complete syntheses is presented in Scheme 3.8.

OH
Ph”
N OMe
D
0 %OM /Q) Me o= MeO 2 (3
OH e 0
I-l+/ D-exchan ge d-3a1 Ph)\ D Ph

—— —_— _— 4
Ph)\ Ph)\ Ph

X
ob D ph/ MeO 6/ 5>py,
D

3a Ph % d-5a d,-7a-c
d-3a2

Scheme 3.8: Deuterium labeled experiment

The deutarated propargyl alcohols d-3al and d-3a2 were prepared in accordance to literature.
30 From 'H and 13C NMR spectra it was obvious that a mixture of these two compounds was
obtained (Appendices P-1, P-2). Full conversion of the propargylic alcohol 3a was not achieved;
hence, small traces of undeuterated products would occur throughout the following syntheses.
The observed triplets in the 13C NMR spectrum of d-3a1-2 (13C § (ppm) = 83.0, 74.5) (which also
are observed in the 13C NMR spectrum of d-5a) are due to the splitting between 13C and 2D, as
the carbon NMR experiment is not decoupled regarded to deuterium. This is explained in Figure
3.16.

OH

J(c,p) =383 Hz
Ph)\r\'

(>

2J(C,D) = 7.4 Hz

Figure 3.16: Coupling constants of triplets observed in 13C NMR spectrum for deuterated
compounds d-3al-2.

The coupling between deuterium and the non-terminal carbon in compounds d-3a1-2 (13C § =
83.0 ppm), ?J(C,D)=7.4 Hz, occurs probably due to the tight triple bond, which allows the
distance between the two nuclei to be shorter.
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The deuterated propargylic acetal d-5a was synthezised following a known procedure 2! and
was used in the synthesis of d2-7a-c. It would be interesting to see if the 1H NMR signals of the
methine protons in products 7a-c would be absent. The 1H NMR spectrum of d2-7¢ (Appendix R-
1) shows only traces of the actual *H NMR signals of H-3 and H-6 (H § (ppm) = 6.64, 5.66) for
compound 7c. Similar observations were made for compounds d2-7a and d»-7b. This supports
the proposed reaction mechanism presented in Scheme 3.2.

3.2.6 Optimization reactions

Several gold(I) catalyzed cyclization reactions involving propargyl acetals and esters have been
performed by the group of Fiksdahl.?1.18 Optimization reactions considering both the catalyst and
solvents has previously been conducted on different cyclization reactions.18 35 Based on these
results, catalyst Ib was used in Reactions I-IV in this thesis as well. After isolation and
characterization of the unexpected complex products had been carried out to the best of our
abilities, a range of different catalysts were screened to see if this could have an effect on yields
and stereo-/regioselectivity. The results of these screening reactions are presented in Table 3.4.

Table 3.4: Optimization studies of gold(1) catalyzed cyclization reactions

/ko]v[e MeO o
0

. // Catalyst ‘g
N DCM, r.t. /@ MeO O
MeO

MeO
5b 6 8a-b OMe
Entry Catalyst Time Conversion2
1 Au(D)[P(t-Bu)z(o-biphenyl) CH3CN]SbFe Ib 15 min 99%
2 Au(I)[P(t-Bu)z(o-biphenyl)Cl Id 24h nc
3 Au(I)[P(¢-Bu)2(o-biphenyl)Cl+AgSbFe Ic 1h 80%
4 Au(D)[P(t-Bu)z(o-biphenyl)Cl+AgNTf, Ie 15 min 99%
5 Au(I)(PPh3)Cl+AgSbFs If 15 min ncb
6 Au(I)(PPh3)Cl Ig 24 h nc
7 PicAu(III)Cl; Ih 15 min 99%
8 AgSbFs li 15 min ncb
9 AgNTf; Ij 15 min ncb

aQbserved by GLC, full conversion of propargyl acetal 5b, but not to desired products.

Gold(I) catalyst Ib is used in all cyclization reactions in this thesis. Additionally, gold(I) catalysts
Ic and Ie provided high yields of the tandem cyclization products 8a-b. The active gold(I)
catalysts Ic and Ie are formed by an ion exchange reaction which was presented in Scheme 2.10
in Subsection 2.3.3. What is common for the three catalysts Ib, Ic and le is the presence of
counter ions. Counter ions appeared to be important in order of cyclization reactions take place.
In the case of gold(I) catalyst, where no counter ion is present, no conversion was observed.
Similar results have previously been observed in the Fiksdahl group18.3.

The high activity of gold(III) catalyst Ih was a bit surprising, as it previously had only given
moderate yields in cyclization reactions reported by the group. Silver(I) catalysts Ii and Ij gave
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full conversion of the propargyl acetal 5b in 15 minutes, but the desired products 8a-b were not
formed. A PhD student in the group*é carried out the reaction with silver(I) catalyst Ii in a bigger
scale and isolated the major product XVII in 25% yield.

g( OMe

OMe
AngF6 o - OM 1,1 shift
/@)\ DCM r.t. 1 2\\ E—— /@)\
3 MeO

XVl

Scheme 3.9: Mechanism for the silver(l) catalyzed formation of product XVII

The silver(I) catalyst have higher affinity to the oxygen atom rather than to the triple bond and
will function as a Lewis acid towards oxygen. C-1 is then activated for nucleophile attack and a
1,1 shift of the alkoxy (OMe) occurs to form product XVIIL Silver(I) activation of propargyl
alcohols to form propargyl ethers have previously been reported4.

Gold(I) catalyst If gave full conversion after 15 minutes, but desired products were not
observed. By comparison of peaks in GLC, a product similar to XVII may have been produced.

3.3 Further work

The experimental work in the present project was quite time consuming and the main focus was
to purify and characterize the new obtained products from Reactions I-IV. Real yields may be
higher since the objective was to obtain sufficiently pure products for characterization. Product
isolation and purification was at times challenging and due to time limitations, all reactions and
the following purifications could not be repeated.

In Reaction I, there are indications of the formation of analogues to both product 8a, which was
observed in Reaction II, and product 10a, which was observed in Reaction IV. The analogue to
product 8a was also observed (but not isolated) in Reaction IV. A repetition of Reaction I and 1V,
perhaps with bigger amounts of starting materials 5a-c and 6, should be conducted, as the
product compositions in these two reactions seems to be quite complex.

It may be desirable to introduce other ERG or EWG on the propargyl acetal to see if similar regio-
and stereoselectivity, as observed in respectively Reaction II and III, will occur. It may also be of
interest to polarize the phenylpropyne 6 with both EWG and ERG to see if that may affect the
product selectivity. Additionally, introduction of bulky substituents on the aromatic part of the
propargyl acetals or phenylalkyne 6 may contribute to higher chemoselectivity.
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Chapter 4

Conclusion

Propargyl alcohols 3b-c were synthesized through a Grignard reaction. Propargyl alcohol 3b was
isolated in 54% yield.

Propargyl acetals 5a-c were synthesized in acid catalyzed reactions from propargyl alcohols 3a-
c. Propargyl acetals 5a and 5b were isolated in 63% and 77% yields, respectively.

Previously, gold(I) catalyzed [2+1], [3+2] and [5+2] cyclization reactions have been performed.
Propargyl acetals and esters have proven to undergo intramolecular rearrangements to form
gold carbenoid and allene intermediates IVa-c. Depending on the nature of the substrates, these
intermediates undergo different cyclization reactions to form cyclic products. In this thesis,
further investigation on gold(I)-catalyzed reactions of propargyl acetals has been done.

Propargyl acetals 5a-d were treated with 1-phenylprop-1-yne 6 in the presence of gold(I)
catalyst Ib, and, depending on the electronic character of the propargyl acetal, a number of
cyclization products 7-10 were formed.

YOM& MeO

o)
0]
o - 7wl ‘Q :
N 15 min, r.t. O MeO O R
R
R R

R
5a: R=H 6 7a-c: R=H  3-10%
5b: R=OMe 8a-b: R=OMe 5-27% 10a: R=Cl 7% 9:R=NO; 15%
5c: R=NO, 10b-d: R=Cl  4-12%
5d: R=Cl

The hypothesis that the gold(I)-activated intermediates IVa-c, generated from propargyl acetals,
seem to be highly reactive towards unsaturated species was confirmed, as they would undergo
cyclization reactions even with the poor nucleophillic 1-phenylprop-1-yne 6.

The chemoselectivity of the reactions proved to vary. In reactions I and IV, products with
different regio- and stereochemistry were formed. Tandem cyclization products 7a-c and 10b-
d, respectively, were diastereomers and followed the same reaction mechanism. Tandem
cyclization product 10a contained a different regiochemistry and followed a different cyclization
mechanism.. The analogue compounds 7c and 10d were the major products, yielding 10% and
12% respectively, in both reactions. This was also confirmed by GLC of the crude product
mixture.

51



There were indications of several tandem cyclization products being produced in the reaction
with propargyl acetal 5b as well, but in this case, only one major product 8a, which yielded 27%,
and a minor product 8b, which yielded 5%, were isolated. The introduction of an electron
donating substituent on the aromatic part of the propargyl acetal, appeared to drastically
increase the product selectivity of the reaction.

The highly deactivated propargyl acetal 5c¢ did not undergo a tandem cyclization reaction, but
rather a single [3+2] cycloaddition. The formation of this product did not follow the same
mechanism as some of the major products in the other reactions.

In conclusion, there is still more to be investigated in this exciting area of chemistry.
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Chapter 5

Experimental

5.1 General methods

All reactions were performed under inert atmosphere. Solvents and reagents were of synthetic
grade and were used directly as supplied from the manufacturer. Dry DCM and THF were
obtained from a MB SPS-800 Solvent Purification System (MBraun), and were used directly in
the experiments. Thin layer chromatography (TLC) was performed on Merck TLC aluminium
sheets, Silica gel 60 F254. The TLC plates were developed by UV-light and a solution of p-
anisaldehyde stain (5 ml conc. H2S04, 1.5 ml absolute acetic acid and 3.7 ml p-anisaldehyde in
137 ml absolute ethanol) with heating. Gas liquid chromatography (GLC) was performed on a
Varian CP-3800 with a FID detector to monitor reactions and observe product selectivity.
Supelco VersaFlash system with Versaflash cartridges with 20-45 or 45-75 um spherical silica
based on porous (70 °A) particles was used for flash chromatography.

Infrared spectrometry (IR) was performed on a Nicolet 20SXC FT-IR spectrometer. The spectra
were analyzed using EZ OMNIC software. Mass spectrometry (MS) with electron ionization (EI)
was performed on a MAT 95XL instrument (TermoQuest Finnigan). Mass spectra with electron
spray ionization (ESI) were recorded by Sintef on an Agilent O-ToF instrument. All mass spectra
are high resolution (HR-MS).

1D NMR spectra were recorded on Avance DPX 300 MHz and 400 MHz (Bruker) spectrometers.
2D spectra were recorded on the Avance DPX 400 (Bruker) spectrometer. All samples were
dissolved in deuterated chloroform with an internal standard of TMS. Spectra were analyzed
using TopSpin NMR software (Version 3.0.b.8). Chemical shifts (d) are given as parts per million
(ppm) and coupling constants (/) are given in Hertz (Hz). The peaks are given as singlets (s),
doublets (d), triplets (t), quintets (quin), multiplets (m), or as a combination of these. 2D
experiments were used to determine the chemical shifts and the configuration of the obtained
products.
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5.2 Preparation of starting materials

5.2.1 General procedure A: Synthesis of propargyl alcohols

COH OH
MgBr
+ _— NV
// THF, 30 min, r.t. N
R
R
1a: R=OMe 2 3b: R=OMe
1b: R=NO, 3c: R=NO,

Propargyl alcohols 3b-c were synthesized according to known procedure*2

Ethynylmagnesium bromide 2 (0.5 M in THF) was cooled to -20 °C and the relevant aldehyde 1a-
b was dissolved in THF (10 ml) and added drop wise. The reaction was stirred for 30 minutes at
room temperature, monitored by TLC and GLC. A saturated solution of NH4Cl in water was
added to the reaction flask. The mixture was filtered, diluted with diethyl ether (20 ml) and the
water phase was extracted with diethyl ether (20 ml). The combined organic phases were dried
over anhydrous sodium sulfate and concentrated in vacuo. The alcohol 3b-c was isolated by flash
chromatography using an appropriate eluent system.

1-(4-Methoxyphenyl)prop-2-yn-1-ol

7.47
128.1

6.90 83.7

114.0 \
\ 2.66

74.6

3.81
55.3

MeO
¢ 3b

Compound 3b was synthesized according to General procedure A, using 1-4-
methoxybenzaldehyde 1a (1.0 g, 7.3 mmol) and ethynylmagnesium bromide 2 (18.4 ml, 0.5 M).
Flash chromatography with an isocratic eluent of 3:1 pentane:ethyl acetate was used to isolate
1-(4-methoxyphenyl)prop-2-yn-1-ol 3b (650 mg, 54 %) as a yellow oil.

1H NMR (400 MHz, CDCI3-TMS) (Appendix A-1) § (ppm) 7.47 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H, ] =
8.7 Hz), 5.40 (s, 1H), 3.81 (s, 3H), 2.66 (d, 1H,J = 2.2 Hz), 2.30 (d, 1H, / = 4.1 Hz);

13C NMR (400 MHz, CDCls-TMS) (Appendix A-2) 6 (ppm) 159.8 (1C), 132.4 (1C), 128.1 (2C),
114.0 (2C), 83.7 (1C), 74.6 (1C), 64.0 (1C), 55.3 (1C).

Both 'H - and 13 C - NMR shifts are consistent with literature.24
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1-(4-Nitrophenyl)prop-2-yn-1-ol

Compound 3¢ was synthesized according to General procedure A, using 4-nitrobenzaldehyde 1b
(1.0 g, 6.6 mmol) and ethynylmagnesium bromide 2 (16.5 ml, 0.5 M). The crude product was
used further without purification via chromatography after NMR analysis (741 mg) as a yellow
solid.

1H NMR (400 MHz, CDCl3-TMS) (Appendix B-1) 6 (ppm) 8.26 (d, 2H, J = 8.8 Hz), 7.74 (d, 2H, ] =
8.6 Hz), 5.60-5.57 (m, 1H), 2.74 (d, 1H,J = 2.3 Hz), 2.37 (d, 1H, J = 5.8 Hz);

13C NMR (400 MHz, CDCl3-TMS) (Appendix B-2) 6 (ppm) 147.9 (1C), 146.6 (1C), 127.4 (20),
123.9 (2C), 82.3 (1C), 76.0 (1C), 63.4 (1C).

Both 'H - and 13 C - NMR shifts are consistent with literature.23

5.2.2 General procedure B: Synthesis of propargyl acetals?!

)<0Me
OH o

PPTS
st >/-—0Me -
N 2h,rt. A
R R

3a: R=H 4 5a: R=H
3b: R=0Me 5b: R=0Me
3c: R=NO, 5c¢: R=NO,

The required propargyl acetal 5a-c was synthesized according to literature.2!

A mixture of the relevant propargyl alcohol 3a-c and the 2-methoxyprop-1-ene 4 was cooled to 0
°C. Catalytic amounts of Pyridinium p-toluenesulfonate were added and the reaction mixture was
stirred for 2 hours at room temperature, monitored by TLC and GLC. The crude was diluted with
diethyl ether (20 ml) and washed with water (3 x 20 ml) and brine (20 ml). The combined
organic phases were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo.
The propargyl acetal 5a-c was isolated by flash chromatography using an appropriate eluent
system.
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(1-((2-Methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene

7.38-7.30
1285

7.38-7.30
128.0

Compound 5a was synthesized according to General procedure B, using 1-phenylprop-2-yn-1-ol
la (513 mg, 3.88 mmol) and 2-methoxyprop-l-ene 4 (5 mL, 52.21 mmol). Flash
chromatography with an isocratic eluent of 80:1 pentane:ethyl acetate was used to isolate (1-
((2-methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene 5a (601 mg, 77%) as a clear oil.

1H NMR (400 MHz, CDCI3-TMS) (Appendix C-1) 6 (ppm) 7.49 (d, 2H, J = 7.2 Hz), 7.38-7.28 (m,
3H), 5.42 (d, 1H, /= 2.1), 3.18 (s, 3H), 2.53 (d, 1H, J = 2.2 Hz), 1.55 (s, 3H), 1.33 (s, 3H);

13C NMR (400 MHz, CDCl3-TMS) (Appendix C-2) 6 (ppm) 140.3 (1C), 128.5 (2C), 128.0 (1C),
126.9 (2C), 101.9 (1C), 84.5 (1C), 73.7 (1C), 62.6 (1C), 49.5 (1C), 25.4 (1C), 25.0 (1C).

Both 1H - and 13 C - NMR shifts are consistent with literature.?!

1-Methoxy-4-(1-((2-methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene

133
25.0 153
25.4

Compound 5b was synthesized according to General procedure B, using 1-(4-
methoxyphenyl)prop-2-yn-1-ol 3b (506 mg, 3.12 mmol) and 2-methoxyprop-1-ene 4 (5 mL,
52.21 mmol). Flash chromatography with an isocratic eluent of 40:1 pentane:ethyl acetate was
used to isolate 1-methoxy-4-(1-((2-methoxypropan-2-yl)oxy)prop-2-yn-1-yl)benzene 5b (454
mg, 63%) as a clear oil.

'H NMR (400 MHz, CDCI3-TMS) (Appendix D-1) 6 (ppm) 7.41 (d, 2H, J = 8.6 Hz), 6.89 (d, 2H, ] =
8.7 Hz), 5.37 (d, 1H,J = 2.1 Hz), 3.80 (s, 3H), 3.18 (s, 3H), 2.53 (d, 1H, J = 2.2 Hz), 1.53 (s, 3H), 1.33
(s, 3H);

13C NMR (400 MHz, CDCl3-TMS) (Appendix D-2) § (ppm) 159.4 (1C), 132.5 (1C), 128.3 (20),
113.9 (2C), 101.8 (1C), 84.7 (1C), 73.5 (1C), 62.2 (1C), 55.3 (1C), 49.5 (1C), 25.4 (1C), 25.0 (1C).
Both 1H- and 3 C NMR shifts are consistent with literature.21

56



1-(1-((2-Methoxypropan-2-yl)oxy)prop-2-yn-1-yl)-4-nitrobenzene

1.56
253 134

24.8
OMe #76

0

Compound 5c¢ was synthesized according to General procedure B, using 1-(4-nitrophenyl)prop-
2-yn-1-o0l 3¢ (519 mg, 2.93 mmol) and 2-methoxyprop-1-ene 4 (5 mL, 52.21 mmol). Flash
chromatography with an isocratic eluent of 50:1 pentane:ethyl acetate was used to isolate the
product 5¢ (523 mg, over two steps from 1c: 31%) as an off white oil.

R¢=0.38 (10:1 Pentane:EtOAc);

HRMS (EI) calcd for [M-CH30]*218.0817, obsd 218.0815;

1H NMR (400 MHz, CDCI3-TMS) (Appendix E-1) 6 (ppm) 8.23 (d, 2H, J = 8.8 Hz), 7.68 (d, 2H, ] =
8.7 Hz), 5.53 (d, 1H,J = 2.1 Hz), 3.18 (s, 3H), 2.59 (d, 1H, J = 2.2 Hz), 1.56 (s, 3H), 1.34 (s, 3H);

13C NMR (400 MHz, CDCl3-TMS) (Appendix E-2) § (ppm) 147.6 (1C), 147.3 (1C), 127.6 (2C),
123.8 (2C), 102.3 (1C), 83.1 (1C), 74.8 (1C), 61.6 (1C), 49.6 (1C), 25.3 (1C), 24.8 (1C);

IR (thin film, cm-1) (Appendix E-4) 3257, 2992, 2940, 2857, 1517, 1343, 1211, 1186, 1145, 1030,
852, 701.

5.3 Gold catalyzed reactions

5.2.3 General procedure C: Gold catalyzed tandem cyclization reactions

Z - ‘
[Au]
\\ + +
15 min, r.t. MeO R
R R
R

5a: R=H 6 7a-c: R=H
5b: R=0Me 8a-b: R=0OMe
5c¢: R=NO, 10b-d: R=Cl
5d: R=Cl

The relevant propargyl acetal 5a-d (1 eq.) and prop-1-yn-1-ylbenzene 6 (3 eq.) were separately
dissolved in dichloromethane (1.7mL each) and added to a solution of the catalyst (Ib) (5 mol%)
in dichloromethane (1.7mL) simultaneously. The reaction was stirred for 15 min at room
temperature, monitored by TLC and GLC. The reaction mixture was filtered through celite and
concentrated in vacuo. The products 7-10 were isolated by flash chromatography using an
appropriate eluent system.
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Reaction |

0><0Me P MeO ‘ ©
7 [Au]*
©)\ : ©/ et @Meo .

5a 6 7a-c

Compounds 7a-c were synthesized according to General procedure C, using propargylic acetal
5a (108 mg, 0.53 mmol) and prop-1-yn-1-ylbenzene 6 (185 mg, 1.59 mmol). Flash
chromatographies  with isocratic eluents of 100:1 pentane:ethyl acetate/50:1
pentane:tetrahydrofuran were used to isolate the products 7a-c.

2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene

/ 106.3 7.09 - 6.95

1.05
7.09-6.95
700-6.05 7.09-6.95 .

138.8 7.09 -6.95

7.09-6.95
H 362

71.5

7
7.09 - 6.95

7.09 - 6.95

7.09-6.95

7a

2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene 7a (3 mg, 3 %) was
isolated as an off white liquid.

Rr=0.29 (20:1 Pentane:THF);

HRMS (EI) calcd for C29H250, [M*+] 408.2089, obsd 408.2090;

1H NMR (400 MHz, CDCl3-TMS) (Appendix F-1) § (ppm) 7.09-6.95 (m, 15H), 6.26-6.25 (m, 1H),
5.72 (s, 1H), 4.70 (s, 1H), 3.62 (s, 1H), 3.59 (s, 3H), 3.08 (s, 3H), 1.05 (d, 3H, ] = 1.4 Hz);

13C NMR (400 MHz, CDCl3-TMS) (Appendix F-2) § (ppm) 156.6 (1C), 139.7 (1C), 138.8 (1C),
138.3 (1C), 137.8 (1C), 135.4 (1C), 129.6 (2C), 128.8 (2C), 127.6 (4C) 127.2 (4C), 126.5 (1C),
125.9 (1C), 125.7 (1C), 106.3 (1C), 86.4 (1C), 71.5 (1C), 66.6 (1C), 54.4 (1C), 51.4 (1C), 51.3 (1C),
16.7 (1C);

IR (cm) (thin film, cm-1) (Appendix F-6): 2987, 2955, 2925, 2587, 1490, 1454, 1376, 1183,
1147,1068,1013,872.
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(1S,3aR,4R,6aS)-2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-
tetrahydropentalene

54.6 / 106.2 7.68 - 6.84

7.68 - 6.84
7.68 - 6.84 208

7.68 - 6.84
A 7.68 - 6.84

7.68 - 6.84

7.68 - 6.84

7.68 - 6.84

7.68 - 6.84

7b

(1S,3aR,4R,6aS)-2,6a-Dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene 7b (3

mg, 3 %) was isolated as an off white liquid.

Rf=0.23 (20:1 Pentane:THF);
HRMS (EI) calcd for C29H250, [M*+] 408.2089, obsd 408.2086;

1H NMR (400 MHz, CDCl5-TMS) (Appendix G-1) 8 (ppm) 7.68-6.84 (m, 15H), 6.53 (m, 1H), 6.59

(s, 1H), 3.81 (s, 1H), 3.77 (s, 1H), 3.51 (s, 3H), 3.21 (s, 3H), 0.49 (s, 3H);

13C NMR (400 MHz, CDCls-TMS) (Appendix G-2) § (ppm) 156.6 (1C), 142.1 (1C), 140.5 (1C),
139.5,137.6,128.2, 127.9, 127.6, 127.1, 127.0, 126.4, 106.2 (1C), 100.0, 87.1 (1C), 61.1 (1C), 54.8

(1C), 54.6 (1C), 54.6 (1C), 51.7 (1C), 20.8 (1C);
13C NMR does not give sufficient information to assign all the carbon shifts

IR (cm 1) (thin film, cm-1) (Appendix G-4): 2954, 2924, 2869, 2853, 1492, 1453, 1230, 1097, 699,

581, 570.

(1S,3aR,4S,6aS8)-2,6a-dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-
tetrahydropentalene

7.00 - 6.96
126.5

7.61-7.13

7.61-7.13

127.6
7.61-7.13

7.61-7.13

7.61-7.13

(1S,3aR,4S,6aS)-2,6a-dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-tetrahydropentalene
(10 mg, 10 %) was isolated as an off white liquid.

R¢=0.34 (15:1 Pentane:EtOAc)
HRMS (EI) calcd for C29H250> [M*+]
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1H NMR (400 MHz, CDCl3-TMS) (Appendix H-1) § (ppm) 7.61-7.13 (m, 10H), 7.00-6.96 (m, 1H),
6.92-6.88 (m, 2H), 6.64 (s, 1H), 6.32-6.30 (m, 2H), 5.66 (s, 1H), 3.66 (s, 1H), 3.53 (s, 3H), 3.52 (s,
1H), 3.16 (s, 3H), 0.99 (s, 3H);

13C NMR (400 MHz, CDCI3-TMS) (Appendix H-2) & (ppm) 156.8 (1C), 142.0 (1C), 138.7 (1C),
138.1 (1C), 138.0 (1C), 136.1 (1C), 132.0 (2C), 128.2 (2C), 128.1 (2C) 127.8 (2C), 127.6 (2C),
127.4 (2C), 127.0 (1C), 126.7 (1C), 126.5 (1C), 105.3 (1C), 86.1 (1C), 72.3 (1C), 57.5 (1C), 57.2
(1C), 54.5 (1C), 51.2 (1C), 20.8 (1C);

IR (cm-1) (thin film, cm-1) (Appendix H-8): 3012, 2952, 2925, 1646, 1490, 1453, 1231, 1096,
1032, 751.

MS data was lost due to unknown reasons.
Reaction II
><OMe MeO ©
o}
Z [Au]* ‘
N e ()
N + 15 min, r.t. /@ MeO
MeO O

OMe
5b 6 8a-b

MeO

Compounds 8a-b were synthesized according to General procedure C, using propargylic acetal
5b (154 mg, 0.64 mmol) and prop-1-yn-1-ylbenzene 6 (224 mg, 1.92 mmol). Flash
chromatography with an isocratic eluent of 20:1 pentane:ethyl acetate was used to isolate the
products 8a-b.

2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-1,3a,4,6a-
tetrahydropentalene

54.7 / 109.6 7.5132-67é06

7.53-7.06
127.3

6.77 6.94
113.1 130.3

2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-1,3a,4,6a-tetrahydropentalene
8a (41 mg, 27%) was isolated as an off white liquid.

R¢=0.24 (10:1 Pentane:EtOAc);
HRMS (EI) calcd for C31H3204 [M™] 468.2301, obsd 468.2299;
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1H NMR (400 MHz, CDCl3-TMS) (Appendix I-1) 6 (ppm) 7.53-7.06 (m, 3H), 7.33 (d, 4H, J = 4.3
Hz), 6.94 (d, 2H, ] = 8.6 Hz), 6.77 (d, 4H, ] = 8.6 Hz), 5.37 (s, 1H), 5.33 (s, 1H), 4.09 (s, 1H), 3.76 (s,
3H), 3.74 (s, 3H), 3.54 (s, 3H), 3.35 (s, 1H), 3.02 (s, 3H), 1.02 (s, 3H);

13C NMR (400 MHz, CDCI3-TMS) (Appendix I-2) 8 (ppm) 158.3 (1C), 158.2 (1C), 158.2 (1C), 152.6
(1C), 136.3 (1C), 130.3 (2C), 128.4 (2C), 128.2 (2C), 127.3 (2C), 127.0 (2C), 126.9 (1C), 113.2
(2€), 113.1 (2C), 109.6 (1C), 90.1 (1C), 69.0 (1C), 55.1 (1C), 55.1 (1C), 54.6 (1C), 51.1 (1C), 49.9
(1C), 49.4 (1C), 25.6 (1C), 20.5 (1C);

IR (cm1) (thin film, cm-1) (Appendix I-7): 2919, 2824, 1644, 1610, 1509, 1243, 1177, 1124,
1034, 903, 826, 730, 699.

(1S,3aR,4S,6aS8)-2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-
1,3a,4,6a-tetrahydropentalene

7.01-6.98
126.5

6.96 - 6.92
127.4

(1S,3aR,4S,6aS)-2,6a-Dimethoxy-1,5-bis(4-methoxyphenyl)-3a-methyl-4-phenyl-1,3a,4,6a-
tetrahydropentalene 8b (12 mg, 61% purity, 5%) was isolated as an off white liquid.

R¢=0.14 (10:1 Pentane/EtOAc);

HRMS (EI) calcd for C31H3204 [M™] 468.2301, obsd 468.2299;

1H NMR (400 MHz, CDCl3-TMS) (Appendix J-1) § (ppm) 7.53-6.72 (m, 8H), 7.01-6.98 (m, 1H),
6.96-6.92 (m, 2H), 6.61 (s, 1H), 6.37 (d, 2H,J = 7.2 Hz), 5.63 (s, 1H), 3.74 (s, 3H), 3.74 (s, 3H), 3.60
(s, 1H), 3.53 (s, 3H), 3.45 (s, 1H), 3.16 (s, 3H), 0.98 (s, 3H);

13C NMR (400 MHz, CDCl3-TMS) (Appendix J-2) 6 (ppm) 158.8 (1C), 158.3 (1C), 156.8 (1C) 142.1
(1C), 138.0 (1C), 136.2 (1C), 132.9 (2C), 130.9 (1C), 130.2 (1C), 128.9 (2C), 127.6 (2C) 127.4
(2€), 126.5 (1C), 113.2 (4C), 105.3 (1C), 86.0 (1C), 71.4 (1C), 57.2 (1C), 56.6 (1C), 55.4 (1C), 55.1
(1C), 54.5 (1C), 51.2 (1C), 20.8 (1C);

IR (cm-1) (Appendix J-7)

Reaction III

0><0Me O
=
- 7w -
N + 15 min, r.t. MeO
Q

5¢ 6 9 NO,

61



Compound 9 was synthesized according to General procedure C, using propargylic acetal 5¢
(202 mg, 0.81 mmol) and prop-1-yn-1-ylbenzene 6 (284 mg, 2.43 mmol). Flash chromatography
with an isocratic eluent of 60:1 pentane:ethyl acetate was used to isolate product 9.

1-(3-Methoxy-4-methyl-5-phenylcyclopenta-1,3-dien-1-yl)-4-nitrobenzene

7.27-7.08  727.7.08
186 427 127.8 129.0

58.5

7.27-7.08
127.0

143.3

4_(> 125.2 NO,

1-(3-Methoxy-4-methyl-5-phenylcyclopenta-1,3-dien-1-yl)-4-nitrobenzene 9 (18 mg, 15 %) was
isolated as an orange solid.

Rf=0.43 (5:1 Pentane:EtOAc);

HRMS (EI) calcd for C19H17NO3 [M*™] 308.1287, obsd 308.1287;

1H NMR (400 MHz, CDCI3-TMS) (Appendix K-1) 6 (ppm) 7.97 (d, 2H, J = 9.2 Hz), 7.56 (d, 2H, ] =
9.1 Hz), 7.27-7.08 (m, 5H), 6.34 (s, 1H), 4.27 (s, 1H), 4.04 (s, 3H), 1.86 (d, 3H,/ = 1.3 Hz)

13C NMR (400 MHz, CDCI3-TMS) (Appendix K-2) § (ppm) 162.7 (1C), 155.3 (1C), 143.3 (1C),
141.7 (1C), 138.5 (1C), 129.0 (2C), 127.8 (2C), 127.0 (1C), 125.2 (2C), 123.7 (2C), 120.0 (10),
116.5 (1C), 58.5 (1C), 58.1 (1C), 15.5 (1C);

IR (cm-1) (thin film, cm-1) (Appendix K-6): 2924, 2841, 1589, 1515, 1331, 1315, 1107, 852, 752,
735, 699.

Reaction IV

Compounds 10a-d were synthesized according to General procedure C, using propargylic acetal
5d (110 mg, 0.46 mmol) and prop-1-yn-1-ylbenzene 6 (161 mg, 1.38 mmol). Flash
chromatography with an isocratic eluent of 100:1 pentane:ethyl acetate was used to isolate the
products 10a-d.
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(1S,3aR,6S,6aS)-1,6-bis(4-Chlorophenyl)-5,6a-dimethoxy-2-methyl-3-phenyl-1,3a,6,6a-
tetrahydropentalene
3.58 7.29-7.12

7.29-7.12

7.29-7.12

7.29-7.12

10a 741 1278
1281

Cl

(1S,3aR,6S,6aS)-1,6-bis(4-Chlorophenyl)-5,6a-dimethoxy-2-methyl-3-phenyl-1,3a,6,6a-
tetrahydropentalene 10a (7 mg, 7 %) was isolated as an off white liquid.

Rr=0.58 (10:1 Pentane:EtOAc)

HRMS (EI) calcd for C29H26Cl;02 [M*+] 477.1385, obsd 477.1388;

H NMR (400 MHz, CDCl3-TMS) (Appendix L-1) § (ppm) 7.41 (d, 4H, J = 4.3 Hz), 7.29-7.12 (m,
9H), 4.78 (s, 1H), 4.32 (s, 1H), 4.03 (s, 1H), 3.99 (s, 1H), 3.58 (s, 3H), 2.64 (s, 3H), 1.68 (s, 3H);

13C NMR (400 MHz, CDCl3-TMS) (Appendix L-2) § (ppm) 159.3 (1C), 138.1 (1C), 137.1 (1Q),
137.1 (1C), 136.2 (1C), 135.1 (1C), 132.5 (1C), 131.4 (2C), 130.8 (2C), 128.3 (2C), 128.2 (20),
128.2 (2C), 128.1 (2C), 127.8 (2C), 96.1 (1C), 93.1 (1C), 66.1 (1C), 59.5 (1C), 56.6 (1C), 56.0 (10),
54.7 (1C), 14.4 (1C);

IR (cm-?) (thin film, cm-1) (Appendix L-7): 2950, 2919, 1646, 1490, 1340, 1225, 1090, 1014, 701.

1,5-bis(4-Chlorophenyl)-2,6a-dimethoxy-3a-methyl-4-phenyl-1,3a,4,6a-

tetrahydropentalene

3.58
54.5 5.70
/ 106.3 7.19-7.00

o}
706  7.19-7.00

7.19-7.00

7.19-7.00

H 358
70.7

H
6.26 - 6.25
138.6

10b o

A mixture of products 10b and 10c (10 mg, 64% of 10b and 36% of 10c) were isolated as an off
white liquid.

R¢=0.23 (10:1 Pentane:EtOAc);

HRMS (EI) calcd for C29H2802Cl2 [M™*] 476.1310, obsd 476.1309;

'H NMR (400 MHz, CDCl3-TMS) (Appendix M-1 and N-1) 6 (ppm) 7.19-7.00 (m, 7H), 7.06 (d, 4H,J
= 8.4 Hz), 6.88 (d, 2H, ] = 8.6 Hz), 6.26-6.25 (m, 1H), 5.70 (s, 1H), 4.64 (s, 1H), 3.58 (s, 3H), 3.07
(s, 3H),1.09 (d, 3H,/=1.3 Hz);
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13C NMR (400 MHz, CDCI3-TMS) (Appendix M-2) 6 (ppm) 138.6 (1C), 106.3 (1C), 70.7 (1C), 54.5
(1C€),51.5(1C), 50.8 (1C), 17.0 (1C);

13C NMR does not give sufficient information to assign all the carbon shifts

IR (cm1) (thin film, cm-1) (Appendix M-7): 2955, 2923, 2867, 1490, 1257, 1091, 1014, 817, 742,
703, 568.

(1S,3aR,4R,6aS)-2,6a-dimethoxy-3a-methyl-1,4,5-triphenyl-1,3a,4,6a-
tetrahydropentalene

54.6 / 1062 7.61-6.77

208 7.61-6.77

S 7.61-6.77

c H 369

60.4

7.61-6.77

7.61-6.77

10c Cl

A mixture of products 10b and 10c (10 mg, 64% of 10b and 36% of 10c) were isolated as an off
white liquid.

Rr=0.29 (10:1 Pentane:THF)

HRMS (EI) calcd for C29H2602Cl; [M™+] 476.1310, obsd 476.1310;

1H NMR (400 MHz, CDCI3-TMS) (Appendix M-1) § (ppm) 7.68-6.84 (m, 15H), 6.53 (m, 1H), 6.59
(s, 1H), 3.81 (s, 1H), 3.77 (s, 1H), 3.51 (s, 3H), 3.21 (s, 3H), 0.49 (s, 3H)

13C NMR (400 MHz, CDCl3-TMS) (Appendix M-2) § (ppm) 156.6 (1C), 142.1 (1C), 140.5 (1C),
139.5,137.6,128.2,127.9,127.6,127.1,127.0, 126.4, 106.2 (1C), 100.0, 87.1 (1C), 61.1 (1C), 54.8
(1C), 54.6 (1C), 54.6 (1C), 51.7 (1C), 20.8 (1C);

13C NMR does not give sufficient information to assign all the carbon shifts.

IR (cm) (thin film, cm-1) (Appendix M-7): 2955, 2923, 2867, 1490, 1257, 1091, 1014, 817, 742,
703, 568.

(1S,3aR,4S,6aS8)-1,5-bis(4-Chlorophenyl)-2,6a-dimethoxy-3a-methyl-4-phenyl-1,3a,4,6a-
tetrahydropentalene

545 / 105.3 7.05-7.01

7.55-7.07 7.55-7.07

cl 127.4

7.55-7.07

10d al
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(1S,3aR,4S,6aS)-1,5-bis(4-Chlorophenyl)-2,6a-dimethoxy-3a-methyl-4-phenyl-1,3a,4,6a-
tetrahydropentalene 10d (12 mg, 12%) was isolated as an off white liquid.

R¢=0.19 (10:1 Pentane/EtOAc);

HRMS (EI) calcd for C29H2602Cl2 [M*] 476.1310, obsd 476.1309;

!H NMR (400 MHz, CDCI3-TMS) (Appendix 0-1) & (ppm) 7.55-7.07 (m, 8H), 7.05-7.01 (m, 1H),
6.98-6.95 (m, 2H), 6.63 (s, 1H), 6.39-6.37 (m, 2H), 5.64 (d, 1H, J = 1.1 Hz), 3.61 (s, 1H), 3.52 (s,
3H), 3.47 (s, 1H), 3.14 (s, 3H), 0.99 (s, 3H)

13C NMR (400 MHz, CDCI3-TMS) (Appendix 0-2) & (ppm) 156.4 (1C), 141.5 (1C), 138.1 (1C),
137.1 (10), 136.4 (1C), 135.7 (1C), 133.2 (2C), 133.0 (1C), 132.6 (1C) 129.5 (2C), 128.2 (20),
128.1 (2C), 127.6 (2C), 127.4 (2C), 126.9 (1C), 105.3 (1C), 85.9 (1(C), 71.4 (1C), 57.0 (1C), 56.8
(1C), 54.5 (10), 51.3 (1C), 20.9 (1Oy;

IR (cm-t) (thin film, cm-1) (Appendix O-7): 2919, 2839, 1639, 1490, 1445, 1226, 1091, 1014, 838,
813,741, 702.

5.4 Deuterated experiment

Proton-deuterium exchange on propargyl alcohol 3a

OH OH oD
D,0, K,CO;
X U, X + X
H 1h,rt D D
3a d-3a1 d-3a2

The propargyl alcohol 3a (511 mg, 3.87 mmol) was added to a solution of D20 (10 ml) and K>CO3
(548 mg, 3.97 mmol) and the reaction mixture was stirred for one hour. The water phase was
extracted with dichloromethane (3*10 ml) and the combined organic phases were dried over
anhydrous sodium sulfate and concentrated in vacuo. An unpurified mixture of the products d-
3al1-2 (454 mg) was obtained as a yellow oil.

Both 1H- and 13 C NMR shifts (Appendix P-1, P-2) are consistent with literature.30

Deuteurated propargyl acetal

d-5a
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Compound d-5a was synthesized according to General procedure B, using the mixture of
propargyl alcohols d-3a1-2 (430 mg, 3.25 mmol) and 2-methoxyprop-1-ene (4) (5 mL, 52.21
mmol). The unpurified product d-5a (353 mg) was obtained as a yellow oil.

H NMR (400 MHz, CDCl3-TMS) (Appendix Q-1) & (ppm) 7.49 (d, 2H, J = 7.2 Hz), 7.37-7.27 (m,
3H), 5.42 (s, 1H), 3.18 (s, 3H), 1.54 (s, 3H), 1.33 (s, 3H);

13C NMR (400 MHz, CDCls-TMS) (Appendix Q-2) & (ppm) 140.2 (1C), 128.5 (2C), 127.9 (1C),
126.8 (2C), 101.8 (1C), 84.0 (1C), 73.4 (1C), 62.5 (1C), 49.4 (1C), 25.4 (1C), 24.9 (1C);

Both 1H- and 13 C NMR shifts are consistent with literature.2!

Gold(I) catalyzed cyclization reaction with deutirized propargyl acetal d-5a

D
0><OMe P MeO ©
. = T
N D * 15 min, r.t. © ’

MeO
N

d-5a 6 d,-7a-c

Compounds d2-7a-c were synthesized according to General procedure C, using the propargylic
acetal d-5a (160 mg, 0.78 mmol) and prop-1-yn-1-ylbenzene 6 (274 mg, 2.35 mmol). Flash
chromatography with an isocratic eluent of 70:1 pentane:methyl tetrahydrofuran was used to
isolate the products dz-7a-c.

H NMR data for compound d2-7c:

1H NMR (400 MHz, CDCl3-TMS) (Appendix H-1) § (ppm) 7.61-7.13 (m, 10H), 7.00-6.96 (m, 1H),
6.92-6.88 (m, 2H), 6.32-6.30 (m, 2H), 3.66 (s, 1H), 3.53 (s, 3H), 3.52 (s, 1H), 3.16 (s, 3H), 0.99 (s,
3H);

Only traces of the two peaks (1H 6 (ppm) = 6.64, 5.66) in product 7c can be observed in the 1H
NMR spectrum for the deuterated product d2-7c.
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A Propargyl alcohol 3b

A-1 1H NMR of propargyl alcohol 3b
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A-2 13C NMR of propargyl alcohol 3b
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B Propargyl alcohol 3¢

B-1 H NMR of propargyl alcohol 3¢
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B-2 13C NMR of propargyl alcohol 3¢
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C Propargyl acetal 5a
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C-2 13C NMR of propargyl acetal 5a
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D-2 13C NMR of propargyl acetal 5b
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E Propargyl acetal 5c

E-1 1H NMR of Propargyl acetal 5c¢
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E-2 13C NMR of propargyl acetal 5c¢
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E-3 HSQC of propargyl acetal 5¢
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IR of propargyl acetal 5c¢
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F Cyclization product 7a

1H NMR of cyclization product 7a
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F-3 HSQC of cyclization product 7a
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F-4 COSY of cyclization product 7a
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F-5 HMBC of cyclization product 7a
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IR of cyclization product 7a
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G Cyclization product 7b

G-1 H NMR of cyclization product 7b
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G-2 13C NMR of cyclization product 7b
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G-3 HSQC of cyclization product 7b
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G-4

IR of cyclization product 7b
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H Cyclization product 7c

H-1 1H NMR of cyclization product 7c¢
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H-2 13C NMR of cyclization product 7c¢
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H-3 HSQC of cyclization product 7c
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H-4 COSY of cyclization product 7c¢
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H-5 HMBC of cyclization product 7¢
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H-7a NOESY of cyclization products 7a-c
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H-7b NOESY of cyclization products 7a-c
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IR of cyclization product 7c¢
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Cyclization product 8a

I

1H NMR of cyclization product 8a
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13C NMR of cyclization product 8a
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[-3  HSQC of cyclization product 8a
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[-4 COSY of cyclization product 8a
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Cyclization product 8b
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13C NMR of cyclization product 8b

J-2
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J-3  HSQC of cyclization product 8b

nid p

ZHH 06942197001
oyoBTIUE-O!
PZOT

siajsuezed burssecorg - 14

o8

0F°T 2d

oyoaTIuY

udd §£4°597

ZH FITFOT SY

ZHA £0297001
952

sra1auered uoTiTSTODOY -

sesn L3
&
VT ENIS
o I3
||||| TANHVHD
ZHA LZLZOZY° 00T
ap
ap
oesn
ssEn
seEn
ZHA

ap
aasn
aasn
ssEn

IRANTOS
o

1 s0da10d
O£ Inava w g
Joads

T OMDCHd
b ONAXE
2690-T00-5)
SISTBWEIRZ EIEQ JUSIIND

wdd

Nofre ‘o ao diea o BuBES chmladfe Lo IIF R T S PERRPCUWRP el

o -

wdd

110



0 o

ZH D a1

0 dg58

MIM

48

g ZoN

¥Zot 1s

sasisuedzd Burssssoid 1d

0% 1T od

0 g9

ZH O a1

0 dss

UNIS MM

ZHW C8000ET 00F as

FZotL 1s

saslsueded burssscold - 74

a0 FAOWU

wdd S8 MS

ZH QESlER LE SHYAIA

ZHW STET"00F 1048

82T al

sisjaweied ucTiistnbov - 14

o8STL 00T 00GT 914

% 00°0T 1249

00T ENIS THYNJD

THNNVHD INZEIAVHD

9COGTET 00F T0ds

00"9- T1d

o8sn 06701 1d

088N 05701 0d

120N

b ======== T3 TINNVHD ========

8 oes 820000 ONT

298 Q00STO00 0 910

) 03s 00F00000°0 £TP

C 098 BEBOLLBE'T a

S8s 00E00000°0 o

u ¥ 0°LEE I

d o981 0079 aa

088N 00k "2k 1 M

o 1" 822 Bt

| Das ZCgaTeZ 0 av

ZH TLPFILTT SHYAId

p ZH 9€Z T19¢E HmMs

] 50

[ 1 SN

O £1002 INIATOS

8%0T ar

.U Ibdbisoo 20aINd

D€T INAVd um g JHEOYd

] 1oads WIEISNI

N 05'0 awTy

- p— PZS0ET0T Toae

p— eIEd UcT1TSInboy - 74
]

y T ONDOYd

C 9% ONdXd

2690-T00-SWH AWYN

4 SIA81BWRIRS EIE( 1USIIAND
o
wn
()

1

P—

©w

<

~—

wdd

111



. , wdd 0 L
; |

Wo
ZHA 069LZT9° 00T
o0
¥20T
sisjoueied Bulssencad -

_ 08 g

ar T

091

otk | ’

- e

an dacWud
udd ££8°122 ME 4 ']
ZH 5 EEE LR E]
ZHW 8ZZ9700T 10ds

8ZT L

021 -

ESCRET LD |

IrsTnRoyY —

%
i '
00}
ZHW - .
soen 08 -

oasn
sesn

ses
ZH
ZH

T

112

wdd T

T CNOOHd
34 ONAXA
2690-T00-SWH YN

siajsweieg BiBg JUAIIND

J-5 HMBC of cyclization product 8b



J-6  NOESY of cyclization product 8b
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IR of cyclization product 8b
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K Cyclization product9

K-1 1H NMR of cyclization product 9
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K-2 13C NMR of cyclization product 9
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K-3 HSQC of cyclization product 9
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K-4 HMBC of cyclization product 9
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K-6

IR of cyclization product 9
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L Cyclization product 10a

1H NMR of cyclization product 10a
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13C NMR of cyclization product 10a
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L-3 HSQC of cyclization product 10a
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L-4 COSY of cyclization product 10a
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L-5 HMBC of cyclization product 10a
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L-7

IR of cyclization product 10a
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M Cyclization products 10b-c

&

M-1 1H NMR of cyclization products 10b-c
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M-2 13C NMR of cyclization products 10b-c
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M-3 HSQC of cyclization products 10b-c
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M-4 COSY of cyclization products 10b-c
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M-5 HMBC of cyclization products 10b-c
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M-6 NOESY of cyclization products 10b-c
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M-7 IR of cyclization products 10b-c
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N Cyclization product 10b

N-1 IH NMR of cyclization product 10b
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O Cyclization product 10d

O-1 IH NMR of cyclization product 10d
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0-2 13C NMR of cyclization product 10d
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0-3 HSQC of cyclization product 10d
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0-4 COSY of cyclization product 10d
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0-5 HMBC of cyclization product 10d
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O-7 IR of cyclization product 10d
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P Propargyl alcohols d-3a1-2
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P-1 1H NMR of propargyl alcohols d-3a1-2
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P-2 13C NMR of propargyl alcohols d-3a1-2
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Q Propargyl acetal d-5a

[l g
00°1 o4

0 €9
ZH 0€°0 ar wdd ¢ L 9 l 8
0 ass | I | | ,
W Mam
ZHW €9T00€ET"00F ds
89cLze 15 —
szsiswered butsssoord - g4 | AgﬁJ i
ZHW 0TL¥ZET 00¥ 1045
€ 00°9- 114
o3sn S 0T 14
HT TONN
=== IJ ‘JANNYH) ———==—
1 0dL
238 00000000°T 1d
M 77662 ch
s9sn 00°9 el
Dasn 00p 09 Mma
8 1L 24
098 ¢FZF8G6°E [0} 4
ZH PIE921°0 SAUALA
« ZH 9V1'8LZS HMS
N z sa wdd 7oL
' 91 SN | 1
o) £T0a0 INEATOS
9€£559 az
| 0gbz 204a1nd
] J€1 IAQ¥d ww §  QHEOMd
+~ J0ads WOMISNI
<D} Ly ¥ Wty
& 9ZZ0ET0T ~ajeq
ﬂa sI9jaweaeg uorjTsTnboy - za
Pt T ONJOYa
) £ ONaxXd
g €T HOW FWYN
sIisjsweied eBiRg USIIIAND
—
8.
@) 5}
bt s (]
\\
© || NS,
nkn (@] | o w ul PR IR I R I B I N |
o . . . LT T
”Mm . W U o IS PN W WWWWEs S
o [NS =Y ~J [we] 0O Wk U ] WO
an o [N - = OO WONOHWN
(=]
—
i
1

145



Q-2 13C NMR of propargyl acetal d-5a
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R Deuterated cyclization product d2-7c

R-1 1H NMR of deuterated cyclization product dz-7c¢
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