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Abstract

Quality is an important aspect of every software development project. Different
stakeholders are interested in different aspect of quality. For instance, from the
users’ point of view, it represents to what extent the application is satisfying their
needs. On the other hand, developers may be more interested in the efforts needed
to fix bugs, testing, maintaining existing functionalities provided by the application
and adding new ones.

One aspect of measuring and ensuring quality can be achieved by utilizing soft-
ware metrics. Multiple metrics suites have been proposed and they all capture dif-
ferent aspects of quality.

Product metrics, can reveal internal characteristics of an application and help
developers to reach better quality. They indicate how maintainable, testable and
extendable one application is based on inheritance characteristics, size and com-
plexity of the applications’ modules.

Since the metrics are represented by a number only and the guidelines for each
metric specify the desired value, thresholds are needed that will define the lower
and upper limit for each metric i.e., reference values that developers can relate to.

Five metrics, including Number Of Methods, Response For Class, Depth of Inher-
itance Tree, Number Of Children and Coupling Between Objects were successfully
computed for 865 Android applications. By calculating the metrics on large number
of applications, thresholds for 17 categories of applications have been proposed.
These thresholds are different depending what category does the application be-
long to system, games, multimedia, etc. In addition, each category was divided
into subcategories based on size and thresholds were proposed for the appropriate
subcategories. By sub-categorizing we allow developers to have a reference values
for their applications based on the size in addition to category.

v





Software Quality Metrics in Open Source Android Projects

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Justification, Motivation and Benefits . . . . . . . . . . . . . . . . . . 3
1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Software Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Existing Object-Oriented Software Quality Suits . . . . . . . . 8
2.2 Metrics Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Deriving Thresholds for Software Quality Metrics . . . . . . . . . . . 14

2.3.1 Deriving Thresholds Using Traditional Techniques . . . . . . . 15
2.3.2 Deriving Thresholds Using Error Models . . . . . . . . . . . . 15
2.3.3 Deriving Thresholds Using Clustering Algorithms . . . . . . . 16
2.3.4 Deriving Thresholds from Repositories . . . . . . . . . . . . . 17
2.3.5 Deriving Thresholds from Experience . . . . . . . . . . . . . . 17

2.4 Mobile Software Quality Model . . . . . . . . . . . . . . . . . . . . . 18
2.5 Applicability of Object-Oriented Software Quality Metrics in Android

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Metrics Investigated in this Thesis . . . . . . . . . . . . . . . . . . . . 22

3 Methodology and Implementation . . . . . . . . . . . . . . . . . . . . . 27
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Dataset Construction and Justification . . . . . . . . . . . . . 28
3.1.2 Tool Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



Software Quality Metrics in Open Source Android Projects

3.1.3 Analysis and Deriving Thresholds . . . . . . . . . . . . . . . . 35
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Calculating and Storing Metrics Values . . . . . . . . . . . . . 38
3.2.3 Analysis and Deriving Thresholds . . . . . . . . . . . . . . . . 40

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Interpretation of the Results . . . . . . . . . . . . . . . . . . . 60
4.2.2 Validity of the Metrics Thresholds . . . . . . . . . . . . . . . . 63
4.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.1 Calculating Metrics Script . . . . . . . . . . . . . . . . . . . . 79
A.1.2 Script for Parsing XML . . . . . . . . . . . . . . . . . . . . . . 80
A.1.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



Software Quality Metrics in Open Source Android Projects

List of Figures

1 McCall’s factor model tree . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Relationships between quality attributes and metrics . . . . . . . . . 11
3 Franke et al. Mobile software quality model . . . . . . . . . . . . . . 19
4 Zahra et al. Mobile software quality model . . . . . . . . . . . . . . 19
5 Quality aspect categorization of metrics . . . . . . . . . . . . . . . . 23
6 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Dataset construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9 Tool selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Metadata for app in F-Droid . . . . . . . . . . . . . . . . . . . . . . . 30
10 Metric calculation tools’ architecture . . . . . . . . . . . . . . . . . . 33
11 Thresholds identification . . . . . . . . . . . . . . . . . . . . . . . . . 35
12 Implementation process . . . . . . . . . . . . . . . . . . . . . . . . . 37
13 Folder structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
14 Weibull distribution for RFC - system category . . . . . . . . . . . . . 44
15 Weibull distribution for DIT - system category . . . . . . . . . . . . . 44
16 Number of Methods - system category . . . . . . . . . . . . . . . . . 46
17 Number of Children - system category . . . . . . . . . . . . . . . . . 46
18 Depth of Inheritance Tree - system category . . . . . . . . . . . . . . 47
19 Frequency of modules on the dataset . . . . . . . . . . . . . . . . . . 49
20 Histogram of modules on the the dataset . . . . . . . . . . . . . . . . 50
21 Number of modules in system category . . . . . . . . . . . . . . . . . 51

ix





Software Quality Metrics in Open Source Android Projects

List of Tables

1 Summary of existing metrics . . . . . . . . . . . . . . . . . . . . . . . 10
2 Summary of papers validating existing metrics . . . . . . . . . . . . . 14
3 Effects of metrics on quality attributes . . . . . . . . . . . . . . . . . 25
4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Weibull shape parameter ’A’ . . . . . . . . . . . . . . . . . . . . . . . 45
6 Threshold values per category . . . . . . . . . . . . . . . . . . . . . . 48
7 Subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8 ’A’ parameter for NOM in subcategories . . . . . . . . . . . . . . . . . 53
9 ’A’ parameter for RFC in subcategories . . . . . . . . . . . . . . . . . 53
10 ’A parameter for CBO in subcategories’ . . . . . . . . . . . . . . . . . 54
11 ’A’ parameter for DIT in subcategories . . . . . . . . . . . . . . . . . 55
12 ’A’ parameter for NOC in subcategories . . . . . . . . . . . . . . . . . 56
13 Threshold values for NOM in the subcategories . . . . . . . . . . . . 57
14 Threshold values for RFC in the subcategories . . . . . . . . . . . . . 58
15 Threshold values for CBO in the subcategories . . . . . . . . . . . . . 59

xi





Software Quality Metrics in Open Source Android Projects

Abbreviations

NOM - Number of Methods
RFC - Response for Class
DIT - Depth of Inheritance Tree
NOC - Number of Children
CBO - Coupling Between Objects
CF - Coupling Factor
LCOM - Lack of Cohesion of Methods
AC - Afferent Couplings
NPM - Number of Public Methods
NPF - Number of Public Fields
CC - Cyclomatic Complexity
WMC - Weighted Methods per Class
LOC - Lines of Code
NOA - Number of Attributes
IDE - Integrated Development Environment

xiii





Software Quality Metrics in Open Source Android Projects

1 Introduction

The introductory chapter provides a general overview of the topic covered in this
thesis. The problem, the benefits and the contribution of this thesis are outlined
below.

1.1 Topic

Apple’s App Store and Google Play have accumulated in excess of 1 million down-
loadable mobile applications since their launch in 2008 [1]. This number shows
that the stores are now first choice when it comes to publishing an application.

The overall success of app stores and the extensive number of mobile appli-
cations available is highly correlated to the mass adoption of smartphone devices
by consumers. Even though smartphones existed prior 2008, it was only after the
launch of the app stores that made the users truly exploit their computing power
and versatility via downloadable applications. Before the app stores era, the prob-
lem of availability, compatibility, easy of use and easy of access were the biggest
issues when distributing an application. [1]

One important aspect for the overall success of a mobile application, is consid-
ered to be its quality. Quality can be viewed from different perspectives. For a user
it is very important that the application is stable and with proper affordance, i.e.
that the usage is natural and consistent. From the developers’ point of view, quality
aspects include how maintainable, testable and extendable the application is. I.e.,
how complex a class is, how many classes does it inherit, what a particular class
does, for how many jobs is it responsible, to what extend should a class be split or
when does a class becomes too big to be maintained.

However, evaluating an application in order to improve the long term quality
is not a trivial task. For this purpose there are multiple proposals that address the
quality assurance model for mobile applications. For Android applications, a guide
can be found on the Android developers website1 which includes guidance on how
to use user interface elements and how to manage permissions, among the other
topics. The guide aids developers to choose the appropriate and Android specific
features so the application is consistent in its own existence but also when com-
pared with other Android applications. Additionally, Zahra et al. [2] and Franke
et al. [3] have proposed two general quality models for mobile application which

1https://developer.android.com/develop/quality-guidelines/core-app-quality.html
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depict the important attributes for mobile applications including: usability, porta-
bility, efficiency and flexibility. Somerville [4] proposed a set of properties that can
be used to evaluate software quality. Software quality, according to Somerville, can
be evaluated by external attributes, i.e. attributes perceived by users (efficiency,
correctness, easy of use) and internal attributes such as attributes only perceived
by the team developing the application e.g. coupling, cohesion, size and inheri-
tance.

Since Android applications are written in Java, which is an object-oriented pro-
gramming language, the well known and established object-oriented software qual-
ity metrics can be applied. Those quality metrics capture the quality aspects from
the developers point of view, such as, maintenance efforts, inheritance and cou-
pling.

Multiple software quality metrics have been proposed [5, 6, 7] in the literature.
However, the most referenced are Chidamber and Kemerer’s metrics suite [8, 9, 10]
and Abreu and Carapuca’s metrics suite [11].

Since their proposal, the metrics have been verified in multiple studies. The
studies investigated the relationship between the metrics values in systems coded
in object-oriented languages, mainly Java, C++ and C#. There is evidence that
the metrics do expose a possible error in the modules of the systems. [12, 13, 5,
14, 15, 16, 17, 18, 19, 20, 21]

In addition, the metrics have been verified for Android applications [22] and
there is evidence that they predict faults in modules.

1.2 Keywords

Metrics/Measurement, Software metrics thresholds, Android applications quality

1.3 Problem Description

Multiple metrics suites have been proposed and validated, showing their potential
to indicate problems in the system. The values of the metrics are represented by
a number only. However, all of the metrics have viewpoints or guidelines on what
does the number represent and what could a increase/decrease of the metrics value
cause. For instance, we know that the desired value for CBO is low and the lower
it is the more modular the system becomes. Low CBO is also indicator of easier
maintenance of the system.

Now the questions is how low should the value of CBO be? How do we define
what is the acceptable upper limit for CBO?

In this thesis, we assess the threshold values for 5 metrics, NOC, RFC, DIT,
NOC and CBO. The threshold values can be used as an indicator to where does
a particular application stands compared to similar applications. They can help

2
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developers relate and interpret the metrics meaning based and their values.

1.4 Justification, Motivation and Benefits

The motivation behind this thesis is based on the idea that software quality model
for Android applications can benefit from having the already proposed and veri-
fied software quality metrics as a part. Moreover, by providing the threshold values
for the metrics, developers can utilize them more efficiently and effectively, they
will have a reference value that can relate to. Metrics can help understand where
does the application being developed stands in terms of complexity, size, maintain-
ability and cohesion. Metrics can be used to compare and rate software products,
thus aid to define acceptance criteria between the developers and the application
owners [23, 24].

Metric thresholds are defined by Lorenz and Kidd as:

"Heuristic values used to set ranges of desirable and undesirable metrics values
for measured software. These thresholds are used to identify anomalies, which
may or may not be an actual problem." [6]

Since all software metrics are represented with a single number, the efficient
usage by developers is tightly connected with the threshold values of a particular
metric. Without knowing the metrics thresholds, applying the metrics in practice is
limited [25]. As indicated by [26, 27], the possible reason of why object-oriented
software quality metrics despite their importance, are not widely adopted in the
software industry is because of the non-availability of threshold values.

Having the range or the desired values can stimulate the usage of metrics in
developers day-to-day coding and can aid them in answering questions like "Which
classes in the system have a large number of methods?" [27]

By proposing thresholds for different categories of application based on their
functionality we contribute to more efficient and effective metric utilization by the
developers.

Furthermore, by proving subcategories of applications based on their size and
suggesting thresholds for each subcategory, we aid developers in locating their
application and provide the appropriate thresholds based on the size in addition to
category.

1.5 Research Questions

The aim of the thesis is to answer the following research questions:

RQ1: To what extent, can the traditional object-oriented software quality metrics
be applied to Android applications?

Since Android applications are written in Java, this thesis will assess if and

3
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which of the traditional object-oriented software quality metrics can be applied
pragmatically on a large number of Android applications.

RQ2: What are the threshold values for different categories of applications and the
dataset as a whole?

The aim is to separate the application into different categories based on their
functionality and define thresholds for each category. Additionally, deriving thresh-
olds for the dataset as a whole and comparing the values with the ones obtained for
each category can potentially indicate were a general threshold can be proposed.

RQ3: What are the threshold values for each of the subcategories of applications
and the dataset as a whole?

All applications that belong to specific category are not the same in terms of size
and complexity. Thus, thresholds on a category level may not be quite useful for
developers. Accordingly, it is be beneficial to separate the applications from each
category into subcategories based on their size. Doing this can potentially yield
different thresholds for different size of applications. Additionally, developers can
locate their application both based on the category they belong and their size.

RQ4: What are the quality implications of the thresholds values?
What do thresholds values indicate for the applications being investigated and

what are the quality implications of the defined thresholds.

1.6 Contributions

The main contribution of this thesis is to provide threshold values for software
quality metrics that reveal the applications’ complexity (NOM, RFC), inheritance
(DIT, NOC) and the coupling between the modules (CBO). The aim is to help
developers at using the metrics in their day-to-day coding. Thresholds are defined
for categories of applications based on their functionality and on the dataset as
a whole i.e. every application will be treated as part of one category. In addition,
thresholds are suggested for subcategories of applications that are separated by size
(number of modules). The viewpoint here is that thresholds might differ based on
the size of the application. In order to provide the thresholds, first we need to
demonstrate that the metrics can be applied pragmatically to a large number of
Android applications.

To the best of our knowledge, no other study has investigated and proposed
thresholds values for Android applications.

1.7 Thesis Structure

This thesis is structured in the following chapters:

4
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Chapter 1 - Introduction introduces the topic covered by this thesis, and the
problem area. Additionally, the motivation, benefits and the research questions are
presented in this chapter.

Chapter 2 - Background and Related Work contains the previous research
conducted on the area of software quality metrics, different methods of deriving
thresholds and summarizes quality models for mobile application. This includes
more in depth information about the field and importance of software quality met-
rics in predicting abnormalities.

Chapter 3 - Methodology and Implementation outlines the dataset used and
its’ justification. In addition tool selection and analysis plan are included. The im-
plementation process is also elaborated in more details.

Chapter 4 - Results and Discussion presents the results for the threshold val-
ues. The results are visualized in tables. Whereas, the discussion section inter-
preters the obtained results, asses the validity of methods used and outlined the
limitations.

Chapter 5 - Conclusion summarized our finding and addresses the research
questions based on the results obtained from the analysis of the data.

5
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2 Background and Related Work

McCall’s quality model [28] depicted in figure 1, classifies all software require-
ments into eleven software quality factors. These factors are divided into three
categories:

• Product operation factors: Correctness, Reliability, Efficiency, Integrity and
Usability
These quality factors deal with the requirements that affect the daily opera-
tion of the software.

• Product revision factors : Maintainability, Flexibility and Testability
These quality factors refer to software maintenance activities.

• Product transition factors : Portability, Reusability and Interoperability
These factors are included in the product transition, i.e., adaptation of the
software to other environments and the interaction with other systems.

Figure 1: McCall’s factor model tree [28]

7
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2.1 Software Metrics

Software metrics can be used to locate possible issues and propose improvements
in the quality of the software. There are multiple categories of software metrics,
which are focusing in different aspect of the software life cycle [29, 30, 6].

Process metrics
Software process metrics provide measure of the development processes that
the organization/team is performing. By monitoring and evaluating the suc-
cess of the processes they can always be adjusted and improved. Examples
of metrics include: the amount of time spent develop and design the prod-
uct or particular feature, number of issues located/resolved, number of com-
mits to a particular file and number of developers who changed particular
file [14, 31, 32]. Since the development practices tend to change over time
and due to specific language, lightweight processes are needed in order to
adjust towards the merging trends and technologies. Agile development ap-
proaches tend to be very flexible and adjustable over time making it a suitable
choice [33].

Project metrics
Project metrics allow the organization/team to define and measure the over-
all project flow. For example, how many developers are needed, do specializa-
tion testers are needed and what kind of hardware/software will be utilized
by the specific project? Will the work be done remotely or on a physical loca-
tion (offices)? Measuring these project specific characteristics and comparing
them over time or over projects can give valuable information on how each
project performed, hence making the decision for the future projects [6].

Product metrics
Product metrics allow developers to evaluate the internal properties of the
software they are building. They are very localized and specific towards what
they are measuring and represent, thereby allowing them to directly exam-
ine and improve the quality of the software. Examples of metrics that reveal
these properties include complexity coupling, reuse, size, inheritance and co-
hesion. [6, 14]

This thesis will focus on product metrics, more specifically their applicability
and usage on Android applications.

2.1.1 Existing Object-Oriented Software Quality Suits

Multiple object-oriented software quality metrics have been proposed [34].
Some of the metrics proposed are:

8
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Lorenz and Kidd [6] have proposed metrics that capture the size (of methods
and classes), internal characteristics (of methods and class), external characteris-
tics (of a class) and inheritance.

Li [5] has proposed metrics for class inheritance and method complexity.
Abreu and Carapuca [11] have proposed metrics that capture the reuse of class

and methods, complexity and productivity.
Henderson-Sellers [7] has proposed metrics for inheritance and complexity of

classes.
Chidamber and Kemerer [8] have proposed a metric suite for calculating com-

plexity and coupling.
Table 1 summarizes the categories of the metrics proposed and their description.

9
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Metric category Description
Metrics by Lorenz and Kidd [6]
Method size Metrics focusing on the size of the methods expressed

in lines of code.
Method Internals Metrics focusing on complexity of the methods.
Class Size Metrics focusing on the size of the classes expressed in

number of methods and variables.
Class Inheritance Metrics expressing the nesting of the class.
Method Inheritance Metrics expressing the number of methods inherited,

overridden and added.
Class Internals Metrics focusing on the internal characteristics of a class

expressed in cohesion, parameters per method, com-
mented lined per method.

Class Externals Metrics focusing on the external characteristics of a
class expressed in coupling and reuse.

Metrics by Li [5]
Class Inheritance Metrics expressing the number of methods inherited by

a subclass and the number of new methods in the sub-
class.

Method Complexity Metrics expressing the internal structural complexity of
all methods.

Metrics by Abreu and Carapuca [11]
Class Complexity Number of methods in a class.
Class/Method
Reuse

Number of times that a class/method is inherited.

Class/Method
Quality

Number of failures caused by a class/method during a
specified time slot.

Class/Method Pro-
ductivity

Effort to build new average class/method. “Average”
stands for average size and average complexity. Units
of effort may be human month, human year, etc.

Metrics by Henderson-Sellers [7]
Class Size Metrics exposing the size of class in lines of code.
Inheritance Average inheritance - system level. Sum of DIT/number

of classes.
Complexity Complexity expressed in Number of Methods per mod-

ule and Number of Attributes (or variables) per module.
Metrics by Chidamber and Kemerer [8]
Complexity Metrics that are measuring the number of children of a

module and inheritance.
Coupling Number of modules that a particular module is coupled

with.

Table 1: Summary of existing metrics

Figure 2 is depicting Sommervilles’[4] example model on how quality attributes

10



Software Quality Metrics in Open Source Android Projects

(maintainability, reliability, reusability and usability) relate to metrics. The model
is linking four important quality attributes to five metrics.

Figure 2: Relationships between quality attributes and metrics [4]

2.2 Metrics Validation

Multiple studies [12, 13, 5, 14, 15, 16, 17, 18, 19, 20, 21] have validated existing
metrics. Validation and verification of metrics is an important step towards proving
that indeed they are useful in development processes. By assessing if a particular
metric or group of metrics are revealing the possible bugs of a module in a system,
developers can obtain accurate knowledge on the complexity, maintainability and
cohesion of a particular module in their system.

In their studies, Briand et al. [12, 13] empirically explored the relationships be-
tween metrics that measure coupling, cohesion, and inheritance and the probability
of fault detection in system modules. Their goal was to understand the relationship
between the metrics and the quality of the software developed.

Their analysis have shown that coupling and inheritance measures are strongly
related to fault detection in a module. The depth of a module (for instance a class)
appear to be an important quality factor since it can indicate the rate of change for
a particular class.

"Multivariate analysis results show that by using some of the coupling and in-

11
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heritance measures, very accurate models can be derived to predict in which
classes most of the faults actually lie. When predicting fault-prone classes, the
best model shows a percentage of correct classifications about 80% and finds
more than 90% of faulty classes." [12]

Li et al. [14] validated three groups of object-oriented metrics. The first group
contains all the metrics proposed by Chidamber and Kemerer [8]. Whereas the sec-
ond group of metrics focuses on the different forms of coupling and the last group
discusses size metrics. They concluded that there is a strong relation between main-
tenance effort and metrics. The dataset in their study included two commercial
software products, UIMS (User Interface System) and QUES (Quality Evaluation
System). For the two systems’ maintenance effort, data has been collected for the
period of three years. The data is measured in number of lines changed per mod-
ule. A line change is considered when performing addition or deletion, in addition
a change in a line is counted as deletion and an addition. Estimates of the main-
tainability of object-oriented systems is based on the maintenance effort data. They
further established that metrics values can help estimate maintenance efforts that
would need to be invested in testing a module in the system. The limitation of their
work is not investigating the abilities of one individual measure to predict main-
tainability. Therefore, the results must be used as a group of metrics and not as an
individual meaning.

Zhou et al. [15], Aggarwal et al. [16], Elish et al. [35] and Li-jin et al. [17] have
created different models to predict how maintainable a system is. Their dataset
was the same used by Li et al. [14], and they reconfirmed the results. However, the
limitation of Li et al. [14] apply to these studies as well.

Abreu et al. [18] and Harrison et al. [19] validated six metrics that focus on
inheritance, coupling and are part of MOOD (Metrics for Object Oriented Design).
Both papers conclude that MOOD metrics are indicators of error prone modules
in a system, an additional observation is the fact that MOOD metrics are comple-
mentary to Chidamber and Kemerer [8]. I.e., both coupling metrics (CBO and CF)
are revealing coupling characteristics but on a different level. CF treats the system
as one and the metric is so called system-level metrics, whereas CBO is measured
for each class. Accordingly, the metrics proposed by Chidamber and Kemerer can
be used by developers on a day-to-day basis since they provide an overview of the
project from class-level view [19, 36].

Dallal [20] explored if metrics that focus on size, cohesion and coupling can
predict the maintainability of a class. The data set consisted of open source Java
systems. The results demonstrate that modules with higher cohesion values and
lower coupling have better maintainability which means that they are likely to be
easily modified compared to those with opposite values. By looking at the practical
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side of the results, they indicate that developers can improve the maintainability,
i.e., decrease maintenance efforts of the developed modules by reducing the mod-
ules size and coupling and increasing the cohesion.

A more recent study by Dallal et al. [21] investigated the reuse-proneness of
a class using metrics such as cohesion, coupling, and size. Their results show that
most of the investigated metrics indeed are statistically significant predictors of the
reuse-proneness of a class. Specifically, their results indicate that there is a positive
relationship between coupling and class reuse-proneness.

Jabangwe et al. [10] have performed a systematic literature review on 99 papers
that investigated the connection between metrics, and reliability, maintainability,
effectiveness and functionality. They observe that Chidamber and Kemerer metric
suite is the most popular across studies. Their results shows that complexity, cou-
pling, size and cohesion metrics reveal a better understanding of reliability and
maintainability for the systems when compared to the inheritance metrics.

By providing the metrics investigated, the dataset used and the main findings,
table 2 summarizes the papers that have validated existing metrics.

13
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Source Metrics Dataset Main findings/conclu-
sion

Briand et al. [12,
13]

Coupling,
Cohesion
and Inheri-
tance

C++, total
180 classes

Coupling and inheritance
strongly related to fault
detection.

Li et al. [14] Chidamber
and Kemerer
metrics,
coupling,
size

Two com-
mercial
software
products
with main-
tenance
effort data
available

Metrics can help estimate
maintenance efforts.

Zhou et al. [15],
Aggarwal et
al. [16], Elish
et al. [35] and
Li-jin et al. [17]

Same met-
rics as Li et
al. [14]

Same data
set as Li et
al. [14]

Same conclusion as Li et
al. [14].

Abreu et al. [18], Inheritance
and Cou-
pling

Data gath-
ered in a
controlled
experiment
performed
at the Uni-
versity of
Maryland
on C++
systems [37]

Indications that metrics
predict maintainability.

Harrison et al. [19] Inheritance
and Cou-
pling

Three re-
leases of
laboratory
electronic
retail system
(ERS)

Metrics are indicators of
error prone modules in
a system. MOOD met-
rics are complementary to
Chidamber and Kemerer’s
metrics.

Dallal [20] Size, Co-
hesion and
Coupling

Open source
Java systems

Modules with higher co-
hesion values and lower
coupling have better
maintainability.

Dallal et al. [21] Cohesion,
coupling,
and size

Six Java
open source
systems

Positive relationship be-
tween coupling and class
reuse-proneness, cohesion
has negative impact on
the reuse-proneness.

Table 2: Summary of papers validating existing metrics

2.3 Deriving Thresholds for Software Quality Metrics

From the literature review, there are different approaches on how to derive thresh-
olds values for software quality metrics. These approaches are not language specific
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as they are applied to object-oriented languages in general.

2.3.1 Deriving Thresholds Using Traditional Techniques

Erni et al. [38] proposed to use mean (µ) and standard deviation (σ) to suggest
a threshold from project data. Moreover, they suggest threshold values for three
metrics, coupling, complexity and cohesion by using one project with three ver-
sions. Mean (µ) represents the average value of the metric for a particular project
and standard deviation (σ) is calculated from the same project for the same metric.
Tmin = µ − σ is used to find the lower limit, whereas, Tmax = µ + σ is used to find
the upper limit. Using statistical techniques is common for data that is not heavily-
tailed or strongly skewed. However, previous research shows that when it comes to
software quality metrics, the values usually follow right-skewed or heavily-tailed
distribution. DIT being and exception. [26, 27]

Lanza and Marinescu [25] defined thresholds for four metrics that include in-
heritance, coupling, size and complexity. The project used to derive the values in-
cluded in total of 82 systems in both, Java and C++. The mean (µ) was presented
as a typical value and standard deviation (σ) as an upper limit.

2.3.2 Deriving Thresholds Using Error Models

Error data is another way to derive thresholds, by comparing the publicly available
error data from different sources.

Shatnawi et al. [39] explored the use of error data from three releases of
Eclipse1 (versions 2.0, 2.1 and 3.0). Eclipse was chosen because it is an open source
system and the error data is available. The error data is stored in Bugzilla which is
an error-archive database for Eclipse.

Every error that is registered in Bugzilla has a severity of low, medium and
high depending on the type and impact of the error. Using this data, the authors
goal was to separate the modules in Eclipse into two categories: modules that have
errors and modules that do not have errors. In addition to separating them into
these two categories, they investigated whether they could classify each module
into four additional categories: no error, low impact error, medium impact error
and high impact error. The goal is to do all the categorization based on specific
metric values.

Shatnawi et al. [39] further concluded that there was not enough data to derive
threshold values to categorize the modules into error and no error. However, they
managed to derive threshold values that can help developers locate high impact
error prone modules and no error modules. The main drawback of using error
models, as indicated by the authors is mainly data collection and its effects on
generalizability of the derived thresholds.

1https://www.eclipse.org
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Furthermore, Benlabri et al. [40] analyzed two C++ telecommunication sys-
tems and examined the relationship between thresholds and software bugs for DIT
NOC, CBO, RFC and WMC, all of which are Chidamber and Kemerer metrics. The
authors created two error probability models, one with and one without thresholds.
The model that has threshold value for a metrics, has a zero probability of error
to exist in the module if the metric value is below the threshold. Authors found no
empirical evidence that would give more value to the model with thresholds.

The work of Benlabri at al. [40] and El Eman et al. [41] indicate that no empir-
ical evidence was found in order to support a model that can predict faults based
on threshold values. Additionally, they concluded that no optimal class size can be
defined based on their study that compared class size and bugs. However, these
results are tightly connected to the specific model that predicts the bugs. Other
models potentially can give contrasting results.

Herbold et al. [42] used machine learning algorithm in order to determine a
method that would derive threshold values, their method is independent of any
language. The metric categories that were the focus of their study included met-
rics related to size, coupling, complexity and inheritance. They have concluded
that their method is able to improve thresholds values of existing metrics, but the
biggest drawback is that the method can only create a binary classification and
therefore only categorize between good or bad. The lack of "shades of gray" makes
this approach limited.

2.3.3 Deriving Thresholds Using Clustering Algorithms
Olivera et al. [43] proposed a method by using K-means clustering algorithm in
order to group modules of the system into groups automatically. The approach is
based on similarity between two systems.

”For example, suppose two systems, S1 and S2. Suppose that S1 was developed
in accordance with the best principles/concepts of Software Engineering. More-
over, it was developed by a team of skilled developers, with high experience.
Thus, the probability that S1 has a high degree of internal quality is high. Sup-
pose also that using the approach proposed in this paper, we identify that S2
and S1 are similar. Thereby, we claim that this similarity is a strong indication
that S2 also has high levels of internal quality.” [43]

Yoon at al. [44] investigated the usage of K-means clustering algorithm to iden-
tify outliers when measuring the values of the metrics. By observing the distribu-
tion, outliers can be defined as external or internal. External outliers appear in
isolated clusters while internal appear far away from other observation withing the
same cluster.

Both studies indicated the important shortcomings of using K-means cluster-
ing algorithm. The algorithm requires an input parameter that affect both, per-
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formance and accuracy of the result. The outliers are identified manually and the
algorithm must be executed again after excluding them. In addition the most lim-
iting aspect is that different thresholds can be extracted for the same dataset and
metric.

2.3.4 Deriving Thresholds from Repositories

The following method includes large number of systems as part of a dataset. The
dataset is divided into categories based on the type of application and its function-
ality. Further sub-categorization is done by defining a size parameter (lines of code,
number of classes, number of modules). The values for metrics are calculated for
each application in the appropriate category/subcategory

Ferreira et al. [26] have derived thresholds for six metrics, including, LCOM,
DIT, CF, AC, NPM, and NPF. The dataset contained 40 open source Java systems
varying from 18 to 3500 classes. The metrics were calculated from the bytecode of
the targeted systems. In order to derive the thresholds, a scatter plot was generated
that revealed the frequency of the metric values.

Filo et al. [27] extended and improved the work of Ferreira et al. [26] by ex-
tracting the thresholds for 17 metrics and using 111 open source Java systems. The
first improvement is on how the ranges of the thresholds are named, as mentioned,
Ferreita et al. [26] are using "good", "regular" and "bad" while this work is using
"good/common", "regular/casual" and "bad/uncommon" ranges in order to express
better the concept of frequency when deriving the thresholds. The second improve-
ment relates to the improvement on how to read the frequency chart, where two
percentiles were defined based on their own analysis and the analysis of Alves at
al. [24].

In their work, Alves at al. [24] have derived thresholds using 100 systems de-
veloped in Java and C#. From the data set, 60 Java systems were proprietary and
22 open source while, 17 C# systems were proprietary and 1 open source. It is
worth mentioning that the authors used a tool2 that is developed by the company
that they are working for and 77 systems out of 100 are commercial and developed
for their customers.

The general limitation of this approach is obtaining large number of relevant
systems.

2.3.5 Deriving Thresholds from Experience

Multiple studies defined the thresholds based on their experience [25, 45, 46, 47].
According to Lanza and Marinescu [25], generally accepted thresholds that are
based on information which are common and generally accepted knowledge is one
of the ways to define threshold values. McCabe [45], developed the concept of CC

2https://www.sig.eu
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and based on his experience "the particular upper bound that has been used for CC
is 10 which seems like a reasonable, but not magical, upper limit". The idea is to
show developers that if a module exceeds CC of 10, it probably needs splitting.

Nejmeh [46] proposed a metrics that is building on top of McCabe’s CC. Ac-
cording to the author, NPATH threshold value is 200. The value is derived from his
experience from former studies done at AT&T3.

Coleman et al. [47] have worked on maintainability index metric. The metric is
computed using the values of CC, lines of code and lines of comments. According
to their experience, the value ranges are from 65 to 85. Methods that have val-
ues less than 65 are hard to maintain. Methods that have values between 65 and
85 are moderately maintainable and those who have value above 85 are highly
maintainable.

The general weakness of deriving thresholds based on experience is the fact
that reproduction of the result is very limited. In addition, since usually there is
no information about the sample size, generalizability is disputable. The final dis-
advantage is the lack of scientific bases that can lead to disagreement about the
validity of the thresholds/values.

2.4 Mobile Software Quality Model

Two software quality models have been proposed for mobile applications. They
capture the important aspects that are contributing to increase the quality.

Franke et al. [3] proposed a model that captures usability, efficiency, data per-
sistence, adaptability, portability and extensibility. Figure 3 depicts the model. In a
follow up study, Franke et al. [48] explored the possible metrics that can represent
the attributes depicted by the model. Including CC, WMC and LCOM.

3https://www.att.com
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Figure 3: Mobile software quality model proposed by Franke et al. [3]

Zahra et al. [2] have proposed a slightly more detailed model that captures
features depicted in figure 4.

Figure 4: Mobile software quality model proposed by Zahra et al. [2]

Usability
In both models, usability is defined as the extend to which the application is
understood, learned, used and be attractive to a user. Usability is all about
improving the interaction between the user and the application. [2, 3]

Efficiency
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Efficiency is seen from the resources point of view, where the optimal usage
of the rather limited resources is ideal. The importance of battery usage is the
main focus. Additionally, memory and processing power are also taken into
consideration. [2, 3]

Extensibility
Extensibility focuses on improving the functionality of an application both
when adding new functionalities and improving the usability. Adding new
functionality includes new features and/or adjusting the application to the
ever changing operating system versions. [2, 3]

Data integrity/persistence
Data persistence and data integrity are both focusing on the application’s
ability to keep information even after interruption from a third party app.
For instance, when the phone is receiving a phone call, the application should
pause and resume after the call is finished. [2, 3]

Portability
Portability as described by both models, takes into consideration the different
mobile devices and their performance. The ultimate goal is to make the ap-
plication run on as many devices as possible and yet keep all other attributes
of the quality model on a high level. [2, 3]

Adaptability
Both models are describing the idea that mobile phones are compact devices
that people carry with them almost all the time. This leads to changes in
what kind of environments they are used, different connectivity possibilities.
Applications are expected to adapt on the orientation of the device and the
different types of inputs. [2, 3]

Functionality
Functionality is split into suitability and security on the model proposed by
Zahra et al. [2]. It reveals the extend to which the application accomplishes
the requirements specified in the planning phase. Further, suitability is check-
ing to what extend a particular app/functionality fulfills the needs of the
users.

The limitation of these models is mainly the lack of providing and testing suit-
able metrics that would represent these important and specific aspect of mobile ap-
plications. However, they do indicate that the traditional metrics including metrics
like McCabe CC, WMC or LCOM can be used for some of the quality aspects. This
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still does not complete the range of metrics. More specialized metrics are needed
to be able to measure all aspects proposed by both models [48, 2, 3].

A step forward towards specific metrics has been done by Ryan at al. [49], who
proposed metrics that measure resource utilization in terms of network, memory
and processor.

2.5 Applicability of Object-Oriented Software Quality Metrics in
Android Applications

When researching for papers that have used metrics in Android applications specifi-
cally, three papers came out as most relevant. The first one [50] applied the metrics
on prototype application. The second [51] provided a dataset with computed met-
rics from decompiled .apk files of large number of Android applications. Lastly, the
third [22] explored the possibility of locating vulnerable classes using metrics.

Jost et al. [50] have successfully applied 8 software metrics to Android, Win-
dows and iOS applications. The metrics included, DIT, NOC, LCOM, WMC, NOM,
LOC and CC. They were applied separately to the three applications that the re-
searchers have developed. The applications had the same logic and were perform-
ing the same tasks, but they were written in three different programming lan-
guages, according to the targeted platform. The goal was to test if traditional soft-
ware metrics can be applied for mobile application development, hence the use
of tools to calculate the metrics were chosen depending on the IDE. They con-
cluded that the metrics can successfully be applied to the applications they have
developed, keeping in mind that they are prototypes only and do not represent the
variety of mobile applications that exist.

Giovanni et al. [51] created a dataset that among other metrics contains values
for Code Quality Metrics4 such as DIT, NOM and CBO. The metrics values were
obtained from decompiling the .apk files. The reasoning behind their approach
was to capture possible code optimizations, eventually applied by the compiler.

What is missing in their dataset5 is module level values for the metrics. Provid-
ing module level instead of system level can help developers see which modules
are prone to errors and possibly fix them. Having only a system level value does
not give us a detailed overview of the modules inside and it becomes harder to
locate the error prone modules. In addition, system level CBO does not provide the
information that is needed. We are not sure if CBO for a particular application is
the lowest/highest/average/sum of the CBO of the modules. A more appropriate
system level metrics would be CF.

Scandariato et al. [22] investigated if metrics can potentially predict faulty

4https://github.com/sealuzh/user_quality/wiki/Code-Quality-Metrics
5https://github.com/sealuzh/user_quality/blob/master/csv_files/code_metrics.csv
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class. Some of the metrics included in their study are LCOM, CBO, RFC and LOC.
They conclude that a model that is based on metrics can identify faulty class, how-
ever, the size of the data set used in the study is on the small side. This study need
to be replicated on a larger pool of applications and a bigger number of versions
needs to be performed in order to verify the results obtained. The aim is to inves-
tigate if same/similar results can be found if multiple applications from different
categories are used.

Taking into consideration the limitations and conclusions of these three papers,
there are indications that the traditional software quality metrics are applicable
to Android application, both on the source code and the compiled version of the
application. In addition, there are indicators that metrics can reveal possible fault-
prone modules. In this thesis, we chose to compute the metrics on source code.
We argue that it will aid developers in their day-to-day coding. Developers would
not need to wait to have a finished version and then to compute the metrics, but
instead continuously monitor the values of the metrics as they progress with the
development.

2.6 Metrics Investigated in this Thesis

The metrics investigated by this thesis are proposed by Chidamber and Kemerer [9,
8] and Henderson-Sellers [7]. They have been extensively validated and used in
previous research, also they capture three important aspects of software quality, in-
cluding, complexity, inheritance and coupling. These aspects are directly correlated
to the factors depicted by McCalls’s quality model depicted in figure 1.

In addition, they can help developers monitor the applications on a day-to-day
basis possibly with every automated build of the application. Figure 5 illustrates
the quality aspects that each metric is focusing on.
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Figure 5: Quality aspect categorization of metrics

NOM [7, 52]
Number of methods represents the sum of the public and private methods
in a class. The authors are also proposing that NOM can be divided into at
least two metrics, number of internal or private (hidden) methods (NHM)
and number of private or external methods (NEM).

NOM = NHM+NEM

Viewpoints:

1. Increased number of methods decreases maintainability.
2. The size and the complexity of the class increases.
3. More testing efforts are needed with increase of NOM

RFC [8, 9, 34, 53]
RFC is defined as the number of methods that can potentially be called when
the class receives a message. RFC can be defines as |RS| where RS is the
response set of the class.

RS can be expressed as: RS = {M}
⋃

all i {Ri}

Where {Ri} is set of methods called by methods i and {M} is set of all methods
in the class.

Viewpoints:
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1. Increase in the number of methods that can be called increases the com-
plexity.

2. More testing resources should be spent as the RFC increases.

DIT [8, 9, 34]
DIT represents the length of the path from the node to the root of the tree. In
other words, DIT is a measure of how many ancestor modules can potentially
affect the particular module. In cases involving multiple inheritances the DIT
will be the maximum length from the node to the root of the tree.

Viewpoints:

1. The number of methods inherited by a module is likely to increase as
the DIT increases.

2. The design complexity increases as DIT increases.
3. The potential reuse of inherited methods is increasing by higher DIT.

NOC [8, 9, 34]
NOC represents the number of immediate subclasses of a class in the hierar-
chy. It measures how many subclasses are going to inherit the methods of the
parent class. Viewpoints:

1. The greater the number of children, the greater the reuse.
2. If a class has large number of children, more testing efforts should be

invested in testing the methods in that class.

CBO [9, 8, 34]
CBO is defined for a module as a count the number of other modules to which
it is coupled. As defined by the creators of CBO [9] a coupling between classes
happens when the methods or variables from one module are accessed by
another one.

Viewpoints:

1. Enormous coupling prevents modular design.
2. Independent class is easier to be reused.
3. Coupling can be useful to understand how much resources should be

invested into testing. Higher coupling leads to more rigorous testing.

Based on the work of Lincke et al [54], table 3 was generated and it defines
the effect that metrics have on quality attributes.
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3 Methodology and Implementation

3.1 Methodology

As discussed in chapter 2 section 2.3, there are multiple methodologies to derive
threshold values for software quality metrics. In this thesis we chose to define
the thresholds by calculating the software quality metrics on a large number of
applications. The calculations were done on the source code of the applications.

The reasoning behind favoring source code instead of decompiling the .apk file,
is the purpose of these thresholds, which are designed to help developers in their
day-to-day development. The idea is to continuously monitor the progress of the
modules in the system, calculate the metric(s) on every build and seek possible
improvements.

Figure 6 illustrates the overview of the methodology used to derive thresholds.

Figure 6: Methodology overview
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3.1.1 Dataset Construction and Justification

Figure 7: Dataset construction

Two main data sources were analyzed. Both contain Android applications and have
been used in previous research.

The first data source evaluated is SourceForge1. It contains collection of open-
source application for different operating systems: Windows, Linux and Mac. In
addition, applications for Android platform are present. SourceForge has been ex-
tensively used in research that investigated Java systems [26, 27, 55, 56]. To the
best of our knowledge, SourceForge does not provide scalable approach on how
to extract Android applications only. The systems are categorized based on the
programming language, i.e., Java can be specified as the target programming lan-
guage. By doing that all system coded in Java would be extracted, hence, it is not
possible to distinguish between applications written in pure Java and those written
for Android. On the website, there is a possibility to manually specify characteris-
tics of the applications that are important for this thesis. E.g. Android applications
that have source code available, but not all characteristics. The website does not
provide an option to sort them by last updated date. In addition, the biggest draw-
back is lack of automation. Manually downloading applications is not scalable.

Another data source is F-Droid2, which is used by multiple studies related with
Android application [51, 57, 58, 59, 60]. Once compared with SourceForge we ob-
served that it is more suitable to be the data source for this thesis. F-Droid contains
free and open source applications for Android devices. It specializes in one platform
only, making it more tailored towards Android applications and all the meta data
that they have. A XML file can be downloaded that contains information about all
the application that are available on F-Droid. The latest file can always be accessed

1https://sourceforge.net
2https://f-droid.org
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at the website3. Being a XML file, it can be parsed and the needed information can
be extracted.

Figure 8 gives an example of how the information is stored for one application.
Data about application ID, date when the application is added, date when the
application is last updated, name and category are provided for each application.
The package represents the versions of the application. In figure 8, there is only
one version, if the application has multiple versions, multiple packages would be
present.

Filtering

The focus of this thesis are applications that were updated in the last three years,
accordingly, last updated date has to be after 31.12.2014.

The reasoning behind the specified time frame is to exclude applications that are
not maintained and developed further. In addition, by excluding the applications,
the risk of including applications that contain external libraries in their repositories
is decreased. Newer applications generally use build tools, for instance Gradle4, to
manage external libraries and dependencies. This however does not eliminate the
projects that keep their external libraries in their repositories.

3.1.2 Tool Selection

Figure 9: Tool selection

The candidate tools to be used for calculating the metrics were selected based on
the following characteristics:

3https://f-droid.org/repo/index.xml
4https://gradle.org
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<application id=" subreddit.android.appstore">
<id>subreddit.android.appstore </id>
<added >2016 -09 -27 </added >
<lastupdated >2016 -10 -06 </ lastupdated >
<name >/r/Android App store </name >
<summary >Download apps curated by /r/android </

summary >
<icon >subreddit.android.appstore .6000.png </icon >
<desc >&lt;p&gt;App inspired by this &lt;a </desc >
<license >Apache2 </license >
<categories >System </ categories >
<category >System </category >
<web ></web >
<source >https :// github.com/d4rken/reddit -android -

appstore </source >
<tracker >https :// github.com/d4rken/reddit -android -

appstore/issues </tracker >
<marketversion >0.6.0 </ marketversion >
<marketvercode >6000 </ marketvercode >
<antifeatures >NonFreeAdd </ antifeatures >
<package >

<version >0.6.0 </ version >
<versioncode >6000 </ versioncode >
<apkname >subreddit.android.appstore_6000.apk </

apname >
<srcname >subreddit.android.appstore_6000_src.tar

.gz </srcname >
<hash type=" sha256"> 3

af6218c89697577fd15e9582caad6649bc62483c69dbe
</hash >

<size >7077312 </size >
<sdkver >16</sdkver >
<targetSdkVersion >24</ targetSdkVersion >
<added >2016 -10 -06 </added >
<sig >ec5d720bd93bda25b1e68d6a449b7254 </sig >
<permissions >INTERNET </ permissions >
<nativecode >arm64 -v8a ,armeabi ,armeabi -v7a ,mips ,

x86 ,x86_64 </nativecode >
</package >

</application >

Figure 8: Metadata for app in F-Droid
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1. Metrics variety - the tool must be able to calculate the metrics that are the
focus of this thesis.

2. Java support - since Android applications are written in Java, the tool must
support Java as a programming language for calculating the metrics.

3. Scalable and automated - the tool must be able to process large number of
applications and must support the option to be automated.

4. Source code level - the tool must compute the metrics on the source code,
and the tool can not rely on the application to be compiled.

5. Non-commercial - the tool can not be commercial, it must be available to be
used without restrictions, to allow the replicability of this work and addition-
ally, to allow developers to use it in order to compute metrics for their own
projects.

6. Maintainable - the tool must be operable and is being maintained by de-
velopers/researchers. This includes having active developers/researches as a
contact person(s), who know the tool architecture and can provide further
assistance if necessary.

7. Being used in previous research - the tool must have been used in previ-
ous studies, not necessary for deriving thresholds but for calculating metrics
values in general.

When doing the background and related work, the tools used by previous stud-
ies were evaluated based on the criteria explained above. In addition to the tools
provided by previous research, searching for tools was performed using keywords,
e.g., "quality metrics tool calculator", "code metrics calculator source code", "Chi-
damber and Kemerer metrics calculator". Following blog posts, Quora5 answers
and Stack Overflow6 helped us explore the different tools available.

The tool selection was performed by first reading the information on the tool’s
website and in the previous research (if the tool was used in previous research),and
if the tool was available for download, we proceeded to installing and testing it.

The tools that were evaluated are described below.

(PRO Metrics)
PROM framework was the first tool that was considered. Unfortunately. af-
ter tracking back the references [61, 62, 63, 34], it was impossible to find
the tool, the papers only explained how it works and its specifications. After
contacting the creators of the tool, we were informed that the tool has been
discontinued and no longer available for usage.

CCCC
5www.quora.com
6www.stackoverflow.com
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The next tool was C and C++ Code Counter (CCCC)7. Even though the name
does not suggest, it supports Java source code. The main disadvantage is that
the tool is not extendable and automated.

Source Monitor
Source Monitor8 allows for inspection of the complexity of the project both
on module level and as a whole. As with CCCC, the main disadvantage of this
tool is the lack of automation.

Plugins
It is worth mentioning that multiple plugins for IDE9,10,11 were found. They
provide an integrated approach to metrics calculation in parallel with coding.
Developers can install the plugins on their IDE and obtain metric values as the
system progresses. The reason why this type of tools are not suitable for this
thesis is because they are not extendable and can not process large number
of application automatically.

Based on the seven characteristics presented earlier and the comparison of the
previously presented tools, Analizo12 [64] was chosen as the tool that we used to
perform the calculations of the metrics. More specifically, Analizo version 1.20.0-
rc1. It was chosen as the best suitable tool for this thesis. It calculates the metrics
that are focus of this work, supports Java, it is scalable and provides an automated
process of calculating the metrics on source code level. Additionally, it is free and
maintained by researchers at University of Sao Paulo and University of Brasilia.
When we contacted the team behind it, we were assured to have a point of contact
if we need clarifications. Also, when we got in touch with them, they informed us
that they are also using Analizo, parallel with us, performing a study to calculate
software quality metrics on Android applications using Analizo.

Analizo’s architecture

Analizo architecture is presented in Figure 10, each layer in the diagram uses only
the services provided by the layers directly below it.

The Core layer is independent from any other layer. The layer implements most
of Analizo logic. It stores information regarding the source code of the application
that is being analyzed. Information include list of all modules, attributes, methods,
dependency information. [64]

7https://sourceforge.net/projects/cccc/
8http://www.campwoodsw.com/sourcemonitor.html
9http://metrics2.sourceforge.net

10http://www.arisa.se/products.php?LOG=1&item=9
11http://eclipse-metrics.sourceforge.net
12http://www.analizo.org
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Figure 10: Analizo architecture [64]

The Extractors layer contains the different source code information extrac-
tion strategies built in Analizo. Extractors get information from source code and
store them in the Core layer. Currently, the extractor that is used is Doxyparse13.
Doxyparse is a source code parser for C, C++ and Java. Doxyparse is based on
Doxygen14, a multi-language source code documentation system that contains a
robust parser. [64]

The Metrics layer processes the information extracted from the extractor layer
in order to calculate metrics. Detailed information about supported metrics can be
found on the website15 or by using the command analizo metrics –list.

The Output layer is responsible for handling different file formats. The output
format used is YAML16 [64].

The Tools layer includes a set of command-line tools17 that are part of Analizo
interface. These tools use services provided by the other layers: they instantiate
the core data structures, the extractor, optionally the metrics processors, an output
format module, and orchestrate them in order to provide the desired result. [64]

"Those tools are designed to adhere to the UNIX philosophy: they accomplish
specialized tasks and generate output that is suitable to be fed as input to other
tools, either from Analizo itself or other external tools" [64].

Features provided by Analizo

Analizo supports multiple features, the ones that are relevant for this thesis are
explained below.

Analizo supports multiple programming languages, C, C++ and Java making it
suitable to use it on Android applications. The analyzing of the source code is done

13https://github.com/analizo/doxyparse
14www.doxygen.org
15http://www.analizo.org/faq.html
16http://www.yaml.org/
17http://www.analizo.org/man/analizo-metrics.html
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by Doxygen.
Analizo can calculate both project level metrics, which are calculated for the

entire project in addition to module level metrics, which are calculated individually
for each module. In the case of Java, the module level calculation of the metrics is
done for every class, interface and enum. For the Android application, the following
module level metrics are calculated: NOM, DIT, LOC, NOA, NOC, NOM, RFC, SC.

There are two ways to calculate the metrics in Analizo. The first approach, called
"batch" processing, meaning the tool can calculate the metrics for more than one
project simultaneously. The feature that is missing when doing "batch" processing is
specifying the language that the source codes are written in. The second approach
is calculating the metrics for each project separately. In order to automate this
approach, a script was created that will navigate to the projects and treat them as
single projects. The script can be found in Appendix A.1.1. This approach is more
flexible, it allows to specify the targeted language for which the metrics should be
calculated. Specifying the language ensures that possible application which are not
written in the targeted language are excluded from the calculations.

After doing test cloning, some applications were included whose source codes
was in languages different than Java. Accordingly, the second approach for calcu-
lating the metrics values had to be used where the language (Java) was specified.
The tool automatically excluded the source projects written in languages different
than Java. In addition, it keeps track of all excluded projects.

Calculations and storing metrics values

In order to calculate the metrics values on the source code of the application, we
first need to obtain a copy of the source codes locally. In order to achieve that,
each application is cloned to the appropriate folder based on the categorization of
F-Droid.

Once the metrics are calculated they are stored in local database.
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3.1.3 Analysis and Deriving Thresholds

Figure 11: Thresholds identification

Considering every metrics is independent, the analysis of metric values is per-
formed separately for each metric in every category of applications. Using Easy-
Fit18 the histograms of the values obtained for each metric were fitted into the
family of two-parametric Weibull distributions as proposed by the preceding re-
searches [26, 27]. The probability density of two-parameter Weibull distribution is
given by:

f(x) =
α

β

(
x

β

)α−1
e−(x/β)α x, α, β > 0 (3.1)

Parameter B is called a scale parameter and its role is just ’rescaling’ the density

18www.mathwave.com/easyfit-distribution-fitting.html
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graph, while A is a shape parameter and, as such, it describes the general appear-
ance of the density graph and, correspondingly, the properties of the distribution.

It has to be pointed out that the distribution is unimodal when the value for
A > 1, while for 0 < A≤ 1 the density function 3.1 is monotone decreasing for all
x > 0. It can be noticed that for large values of A, the values of the mean and mode
are rather close, and consequently, the mean value can be used as an approximation
for the most typical value, although the expected value as well as the moments of
all orders exist for all A, B > 0. However, the moment-generating function does
not exist when A < 1 as the distribution for these values of A is heavy-tailed. For
Weibull family of distributions, where being heavy-tailed and unimodal coincide.

In addition, for every metric in each category a frequency chart and frequency
table is generated using SPSS19. The chart and the table shows the percentage of
the modules have particular value for specific metrics in a category.

Based on previous research, frequency chart, frequency tables and visual analy-
sis, two percentiles are defined.

If the defined percentiles are changed/adjusted for a particular metrics in a
category, this information will be specified and explained in chapter 4, results and
discussion.

One frequency chart is also created on the dataset as whole, this will give us the
opportunity to observe the change (if any) between the categories and the dataset
as a whole. Accordingly, we will conclude if we can derive general thresholds for
Android applications.

Not all application belonging to one category can be treated the same. In each
category there are applications that are simple and do few tasks and applications
that are larger, i.e. contain more modules. Correspondingly, in addition to the
thresholds for each category of applications and on the dataset as a whole, subcat-
egories are defined based on the number of modules. The aim with this approach
is to help developers locate their application easily. We make an assumption that
metrics values differ based on the size of the application. If the application has only
few modules, the values of the metrics will differ compared to a large application.

19https://www.ibm.com/products/spss-statistics
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3.2 Implementation

Figure 12: Implementation process

The dataset construction and metrics calculations were done on Debian 9 instance
running on skyhigh.hig.no. SkyHigh20 is a cloud service provided by NTNU in
Gjøvik. Once ready for importing, the values were imported in local MySQL21

database running locally on Windows 10. SPSS was used to create the graphs.
The implementation process is summarized in figure 12.

A GitHub repo22 contains the metrics values for all categories and dataset as
whole, list of applications and their meta data extracted from F-Droid and an ex-
ample how metrics values were stored in the database.

3.2.1 Data Collection

F-Droid provides very efficient way on how to extract the metadata for all applica-
tions that can be found on the website. By using single command wget https://f-
droid.org/repo/index.xml, the latest index.xml file can be downloaded. The file con-
tains all the necessary information for every application. An example is shown

20https://www.ntnu.no/wiki/display/skyhigh/Openstack+documentation
21https://www.mysql.com
22https://github.com/milestojkovski/MACS490
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in Figure 8. Parsing the XML document to extract the necessary information was
done with a Bash Shell23, a script A.1.2 was created to extract the needed meta-
data: package (id), the date when the application was added in F-Droid (added),
the date when the application was updated (lastupdated), the name of the applica-
tion (name), what category does it belong to (category), the link to the repository
(source) and the version (marketversion). From the package, only the most recent
version was extracted (the first package tag), size, and the date when it was added.
The market version must be the same as the version.

Applications that have their source code on GitHub24 or GitLab25 were ex-
tracted. These two platforms are Git26 version control repositories, making the
cloning of the source code automated.

When parsing the XML, the data was tailored so it can be imported in the local
database. LOAD DATA LOCAL INFILE was used to import the data from the file
created by the script.

Extracting the source code URL for the application that fulfill the predefined
time period from the database was trivial.

3.2.2 Calculating and Storing Metrics Values

Cloning the source code from the applications is the first step towards calculating
the metric values. A script for cloning the applications was created by adding git
clone in front of the source code URL extracted from the database. In addition, the
script also created the folders with the category name and cloned the appropriate
applications in the appropriate folder (category).

The data set was split into 17 unique categories: System, Games, Reading, Time,
Security, Multimedia, Navigation, Money, Graphics, Internet, Development, Them-
ing, Connectivity, Science and Education, Writing, Sports and Health, Phone and
SMS according to F-Droid categorization.

As shown in the figure 13 the projects are placed in the category that they
belong to in accordance to F-Droid categorization.

23https://www.gnu.org/software/bash/
24https://github.com
25https://about.gitlab.com
26https://git-scm.com
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Figure 13: Folder Structure

After cloning, the script A.1.1 calculated the values for the each metric.
Once started in every category folder it calculates the metrics for each project

independently. The core command is, analizo metrics -o output –language java -x
test:androidTest. It specifies that the target language is Java. This way all other
projects (projects written in different language) are automatically excluded. Thus,
a list of excluded projects is generated. It also excludes test files that are located
in folders with named test and androidTest. However, this does not guarantee that
all test files will be excluded. If the test files are located in the same folder as the
source files they will be taken into consideration in the calculation.

The script extracts the module level (class, interfaces and enums are all consid-
ered modules) metrics from each project and prepared them for importing into the
database. After successfully computing the metrics, there are 17 files to be loaded
in the database (one file for each category). The file contained all module level
metrics for all modules of the project. In order to load the data into the database,
17 tables were created, a table for each category. Each table contains the module
level metrics values for each project in that particular category. The last column of
the tables is the name of the project, which helps to locate where does the values
come from. If there are outliers in the data set, it would be valuable to manually
inspect it.

After successful filtering, cloning and calculating the metrics we ended up with a
data set of 865 applications that the metrics were calculated for. Table 4 represents
the detailed numbers.
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For each category the following information are presented:

• Category name - represents the 17 categories that the applications are sep-
arated in. The categorization is done in correspondence with F-Droid cate-
gories.

• Apps in F-Droid - the number represents the total number of applications
that were extracted from F-Droid. The condition that the application had to
be updated in the last 3 years must be met.

• Apps cloned - the number represents the total number of applications
source codes that were cloned from the remote repository on GitHub and
GitLab.

• Percentage cloned- represents the successfully cloned applications.
• Apps metrics computed - represents the number of applications that Analizo

was able to parse and compute the metrics for.
• Percentage computed - represents the percentage of total applications that

Analizo was able to parse and compute metrics for.
• Number of modules - represents the total number of classes, interfaces,

enums in the category. The value was calculated for each project separately.
The sum of all project in each category is giving us this number.

• Modules metrics computed - represents the total number of modules that
Analizo could parse and calculate the metrics for.

• Percentage computed - represents the percentage of total modules that
Analizo could parse and calculate metrics for.

By looking at the columns with percentages that are representing the degree of
successfulness, we can observe that most of them are not 100% successful.

The reasons why some applications failed to get cloned are: wrong URL to the
source code, empty repositories and migrated repositories.

The reasons why Analizo could not compute metrics for all cloned applications
are: applications written in language different than Java. This can be applications
that are using cross platform languages that allow developers to write in one lan-
guage but deploy the app on multiple platforms and applications that Analizo could
not parse.

The occurrences of empty modules and modules with methods and attributes
being commented out is the cause why a small percentage (1.87%) of the total
number of modules that metrics were computed for had value 0 for all metrics.
Accordingly, these metrics values were deleted from the dataset.

3.2.3 Analysis and Deriving Thresholds

Extracting the values from the database was performed with queries, examples
can be found in appendix A.1.3. To extract the metrics values for each category is
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trivial since all metrics values were stored in their appropriate table (a table for
each category).

Using EasyFit the Weibull distribution fitting was generated and at the same
time the frequency charts and tables were generated with SPSS.

From here on, we proceed in the following manner, when the fitted two param-
eter Weibull distribution - see section 3.1.3 and formula 3.1 - is unimodal, that is,
the shape parameter A > 1. We use the the mean value of the obtained distribu-
tion as the threshold. Otherwise, the threshold values are obtained using percentile
from the respective histograms.

Based on visual analysis of the frequency chart, frequency tables and previous
research 70th and 90th percentiles are used to derive thresholds. For every metrics
percentiles might be adjusted in cases where distributions are taller e.g. when more
than 90% of the values are 0 and or 1. The percentiles are dividing the dataset into
three parts, from the lowest value until the 70th percentile are values that are
common, from 70th until 90th are values casual and every value that is greater than
90th percentile is uncommon.

For NOC 70th and 90th percentile had to be adjusted since across each category
more than 95% of the values for NOC are 0 and/or 1. The 85th and 95th percentiles
were used instead. By increasing the percentages this high, we can observe that the
frequency of values 0 and 1 is extremely high.

For the subcategories, a scatter graph is created which plots the number of
modules on the X axis and the value of the metrics on the Y axis. By observing the
chart, clusters of applications were identified based on number of modules.
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4 Results and Discussion

4.1 Results

The threshold values are presented for each category. Additionally, sub-categorization
was performed based on the number of modules and thresholds are derived for
each subcategory.

Category level

For every metric in every category a frequency chart, frequency table and a fitting to
Weibull distribution was generated. An overwhelming number of charts and tables
have been produced and it is not practical to place them in this report.

Instead, table 5 summarizes the A value for Weibull distribution for all cate-
gories.

We provide two Weibull histograms: figure 14 shows heavy-tailed distribution
whereas figure 15 does not indicate heavy-tailed distribution.

Additionally, we provide three frequency charts:

• Figure 16 that shows the 70th and 90th percentile is applicable
• Figure 17 that shows the need for adjusted percentiles when deriving the

thresholds
• Figure 18 shows the frequency of the metric for which we take the average

as threshold value

Based on the Weibull shape parameter A, presented in table 5 we can observe
that the distributions for all metrics except DIT are heavily-tailed across all cat-
egories. Accordingly, the average value can be defined as threshold for DIT only.
The average was rounded so we get whole number, even though the A parameter
changes across the categories.

The rest of the metrics follow heavily-tailed distributions and we need to derive
thresholds using percentiles.

Weibull distribution for RFC in system category is shown in figure 14, A=0.77365
and B=15.403.
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Figure 14: Weibull distribution for RFC - system category

Weibull distribution for DIT in system category is shown in figure 15 with pa-
rameters A=1.3969 and B=1.0044.

Figure 15: Weibull distribution for DIT - system category
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Category NOM RFC DIT NOC CBO
A A A A A

System 0.82434 0.77365 1.3969 0.94989 0.68671
Games* 0.97161 0.76624 1.6239 0.75802 0.48517
Reading 0.73603 0.5245 1.1156 0.9593 0.57428

Time 0.86175 0.6091 1.5371 0.95428 0.66615
Security 0.79004 0.55464 1.3712 0.8989 0.56966

Multimedia* 0.95229 0.73314 1.4214 0.97171 0.62977
Navigation 0.87116 0.8065 1.0791 0.95177 0.59852

Money 0.88494 0.79416 1.547 0.99543 0.60288
Graphics 0.8647 0.7027 2.11 / 0.78354
Internet* 0.91783 0.69756 1.4196 0.98344 0.53426

Development 0.95366 0.71281 1.2678 0.79183 0.63009
Theming 0.99945 0.74032 1.5661 0.94318 0.88337

Connectivity 0.81512 0.77486 1.3049 0.9812 0.60533
Science and
Education 0.6752 0.71409 1.1403 0.88946 0.54858

Writing 0.98843 0.73478 1.2824 0.96788 0.61633
Sports and

Health 0.9117 0.8579 1.2591 0.80148 0.64828

Phone and
SMS 0.97383 0.75429 1.284 0.9788 0.58726

Table 5: Weibull shape parameter A

*Because of licensing limitations, the evaluation trial period of EasyFit supports up
to 5000 records. The results in the categories exceeding 5000 modules are obtained
from 85.6% of the modules in games, 62.7% of the modules in multimedia and 34.6%
of the modules in internet.

Figure 16 shows the frequency chart for NOM in the system category, we can
see that the data is more evenly distributed compared to NOC in figure 17 hence
the 70th and 90th percentiles can be used.
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Figure 16: NOM System

Figure 17 shows the frequency chart for NOC in the system category. Since
92.21% of the modules in this category have NOC 0, the 70th and 90th percentiles
are 0. Accordingly, the thresholds were derived using the 85th and 95th percentiles.

Figure 17: NOC System

Figure 18 shows the frequency chart for DIT in the system category, we can
observe the difference between figure 16 and 17, the data does not follow heavy-
tailed distribution.
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Figure 18: DIT System

Following the same approach as presented for category system, the thresholds
for the rest of the categories were derived. The percentiles for NOM, RFC and CBO
remained the same for the rest of the categories, 70th and 90th. DIT is not following
a heavy-tailed distribution so the average was taken as threshold value for the rest
of the categories. The percentiles were adjusted for NOC accordingly, 85th and 95th

percentile for the rest of the categories.
Table 6 shows an overview of the results for each category. The categories name

are in the first column and for each metrics the threshold values are separated into
common/casual/uncommon.
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Subcategory level

By looking at the frequency chart for modules in the dataset as a whole in figure 19,
we can observe that the applications tend to lean towards being relatively small to
medium.

Figure 19: Frequency of modules on the dataset

More clearly, the histogram in figure 20 shows that 686 out of 865 applications
have between 1 and 100 modules.
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Figure 20: Histogram of modules seen on the dataset

By plotting the number of modules on the X axis and any metrics on the Y axis of
a scatter plot, we can observe for possible clusters as in figure 21. For each category
we have derived approximate boundaries for small, medium and large applications,
keeping in mind the observation from figure 19 and figure 20 showing the tendency
of our applications.

By observing figure 21, we can define two clusters, one for applications that
have from 1 to 50 modules, medium size application that have from 55 to 110
modules and for large applications we can observe that there are only few and can
not derive thresholds for.

We should note that the number of applications in the first two clusters is higher
compared to the third cluster, hence we can suspect outliers and will not define a
range for large applications.
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Figure 21: Number of modules in System category

The same approach was applied to the rest of the categories. Table 7 defines the
subcategories for every category. When we observe the table 7 and the values for
small, medium and large applications, we can notice gaps between the small and
the medium for instance. The reason behind the gap is the lack of applications with
modules that equal a value from the gap. For instance on the category system there
is a gap between 50 (the upper boundary to small applications) and 55(the lower
boundary for medium app). This is caused by the fact that none of the applications
from the dataset in the category system have modules between 51 and 54. This is a
limitation of our dataset and might improved by including even more applications
in the dataset.
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Category Subcategories
small medium large

System 1-50 55-110 /
Games 1-75 89-120 /

Reading 2-33 55-105 /
Time 1-50 60-110 > 124

Security 1-60 / /
Multimedia 1-104 115-210 /
Navigation 1-50 60-120 /

Money 1-60 / /
Internet 1-109 140-284 > 300

Development 2-15 30-70 /
Theming 1-11 16-23 /

Connectivity 2-50 65-140 /
Science and Education 2-23 33-65 90-130

Writing 1-32 40-58 70-128
Sports and Health 2-43 90-139 /
Phone and SMS 1-13 30-75 /

Dataset as whole 1-27 30-100 > 100

Table 7: Subcategories

In order to derive threshold values for each metrics in the subcategories, we
use the same approach as for deriving thresholds for the categories. The category
graphics was excluded because there are only eleven applications withing the cat-
egory.

Tables 8, 9, 10, 11 and 12 show the shape parameter A of the Weibull distribu-
tion for each metrics in the subcategories.

By observing the Weibull shape parameter A for NOM given in table 8, we can
see that for small applications (1-50 modules) and medium (55-110 modules) in
the category system defined in table 7 the shape parameter is less than 0. The value
remains less than 0 for the rest of the subcategories, meaning the distributions for
NOM are heavy-tailed.
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Category A for NOM
small medium large

System 0.80724 0.94052 /
Games 0.72019 0.90606 /

Reading 0.90272 0.76613 /
Time 0.79598 0.99343 0.9856

Security 0.85508 / /
Multimedia 0.98736 0.95379 /
Navigation 0.86936 0.81969 /

Money 0.95618 / /
Internet 0.97754 0.91371 0.90626**

Development 0.45558 0.96344 /
Theming 0.99245 0.95341 /

Connectivity 0.8517 0.86089 /
Science and Education 0.87806 0.98304 0.96767

Writing 0.99855 0.8604 0.9745
Sports and Health 0.89456 0.84867 /
Phone and SMS 0.91345 0.83926 /

Table 8: A parameter for NOM in subcategories

The values of A for RFC is given in table 9. All subcategories (small, medium,
large) have A lower than 1 indicating that the distribution of RFC is heavy-tailed.

Category A for RFC
small medium large

System 0.74549 0.73976 /
Games 0.72169 0.69776 /

Reading 0.64125 0.75904 /
Time 0.78158 0.75611 0.71483

Security 0.76723 / /
Multimedia 0.73463 0.7518 /
Navigation 0.76279 0.71585 /

Money 0.80514 / /
Internet 0.75741 0.70194 0.68177**

Development 0.79917 0.77481 /
Theming 0.80907 0.82663 /

Connectivity 0.85444 0.75444 /
Science and Education 0.81938 0.69231 0.56127

Writing 0.73585 0.71278 0.71652
Sports and Health 0.94874 0.85685 /

Phone 0.88589 0.79562 /

Table 9: A parameter for RFC in subcategories
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The shape parameter could not be calculated for small applications in the them-
ing category as presented in table 10. However, we assume since all values for the
CBO in the subcategories are less than 0, small applications from the theming cat-
egory are following heavy-tailed distribution too.

Category A for CBO
small medium large

System 0.86655 0.67049 /
Games 0.70199 0.60594 /

Reading 0.87076 0.67003 /
Time 0.75704 0.71024 0.60626

Security 0.77026 / /
Multimedia 0.70666 0.63098 /
Navigation 0.75949 0.66754 /

Money 0.71554 / /
Internet 0.69171 0.5765 0.49146**

Development 0.89022 0.65656 /
Theming no fit 0.8758 /

Connectivity 0.79032 0.62516 /
Science and Education 0.88437 0.62705 0.63029

Writing 0.70415 0.62734 0.67794
Sports and Health 0.99807 0.70386 /
Phone and SMS 0.9978 0.69301 /

Table 10: A parameter for CBO in subcategories

By observing the values of A in table 11, we can observe that for all subcate-
gories (small, medium, large) the value is bigger than 1, meaning the distributions
for DIT are not heavy-tailed.
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Category A for DIT
small medium large

System 2.1284 1.4574 /
Games 1.4945 1.4846 /

Reading 2.0472 1.6658 /
Time 2.1976 1.3762 1.5432

Security 1.7626 / /
Multimedia 1.5222 1.4742 /
Navigation 1.7675 1.9262 /

Money 1.6992 / /
Internet 1.7948 1.485 1.1309**

Development 1.8901 1.2864 /
Theming no fit 1.4262 /

Connectivity 1.9637 1.3176 /
Science and Education 1.8548 1.471 1.3166

Writing no fit 1.4955 1.8031
Sports and Health 1.8944 1.2169 /
Phone and SMS no fit 1.6309 /

Table 11: A parameter for DIT in subcategories

In table 12, we can observe that A is not calculated for small applications in
theming, writing and phone and SMS categories. The reason being that all values
for NOC were 0. The rest of the values for the shape parameter are bigger than 1,
meaning the distribution is not heavy-tailed.

55



Software Quality Metrics in Open Source Android Projects

Category A for NOC
small medium large

System 1.4507 1.3047 /
Games 1.1816 1.0155 /

Reading 1.5743 1.2787 /
Time 2.0562 1.1504 1.1749

Security 1.5243 / /
Multimedia 1.2064 1.1345 /
Navigation 1.6319 1.1455 /

Money 1.3054 / /
Internet 1.1841 1.2114 1.0542**

Development no fit 1.4119 /
Theming all values are 0 1.5866 /

Connectivity 1.2669 1.1968 /
Science and Education 2.1144 1.3146 1.1035

Writing all values are 0 1.4486 1.5023
Sports and Health 1.5189 1.1467 /
Phone and SMS all values are 0 1.2102 /

Table 12: A parameter for NOC in subcategories

**Because of licensing limitations, the evaluation trial period of EasyFit supports
up to 5000 records. Therefore the A for the large applications in internet category is
obtained by fitting the first 5000 values, that is 57.2% of the total values.

Accordingly, we proceed with deriving thresholds using percentiles for NOM,
RFC and CBO while average is taken as threshold value for DIT and NOC.

Tables 13, 14, 15 are summarizing the threshold values NOM, RFC and CBO
respectively.

The threshold values for DIT and NOC remained constant throughout the sub-
categories. All subcategories had DIT value of 1 and NOC value of 0, therefore it is
not useful to create subcategories in these cases and we excluded the two tables.
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4.2 Discussion

This discussion is divided into three parts.
The first part consists of discussion on the results and the interpretations of the

same. The second section is be a discussion regarding the validity of the chosen
method for deriving thresholds. In the third section, the limitation of this work will
be outlined.

4.2.1 Interpretation of the Results

We should note that when interpreting the results we also need to refer to ta-
ble 4 which contains the number of applications and modules for each category.
For instance, it is important to stress out that some categories have substantial dif-
ferences in number of applications. However, graphics category being one that has
the least applications.

NOM represents the sum of methods in a module, we can observe that the
most common values have range between 0-6, casual occurrences are from 7-14
and values bigger than 14 are uncommon. When comparing every category to the
dataset as whole we can observe that the maximum change of values is +/- 3,
(science and education). Accordingly, we can propose that the general threshold
for NOM can be derived from the dataset as whole. However, if the applications
that is being developed can be classified to one of the categories provided, the
appropriate thresholds are more fitting.

By observing the common threshold values for NOM we notice they start from
0, i.e., there are modules that have 0 methods. The reason behind this is the fact
that enums usually do not have any methods only attributes. Additionally, if a class
is used to declare constants only, it will have no methods.

By observing the thresholds for NOM in the subcategories, presented earlier in
table 13, we can see NOM increases with the size of the applications i.e., bigger
applications have larger NOM. Hence, it is important for developers to take size of
their application into consideration when referring to thresholds for NOM.

RFC counts all methods that can be invoked in response to a message. This
includes all methods accessible withing the hierarchy. The greater the RFC, devel-
opers and testers should spend more testing resources. Additionally, testing and
debugging of the class becomes difficult since it requires greater level of under-
standing.

By comparing the thresholds for RFC between categories and the dataset as
whole presented earlier in table 6, we can observe greater change among the cate-
gories and also when each category is compared to the dataset as whole, hence we
propose the usage of the thresholds for each category separately.

The threshold values for RFC obtained from the dataset as a whole shall be
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used only when the application can not be categorized according to the categories
provided. By applying the general thresholds we believe that the minimal quality
criteria will be met.

By observing the thresholds for RFC for the subcategories presented in table 14,
we can see overall increase in the threshold values as the application size increases.
This should be taken into account by developers when they refer to threshold val-
ues for RFC.

We have noticed that DIT is taken as the longest path from the measured module
to the root module. However, the tool does not distinguish between when a class
is extending another class and implementing interface. We believe that there is a
need for two separate metrics, one that will calculate the DIT of a class that is
inheriting other class and a new metric, that will measure the depth of inheritance
tree for a class that is implementing interface(s).

In addition, the calculates DIT only based on the modules that are written by
the developers and are present in the source code. This leads to rather low DIT if
we have in mind that the system classes in Android have high DIT themselves.

If we take an example of a class that is extending activity, that class in our case
has DIT 1 because activity is a system class and is not present in the source code of
the application.

When we look at the DIT of activity1 we can observe the following hierarchy:
A class < Activity < ContextThemeWrapper < ContextWrapper < Context <

Object
So a class that extends activity has DIT of 5 if system classes are taken into

consideration.
Taking into consideration that system classes can not be directly manipulated

by developers and they are heavily tested, we propose that developers look at the
classes written directly by them when comparing their DIT to the ones proposed in
this thesis.

Both on category and subcategory level the average value of DIT is 1.
The thresholds for NOC presented earlier in table 6 are on the low side, this

means that very few (up to two) sub-classes inherit the methods of the parent class.
This indicates also the low value for DIT. We should note that if developers wish to
create classes that provide methods to more than two sub-classes i.e. super/utility
classes, more testing resources and time need to be dedicated to them.

When the values for NOC were split across small/medium/large applications
we observed change in the Weibull distribution density function. As shown earlier
in table 12, the A parameter is > 1 meaning average can be taken as the threshold
value. As presented in the results above, across all subcategories the value for NOC

1https://developer.android.com/reference/android/app/Activity.html
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is 0. Both subcategories and categories of application have low value for NOC, the
latter one being more flexible (allowing value for NOC up to two). Accordingly, we
propose category the thresholds presented in table 6 to be used for NOC.

The CBO threshold values presented in table 6 are on the low side. This is
good indication that the applications are loosely coupled, this fact makes it easier
to make changes in the modules without many side effects. We can assume that
open source applications prefer loosely coupling because it makes it easier for the
community to contribute to the projects. The higher the coupling is, the harder it
becomes to understand and change the modules.

If a change needs to be made in a class (X) that depends on a class (Y) any
change on a public member of Y that is used by X needs to be changed in X as well.
As pointed in the viewpoints for CBO, low coupling encouraged modular design
and reuse.

We can propose the general threshold values derived from the dataset as whole
for types of applications that are not covered by our categorization. However, if
the application belongs to a category that has specific threshold, we propose that
specific values to be used.

By looking at the thresholds for the subcategories presented in table 15, we can
observe that CBO thresholds increase as the applications size increase. This needs
to be considered by developers, the larger the application the higher the upper
limit of CBO is.

By summarizing both category level and subcategory level metrics threshold
values for the five metrics investigated in this thesis we can conclude that main-
tainability efforts increase in applications that have the highest values for all five
metrics. Portability and efficiency decrease with increase of the values of every
metric.

Keeping in mind that the dataset contains open source applications only, we
need to point out the applicability of these thresholds to a commercial mobile ap-
plications development might be arguable. There might be substantial differences
in how commercial applications are build compared to open source. These differ-
ence might arise from the specific type of application build, the specific culture of
the enterprise and the development team, resources available or the customers’ re-
quirements. On the other side, contributors to the open source projects are often
experienced developers that have the experience and knowledge to contribute to
project outside their professional work which may provide support to the thresh-
olds. Accordingly, we argue that the thresholds are acceptable to professional soft-
ware developers developing commercial applications.
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4.2.2 Validity of the Metrics Thresholds

By gathering large number of applications, utilizing the tool to its best abilities and
by elaborating on the limitations we are confident that the thresholds can be used
in developers day-to-day coding as indicators of possible issues with their modules.

The categorization of applications is done according to the F-Droid categories. A
possible misplacement of application in a category where they do not belong could
affect the threshold. However, taking into consideration that F-Droid is maintained
actively by the community, and it is used for research and the number of applica-
tions in 16 out of 17 categories is high, it is reasonable to assume that a possible
mismatch would not impact the thresholds.

As the sub-categorization is based on a particular dataset and the clusters of
applications, different datasets might have yield different subcategories. However,
we believe that this sub-categorization will help developers locate their application
more easily in terms of size. Furthermore, taking the size into consideration is im-
portant for metrics that thresholds change according to the size of the application.
Additionally, different subcategories can be defined, for instance based on lines of
code.

In order to use the full potential provided by Analizo we explored two ways of
computing the metrics: the first one is used in this thesis2 where each project is
treated separately and the metrics values need to be processed by us in order to
make them suitable to be imported in the database.

The second approach is so called "batch"3. On the first glance it seems that
batch process is better suited for this thesis since it handles the metrics values and
they are ready to be imported in a database right away. In addition, there is no
need to process the metric values, the output of the batch process is a .csv file that
contains all metrics values for all applications in the folder where the batch process
is executed. In our case we have executed the batch process in every category
folder. The final output would be the same and the only difference is that by using
batch, the final output is created by the process itself.

However, after performing the initial cloning of the applications for testing the
tool, we observed source codes written in languages different than Java. Some
examples included C# possibly developed as cross platform tools like Xamarin4.
Additionally, examples of React Native5 were observed.

Unfortunately, the batch option is not flexible and does not accept an argument
for the target language nor excludes specified directories. Compared to the ap-
proach used by us, it allows us to specify the target language, names of folders that

2http://www.analizo.org/man/analizo-metrics.html
3http://www.analizo.org/man/analizo-metrics-batch.html
4www.xamarin.com
5https://facebook.github.io/react-native/
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should be ignored and we were also able to have a list of excluded applications for
each category.

Despite the fact that the threshold values are derived based on the frequency of
the values, and not on the overall quality of the applications in the dataset, they
present a pattern of most applications in a particular category. We do not claim
that the values taken as most common and recommended by us are derived based
on applications that follow best practices in software engineering. However, the
values provide a consistent behaviours across categories.

These metrics thresholds should not be taken as the absolute ranges for a par-
ticular metric but rather as a guide towards better quality. As with the definition
of metrics given by Lorenz and Kidd [6], if a module exceeds the threshold value
it does not automatically implies that it will cause fault or bugs. However, it is a
strong pointer that for instance it needs to be divided into more modules or more
testing efforts should be dedicated.

As stated in the methodology and implementation, chapter 3, to the best of our
abilities and the abilities of the tool we excluded test files. We exclude folders with
names: test and androidTest. However, we can not confirm that every test file in
every application has been excluded, there is a possibility that the developers are
keeping their test files in the same folder as their source files. If this is the case,
we can not exclude the files form being treated as part of the source code of the
application with 100% accuracy.

In addition, as stated previously, all classes, interfaces and enums6,7 are treated
as modules and metrics are calculated for them. There is a discussion in the An-
droid community about usage of enums in Android apps, on the topic of "Man-
age Your App’s Memory" [65] in "Be careful with code abstractions" section it is
indicated that "Enums often require more than twice as much memory as static
constants. You should strictly avoid using enums on Android."

On the other hand, on the "Performance tips" [66] the section about avoiding
enums has been deleted [67].

We have observed applications that are using enums for declaring constants and
also enums that inherit other classes and have logic. Hence, we argue that we need
to include them in the calculations, ideally they would be treated separately and
specific thresholds would be derived.

4.2.3 Limitations

The thresholds now are defined for a module in an application, by modules as
defined previously we include classes, interfaces and enums. Despite the fact that
they are part of a application, having a separate thresholds for each of them would

6https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
7 https://developer.android.com/reference/java/lang/Class.html
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be more reliable. Enums usually contain only constants and are decreasing the
value for NOM for instance. However, we have observed enums that contain logic,
hence deriving thresholds separately would be beneficial.

Furthermore, by treating all classes as one, we do not provide a specific thresh-
olds for classes that extend activities or services for instance. These special An-
droid classes might have their own characteristics that are distinguishable when
compared to each other.

We were not able to exclude test files that are placed together with the source
code or in a folder named differently than androidTest or test, we could not estimate
how much is their impact, if any. However, we believe test files that are places in
the same folders as the source code, can have impact on the threshold ranges.

As they are now, threshold values treat all modules the same. However, in prac-
tice, there might be a need for a particular number of modules that exceeds the
threshold values. This this is inevitable and the developers have a solid reason why
a module with extensive number of methods, long inheritance tree, high coupling
is needed they should be free to have it. However, even if the need for this type of
module(s) is justified, the fact that more testing maintenance efforts will be spent
on the modules and the application itself remains. Additionally, a different type
thresholds for instance relative thresholds [68], that take into consideration the
need for modules that exceed the threshold can be proposed.

Different tools might interpret and calculate metrics differently. The applicabil-
ity of the results is dependent on the calculation method. To avoid this problem the
tool used to calculate the metrics must follow the metrics descriptions presented in
this thesis.
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5 Conclusion

Software quality metrics can reveal internal characteristics of a software product.
By calculating quality metrics, the system being developed can be monitored for
faults and potential issues. The software quality metrics are expressed by a number
only. Despite the fact that the metrics have a viewpoints on what does the value
represents and what is the ultimate goal in terms of desired value, we can not be
sure what does a particular number represents without having a reference value to
compare it to. For instance, we know that increase of DIT leads to raise of the com-
plexity in the system increases but we do not know what is the upper limit for DIT.
More importantly, we do not know if there is one upper limit for all applications or
it changes depending on the functionality of the application or perhaps the size.

This thesis proposes threshold values that indicates the lower/upper limit for
five metrics.

By successfully calculating values for NOM, RFC, DIT, NOC and CBO using Anal-
izo1 [64], we have provided a method on how to pragmatically calculate the met-
rics on source code level of large number of applications. Our dataset includes 865
Android applications across 17 categories, extracted and categorized from F-Droid2

The thresholds are given for each metric in each category, where categories are
based on F-Droid categorization that groups applications together based on their
functionality.

Furthermore, we have sub-categorized these applications in each category based
on their size with the aim to help developers locate the thresholds based on the
number of modules of their application.

Below, our main findings are presented with answering the research questions.
RQ1: To what extent can the traditional object-oriented software quality metrics

be applied to Android applications?
By successfully computing traditional object-oriented software quality metrics,

on large number of Android applications, our work can serve as a support to the
previous research for metrics calculation and thresholds identification [26, 27, 24]
and the area of computing quality metrics in Android applications [51]. In addition,
we propose possible improvement of DIT by introducing a new DIT-like metric
specially designed to capture the DIT of a class when it implements interface(s).

1www.analizo.org
2www.f-droid.org
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Furthermore, new metrics, specifically for Android applications including: Num-
ber of Activities, Number of Services, Number of Broadcast Receivers and Number
of Content Providers were identified as potential improvements and are elaborated
in future work, 5.1.

RQ2: What are the threshold values for different categories of application and the
dataset as whole?

Our analysis yield thresholds for each of the five metrics investigated.
For NOM and CBO were able to define general thresholds taken from the dataset

as a whole. However, we suggest taking the general thresholds values only in the
case when an application can not be categorized according to our categorization.
We believe that category level thresholds are more appropriate and should be used
whenever possible.

For RFC we propose the category specific thresholds. However, in cases when
the application can not be categorized in any of the categories provided by us nor
to similar category, we propose the usage of the general threshold for RFC derived
on the dataset as a whole.

Both inheritance metrics, DIT and NOC reveal low inheritance across the cate-
gories. For DIT we propose that modules extend one only another module and for
NOC we suggest value up to two. Keeping in mind that DIT is calculated only by
taking into consideration modules written by developers and present in the source
code. System classes are excluded from the calculations.

RQ3: What are the threshold values for each of the subcategories of applications
and the dataset as whole?

For NOM, RFC and CBO, the threshold values increases as the size of the appli-
cation increases. This indicates that developers need to take the size of the appli-
cation into account when using the thresholds for these three metrics. We believe
that subcategory metrics for NOM, RFC and CBO can aid developers more com-
pared to the category level thresholds since these thresholds change with the size
of the application.

For NOM, RFC and CBO we propose the usage of general thresholds based on
the dataset as a whole only in cases when the application developed can not be
categorized according to our categorization.

On the contrary, for DIT we did not observe any changes across subcategories.
The thresholds stay low in all subcategories and the value is one, irrespective of
the size.

Lastly for NOC we propose the usage of the category level instead of subcate-
gory. We believe that category level depicts the characteristics of the metrics better
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and gives a more suitable thresholds.

RQ4: What are the quality implications of the thresholds values?
Threshold values should be be seen as pointers to a possible problem, as defined

by Lorenz and Kidd [6] the thresholds are identifying anomalies which may not
necessarily cause problems. However, modules that exceed the threshold values
should be examined and tested rigorously.

Summarizing the viewpoints for the metrics and their impact investigated by
Lincke et al [54] we conclude the following:

Maintainability efforts rise with increase of all five metrics (NOM, RFC, DIT,
NOC, CBO). I.e., it becomes harder to make changes in the system, write tests,
maintain existing and implement new features.

Efficiency might decline as the metrics values increase. I.e., for developers it
means they might spend more time understanding the code and the functionality.
From users point of view, more computational resources will be needed for the
application to provide the expected performance.

Portability decreases as the values for all metrics increase. I.e., it becomes harder
to adapt/move classes in order to introduce new features or to support new devices.

5.1 Future Work

The thresholds indeed point out characteristics of a module, for instance by having
large value for NOM, it means the module is responsible for multiple jobs and is
a candidate for splitting into more than one module. However, further studies of
how these thresholds affect applications are needed in order to fully understand
the benefits they offer.

It is important to explore the implications that these thresholds might have on
the application, both from developers point of view and from users point of view.
One approach would be to investigate the success of an application that obeys
threshold values while being developed. A success can be examined from different
views, one being the user ratings and reviews on Google Play.

Comparing versions of the same application, where some versions consider
thresholds and other versions not, against the user ratings and user reviews ex-
tracted from Google Play would give a comparable and insight data on how the
application is viewed by the customers.

From the developers point of view, error data and their personal opinions can
give us indications on how these thresholds performed. In addition, the most im-
portant implication is how these metrics correlate with the Android specific fea-
tures e.g. permissions, activities, services, broadcast receivers and content providers.

A possible path for a new research would be deriving thresholds by splitting the
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classes into classes that extend for instance, activities, services, broadcast receivers,
content providers etc. By splitting the classes further than just between class, inter-
face and enums, further research can derive more specific thresholds for each type
of class.

Possible names of the metrics are:

• Number of Activities - count of the total classes that extend Activities.
• Number of Services - count of all classes that extend Services.
• Number of Broadcast Receivers - count of all classes that extend Broadcas-

tReceiver.
• Number of Content Providers - count of all classes that extend Content-

Providers .

Possible research areas include:

1. Identifying Android specific metrics.
2. Deriving thresholds for Android specific metrics.

A continuity of this thesis can be created on how the application performed
when using thresholds. Goals of the research can include:

• How do applications that belong to "common" threshold values performed
compared to "casual" and "uncommon" in terms on user ratings and reviews.

• How does application perform when using threshold values in terms of user
satisfaction.

• How does application perform when using threshold values from developers
perspective.

A study on relative thresholds for Android applications can potentially define
the number of modules inside the applications that can have values for the met-
rics outside the defined metric thresholds. An approach is presented by Paloma
et al. [68]. The concept of flexible thresholds captures the percentage of modules
that exceed the threshold limits. The assumption here is that applications can have
modules that exceed the metrics thresholds values. The cause can be complex re-
quirements, performance optimization and machine generated code.
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A Appendix

A.1 Scripts

A.1.1 Calculating Metrics Script

#enters every sub folder and calculates the metrics.
output is the name of the file that gets created

for D in ./*; do
if [ -d "$D" ]; then
cd "$D"
analizo metrics -o output --language java -x test:

androidTest
cd ..
fi
done
#go in every app folder from the root directory and

extract the package data and put it in output file
for D in ./*; do
if [ -d "$D" ]; then
cd "$D"
echo "${PWD ##*/}" >> output
cd ..
fi
done
#if the files are greater than XXX lines delete them.
for D in ./*; do
if [ -d "$D" ]; then
cd "$D"

var =220
lineCount=$(wc -l < output)
if [ "$lineCount" -lt "$var" ]; then
printf ’%s\n’ "${PWD ##*/}" > deleted.out
rm output
fi

cd ..
fi
done

#concatinates all the deleted folders into one
find . -name ’deleted.out ’ | xargs cat >

allExcludedProjects.txt
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# start to create the final output file by getting the
class values acc.dit ,drn dnrn drn

for D in ./*; do
if [ -d "$D" ]; then
cd "$D"

cat output | grep -w "acc\|accm\| amloc\|anpm\|cbo\|dit\|
lcom4\|loc\| mmloc \|noa\|noc\|nom\|npa\|npm\|rfc\|sc"
> temp_values

sed -e ’s/$/ | /’ -i temp_values #adds | after each end
line

cut -d ":" -f2 temp_values > temp_values1
split --additional -suffix =. tmpfv -l 16 temp_values1 #

slpit temp_values into smaller files containing 15
lines each

for f in *.tmpfv
do

cat $f | tr -d ’\n’ > $f.vert #makes them
vertial

tail -1 output >> $f.vert #adds the last line of
output file (folder name)

done
cat *.vert > final_vert.out
sed -i -e ’s/~/\\N/g’ final_vert.out #replaces ~ with \N

for null in db
rm x*
rm *.tmpfv
cd ..
fi
done

find . -name ’final_vert.out ’ | xargs cat > sum_final.
out

tr -d "␣\t" < sum_final.out > finalOutput.txt #deletes
all spaces betteen the pipes

rm sum_final.out
sed -e ’s/$/|/’ -i finalOutput.txt #adds pipe for

importing in DB

Listing A.1: Metrics calculating script

A.1.2 Script for Parsing XML

#extractin the values in () from the index.xml file.
they are saved in application_data.out

xmlstarlet sel -t -m "/fdroid/application" -v "concat(id
,␣’␣|␣’␣,added ,␣’␣|␣’␣,lastupdated ,␣’␣|␣’␣,name ,␣’␣|␣
’␣,category ,␣’␣|␣’␣,source ,␣’␣|␣’␣,marketversion)" -n
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index.xml > application_data.out

#extracts the values in () from fdroid/applciation/
package for each applcation , it gets the first
package node. they are saved in package_data.out

xmlstarlet sel -t -m "/fdroid/application/package [1]" -v
"concat(version ,␣’␣|␣’␣,size ,␣’␣|␣’␣,sdkver ,␣’␣|␣’␣,

targetSdkVersion ,␣’␣|␣’␣,added)" -n index.xml >
package_data.out

#adding the data from the application application_data.
out and package_data.out. not one under another but
in one line

paste -d ’|’ application_data.out package_data.out >
unfiltered_applications_data.out

cat unfiltered_applications_data.out | grep "https ://
github.com" > github.out

cat unfiltered_applications_data.out | grep "https ://
gitlab.com" > gitlab.out

#filtering , gets only the projecgs that are hosted on
github and gitlab

#cocatinates the projects from githib and gitlab. one
below antoher

cat github.out gitlab.out > lab_hub.out
rm github.out
rm gitlab.out

Listing A.2: XML parsin script

A.1.3 Queries

select nom , rfc , dit , noc , cbo
from class_level_values_ <category name >;

Listing A.3: Selecting metrics from category

select a.nummod as numberofmodules , b.<any metric >
from class_level_values_ <category name > b, temp_view_ <

category name > a
where b.folder_name=a.folder_name;

Listing A.4: Defining subcategories

select b.nom , b.rfc , b.dit , b.noc b.cbo
from class_level_values_ <category name > b
where b.folder_name IN (select a.folder_name from
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class_level_values_ <category name > a
group by 1 having count(a.folder_name
) between X and Y);

Listing A.5: Selecting metrics values for subcategories
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