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Preface

This project is a Master’s thesis conducted during the autumn term at NTNU,
Gjøvik. The author was initially introduced to Ethereum and blockchain technol-
ogy during a lecture in ‘Advanced Course in Mobile Technology’ by his supervisor
Mariusz Nowostavski.

The architecture of Ethereum requires developers to have a novel engineer-
ing mindset. It is therefore important for non-security experts to become famil-
iar with the process of developing secure smart contracts and equip themselves
with the knowledge of mitigating security vulnerabilities. More generally, it has be-
come increasingly essential for computer scientists and developers to be ‘security
aware’ and consider security implications throughout the process of their develop-
ment. Therefore, this thesis targets developers of smart contract applications and
blockchain enthusiasts within computer science research.

A background in Computer Science is preferable for the understanding of this
thesis. However, no prior knowledge of blockchain or Ethereum is necessary be-
cause the key terminologies used are explained in detail.

15-12-2017
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Abstract

Ethereum represents the second generation of blockchain technology by providing
an open and global computing platform which allows the exchange of cryptocur-
rency (Ether) and the development of self-verifying smart contract applications.
Smart contracts present a foundation for possessing digital assets and a variety of
decentralized applications within the blockchain area. Ethereum and smart con-
tracts are public, distributed and immutable, as such, they are prone to vulnerabil-
ities sourcing from simple coding mistakes of developers.

Motivated by the security breaches and recurring financial losses in smart con-
tracts, we aim to advance the field of security in smart contract programming.
The main objective is to aid smart contract developers by providing a taxonomy of
all known security issues and by inspecting the security code analysis tools used
to identify those vulnerabilities. Based on previous research as well as attacks on
Ethereum smart contracts, we propose an updated taxonomy which categorizes
all known vulnerabilities within their architectural and severity level. Our second
proposed taxonomy is a novel categorization of security tools on Ethereum.

Furthermore, we conduct the investigation of security code analysis tools on
Ethereum by assessing their effectiveness and accuracy. In particular, we analyze
four security tools, namely, Oyente, Securify, Remix, and SmartCheck. The results
indicate that there are overall inconsistencies between the tools on different secu-
rity properties. SmartCheck outperformed the other tools in terms of effectiveness,
whereas Oyente performed the best in terms of accuracy. Furthermore, based on
the limitations we identified, we propose future improvements within the user in-
terfaces, interpretation of results, and additional vulnerability checks.
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1 Introduction

The section below provides a brief introduction to the three main terms necessary
for the comprehension of this chapter and the overall thesis; blockchain, Ethereum,
and smart contracts. However, if you are already familiar with these terms, you can
jump to Section 1.1.

Innovative technological advancements are introduced regularly with the pur-
pose of finding novel and better approaches of implementing systems and software
products more effectively. One example of such a technology is blockchain, which
has the capacity of being implemented in many use cases such as internet inter-
action systems, public services, Internet of Things (IoT), and financial systems.
Blockchain technology and cryptocurrencies have experienced a steady increase of
attention from academia and the industry [1]. Simply said, blockchain represents
a fully-distributed public ledger and a peer-to-peer platform which makes use of
cryptography to securely host applications, transfer digital currency/messages and
store data [2]. It was initially introduced by Satoshi Nakamoto1 in 2008 and imple-
mented one year later in a peer-to-peer electronic cash system named Bitcoin [3].
After that, many new and novel ideas have been proposed and implemented, which
will be mentioned later throughout this thesis.

The second most popular blockchain platform as of November 2017, based on
the current cryptocurrency market capitalization2, is Ethereum - which is simul-
taneously the main focus of this work. Throughout our research work we have
encountered different definitions of Ethereum. However, for an initial and sim-
plified introduction we will use the definition of Vitalik Buterin (the inventor of
Ethereum) taken from a panel discussion. He explains Ethereum as a general
purpose blockchain, meaning that the blockchain is able to understand a gen-
eral purpose programming language. This allows developers to build a variety of
applications like the ones mentioned in the beginning, all in one blockchain, in-
stead of building a separate blockchain for each use case or application3. This is
the key component that differentiates Ethereum from Bitcoin. In addition to serv-
ing as a decentralized peer-to-peer platform to exchange cryptocurrency (Ether4),

1Anonymous (invented) individual or group of people.
2Cryptocurrency Market Capitalization: https://coinmarketcap.com/
3Video: "Technologies that will decentralize the world." https://techcrunch.com/video/

decentralizing-everything-with-ethereums-vitalik-buterin/59c01b739e451049f87f8c18/
4Ether: "The crypto-fuel for the Ethereum network." Link: https://ethereum.org/ether

1

https://coinmarketcap.com/
https://techcrunch.com/video/decentralizing-everything-with-ethereums-vitalik-buterin/59c01b739e451049f87f8c18/
https://techcrunch.com/video/decentralizing-everything-with-ethereums-vitalik-buterin/59c01b739e451049f87f8c18/
https://ethereum.org/ether
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Ethereum also introduces, for the first time, the idea of a Turing-complete block-
chain. Turing-completeness programming language in a blockchain-based platform
creates the opportunity for implementing a handful of decentralized applications
in financial and non-financial areas.

These decentralized applications in Ethereum and in other blockchain-based
platforms that support Turing-completeness, are referred to as smart contracts.
As mentioned previously, this is the main component that makes Ethereum differ
not only from Bitcoin but also from other blockchain-based platforms5 because of
its originality/novelty and also as a first mover in this field. However, the concept
of smart contracts itself was first introduced by Nick Szabo in 1997, where he de-
scribes them with a real-life canonical/primitive example of the humble vending
machine [4]. The rest of this chapter and the background chapter specifically, will
cover a more detailed explanation of smart contracts since they are of a prime
importance to this thesis.

1.1 The Scope

Ethereum is considered a relatively new and highly experimental platform, both
because of the time when it was introduced (July 20156), as well as its ability
to create distributed applications with a Turing-complete programming language
running in a decentralized, peer-to-peer platform like blockchain. Therefore, this
area of interest has gained a lot of attention from academia the last two years.
Being a new and highly experimental platform, it consists of many ongoing issues
and challenges. The most prominent one is the security aspect of the platform itself
and also the security issues within smart contract applications. These issues are
discussed in a systematic mapping study by Alharby and Moorsel, which identify
current research topics and open challenges; the results show that two thirds of the
papers focus on identifying and tackling smart contract issues [5]. Simply said, the
primary topic which is covered in this project is Ethereum’s security aspect.

Respectively, this thesis investigates the security vulnerabilities of smart con-
tract applications on Ethereum, and analyzes the security code analysis tools used
to identify vulnerabilities and bugs in smart contracts. To the best of our knowl-
edge and based on our thorough research of the relevant literature, we were not
able to find any research which focuses on the analysis of Ethereum’s security tools.
Whereas, there are many related research works regarding the security vulnerabil-
ities of smart contracts, which are further explained in detail in Section 3.

This thesis takes two approaches; the first one is focused on a current literature

5There are other blockchain platforms that support smart contracts implementation, but they are
either not-popular or non-Turing complete.

6Link: https://blog.ethereum.org/2015/07/30/ethereum-launches/

2
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review and provides an updated and modified taxonomy of the security vulnerabil-
ities based on their classification and severity level, whereas the second approach
is based on an experiment with the current existing/available security tools on vul-
nerable and audited smart contracts, by assessing their accuracy and effectiveness.

1.2 Keywords

Blockchain, Ethereum, Ether, smart contracts, security vulnerabilities, security tools,
Solidity, Ethereum Virtual Machine (EVM), attacks, security audits, incidents, scams.

1.3 Problem Description

In addition to expressing business logic and handling different, sometimes heavy
computational tasks, nowadays (based on the Ether price7), smart contracts also
present a foundation for possessing costly digital assets (e.g. cryptocurrencies, to-
kens). This means that there are currently financial and semi-financial smart con-
tracts which are worth thousands and millions of dollars. Mainly because of this
reason, smart contracts and the Ethereum platform are continuously a target for
adversaries and manipulators. As a result, one of the main potential research ar-
eas (based on the Ethereum community [6]) is within the security drawbacks
of high-level programming languages. The research community predominantly
proposes further research and development work in formal verification, techniques
for analyzing smart contracts, and defensive programming.

Furthermore, what Ethereum and other popular blockchain platforms have in
common, is the publicly visible data. This is a result of having a decentralized
peer-to-peer network and distributed ledger among thousands of nodes8. Hence,
Ethereum is referred to as The World Computer9, by its development team. Regard-
less of the positive impact and many benefits that this approach has on Ethereum
and generally in any other public distributed blockchain, it presents a serious chal-
lenge on implementing specific use cases of smart contracts, considering the fact
that the complete source code of an application is publicly visible from anyone in
the network.

Another key characteristic of Ethereum’s Virtual Machine (EVM) specifically, is
that once you deploy your smart contract in the blockchain, you cannot modify
or alter it. This characteristic can both be seen as advantageous and disadvanta-
geous. The advantage is that it represents a trustworthy platform where the de-
velopers cannot modify the smart contract once they have deployed it, with the
sole purpose of gaining illegal profit and misleading the users. This leads to the

7$305 as of the time of writing: https://ethereumprice.org/
8Ethereum as of May, 2017 has nearly 25,000 nodes. Link: http://www.trustnodes.com/2017/05/

31/ethereum-now-three-times-nodes-bitcoin
9Ethereum: the World Computer: https://www.youtube.com/watch?v=j23HnORQXvs

3
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notion of immutability which is a big discussion topic for Ethereum, and it is fur-
ther explained in Section 2.2. Its disadvantage is its novel development approach
with which developers are not yet familiar, and thus ignoring this issue leads to un-
precedented vulnerabilities and makes developers reluctant to adopting this novel
engineering mindset.

Due to the above mentioned issues, a significant number of smart contracts
are considered to be vulnerable. In 2016, a symbolic execution analysis tool
(Oyente) was developed by Luu et al. [7], which analyzed all smart contracts in the
Ethereum blockchain in order to identify several potential vulnerabilities10. Their
results state that at that time, 45% of 19,366 smart contracts in total were vul-
nerable with at least one security issue [7]. To conclude, regardless of Ethereum’s
popularity and its promising opportunities, its security issues and challenges pose a
real threat for the effective continuity and the further increase of its adoption and
popularity.

1.4 Justification, Motivation and Benefits

The overall issues and challenges as well as the ongoing attacks and incidents on
the Ethereum platform and smart contracts create a solid justification for this the-
sis. The dearth of research analyzing the current security tools on Ethereum adds
a significant value and additionally justifies the experiment conducted. Currently
there are several tools assessing smart contract vulnerabilities. However, only one
so far, assesses and explains how they address the issue of accuracy and results pre-
cision [7]. Also, considering the fact that new vulnerabilities are exploited all the
time, the current taxonomies get quickly outdated. This creates a gap and room
for further research on the potential improvement of security tools and security
vulnerability taxonomies which is the research focus of this work.

Developing self-verifying and self-executable applications, such as smart con-
tract applications which run in a decentralized (not controlled by anyone specif-
ically) platform, represents a revolutionary approach of development and appli-
cation interaction. The opportunity to preserve this feature and the notion of im-
mutability and trust in Ethereum, serves as the main motivation for this thesis. In
addition, the ability to develop securely without being a security or blockchain ex-
pert, strengthens the motivation for the conducted experiment. Finally, the finding
that as of May 2016, 45% of smart contracts are vulnerable [7], significantly drives
the motivation of our work.

Thorough research and a comprehensive experiment on security vulnerabilities
and code analysis tools, as presented in this thesis, gives a better insight on this

10Vulnerabilities that Oyente is able to identify: transaction-ordering dependence, timestamp depen-
dence, mishandled exceptions and reentrancy.

4
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topic and creates extensive future work opportunities. Generally the stakeholders
to benefit from this thesis are Ethereum users/developers altogether.

1.5 Research Questions

As it was mentioned before, this thesis addresses two separate but closely related
approaches of Ethereum’s security. The first one provides updated and modified
taxonomies in relation to the security vulnerabilities and security code analysis
tools (their classification and severity level), based on a thorough research work.
The second one provides close insight and a detailed perception of the current
available security tools used to identify vulnerable smart contracts, and is based on
extensive research and a practical experiment. Therefore, we aim to answer two
main questions with a few sub-questions for each.

• Research Question 1: What kind of security vulnerabilities arise in smart con-
tract programming?

◦ Research Sub-Question 1: How can we categorize these vulnerabilities?
◦ Research Sub-Question 2: Why do these mistakes occur? What are the

factors that raise these vulnerabilities?
◦ Research Sub-Question 3: How can we mitigate these vulnerabilities and

promote a new secure engineering mindset for programming smart con-
tracts?

• Research Question 2: What are the limitations of the current security tools
used to identify vulnerabilities in smart contract applications on Ethereum?

◦ Research Sub-Question 1: What is the current state of the security tools
in regards to their accuracy, effectiveness and consistency?

◦ Research Sub-Question 2: What are the possible future improvements
that could be done, in regards to security code analysis tools?

1.6 Contributions

The initial contribution of this thesis is the proposed up-to-date and modified
taxonomy of vulnerabilities, their architectural classification, in conjunction with
their severity level. Additionally, two novel taxonomies are proposed. The first one
aids us on classifying already developed security code analysis tools based on the
methodology they use to identify the vulnerabilities, the user interface, and the
technique used to analyze smart contracts (bytecode and/or high-level program-
ming language). This gives an overall insight on the current state of the tools. The
second one is a matrix based on the already developed security tools versus the
vulnerabilities they cover. Doing so, we investigate the absent vulnerabilities which
are not covered generally by the tools.

5
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The second contribution consists of an experiment on several security tools to
assess their accuracy, effectiveness, and consistency. This generates results, such as
false positive and false negative rates and an overall discussion on how effective
these tools are in analyzing the smart contracts from the complete data set col-
lected. Throughout our experiment we have been in contact with the development
teams of two, out of four security tools, and they were informed for any experi-
enced issue or error with the tools. Also, one of the development teams (Smart-
Dec11) were very eager to participate in such unbiased research, and therefore,
gave us early closed beta-version access to their yet unreleased security tool, in
order to get our feedback. Once we were done with the experiment, we assem-
bled the results particularly for SmartCheck and sent a constructive feedback to
the SmartDec team.

The main contribution of this thesis is considered the advancement and im-
provement of the security aspect of Ethereum through a research work and an
experimental project. The main stakeholders of the first approach in this thesis
are smart contract developers in Ethereum, via the updated and modified security
taxonomies provided, which could be used as a knowledge base for programming
secure smart contracts, without being a security expert. The main stakeholders
of the second approach are security tool developers and companies, via the pro-
posed possible improvements within security tools in general. Also, smart contract
developers become informed of the current state of security tools and can better
understand whether they should completely rely on them.

The Ethereum community is generally positively affected by this work due to
the promotion of a more secure and trustworthy environment. Last but not least,
this project forms a solid foundation for further contributions in this area.

1.7 Thesis Outline

In order to properly navigate from a broader Ethereum security perspective to
a more narrowed-down scope of security vulnerabilities in smart contracts, we
provide a theoretical background of blockchain, Ethereum, and smart contracts.
Additionally, we give an overview of the current related research work in secu-
rity vulnerabilities, attacks/incidents, and available preventive security method-
ologies. Chapter 4 describes the methodology and justifications for the proposed
taxonomies and the conducted experiment. Chapter 5 presents the two proposed
taxonomies and one generated matrix. Chapter 6 describes parts of the experiment
and presents the obtained results. Chapter 7 provides the answers to the research
questions and a general discussion with a list of limitations. Lastly, Chapter 8 pro-
vides a summary of the thesis and a list of possible future work opportunities.

11Link: https://smartcontracts.smartdec.net/
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2 Theoretical Background

The following sections contain a more detailed introduction of blockchain, Ether-
eum and smart contracts, which are of a prime importance for understanding spe-
cific security vulnerabilities and the overall results obtained from our experiment.
However, if you are already extensively familiar with these terms, you may skip
and jump to Chapter 3.

2.1 Blockchain

A blockchain is a shared ledger that records all transactions that have ever oc-
curred and all the data exchanged since its creation [5]. With other words, as
it is defined in [8], blockchain maintains a continuously-growing list of records,
called blocks. Each block contains a number of transactions and it is chained to
the previous block created, up to the first, genesis block. Mining represents the
process of adding a block and verifying the validity of transactions (prevent dou-
ble spending) through a Proof of Work (PoW) or other consensus protocols, such
as Proof of Stake (PoS)1. Considering this design, blockchains are considered to
be firmly repellent on altering the previous data stored in the blockchain. In addi-
tion, this ledger is replicated among many nodes in the network, which makes the
blockchain technology decentralized and trustworthy in the sense that participants
can send transactions securely without the need of a third party. It is believed that
eliminating the third party control leads to lower processing fees, disposal of single
point of failure (SPoF) issues and increased security of transactions [1].

To summarize, based on a survey by Zheng et al. [1], blockchain has the follow-
ing key characteristics:

• Decentralization - in the sense of a peer-to-peer platform (no third party con-
trol)

• Persistency - in relation to the inability of deleting or altering (rollback) the
transactions once they are recorded in the ledger

• Anonimity - based on the asymmetric cryptography and cryptographic hash-
ing of blockchain data (transactions, digital cryptographic keys, etc)

• Auditability - of the global truth, in the sense of public availability of the
blockchain data in order to verify and trace all previous transactions

1The PoS consensus algorithm is work in progress which will result in significantly faster block chains
and also more transactions per second. [9]

7



Security of Ethereum Smart Contracts

Blockchains are closely related to the existence of cryptocurrencies based on
their initial establishment which introduced the first secure generation of cryp-
tocurrencies [5]. However, a blockchain can be created and function properly with-
out the need of a cryptocurrency [10]. Therefore, nowadays we have different
blockchain application domains and a variety of blockchain taxonomies [1, 10,
11]. A survey on blockchain application domains identifies five categories; finance,
security, IoT, public service and reputation systems [1]. However, some of these
application domains suffer from some serious challenges, also stated in [1], such
as, scalability, vulnerability, deficiency of existing consensus protocols, ten-
dency for centralization, and privacy leakage.

The most highlighted blockchain taxonomy, is based on the general accessi-
bility of the blockchain network [10]. This categorization consists of private or
permissioned network, and public or permission-less network. The most popular
blockchain platforms, including here Bitcoin and Ethereum, are public and there-
fore anyone can serve as a node and transact and/or mine. On the other hand,
private networks are mostly used by stakeholders/companies who wish to operate
in a controlled, regulated environment, and distributed environment but still pri-
vate, and as such, the blockchain applies specific filters to who can transact or mine
on that network [10].

To conclude, there are many opportunities and use cases for blockchain technol-
ogy to be applied in a variety of applications. Nevertheless, Ethereum presents the
second generation of blockchain platforms, as the most popular one on building
complex distributed applications beyond the cryptocurrency idea [5]. Therefore,
the next section gives an overview of the Ethereum platform and also the rest of
this thesis is only focused on Ethereum.

2.2 Ethereum

The main component that differentiates Ethereum from Bitcoin and other crypto-
currency-based platforms is that Ethereum does not only serve as a payment system
but also as a computing platform2. Ethereum is referred to as The World Computer3

and as the future of internet4 powered by blockchain technology. These claims come
as a result of its novel idea of distributed computational processing of applica-
tions, with full transparency governance and without any third party interference.
It is also referred to as the "next generation smart contract and decentralized ap-
plication platform" in Buterin’s white paper which introduces Ethereum [12]. He
introduces the main components and characteristics of Ethereum, starting from

2Link: https://www.coindesk.com/whats-big-idea-behind-ethereums-world-computer/
3The World Computer: https://www.youtube.com/watch?v=j23HnORQXvs
4Ethereum as the future of internet: https://svds.com/ethereum-the-rise-of-the-world-

computer/
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its overall architectural design, state, mining process, transactional method, con-
tinuing with its application on token systems, financial derivatives, decentralized
autonomous organizations (DAOs) and finalizing with a collection of concerns and
challenges [12].

Figure 1: Schematic of a blockchain platform with smart contracts [13]

Figure 1 as illustrated by Delmolino et al. [13] represents a visualized schematic,
generally for any decentralized cryptocurrency system with smart contracts, and
specifically for Ethereum in this case. As we can see, smart contracts play a big
role since they are represented as one of the main components in such a platform.
In addition to sending money (in this case Ether), users can also send data/mes-
sages. Smart contracts have their own storage and act as an externally owned
account in Ethereum. A more detailed explanation of smart contracts and how
they operate is presented in Section 2.3. Additionally, blockchain stores the source
code of a smart contract. More respectively, the code that is stored in blockchain
is Ethereum Virtual Machine (EVM)5 bytecode6. Except for this, the rest of the
blockchain architecture is similar to any other cryptocurrency-based platform (non
Turing-completeness platform).

Since these smart contract applications sometimes require heavy computational
tasks, such as, contacting external services, storing data, mathematical/logical op-

5Ethereum Virtual Machine (EVM): "The virtual machine that forms the key part of the execution
model for the bytecode (smart contracts’ code)" [14] or with other words, the runtime environment for
Ethereum contracts.

6EVM Bytecode: "The code that EVM can natively execute". [14]
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erations, etc, and also since those computational tasks are processed from all the
nodes (miners) repeatedly, the need for heavy computational power is inevitable.
Therefore, in order to motivate and encourage miners to do all this computational
work, and also to have control over DoS attacks, Ethereum introduces the gas us-
age. Each computational task requires an amount of gas in order to be executed.
Gas is obtained by Ethereum’s cryptocurrency, Ether, and once a block is created,
the miner (or group of miners) is/are rewarded with Ether.

As in all blockchain-based systems, the immutability of the blockchain state
in general, is heavily emphasized. Considering the blockchain design of chained
blocks, the possibility of altering a section of the data, is practically impossible.
But, there is a possibility of "disabling" a smart contract code, which frees the space
in blockchain and the corresponding code is deleted [15]. The EVM instruction is
named SELFDESCTRUCT and once it is called, the EVM will behave as the contract
itself is "dead".

2.2.1 Two Ethereum Platforms

A significant attack on one of the biggest smart contracts ever deployed, The DAO,
led to notable damage to the idea of immutability and Ethereum in general. Since
The DAO attack had an enormous negative impact7 on Ethereum and has a signif-
icant role for this thesis, it is further explained in detail in Section 3.2. However,
simply said, a hacker was able to steal $50 million worth of Ether from a com-
plex smart contract. Therefore, the Ethereum team and community decided to take
action and to find a solution regarding this issue by initiating a hard fork in the
Ethereum blockchain. The hard fork means that the new Ethereum chain will not
be backward compatible and it will run as a completely separated branch from
the old branch. By doing this, in the new branch they reverted the state of the
blockchain to the state that it was before the attack and all the DAO tokens and
Ether assets were forwarded back to the original owners. However, as we already
know, in order to do such an enormous change in the blockchain, you have to gain
consensus from more than 51% of the miners/nodes. A number of nodes/miners
did not agree on the hard fork as a solution, with the justification that it will go
against the main underlying philosophy of Ethereum (immutability and "code is
law") [16], and decided to stick to the old branch.

As a result, the community was split in now two platforms, the new Ethereum
branch and the old Ethereum branch now called Ethereum Classic. It is worth
mentioning that these platforms now function as completely two separated plat-
forms with their own cryptocurrency and community. According to a blog arti-
cle [16], the main advantage of Ethereum Classic is that it stays true to the philos-

7The price of Ether plummeted from $20 to $13 right after the attack. Link: https://www.
coindesk.com/understanding-dao-hack-journalists/
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ophy of immutability, and the main disadvantages are that most "heavyweights" of
Ethereum have moved to the new branch and that the old branch is known to be
full of scammers. Whereas, Ethereum (the new branch), except for the disadvan-
tage of not staying true to the notion of immutability, everything else, such as the
exponential growth and the constant updates and modifications, are considered to
be advantageous. [16]

2.3 Smart Contracts

So far we have continuously mentioned the concept of smart contracts and we
briefly outlined what smart contracts are. However, this section will dive deeper
into; smart contract application domains, how they operate, and what are the cur-
rent challenges, solely in relation to the Ethereum platform.

Smart contracts are usually presented as software applications as for a more
friendly/understandable term, but this term is rather more abstract, since smart
contracts are more alike with the concept of classes in object oriented program-
ming [2]. As it was mentioned previously, Ethereum was the first platform that
introduced Turing-complete language in a blockchain platform, as such, the con-
cept of smart contracts began to emerge in a practical sense. Smart contracts repre-
sent self-autonomous and self-verifying agents stored in the blockchain. They are
composed by fields and functions [17]. Once they are deployed in the blockchain
they have their unique address which the users/clients can use to interact with and
it is referred to as ‘contract account’ to differentiate from an ‘external account’
which is controlled by public-private keys used by humans [18]. Also, the code
that is stored in blockchain after deployment is a low-level stack-based bytecode
(EVM code) representative of the high-level programming language (a JavaScript-
like language) in which the smart contracts are initially written. As a result, it can
be said that since the bytecode is publicly available from the blockchain, smart con-
tracts’ behaviour is completely predictable and its code can be inspected by every
node in the network [10].

Furthermore, smart contracts are able to hold state, exchange digital assets,
take user input, store data, obtain information from external services, and express
business logic [19]. Once the smart contract code is deployed, its functions are
triggered by messages and/or transactions sent to the smart contract address.

A smart contract should always be deterministic, meaning that the same in-
put will always produce the same output [10]. Otherwise, considering that each
task is executed on every node in the network, it will create a problematic state
on reaching the consensus within the nodes, and therefore will deflect the entire
process.

The smart contract that is illustrated in Figure 2 is written in Solidity, which
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is the most popular high-level programming language since it is supported by the
Ethereum developers and the overall community [20]. Solidity is similar to the
JavaScript programming language which after deploying is compiled into EVM
bytecode. Considering that the majority of popular smart contracts are written in
Solidity, in this thesis we are only focusing on that one. However, the security is-
sues and programming techniques mentioned throughout the thesis are applicable
for other blockchain high-level programming languages as well, such as Serpent8

(Python-like), LLL (based on Lisp), and Viper9.
In Figure 2 we provide a simple example of a smart contract (a wallet) which is

also used by other researchers to illustrate smart contracts [23, 17]. Up to version
0.4.0 there was no need to specify the compiler version on a smart contract. How-
ever, smart contracts that use version 0.4.0 and up to 0.5.0 must specify the com-
piler version10 to avoid incompatibility. As shown in the example, a smart contract
design correlates more with a class in OOP rather than with a software application
with multiple classes and hierarchies.

Figure 2: A simple example of a smart contract [17]

The function AWallet in line 6 is the constructor which only runs once when
the contract is created, and it assigns the sender as the owner of the contract.
Function pay is used to send a specific amount of Ether from the contract to a
recipient. In line 9 the function checks if the owner is the sender or if some Ether
is attached to the invocation and transferred to the contract. The function in line

8Deprecated in 2017. Considered to be of a very low quality, untested and overall not safe. [21]
9Viper is considered to be the successor to Serpent, and it is under active development. [22]

10The compiler version is used as follows: e.g. pragma solidity ^0.4.0;
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10 checks if the required amount of Ether is unavailable. And the last check is in
line 12 which checks if the send succeeded. Otherwise, if one of these checks fails,
the contract will throw an exception, the changes will be reverted, and the Ether
is returned to the caller. Line 11 updates the outflow registry before transferring
Ether to the recipient. Lastly, the function in line 16 will be triggered when the
contract is receiving Ether and no other function is invoked. In such a case, the
inflow registry will update and also this.balance will be automatically updated in
any case (sending or receiving). [23, 17]

Each invocation or computation of a smart contract’s function demands an exe-
cution fee which is defined in terms of gas (gas price) and acquired with Ether. The
collected gas serves as an incentive for miners/nodes to run these computational
tasks on their computer11, but also protects the platform from DoS attacks12.

To conclude, smart contracts also gave rise to the concept of Decentralized Au-
tonomous Organizations (DAOs) which represent an advanced version of smart
contracts where their behaviour could be altered if certain conditions are met [10].

2.3.1 Application Domains

Since we are presenting smart contracts as powerful agents and very promising
applications, this section will cover the basis of possible use cases of SCs and their
categorization. There are several attempts to categorize the application domains of
smart contracts [24, 12, 9, 5]. The initial categorization is done by Buterin (founder
of Ethereum) in [12], based on three top levels:

• Financial applications

◦ Sub-currencies, financial derivatives, hedging contracts, saving wallets,
or full-scale employment contracts

• Semi-financial applications13

◦ Self-enforcing bounties, cloud computing, gambling

• Non-financial applications

◦ Online voting, decentralized governance, prediction markets

This categorization is general and tries to cover all areas in which smart contract
applications could be instantiated.

Moreover, based on an empirical analysis of all currently-deployed smart con-

11Miners are rewarded with Ether each time a block is created.
12An adversary can attempt to slow down the network by invoking a time-consuming function. In

order to succeed, the adversary will need to allocate a large amount of gas (with other words, ether)
which makes the attack really expensive and almost impossible.

13"Money is involved but there is also a heavy non-monetary side to what is being done". [12]
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tracts in Bitcoin14 and Ethereum, Bartoletti and Pompianu [24] propose a tax-
onomy of smart contract application domains with five categories, including
here; financial, notary, game, wallet, and library. Based on their results, the most
prominent (higher number) smart contracts are within the financial category, fol-
lowed by game category and notary.

Further research on smart contract domain applications is conducted by Al-
harby and Moorsel in [5]. They categorize the possible use cases of smart contracts
in; Internet of Things and smart property, music rights management and e-
commerce. Clack et al. [25] highlight only the use of smart contracts as legally-
enforceable templates and agreements based in legal documents. Whereas, other
authors focused only on smart contracts for Internet of Things (IoT) usage [10].
They identified the opportunities that smart contracts offer for the IoT area and also
they emphasized the current challenges and limitations that should be considered
before deploying a blockchain network in an IoT setting [10]. Additionally, another
interesting piece of work is that by Juels et al. [26] which investigated the use of
smart contracts for criminal activities, such as money laundering, marketplaces
for illicit goods and, ransomware.

We argue that some of the categorizations are too broad and some are too
specific (narrowed down), i.e. assessing only one application domain. We are not
stating that they should not be used nor that their approach is wrong. However,
the application domain of smart contracts is a disputable topic, thus we propose
further work on categorizing the already-existing SCs on Ethereum.

Despite the fact that Ethereum and smart contracts can be extensively applied
in many areas, they suffer from some serious challenges and limitations as a re-
sult of being a relatively new technology and taking a highly experimental ap-
proach in general. Therefore, this project will particularly assess the security issues
of Ethereum smart contracts.

14Bitcoin supports a low-level of smart contract applications as well. However, the programming
language used in Bitcoin is not Turing-complete and therefore the overall potential is heavily limited.
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3 Related Work

This chapter consists of three sections; security vulnerabilities, smart contract at-
tacks/incidents, and preventive methodologies. Gathered via a thorough research1

of the relevant work and state of the art, it represents the base knowledge which is
used to form the taxonomies proposed in Chapter 5.

3.1 Security Vulnerabilities

In general, this section covers the related work on research papers and other ar-
ticles that analyze/identify and provide an overview of security vulnerabilities in
smart contracts. Moreover, it is explaining each vulnerability, in order to have a
better understanding of the attacks and incidents mentioned in Section 3.2.

Despite the fact that Ethereum and the concept of smart contract is relatively
new, there is sufficient work on the security aspect, which is also stated by Alharby
and Moorsel in [5], where two thirds of the papers examined, focus on tackling
smart contract issues. Some authors are focused more in providing a taxonomy
and a state of the art, in general for security vulnerabilities [23, 7, 5, 13, 27].
Whereas, some others are focused more in specific vulnerabilities and smart con-
tract challenges, such as privacy [9, 28]. There are also papers focused only in
one vulnerability and try to develop or propose a solution, for example, in timed
commitments [29] and smart contract altering possibilities [30].

3.1.1 General Research on Vulnerabilities

This section provides an overview of the research done generally on smart contract
vulnerabilities. Even though at this point, some of the vulnerabilities might appear
abstract for the reader, later on, in this section we explain them in detail. Thus, the
point of this subsection is to gain an overview of how vulnerabilities are currently
classified/grouped in general.

For our proposed taxonomy, we chose to partially2 base our taxonomy on that
provided by Atzei et al. [23], it being the most prominent one3. Table 1 illustrates
the taxonomy proposed in [23]. The levels they chose to represent the vulnerabili-
ties are: Solidity, EVM, and Blockchain. In addition, for most cases of vulnerabilities
they provide an attack example, and the numbers in ’Attacks’ column, represent the

1The methodology on how we conducted the literature search is described in Section 4.1.
2Meaning that we chose to use the same categorization based on three levels, in addition to the

severity level, without including the attacks category.
3Section 4.2 in Methodology chapter justifies the selection of this and other taxonomies.
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sections where the attacks are discussed in their paper. ’Solidity’ vulnerabilities are
also applicable for other high-level programming languages in Ethereum. This tax-
onomy seems to properly classify all vulnerabilities based on their level, since a
newly discovered vulnerability definitely falls in one of these categories. Also, it
represents a well-defined base knowledge for future work studies which can have
a more narrowed-down research.

Level Cause of vulnerability Attacks

Solidity

Call to the unknown 4.1
Gasless send 4.2
Exception disorders 4.2, 4.5
Type casts -
Reentrancy 4.1
Keeping secrets 4.3

EVM
Immutable bugs 4.4, 4.5
Ether lost in trasfer -
Stack size limit 4.5

Blockchain
Unpredictable state 4.5, 4.6
Generating randomness -
Time constraints 4.5

Table 1: Taxonomy of vulnerabilities in Ethereum smart contracts [23]

Another taxonomy is provided by Alharby and Moorsel [5] based on a system-
atic mapping study of current research topics related to smart contracts. In their
study, they discovered four key smart contract issues; codifying issues, security
issues, privacy issues, and performance issues. In addition to categorizing all
vulnerabilities they identified, based on one of the four aforementioned groups,
they also provide an extra category on proposed solutions with references to the
corresponding solution-proposals papers. Some solutions are proposed via the aid
of security analysis tools which are explained in detail in the next Section, 3.3. By
codifying issues they refer to the challenges/mistakes that are related with the
development of smart contracts. Security issues mean bugs or vulnerabilities, and
by privacy issues they refer to the issues related to unintentional information dis-
closure to the public. Lastly, performance issues are related to the challenges that
affect the ability of blockchain to scale. [5]

Based on this taxonomy, we argue that sometimes it is difficult to distinguish
the aforementioned categories and fit one particular vulnerability correctly in one
class. Meaning that, many codifying issues caused by developers lead to security is-
sues and privacy issues as well. For example, one of their security issues is ’mishan-
dled exception’, which we argue that is raised more as a codifying issue rather than
a security issue of the platform itself. Also, the ’re-entrancy vulnerability’ identified
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as a security issue by [5], appears as a result of developers’ mistakes (codifying
issues) on improperly handling external calls. Therefore, we argue that this taxon-
omy design appears to be somehow representative for classifying papers, but not
for a general taxonomy of vulnerabilities in smart contracts.

Other research papers and articles refer to security vulnerabilities in general,
without any categorization, such as, in [7], where they discussed several severe
vulnerabilities. In [27], where Buterin with the community’s help created a crowd-
sourced list of the major bugs with smart contracts, and in [13] through a university
course for smart contract programming, they exposed numerous common pitfalls
and vulnerabilities.

3.1.2 Research on Specific Vulnerabilities

In addition to the general research on vulnerabilities, there is also research work
and articles focusing in one vulnerability. The first one is research work focusing on
the privacy preserving issue of smart contracts. As it is discussed later on, we will
see that the privacy issue is a crucial aspect of smart contract security. It represents
a real challenge for developers to keep critical functions/methods secret, apply
cryptography, and avoid disclosing data that should not have been public in the
first place. A research on ‘replacing paper contracts with Ethereum smart contracts’
finds out what kind of criteria Ethereum needs to fulfill to be properly applied on
replacing paper contracts [9]. They conclude that due to a large privacy setback
it is not yet recommended to replace legally-enforceable agreements with smart
contract applications [9]. This is as a result of the private information these papers
(agreements) hold and the damage that could be done if they become public or if
the blockchain does not work as intended on preserving privacy. According to [5],
lack of transactional privacy and lack of data feeds privacy are two issues correlated
with the privacy preserving category.

A similar research on the issue of privacy-preserving is conducted by Kosba et
al. [28]. They highlighted the significant importance of privacy in smart contract
applications generally in blockchain technologies, not only in Ethereum. For a so-
lution to this issue, they proposed a decentralized smart contract system, Hawk,
which does not store financial transactions in the blockchain and saves the devel-
opers on implementing any cryptographic functionality [28]. Juels et al. [26], also
investigated the leakage of confidential information and theft of cryptographic keys
for smart contracts used in criminal activities.

One of the most prominent vulnerabilities of Ethereum is considered to be the
timestamp dependency. Therefore, Boneh and Naor [29], introduce and construct
timed commitment schemes which are proposed as a solution for this vulnerability.
Their proposed solution could be applied when two mutually suspicious parties
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wish to exchange signatures on a contract [29].
Another issue that is being tackled as a single vulnerability is the gas-costly pat-

tern, more specifically, the under-optimized smart contracts that consume more gas
than necessary. A research investigation in this regard is done by Chen et al. [31], in
which they identified 7 gas costly patterns and grouped them into two categories.
They also developed a tool, named Gasper, focused only on identifying gas-costly
patterns by analyzing the smart contracts’ bytecode [31]. Their results indicate
that over 80% of 4240 smart contracts analyzed, suffer from one of the gas-costly
patterns [31].

Additional specific research on a particular issue is done on the challenge of
communicating with external services (Oracles4). Zhang et al. [32], presented an
authenticated data feed system called Town Crier, which enables smart contracts
to consume data from outside the blockchain while preserving confidentiality with
encrypted parameters.

To conclude, there is a significant number of research on specific issues in addi-
tion to the general (overview) research on smart contract vulnerabilities. However,
the solutions proposed usually require for blockchain upgrades, meaning that all
the nodes have to upgrade their version in order to solve a particular issue, or they
are proposed as a separate solution/platform on top of blockchain. This makes it
challenging in regards to obeying all nodes in the network to upgrade, what we
briefly mentioned before, the issue with the hard fork, there will always be net-
work participants not agreeing on something. Therefore, we can argue that a more
effective way of identifying vulnerabilities and preventing vulnerable smart con-
tracts being deployed in Ethereum, is through security code analysis tools, which
are thoroughly examined in Section 3.3.

3.1.3 Vulnerabilities Explained

This section provides a brief explanation for each one of the security vulnera-
bilities that are mentioned throughout this thesis. Some vulnerabilities based on
their naming convention and the already gained knowledge for blockchain and
Ethereum are self-explanatory. Therefore, those vulnerabilities are excluded from
the list and the main focus of this section is (mostly) within the severe vulnerabili-
ties.

Reentrancy is considered to be the most severe vulnerability for a smart con-
tract, based on the biggest attack ever made5. The reentrancy vulnerability is ex-
plained as follows:

"Any interaction from a contract (A) with another contract (B) and any transfer

4Oracle: A reliable connection between Web APIs and smart contracts, since smart contracts cannot
fetch external data on their own. Link: http://www.oraclize.it/

5TheDAO - Explained in section 3.2
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of Ether, hands over control to that contract (B). This makes it possible for B to
call back into A before this interaction is completed." [33]

Doing so, contract (B) can retrieve multiple refunds and empty the balance of
contract (A). The use of checks-effects-interactions6 is recommended as a solution
to avoid this vulnerability.

Tx.origin usage is strictly prohibited to use for authorization. Using it, will re-
sult in draining all contract funds, because the tx.origin sets the attacker’s address
as the owner of the contract. As such, the attacker obtains full access to the smart
contract funds.

Callstack depth makes an external call to fail because it exceeds the maximum
call stack of 1024 [33]. As a result, the call will fail, and if the exception is not
properly handled by the contract, the attacker can force the contract to produce an
output or result which suits them.

Timestamp dependence presents a common vulnerability favoring a malicious
miner. If a contract is using, e.g. now, StartTime, EndTime based on the time stamp
of the block, that means that the miner can manipulate the timestamp for a few
seconds by changing the output to be for his favor [34]. However, this vulnerability
is severe only if used in critical components of a contract.

Transaction-ordering dependence refers to the idea that the user can never
be sure of the order of transactions. An example can be a smart contract which
offers a reward for a solved puzzle. Once a user solves the puzzle and submits
the transaction, at the same moment the smart contract owner can reduce (or
completely remove) the reward. There is a probability that the transaction that
reduces or removes the reward is processed first. In this case, the owner gets an
answer for the puzzle, and the solver (user) does not get the reward.

The use of external calls is considered to be by default risky [34], because
adversaries can execute malicious code in that external contract. Therefore, it is
recommended to possibly avoid external calls ("calls to the unknown") in general
or treat those calls as potential risk and take precautions, such as, use send instead
of call_value(), favor pull over push for external calls, and handle errors (check the
return value) [34].

Unchecked-send bug is part of the exception disorders or mishandled ex-
ceptions. From some authors is referred to as "send instead of transfer, because
’transfer’ automatically checks for the return value, whereas using ’send’ you have
to manually check for the return value, and throw an exception if the send fails.
Not doing so, can lead to an attacker executing malicious code into the contract
and drain its balance. Overall, the consequences are similar to the reentrancy and

6First subtract the value from the contracts’ balance then send the Ether, and check for the return
value.
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call to the unknown vulnerability, as are the precautions as well.
DoS is explained by SmartCheck7 as follows:

"A conditional statement ( if , for , while ) should not depend on an external
call: the callee may permanently fail ( throw or revert ), preventing the caller
from completing the execution." [35]

An attacker can cause inconvenience by supplying the contract with data that is
expensive to process, thereby preventing others to interact with it. This vulnera-
bility is closely related to the external calls vulnerability and to prevent this from
happening, we need to handle properly any throw exceptions from external calls,
and also, avoid looping behaviour.

Blockhash usage similarly to the block timestamp, it is not recommended to
be used on crucial components, for the same reason as with the timestamp de-
pendency, because the miners, to some degree, can manipulate it and change the
output to their favor.

Gasless send makes a transaction to fail if not enough gas is provided for a
specific call. The maximum gas limit on the network can vary over time based on
the transaction fees8. It is important to throw an exception if a failure based on the
gas consumption happens. Also, it is important to develop functions that do not
require too much gas, not only for the purpose of failing because not enough gas is
provided, but also for the sole purpose of mitigating the expensive payment fees.

Other vulnerabilities include; immutable bugs (e.g. wrong constructor name)
which refer to a bug or a code mistake which cannot be altered after deploymen-
t/discovery, the use of untrustworthy data feeds, failure to keep secrets or in
other words failure to apply cryptography and as a result expose crucial functions
or values, the challenge to generate randomness, style guide violation, etc.

Generally, many of these vulnerabilities have to do with the novel approach of
building smart contract applications in a public blockchain. Since, so far, develop-
ers are used to a more centralized way of developing applications, in which they
did not have to worry about many of these issues, because the centralized system
provides certain guarantees that a public blockchain cannot9.

To conclude, it is important, for this thesis, to have a general understanding
regarding these issues, and not a detailed conception on how they happen and how
can they be prevented. Because, almost every attack used a different approach on
exploiting these vulnerabilities.

7SmartCheck: https://smartcontracts.smartdec.net/
8Link:http://www.kingoftheether.com/contract-safety-checklist.html
9Link: https://goo.gl/KBjVbH
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3.2 Smart Contract Attacks and Incidents

This section provides an overview of the most prominent attacks that have hap-
pened since the existence of Ethereum, in conjunction with the vulnerability that
triggered the attack, and the overall damage that was caused.

TheDAO

TheDAO is briefly mentioned before in Section 2.2 because of the impact that it
had on Ethereum. TheDAO attack is the reason why Ethereum had the hard fork
and is split into two platforms10. TheDAO is an abbreviation for "The Decentralized
Autonomous Organization" and is represented as a complex smart contract which
was considered to have revolutionized Ethereum forever [16]. TheDAO was not
owned by anyone, and it previously worked as follows:

• A group of people developed the smart contract(s) that will run the organi-
zation.

• An initial funding period, where you could buy DAO Tokens (ICO11) that
represent ownership (the right to vote).

• Once the funding is over, developers make smart contract proposals, and the
users that own DAO tokens vote on approving and funding these proposals.

TheDAO was able to raise a record of $150 million in Ether, and its popularity
quickly emerged. Anyway, TheDAO had the option for token holders to opt-out
from the organization and get back the money they invested, if for example, they
did not endorse a smart contract that was going to get funded. This was done
through a split function, which ones is triggered, the user would automatically opt-
out from the organization and get their money back12. The user could also choose
to create a child DAO and anyone else that did not agree on funding (endorsing)
a specific proposal, could join the child DAO created. This design made TheDAO
popular by offering flexibility, full control and complete transparency. However,
this design was the reason that a hacker exploited a reentrancy vulnerability in
the "split DAO" function. The attacker was able to steal one third of DAO’s funds
(3.6 million Ether) which was considered to be around $60 million at that time13.
The consequences that this attack had on Ethereum were unprecedented. The price
of Ether dropped from $20 to $13 and the actions taken demolished (harmed) the
notion of immutability.

10Ethereum and Ethereum Classic.
11ICO: Initial Coin Offering
12After splitting off from the DAO you had to hold on to your Ether for 28 days before you could

spend them. [16]
13As of November, 2017, that price would be around $1.3 billion.
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King of the Ether Throne (KotET)
KotET is an example of a contract account that experienced a type-of-incident
rather than an attack. The normal operation of KotET, as explained on their website
is as follows:

• Suppose the current claim price for the throne is 10 Ether. You want to be
King/Queen, so you send 10 Ether to the contract.

• The contract sends your 10 Ether (less a 1% commission) to the previous
King/Queen, as a "compensation payment". And the contract makes you
the new King/Queen of the Ether Throne. The new claim price for the
throne goes up by 50%, to 15 Ether in this case.

• If an usurper comes along who is willing to pay 15 Ether, they depose you
and become King/Queen, and you receive their payment of 15 Ether as
your "compensation payment". [36]

The incident happened once KotET tried to send a reward in a contract-based ad-
dress. KotET allocated a small amount of gas for this transaction, and as a result
the transaction failed. Additionally, it means that the exception was not handled
properly by the contract, and therefore the contract proceeded in making a new
"King" of the game, even though the compensation was not sent to the previous
one. Gasless send and mishandled exception were the vulnerabilities that caused
this incident.

GovernMental

GovernMental refers to a smart contract educational game which simulates the fi-
nances of a government. It is also refered as Ponzi GovernMental (Ponzi scheme).
It consists of four rules, which are explained in [37]. And because they represent
a common real-life ponzi scheme, all rules are not presented here. However, the
game was played by "lending" the government money (Ether), and they promised
to pay it back (+10% interest), if the system continuously runs (receives Ether).
This smart contract suffered from an ‘unintentional’ mistake which led to an inci-
dent where the jackpot payout of 1100 Ether was stuck because the transaction
which needed to reward (pay-out) the jackpot, required too much gas14. However,
there are discussions about whether this mistake was intentional which is difficult
to conclude because the money is stuck and technically, no one benefits from it be-
ing stuck in an account15. It can be said that GovernMental overall, suffered from
gas costly pattern, mishandled exception, and also from the unpredictable state
vulnerability.

145057945 amount of gas, whereas the current maximum gas amount for a transaction was 4712388
gas.

15Reddit Discussion: https://goo.gl/cbiCG4
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EtherPot

EtherPot is a decentralized, autonomous and provably fair lottery system. This
smart contract suffered from the unchecked-send call, in which a call silently
failed because the code itself did not handle the exception properly. Also, it suf-
fered from the blockhash usage vulnerability, because it used the blockhash of the
blocks to determine the winner of the lottery. So far, we only know that this contract
is not in use anymore and we have no knowledge of the damage that was caused or
the attack that occurred. Based on a community discussion on their Github repos-
itory16, it may have been that the developers realized the bug before the attack.
The only source is their website which is partially broken17 and an analysis which
discovered this vulnerable smart contract18.

SmartBillions

Another similar example to EtherPot is a very recent19 smart contract application.
SmartBillions presents a fully decentralized and transparent lottery system. The de-
velopment team was so confident of its security, that they challenged everyone in
the network to compromise the smart contract by adding a reward of 1500 Ether
($450,000 on that time) for anyone who would be able to hack the smart con-
tract [38]. This challenge quickly backfired, as an attack on the contract happened
and the attacker was able to drain 400 Ether from the total reward of 1500, before
the owners of the contract pulled out the remaining of the funds [38]. The con-
tract used blockhash in one of their lottery functions to determine if the user wins
or loses. The attacker successfully managed to manipulate the blockhash of that
function twice, and force the result in his favor.

TheRun

TheRun, a lottery based smart contract, suffers from the timestamp dependence
vulnerability. The contract, as discovered by [39], uses the blockchain timestamp
to generate random numbers and based on that to reward a jackpot. As we can
see, the contract suffers not only from the timestamp dependence but also from the
challenge of generating randomness in blockchain. As we have already discussed,
an adversary can manipulate the timestamp and benefit from the result (win the
jackpot).

There are many other cases of attacks and incidents which we have used for our
experiment and are omitted here to conserve space. However, we can clearly see
that a vulnerable smart contract can lead to losses of millions of dollars and other

16Link: https://github.com/etherpot/contract/issues/1
17Link: https://etherpot.github.io/
18Link: http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-

for-bugs/
19October, 2017
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obstacles in general for Ethereum. These examples that we mentioned, further
emphasize the need for an increased security in general on Ethereum and also
highlight the importance of this thesis, respectively the importance of research and
development work on security code analysis tools.

3.3 Preventive Methodologies

This section covers the basis on different ways (mostly tools) for preventing from
vulnerable smart contracts, with an emphasis on the security tools which will be
used for our experiment20.

3.3.1 Preventive Security Methods

ZeppelinOS is an operating system for smart contract applications developed by
Zeppelin Solutions [40]. As referred to by Zeppelin Solutions, ZeppelinOS is "an
open-source, distributed platform of tools and services on top of the EVM to de-
velop and manage smart contract applications securely" [40]. Its prime focus is the
advancement of smart contracts security. Their system is composed of four compo-
nents, kernel, scheduler, marketplace, and off-chain tools. In other words, Zeppelin
introduces a novel approach in developing smart contracts by using already de-
veloped and secure smart contracts (i.e. libraries). Doing so, presumably will lead
to mitigating severe vulnerabilities which are related to programming mistakes.
Furthermore, the off-chain component provides numerous tools like debugging,
testing, deployment and monitoring. Based on their team, these tools will enhance
the development process (better, easier, robust), and generally to a more secure
smart contract environment.

SolCover21 provides code coverage for Solidity testing. Relying on code cov-
erage, SolCover measures and describes the degree of overall testing in a smart
contract. Even though, it does not serve as a mechanism to identify specific vul-
nerabilities, it could be argued that it creates a more secure environment with the
philosophy that more tests = more secure.

HackThisContract 22 is a crowdsourcing experimental website that encourages
developers to test their smart contracts before deployment by uploading it on their
website. Other developers, with their own techniques, will try and exploit possi-
ble vulnerabilities. Additionally, they provide a list of vulnerable smart contract
examples which the developers should not follow. Overall, with the sole purpose
of deploying secure smart contracts and mitigate (eliminate) severe issues in a
pre-deployment phase.

20Section 4.3 provides a detailed explanation of the methodology used to select the tools for our
experiment.

21Link: https://github.com/sc-forks/solidity-coverage
22Link: http://hackthiscontract.io/
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Security audits are considered to be the most effective way of identifying vul-
nerabilities in a pre-deployment phase. Experienced blockchain developers, and
specialized teams, carefully investigate the smart contract manually and automat-
ically to identify possible vulnerabilities, and make sure that it follows best pro-
gramming practices. Despite the fact that it might be the most secure method for
preventing deployment of vulnerable smart contracts, it is not considered to be
popular because of the high price range that security audit firms have23. Currently
there are many firms that do smart contract security audits, including here, Zep-
pelin, Solidified24, SmartDec25, and DejaVu26. Basically, they review a smart con-
tract code, and provide a report with the issues/vulnerabilities they found, based
on their severity level and the potential risk. In addition, they provide overall rec-
ommendations to increase security. Since for our experiment we analyze audited
smart contracts, they are furthermore explained in Chapter 4.

Other preventive methodologies include staying up-to-date with Ethereum up-
grades and especially with the attacks that happen over time, since they may dis-
cover a new vulnerability. Also, it is of a vital importance to follow a list of rec-
ommendations for secure smart contracts once you start developing, such as the
extensive list by ConsenSys [41].

The above-mentioned preventive methodologies present a variety of means for
a more secure smart contract. However, some of them provide low-level of a guar-
antee (crowd-sourcing), and some are quite expensive (security audits). Thus, it
is recommended that, if utilized, they should serve as an extra aid to mitigate the
deployment of vulnerable SCs and developers should not completely rely on them.

3.3.2 Security Tools

In this section, and for the experiment conducted, we cover only self-contained
security tools which could be utilized in a (not only) pre-deployment phase. If these
tools work as intended, they could serve as a solid protection against attacks/hacks.

Oyente

Oyente is known to be the first and most popular security analysis tool based on the
research conducted and based on the Ethereum community27. It was developed by
Luu et al. [7] and is one of the few tools presented in a major security conference,

23Based on a community discussion in Reddit, a smart contract security audit costs between
$20k-$60k. Link: https://www.reddit.com/r/ethdev/comments/6pdgvd/how_much_does_a_smart_
contract_audit_cost/

24Link: https://solidified.io/
25Link: https://smartcontracts.smartdec.net/
26Link: http://www.dejavusecurity.com/services/
27This tool is referenced by many papers and also throughout our search for security analysis tools,

many blockchain developers and people from the Ethereum community (Reddit) suggested Oyente.
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Ethereum Devcon28. Oyente leverages symbolic execution to find potential secu-
rity vulnerabilities, including here transaction-ordering dependence, timestamp
dependence, mishandled exceptions and reentrancy. The tool can analyze both
Solidity, and the bytecode of a smart contract. In its early stage it could have been
used only through a command line interface, later on, they developed a web-based
interface which seemed to be more user friendly. It is worth mentioning that it is
the only tool that describes its verification method to eliminate false positives [7].

Securify

Securify29 is a web-based security analysis tool and based on their website they
state that it is the first security analysis tool that provides automation (to enable
everyone to verify smart contracts), guarantees (for finding specific vulnerabili-
ties), and extensibility (to capture any newly discovered vulnerability). Securify
uses formal verification but also relies on static analysis checks. It is in its beta ver-
sion and the security issues that it covers are: transaction reordering, recursive
calls, insecure coding patterns, unexpected ether flows, and use of untrusted
input. However, the recursive calls, unexpected ether flows, and part of the inse-
cure coding patterns checks are locked (require full access) for the time being30.
Securify, in addition to analyzing the bytecode and Solidity, it can analyze a smart
contract through its contract address.

Remix

Remix31 is a web-based IDE that allows to write Solidity smart contracts, deploy
and run them. A debugger and a testing environment (test-blockchain network)
are integrated. Additionally, it serves as a security tool by analyzing the Solidity
code only, to reduce coding mistakes and identify potential vulnerable coding pat-
terns. Some of the vulnerabilities that it identifies are: tx.origin usage, timestamp
dependence, blockhash usage, gas costly patterns, check effects (reentrancy),
etc32. Remix security analysis rely on formal verification (deductive program veri-
fication, theorem provers).

SmartCheck

SmartCheck33 is also a web-based security code analysis tool provided by SmartDec
team34. SmartDec is a company focused on security audits, analysis tools and web
development. Recently (November, 2017), they released a beta version of their se-

28Link: https://www.youtube.com/watch?v=bCvh6ED-cj0
29Link: https://securify.ch/
30As of October, 2017
31Link: https://remix.ethereum.org/
32Link: https://remix.readthedocs.io/en/latest/analysis_tab.html
33Link: http://tool.smartdec.net
34Link: https://smartcontracts.smartdec.net/
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curity tool, SmartCheck. It automatically checks for vulnerabilities and bad coding
practises. In addition to that, it highlights the vulnerability (e.g. line of code), gives
an explanation of the vulnerability, and a possible solution to avoid a particular se-
curity issue. Their analysis run only for Solidity code and it is not stated which spe-
cific methodology they use to identify the vulnerabilities (e.g. symbolic execution,
formal verification, etc.). Each vulnerability discovered is shown in correlation with
its severity level. Some of the severe vulnerabilities they identify are: DoS by exter-
nal contract, gas costly patterns, locked money, reentrancy, timestamp depen-
dency, tx.origin usage, and unchecked external call. Additionally, SmartCheck
identifies many other vulnerabilities with low severity (warnings), such as, com-
piler version not fixed, style guide violation, and redundant functions.

F* Framework

"F*" presents a framework for analyzing the runtime safety and the functional cor-
rectness of Ethereum smart contracts, outlined by Bhargavan et al. [42]. It relies
on formal verification, by translating Solidity or bytecode into F* (a functional pro-
gramming language) and then identifying potential vulnerabilities, such as, reen-
trancy and exception disorders (mishandled exceptions).

Mythril

Mythril is a recently released experimental security analysis tool which is under
heavy development35. Through a command line interface, it is able to analyze byte-
code, and by installing solc (command line compiler) it also analyses Solidity code.
Mythril relies on concolic analysis (symbolic execution). So far, it is able to identify
a variety of vulnerabilities, such as, unprotected functions, reentrancy, integer
overflow/underflow, and tx.origin usage. Some other severe vulnerability checks
are presented as work in progress, such as, timestamp dependence, transaction-
ordering dependence, and information exposure36.

Gasper

Gasper is a security tool developed by Chen et al. [31], which is not released
yet. However, from their research paper, we already know that it is focused only
on identifying gas costly programming patterns in a smart contract through a
command line interface. It runs analysis only for the bytecode. Moreover, they
have discovered seven gas costly patterns, and grouped them into two categories.
Gasper also relies on symbolic execution to cover all reachable code-blocks by dis-
assembling its bytecode using disasm (disassembler). So far, they only cover the
gas costly patterns from the first category that they have discovered, the rest is
work-in-progress. [31]

35Link: https://github.com/b-mueller/mythril/
36Link: https://github.com/b-mueller/mythril/blob/master/security_checks.md
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4 Methodology

Figure 3: Methodology Overview

Figure 3 illustrates an overview of the methodology process of this work which
is fully explained in this chapter. The emphasis is on the literature search, justifi-
cations, and the experiment. The chapter begins with the literature search with
the purpose of explaining how we gathered the literature used in this thesis. We
proceed with a justification for the taxonomies by reasoning about the taxonomy
designs we propose as well as a justification for the tools by explaining the crite-
ria that we use to select the tools which are further analyzed. Section 4.4, Data
set construction explains the process of how we gathered the vulnerable and au-
dited smart contracts, as well as the process of how we constructed the proposed
taxonomies. Section 4.5, Implementation describes the experiment and the data
analysis process. Simply said, the experiment consists of assessing the tools based
on their:

• Effectiveness - check how many smart contract applications the tools were
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able to analyze from the whole data set
• Accuracy - assessing the correctness of the results they produce, based on

false positive and false negative rates
• Consistency - assessed in security tools that analyze both bytecode and So-

lidity, and check if there is any inconsistency1

4.1 Literature Search

A thorough literature search is conducted for this thesis. Since Ethereum is a rel-
atively new platform, a comprehensive search is conducted on online websites as
well, with a particular focus on blockchain, Ethereum, smart contracts, and their
security implications. The research for peer-reviewed related work on this topic is
conducted on several online databases, such as, Google Scholar, IEEE, ScienceDi-
rect, ACM DL, and Scopus. Except for specific keywords used from Section 1.2,
other filters are not used. Many research papers led to other references and some
authors were helpful by providing us with additional related works.

As for the search on online websites, it was done continuously from Febru-
ary up until October, 2017. We stayed up-to-date with any related web-articles or
blogs that were assessing smart contract security issues. Additionally, the Ethereum
community discussion platforms, such as Reddit2 were of big help for providing in-
formation on the existing security tools and especially immediate information/an-
nouncements on smart contract hacks/incidents. Furthermore, once the research
was conducted, group chats (Slack channels, Gitter) and e-mails were used to com-
municate with developers or users for a specific security tool.

The literature search represents an important role for this thesis, because the
first approach on proposing taxonomies is heavily influenced by it. Additionally,
the second approach and the experiment are initially established based upon the
research work as well.

4.2 Justification for Taxonomies

Chapter 5 proposes novel taxonomies which are based on the research we con-
ducted. The first taxonomy 5.1 is an updated and slightly modified version of the
one proposed by Atzei et al. [23], illustrated in Table 1. The main reason that
we chose this taxonomy design is because of its popularity, meaning that it is ref-
erenced by other researches [43, 24, 31], as well as the Ethereum community on
Reddit which suggested this one as the most reliable one when asked. Furthermore,
as we already discussed in Chapter 3, this taxonomy seems to be more efficient on

1For example, if a tool produces some results with the bytecode of a smart contract, and other with
the Solidity of the same contract.

2Link: https://www.reddit.com/r/ethereum/ is a place for open discussion about the Ethereum
software, protocol, distributed applications, and related technologies.
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categorizing smart contract issues, compared to other taxonomies, such as the one
proposed by Alharby and Moorsel in [5]. The modification we made to the taxon-
omy is that instead of having an attack example for each vulnerability, such as in
Table 1, we have a replacement category of the severity level for each vulnerability,
based on the harm they can cause to a smart contract.

The second taxonomy, to the best of our knowledge, is a novel taxonomy. It
also represents the current state of Ethereum security code analysis tools that are
already up and running. It represents a necessity to proceed with our experiment
(security tool analysis), since it allows us to make proper choices for the selection
of the tools. The third and last categorization is also a new one in this field. It
represents a matrix of the security tools versus the vulnerabilities that they cover.
This matrix allows us to make proposals for future possible improvements within
the security tools.

To conclude, the general purpose of the proposed taxonomies is for smart con-
tract developers to use them. Using these updated and comprehensive taxonomies,
they could familiarize themselves with the currently known vulnerabilities and try
to mitigate the same.

Taxonomies are presented and furthermore discussed in Chapter 5.

4.3 Justification for Selected Tools

Our second approach (the experiment), is analyzing several security code analysis
tools based on their effectiveness, accuracy and consistency. However, consistency
is assessed partially because only two out of four tools analyze both bytecode and
Solidity. Throughout our literature and websites search we came up with a list
of security tools which are further explained in Section 3.3.2 and overall visual-
ized through a taxonomy that we mentioned in the previous section. This aided
us in choosing the tools based on three criteria; popularity, accessibility and doc-
umentation. Popularity is assessed through the research work and the universal
recognition of those tools from the Ethereum community and especially blockchain
developers, with the aid of community forums and chat discussions. Accessibility
is assessed via the quality of how easy it is to obtain or gain access to a specific
tool. Accessibility is also assessed based on the cost of using the tool. If the tool is
cost effective or requires some kind of membership/payment, it is not taken into
consideration for our experiment. Documentation is considered to be an impor-
tant aspect in our case, since we analyze the security tools and without a proper
documentation it is hard to do so. Additional criteria for the tool selection is main-
tenance and easiness to install. In our case, we did not have any case with a
tool which was no longer maintained or troubles with installation since all security
tools selected were web-based. However, we have an exception with one of the
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tools, Oyente, in which the web-based tool failed to analyze the whole data-set,
and thus, we used the CLI-version of the tool to complete our experiment.

4.4 Dataset Construction

4.4.1 Taxonomies

All three taxonomies proposed are build upon the related work research described
in Section 3. The security vulnerabilities taxonomy is initially based on the taxon-
omy proposed by Atzei et al. [23], illustrated before in Figure 1. Afterwards, any
other research paper or web article that was assessing security vulnerabilities/is-
sues/bugs, was taken into account for the development of our taxonomy. In order
to strengthen the validity of the work, we decided to solely include peer-reviewed
papers and trusted web articles3. We narrowed our search down to approximately
ten works [7, 13, 27, 5, 43, 44, 17, 24, 34, 41, 45]. Many articles referred to the
same security vulnerabilities with different naming conventions. Therefore we an-
alyzed each article and fetched the vulnerabilities they cover for further analysis.
Based on the taxonomy categorization by Atzei et al. [23], we append each vulner-
ability in one of the categories; Blockchain, EVM, or Solidity. Additionally, based
on the research and the security tools documentations, we categorize each vulnera-
bility based on their severity level; high (critical/significant), medium, low (useful
warnings).

The second proposed taxonomy is for the security code analysis tools. The pri-
mary idea to generate an overview taxonomy came from Hildenbrandt et al. [19].
In their paper, they provide a taxonomy of all software quality tools in Ethereum.
Their taxonomy, categorizes Ethereum tools into: Spec., Exec., Client, Verif., Debug,
Bugs and Gas4. They only found two security tools used to identify bugs, Oyente
and F*. Also, in their taxonomy, they categorize Remix (web-based IDE) only as
a debugger and a testing environment, and not as a tool for finding common is-
sues. Therefore, in regards to the security tools used to identify bugs in a SC, this
taxonomy is arguably vague and incomplete.

4.4.2 Audited Smart Contracts

In order to assess the false positive rate for each tool we needed secure/trusted
and tested smart contracts which are considered to be bug-free or at least without
any severe security vulnerability. Therefore, we decided to analyze smart contracts
which are audited by a trusted company. From the different companies that do se-
curity audits, mentioned in 3.3.1, we chose Zeppelin for many reasons. First of all,

3Like the ones from Ethereum co-founders, or experienced blockchain developers.
4"Spec.: Formal specifications of the EVM language, Exec.: Executable on concrete tests, Client:

Full Ethereum client, Verif.:Verify EVM program properties, Bugs: Finding common issues in SC., Gas:
analyzing gas complexity." [19]
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it is considered to be the most popular security audit firm, based on the audits of
many popular smart contracts5. Secondly, based on our research, it provides a bet-
ter documentation than all others. Thirdly and more importantly, once the security
audit is completed, it is privately sent to the development team of the audited smart
contract. It is then up to the development team to decide whether to publish the
report provided on the Zeppelin blog6. On this blog, each smart contract security
audit gives an overview of the smart contract, its potential problems or vulnerabil-
ities (starting from the most severe ones), provides recommendations to increase
security, and general reflections of the state-of-the-art security patterns [46]. Also,
SmartDec started to provide blog articles with smart contracts audited from their
side, but at the time of writing, they were in their infancy stage and had only three
audits in total7.

We collected 28 audited smart contracts in total from Zeppelin, starting from
the one audited first, up until the last one (until October 23, 2017). However, we
did a manual check for each security audit to dismiss a smart contract which had
one of the following cases:

• Is written in a programming language other than Solidity
• Is identified with severe vulnerabilities from Zeppelin, and not updated af-

terwards
• Is used for token pre-sale8

• Very recent security audit (not updated, nor published)

After doing this data clean-up, we ended up with a total of 21 security audited
smart contracts. Table 2 provides a list of the data-set for this category, where the
ones highlighted in red are the discarded smart contracts which were not taken into
consideration (7 SCs). Additionally, each one has a link to the corresponding source
on Zeppelin’s blog. Lastly, the source code for each smart contract is collected using
EtherScan9, which is a leading web-based Ethereum blockchain explorer.

4.4.3 Vulnerable Smart Contracts

Vulnerable smart contracts are used to identify the false negative rate within the
tools. Additionally, they are used to identify the gaps, i.e. the vulnerabilities which
are generally not covered by the tools. Due to a lack of one comprehensive list
of Ethereum attacks, we had to rely on several research papers, web articles, and
community discussions assessing attacks and bugs in smart contracts, to assemble
a list of vulnerable smart contracts [17, 7, 19, 27, 47, 48]. Additionally, several

5More than $450 million have been raised by smart contracts that have been audited by Zeppelin.
6Link: https://blog.zeppelin.solutions/tagged/security
7Link: https://blog.smartdec.net/smart-contracts-security-audits/home
8They are mostly temporary smart contracts used to crowd-fund an organization.
9Link: https://etherscan.io/
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Smart
Contract Source (* = https://blog.zeppelin.solutions)

Hacker
Gold (HKG) */ethercamps-hacker-gold-hkg-public-code-audit-b7dd3a2fe43b

ArcadeCity
(ARC) */arcade-city-arc-token-audit-9071fa55a4e8

Golem
Network */golem-network-token-gnt-audit-edfa4a45bc32

ProjectKudos */ethercamps-projectkudos-public-code-audit-179ee0c6672d
EtherCamp’s
DSTC */ethercamps-decentralized-startup-team-public-code-audit-65f4ce8f838d

SuperDAO
Promissory */draft-superdao-promissory-token-audit-2409e0fe776c

SuperDAO
ConstitutionalDNA */draft-superdao-promissory-token-audit-2409e0fe776c

ROSCA */wetrust-rosca-contract-code-audit-928a536c5dd2
Matchpool
GUP */matchpool-gup-token-audit-852a70330f2

iEx.ec
RLC */iex-ec-rlc-token-audit-80abd763709b

Cosmos */cosmos-fundraiser-audit-7543a57335a4
Blockchain
Capital (BCAP) */blockchain-capital-token-audit-68e882d14f0

WingsDAO */wingsdao-token-audit-f39f800a1bc1
Moeda */moeda-token-audit-ac72944caa6f
Basic
Attention */basic-attention-token-bat-audit-88bf196df64b

Storj */storj-token-audit-32a9af082797
Metal */metal-token-audit-d7e4dbf17bcf
Decentraland
MANA */decentraland-mana-token-audit-ee56a6bca708

Tierion
Pre-sale */tierion-presale-audit-ec14b91c3140

Serpent
Compiler */serpent-compiler-audit-3095d1257929

Hubbi */hubii-token-audit-227c0adf50ea
Tierion */tierion-network-token-audit-163850fd1787
Kin */kin-token-audit-121788c06fe
Render */render-token-audit-2a078ba6d759
Fuel */fuel-token-audit-30cc02f257f5
Enigma */enigma-token-audit-91111e0b7f8a
Global
Messaging */global-messaging-token-audit-865e6a821cd8

Ripio */ripio-token-audit-abe43b887664

Table 2: Audited Smart Contracts Collection

sample smart contracts with specific vulnerabilities provided by Luu et al. in [49]
are taken into consideration. Doing so, we tried to create a comprehensive list of
smart contracts and incorporate as much dissimilar vulnerabilities as we can.

Table 3 provides a list of the data-set for this category.
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Smart
contract name Vulnerability

TheDao Re-entrancy

SimpleDao Sample compiler version 0.3.1
Re-entrancy,

call to the unkown

SimpleDao Sample compiler version 0.4.2
Re-entrancy,

call to the unkown

King of the Ether game (KoET)
Unchecked-send

bug, Gasless send, Mishandled exception

KotET Sample compiler version 0.3.1
Gasless

send

KotET Sample compiler version 0.4.2
Gasless

send

GovernMental (PonziGovernmental)
Unchecked-send

bug, Call-stack limit

GovernMental simplified sample 0.3.1
Immutable

bugs, exception disorder, call-stack limit, unpredictable state

Rubixi
Immutable

bugs, wrong constructor name

FirePonzi
Type

casts (intentional scam)

Parity Multisig 1
Unintended

function exposure

Parity Multisig 2 - Suicide Function called
Unintended

function exposure

Parity Multisig 3- Suicide Function called
Unintended

function exposure

GoodFellas
Typo

(wrong constructor name)

StackyGame
Typo

(wrong constructor name)

DynamicPyramid
Contract

that does not refund

GreedPit
Contract

that does not refund

NanoPyramid
Contract

that does not refund

Tomeka
Contract

that does not refund

Double3
Allows

the contract owner to withdraw all the funds

TheGame
Allows

the contract owner to withdraw all the funds

ProtectTheCastle
Call-stack

limit, Withdraw option

RockPaperScissors (RPS)
Public
moves

SmartBillions
Blockhash

bug

EtherPot
Unchecked-send

bug

TheRun
Timestamp
dependence

OddsAndEvents Compiler 0.3.1 Sample
Keeping
secrets

OddsAndEvents Compiler 0.4.2 Sample
Keeping
secrets

Table 3: Vulnerable Smart Contracts Collection
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For each smart contract, one or more associated vulnerabilities are presented.
Smart contracts which are not real, are labelled with the term "Sample" on their
name. Moreover, the ones highlighted in red are not taken into consideration, be-
cause i) Suicide function is called and their code is no longer available (two SCs
cases) or ii) Smart contracts that allow their owners to withdraw the contract
funds, are removed because it was considered to be more of a trust issue rather
than a bug or vulnerability (two SCs cases). Therefore, out of 28 smart contracts
in total, after clean-up we ended up with 2410. Lastly, their corresponding source
code is also collected through EtherScan.

Generally speaking, this category of SCs consists of attacked SCs, buggy (in-
cidents) SCs and samples. However, as for our experiment, it was only necessary
that these smart contracts contain one or more bugs, we do not distinguish between
them.

4.4.4 Sample Size Justification

Despite the fact that the data set could be considered as small, it is a solid represen-
tation for the current state of Ethereum and its security. Analyzing this kind of data
size does not lead us to generalizable results or conclusions, however it provides
us with valuable insight on current security tools and attacks/incidents.

To have a more complete data set for the vulnerable smart contracts category,
we included several samples (examples) of buggy smart contracts as well. An ad-
ditional precaution that we took regarding the sample size were the continuous
checks on community discussions, and websites with blockchain news for any hack
or incident that happened, up until 31st of October, 2017.

Smart Contracts before clean-up
Vulnerable Audited

28 28
Smart Contracts after clean-up

Vulnerable Audited
Solidity 23 21

Bytecode 23 18

Table 4: Dataset Size

Considering Ethereum as a relatively new platform and the shortage on smart
contracts adoption in a practical manner, the sample size presents the most of what
we could extract from the network. Table 4 illustrates the overall data set for both
categories, vulnerable and audited SCs, before and after clean-up.

1023 SCs respectively, since two smart contracts have either bytecode or Solidity available, not both.
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4.5 Implementation

We have already discussed how we generated the proposed taxonomy in the pre-
vious Section, 4.4, therefore in this section we will not cover them. However, we
could just state that the new taxonomy of vulnerabilities that we proposed includes
not only critical (high-severity) vulnerabilities, but also medium- and low-severity
vulnerabilities such as useful warnings.

For the purpose of reproducibility, this section provides a detailed explanation
of how we conducted the experiment, the evaluation method and data analysis
process.

4.5.1 Tools Set Up and Examination

The tools which are chosen11 for the experiment are: Oyente, Securify, Remix and
SmartCheck. All four tools have only a web-based user interface, except Oyente
which initially started as a CLI version and after a while implemented the web-
version for a more user friendly approach. Now both of the versions are simultane-
ously maintained and updated. As a result, we had to set up only one tool, which
is Oyente CLI and its installation is a relatively straightforward process considering
that the tool is cross-platform through a docker container. Based on the Oyente doc-
umentation, there are several ways to set up the tool. For simplifying and resource
purposes we decided to stick with the docker container version of Oyente CLI. In
a Windows 10 machine we set up Oracle VirtualBox and installed Ubuntu 16. Af-
ter some package installations, we were able to run the Oyente docker container
with the following command: docker pull luongnguyen/oyente && docker run -i -t -v
"PATH" luongnguyen/oyente. Doing so, we were able to analyze the smart contract
applications that the Oyente web-version failed to analyze. Having in mind that
Oyente CLI was the initial tool, it is considered to be more stable.

Before proceeding to the experiment we carefully inspect and examine the secu-
rity tools and their usage. Appendix A.1, provides screen-shots of the user interface
(UI) for each security tool analyzed. These figures show how these tools look like
and how they interpret (visualize) the results. We see that Oyente uses an identical
user interface design as Remix. However, the rest of the tools are using different
approaches, overall on their UI design and specifically on visualizing the results
from a particular analysis. Some tools provide a severity level attached to each vul-
nerability identified and highlight the line where a vulnerability is present, whereas
some others additionally provide an explanation of the vulnerability and possible
solutions.

Table 5 provides an overview of the tools used for the experiment, including
their website, version used, and the date when the experiment took place. As we

11We have already justified the tools selection before in this section.
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Security tool Website Date/Version

Oyente
oyente.melon.fund

oyente.melonport.com
oyente.melon.network

31/10/2017
oyente.melon.fund

SmartCheck tool.smartdec.net
01/11/2017

Release0.0.1a
Initial MVP-prototype

Remix
remix.ethereum.org
ethereum.github.io

02/11/2017
remix.ethereum.org

Securify securify.ch
04/11/2017
Beta version

Table 5: Security Tools for the Experiment

can see, two out of four tools have more than one website. The decision on which
one to use is taken through a discussion with the tool developers and the com-
munity in chat channels. Lastly, we generated four tables for each tool examined
(Oyente Table 6, Remix Table 7, Securify Table 8, SmartCheck Table 9), to state
which vulnerabilities they cover. Only in Securify, Table 8, not all vulnerabilities
stated are unlocked, therefore the ones that we did not have access to are high-
lighted in red. In order to have full access you have to make a request to the
development team, which we did, but we never received an answer.

4.5.2 Experiment

Each tool experiment has been conducted separately. Before analyzing both cate-
gories, audited and vulnerable SCs, we generated the runtime binary code (byte-
code) for each smart contract by compiling the Solidity source code with Solc com-
piler12. Out of 23 vulnerable SCs and 21 audited SCs, we were not able to compile
only 3 audited smart contracts, because the Solidity compiler failed13. From four
tools in total, only in two, Oyente and Securify, additional experiments for ana-
lyzing the bytecode have been conducted. Besides this, Solidity analysis have been
conducted in all four tools.

The whole experiment is conducted manually (non-automatic). One of the main
reasons why we conducted the whole experiment manually is that all four tools are
in their infancy stage and as such they do not provide any APIs or other automatic
approach. Also, despite the fact that running this experiment manually presents a
labor intensive task, doing so, we were able to capture the tools’ behaviour based
on their responsiveness and effectiveness. As such, we are able to use those results
later on, to propose possible future improvements within the tools.

12The method on how we set up ‘SolC’ compiler is explained in Appendix A.2
13Compiler error: Import errors!
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O
ye

n
te

Vulnerabilities
Callstack
Depth Attack
Timestamp
Dependency
Re-entrancy
Transaction-ordering
dependence
Assertion
failure

Table 6: Oyente Vulnerabilities

R
em

ix

Vulnerabilities
Unchecked-send

bug
tx.origin

usage
Re-entrancy

Inline
assembly

Block
timestamp
Low level

calls
Blockhash

usage
Gas costly
patterns

this. on local calls
Constant
functions
Similar

variable names

Table 7: Remix Vulnerabilities

In total, 23 vulnerable and 21 audited smart contracts are analyzed with the
four tools. Since each security tool identifies different vulnerabilities, not all vul-
nerable smart contracts were fit to test with all the tools. However, we decided
to analyze all vulnerable smart contracts either way, in order to capture a general
analysis on how many vulnerabilities each tool is not supposed (or not able) to
identify. This also gives us an insight within the possible future improvements of
the security tools. Furthermore, any failure (error) in analyzing a specific smart
contract is noted.

4.5.3 Data Analysis and Evaluation Methodology

The data analysis consists of four different assessments:

• Effectiveness
• Accuracy
• Consistency
• Overall assessment based on the manual analysis

Apart from the overall assessment, all other three assessments have a clear data
analysis process and an evaluation method. The overall assessment is done through-
out the experiments, without any particular focus or plan. During this assessment,
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Vulnerabilities
Transactions

may affect Ether Receiver
Transactions

May Affects Ether Amount
Gas-dependent

Reentrancy
Reentrancy

with constant gas
Reentrancy
method call
Unchecked

Transaction Data Length
Unhandled
Exception

Use of Origin
instruction

Missing Input
Validation

Locked Ether

Se
cu

ri
fy

Use of
untrusted Inputs

Table 8: Securify Vulnerabilities

Sm
ar

tC
he

ck

Vulnerabilities
Strict balance

equity
Byte array
Transfer

forwards all gas
DoS by

external contract
Token API
violation

Costly loop
Integer
division

Locked money
Malicous
libraries
Compiler

version not fixed
Private
modifer

Redundant
fallback function

Re-entrancy
send instead of transfer

Style guide
violation

Time-stamp
dependence

tx.origin
usage

Unchecked
external call

Unchecked math
Unsafe type
inference
Implicit

visibility level

Table 9: SmartCheck Vulnerabilities

we have the user in mind – one without any deep knowledge and experience in
security.

We asses the usability of the tools in terms of easiness to use, and any potential
issue a user could face.
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Effectiveness
Generally, the effectiveness of the tools is assessed based on the percentage
of the smart contracts in total that the tools were able to analyze. The na-
ture of the data-set consists of different type of smart contracts, including
here; secure, vulnerable, old compiler versions, grand scale, small scale, and
samples. Additionally, the symbolic execution methodology predominantly
used to identify vulnerabilities is rather complex, since it analyzes the code
without any known input and also loops through the blockchain to cover all
possible behaviours. Therefore, the security tools and the methodology are
sometimes prone to errors and failures.

Accuracy
Assessing the effectiveness of the tools does not necessarily show us how ac-
curate the results are. Therefore, it is crucial to assess the accuracy of the
results that the tools produce. Accuracy is assessed through the false positive
and false negative rates. Initially, this assessment idea came from Zhang et
al. [50], in which they evaluate the anti-phishing tools with the same method-
ology, using 200 verified phishing URLs (in our case vulnerable SCs) and 516
legitimate URLs (in our case audited SCs), to test the performance of 10 pop-
ular phishing tools (in our case 4 popular Ethereum security code analysis
tools).

The initial idea of the data evaluation in regards to the accuracy was to as-
sume that the audited smart contracts were bug-free, and each vulnerability
discovered on them is automatically considered as a false positive. However,
considering that a security audit does not guarantee full security/safety, and
due to the results we obtained, the need for a manual analysis was inevitable.

Firstly, we ran 21 audited smart contracts in each tool. Based on the results
obtained and the severity level of vulnerabilities, we decided to manually
analyze only five vulnerabilities14. Other vulnerabilities are not considered
for manual analysis, either because they cannot be manually analyzed (e.g.
gas costly patterns), the security audit firm does not cover them, or they are
vulnerabilities with low severity (e.g. useful warnings or style violations).
The manual analysis is conducted as follows:

• Check the Zeppelin source of the smart contract in which a vulnerability
is identified

• If the vulnerability is also identified by Zeppelin, and the smart contract

14Including here: Reentrancy, timestamp dependence, transaction re-ordering, unchecked-send bug,
tx.origin usage.
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owners have not modified the SC for that specific vulnerability15 or they
have reasoned it – it is removed from the false positives results.

• Additionally, a manual analysis following a list of recommendations for
smart contract security [41] is conducted and the line where the vulner-
ability is identified is checked manually to verify if it is false positive.

The other approach in regards to accuracy is the false negative assessment.
This is done through the vulnerable SCs, which we already know that have
at least one particular vulnerability. If the tools state that they are able to
identify a specific vulnerability, and they fail to do so, it is considered a
false negative. This also gives us results of how many vulnerable SCs pro-
ceed with undetected security issues because the tools are not supposed to
identify them.

To conclude, the results obtained from this experiment have two possibilities
of failure:

• False Positive when the tool identifies a vulnerability in an audited
smart contract, and the manual inspection does not identify it.

• False Negative when the security tool does not find a specific vulnera-
bility in a vulnerable SC.

Consistency
Consistency assessment relates with the security tools which are able to ana-
lyze both bytecode and Solidity. We check for any inconsistency where a tool
gives different results for the bytecode analysis and different ones for the So-
lidity analysis of the same smart contract. Additionally, we check any other
inconsistency which may occur during the experiment. For example, failure
to analyze a SC with the first try, failure to distinguish a runtime binary (byte-
code) from creation code16, and any other reliability issue.

15As we mentioned before, the SCs which in general are not modified/updated after the audit, are
not taken into consideration.

16A contract creation code contains the EVM code of the account initialization procedure [14]. It does
not contain any logic or smart contract source code except for the constructor.
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5 Proposed Taxonomies

This chapter illustrates all three taxonomies that we have mentioned so far. Consid-
ering that we covered the taxonomies justification and the data-set construction in
the previous chapter, here we are only presenting them, and briefly explaining/dis-
cussing them.

5.1 Taxonomy of Vulnerabilities/Bugs

Vulnerability Severity level

B
lo

ck
ch

ai
n

Unpredictable state (dynamic libraries) 2
Generating randomness 2-3

Time constrains / Timestamp dependence 1-3
Lack of transactional privacy 1-3

Transaction-ordering dependence 2-3
Untrustworthy data feeds (oracles) 3

EV
M Immutable bugs/mistakes 3

Ether lost in transfer 3

So
li

di
ty

Gas costly patterns 1-2
Call to the unknown 3

Gasless send 3
Exception disorders / Mishandled exceptions / Unchecked-send bug 3

Type casts 2
Reentrancy 3

Unchecked math (Integer over- and underflow) 1-2
Visbility / Exposed functions or secrets/ Failure to use cryptography 2-3

‘tx.origin’ usage 3
‘blockhash’ usage 2-3

DoS 3
‘send’ instead of ‘transfer’ 1-2

Style violation 1
Redundant fallback function 1

Table 10: Taxonomy of Vulnerabilities

By this stage, we can no longer compare this taxonomy (Table 10) to the one pro-
vided by Atzei et al. [23] (illustrated in Table 1). This is due to many reasons. First
and most importantly, this taxonomy does not only include high-severe vulnera-
bilities, such as in [23], but also low (non-critical) and useful warnings. Secondly,
instead of having an "Attacks" section as in [23], we have a severity level (from 1
to 3) for each vulnerability, which is acquired through the research done and also
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based on the attacks that have occurred over time in Ethereum. The only resem-
blance left is the vulnerability categorization level (blockchain, EVM, and Solidity).
However, it can be seen as an extension of the one provided by Atzei et al. [23].
As shown on the table, the least modified category is the EVM level. This comes as
a result of Ethereum developers continuously working on upgrading the EVM. For
example, the stack size limit vulnerability is not present anymore1, and through our
research we could not find any other vulnerability that is EVM specific.

We have previously mentioned that many articles and authors refer to the same
vulnerability with different names. Therefore, to avoid confusion, for some vulner-
abilities we provide more than one name/explanation. Also, some vulnerabilities
have several severity levels, and it is challenging to assign only one severity level,
because some vulnerabilities are represented as useful warnings, but once they are
utilized in a critical SC component, they could present major security issues.

5.2 Taxonomy of Tools

Security
Tool Method

Bytecode
analysis

Solidity
analysis CLI2 WUI3

Oyente Symbolic execution X X X X
Remix Formal verification X X X X

F* Framework Formal verification X X X X
Gasper Symbolic execution X X N/A N/A
Securify Formal verification X X X X
Simple

Analysis4 Heuristics X X X X

SmartCheck N/A X X X X
Imandra
Contracts Formal verification N/A - paid access

Mythril
Concolic

testing (symbolic execution) X X X X

Table 11: Taxonomy of Tools

Table 11 provides an overview of the generated taxonomy for security code analy-
sis tools. The categorization is based on their similarities, such as, the methodology
they use (highlight) to identify security issues (symbolic execution, formal verifica-
tion), which code analysis they are able to perform (bytecode, Solidity), and their

1Modifications to the gas rules have eliminated this issue. Link: https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-150.md

2CLI: Command Line Interface
3WUI: Web-based User Interface
4A simple program analysis tool specifically used for detecting unchecked-send bug. Link: http://

hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
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user interface (CLI, WUI). As it can be seen, for some tools we have partial infor-
mation, either because the tool is not released yet (Gasper), the methodology is
not stated in their documentation (SmartCheck), or the tool requires paid access
for additional information and usage (Imandra Contracts).

Compared to the taxonomy provided by Hildenbrandt et al. [19], which covers
all Ethereum software quality tools, our taxonomy is only focused on security tools
used to identify vulnerabilities/bugs in smart contracts. The security tools stated
here use symbolic execution and formal verification as a methodology to identify
vulnerabilities. These two methodologies, generally, are used interchangeably and
in combination. However, we have stated the methodology which the tools high-
light most in their documentation or papers. For example, Mythril, refers to the
symbolic execution methodology in a more specific manner, as concolic testing.

5.3 Tools/Vulnerabilities Matrix

Security
Tool ReEntrancy

Timestamp
dependency TOD5 Mishandled

exceptions
Immutable

Bugs
tx.orgin
usage

Gas costly
patterns

Blockhash
usage

Oyente X X X X X X X X
Remix X X X X X X X X

F* X X X X X X X X
Gasper X X X X X X X X
Securify X X X X X X X X

S. Analysis X X X X X X X X
SmartCheck X X X X X X X X

Imandra n/a n/a n/a n/a n/a n/a n/a n/a
Mythril X X X X X X X X

Table 12: Tools/Vulnerabilities Matrix

Table 12 provides the generated matrix of the security tools and the most severe
vulnerabilities they cover. The total list of vulnerabilities is extensive, where for ex-
ample, only SmartCheck identifies 21 vulnerabilities in total, including here warn-
ings and other low-risk vulnerabilities. Therefore, based on their importance, not
all vulnerabilities are taken into consideration for this matrix. Most security tools
(6 out of 8) identify more than one vulnerability, and only two tools identify one
vulnerability each, Gasper (gas costly patterns), and Simple analysis (unchecked-
send bug). Furthermore, since Imandra requires paid access, we do not have any
information on what kind of vulnerabilities it covers.

To simplify the matrix, in the mishandled exceptions we cover: exception disor-
ders, unchecked-send bug, and gasless send. Whereas, in the immutable bugs category
we cover, type casts and integer over- and underflow as well.

Additionally, visibility (function exposure) checks are omitted because they are
covered only from Smart-Check. And since the stack-size limit is not a vulnerability

5TOD: Transaction-ordering dependence
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anymore, it is eliminated from the list, even though Oyente still has that vulnera-
bility check.

This matrix (Table 12), and the other two taxonomies presented in this chap-
ter (Table 10, Table 11) are further discussed based on the results obtained from
the experiment. Additionally, the answer of the first research question as well as
the proposed future improvements of the security tools, heavily rely on these tax-
onomies.
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6 Experiment and Results

This chapter summarizes the experiments conducted and illustrates the results ob-
tained. Firstly, the results for each security tool are separately presented, and af-
terwards, in Section 6.5, a general overview of the results and comparisons for all
four tools is presented, visualized, and briefly explained.

6.1 Oyente

As we already mentioned before, the web version of Oyente is chosen primarily
for this experiment. However, during the experiment, we ran into some issues with
the web version and therefore we had to utilize the use of Oyente CLI version, to
complete our experiment. The general results for Oyente’s effectiveness, accuracy
and consistency, presented in Section 6.5, are based on the merged results from
both experiments, Oyente WUI and Oyente CLI.

Figure 4: Oyente (WUI and CLI) Total SCs Analyzed

Figure 4 illustrates the total number of smart contracts analyzed from both WUI
and CLI versions. Additionally, highlighted in grey, are the smart contracts which
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are not analyzed from any of the versions. As we can see, Oyente WUI failed to
analyze two bytecode-vulnerable SCs , two vulnerable-Solidity SCs, four bytecode-
audited SCs, and ten Solidity-audited SCs. Out of these, Oyente CLI was able to
analyze 14 SCs and failed to analyze in total four Solidity (1 vulnerable and 3
audited) SCs. Overall, Oyente achieved to analyze 100% of vulnerable and audited
bytecode SCs. On the other hand, it performed worse on analyzing the Solidity-
audited SCs with 85.7% (or 18 SCs), followed by Solidity-vulnerable SCs with
95.6% (or 22 SCs).

Oyente results consist of four vulnerability checks. Additionally, it provides an
EVM code percentage for each SC analyzed. Analyzing the SC’s bytecode gives
us four results (vulnerabilities): callstack depth, timestamp dependence, reen-
trancy, and transaction-ordering dependence. The Solidity analysis gives us one
more additional check, which is assertion failure. The results generated from
Oyente are either true or false, where true means the vulnerability is present in
a SC, and false, the vulnerability is not present in a SC.

Oyente WUI
EVM

coverage
Callstack

depth
Timestamp
dependency Reentrancy ToD

Vulnerable
Bytecode 52.60% 20-T | 1-F 2-T | 19-F 4-T | 17-F 9-T | 12-F
Solidity 53.99% 20-T | 1-F 2-T| 19-F 4-T | 17-F 9-T | 12-F

Audited
Bytecode 61.21% 0-T | 14-F 0-T | 14-F 0-T | 14-F 1-T | 13-F
Solidity 59.96% 0-T | 11-F 1-T | 10-F 0-T | 11-F 1-T | 10-F

Table 13: Oyente - WUI Results

Oyente CLI
EVM

coverage
Callstack

depth
Timestamp
dependency Reentrancy ToD

Vulnerable
Bytecode 53.80% 2-T | 0-F 1-T | 1-F 0-T | 2-F 1-T | 1-F
Solidity 64.00% 1-T | 0-F 1-T | 0-F 0-T | 1-F 1-T | 0-F

Audited
Bytecode 18.98% 0-T | 4-F 0-T | 4-F 0-T | 4-F 0-T | 4-F
Solidity 79.67% 0-T | 7-F 0-T | 7-F 0-T | 7-F 0-T | 7-F

Table 14: Oyente - CLI Results

Tables 13 and 14 present an overview of the raw data obtained from the exper-
iment (Oyente WUI and CLI versions). Four categories presented (callstack depth,
timestamp dependency, reentrancy and ToD) are the vulnerabilities that Oyente
identifies, where true is marked with T and false is marked with F. Table 15
presents an overview of the merged results from both WUI and CLI versions of
Oyente, which are used for the general tool comparisons later on. These results are
merged and considered indistinguishable from now on.
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Oyente Web and CLI
EVM

coverage
Callstack

depth
Timestamp
dependency Reentrancy ToD1

Vulnerable
Bytecode 52.77% 22-T | 1-F 3-T | 20-F 4-T | 19-F 10-T | 13-F
Solidity 54.45% 21-T| 1-F 3-T | 19-F 4-T | 18-F 10-T | 12-F

Audited
Bytecode 51.82% 0-T | 18-F 0-T | 18-F 0-T | 18-F 1-T | 17-F
Solidity 65.74% 0-T | 18-F 1-T | 17-F 0-T | 18-F 1-T | 17-F

Table 15: Oyente WUI&CLI Merged Results

Table 16 shows for each vulnerability separately, the total number and percent-
age of vulnerable SCs identified from Oyente. As we can see, almost all vulnerable
SCs (95%) are identified with the callstack depth vulnerability. Moreover, four SCs
are identified with the reentrancy vulnerability, three SCs with the timestamp de-
pendency, and ten SCs with the transaction-ordering dependence. Whereas, from the
whole data-set of audited SCs, Oyente identified only two vulnerable SCs, one with
the timestamp dependency and the other one with the transaction-ordering depen-
dence.

Oyente Web and CLI
Callstack

depth
Timestamp
dependency Reentrancy ToD

Vulnerable
SCs

Bytecode 22 (95.65%) 3 (13.04%) 4 (17.39%) 10 (43.47%)
Solidity 21 (95.45%) 3 (13.63%) 4 ( 18.18%) 10 (43.47%)

Audited
SCs

Bytecode 0 (0%) 0 (0%) 0 (0%) 1 (5.55%)
Solidity 0 (0%) 1 (5.55%) 0 (0%) 1 (5.55%)

Table 16: Oyente - Total number (and percentage) of vulnerable SCs

6.2 Remix

Remix is a web-based IDE for developing smart contracts. In addition, it serves as
a security code analysis tool in which it checks for possible vulnerabilities. It could
be used to analyze only the Solidity source code.

Remix was able to analyze 100% of the vulnerable SCs, and 90% of the audited
SCs2. Unlike Oyente, Remix does not only show whether the vulnerability is present
or not, but it also highlights the line where the vulnerability is present, and it counts
how many times each vulnerability is present in a SC. Table 17 illustrates the total
number of vulnerabilities identified from Remix, in both, vulnerable and audited
SCs. Gas costly patterns present the highest number of vulnerabilities in both of the
categories, followed by similar variable names in audited SCs, and unchecked-send
bug in vulnerable SCs.

In addition to the vulnerabilities presented in the following tables (17 and 18),

1ToD: Transaction-ordering dependence
2Remix failed to analyze two audited SCs with ‘compiler errors’.
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Remix checks for three other vulnerabilities which are not presented here because
Remix did not identify any SCs with those vulnerabilities, tx.origin usage, low level
calls and this. on local calls.

Remix
Unchecked
send bug ReEntrancy

Block
timestamp

Blockhash
usage

Gas
costly

patterns

Constant
functions

Similar
variable
names

Inline
assembly

Vulnerable
SCs 83 42 18 13 282 22 44 1

Audited
SCs 8 13 34 0 223 72 113 1

Table 17: Remix - Total number of vulnerabilities

Remix
Unchecked
send bug ReEntrancy

Block
timestamp

Blockhash
usage

Gas
costly

patterns

Constant
functions

Similar
variable
names

Inline
assembly

Vulnerable
SCs 20 (86.9%) 23 (100%) 8 (34.7%) 2 (8.69%) 23 (100%) 10 (43.4%) 6 (26%) 1 (4.3%)

Audited
SCs 6 (31.57%) 6 (31.57%) 7 (30.43%) 0 (0%) 19 (100%) 16 (69.5%) 16 (69.5%) 1 (5.2%)

Table 18: Remix - Total number (and percentage) of vulnerable SCs

Table 18 presents the total number, and their corresponding percentage, of all
vulnerable SCs for each vulnerability separately. As expected from the Table 17,
Remix identified all (vulnerable and audited) SCs with one or more gas costly
pattern. It also identified 100% of vulnerable SCs with (at least one) re-entrancy
bug. All audited SCs are identified as vulnerable with at least one bug and the
results show that only the blockhash bug was not found in any audited SC.

6.3 Securify

Securify is able to run smart contract analysis in three different ways: through
bytecode, Solidity and smart contract address. The latter did not work properly3

and therefore was not taken into consideration for our experiment. We conducted
our experiment for bytecode and Solidity source code only.

Figure 5 illustrates the total percentage of SCs analyzed from Securify. It per-
formed worse (with 65.2%) on analyzing the bytecode of vulnerable SCs while it
performed best (with 88,9%) on analyzing the bytecode of audited SCs. Only one
SC analysis failed because of ‘compiler error’, and the rest of the failures are related
with ‘analysis timeout’ and ‘failed loading’ errors.

3Before running the experiments, we examined/inspected the tools, and analyzing a smart contract
with its Ethereum address did not seem to work.
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Figure 5: Securify - Total SCs Analyzed

Table 19 presents an overview of the results obtained from the Securify experi-
ment and Figure 6 presents a visualized version of the same results. As mentioned
in the methodology chapter, Securify has many vulnerabilities which are locked,
and we did not have access to those. The table only presents the vulnerabilities
which we were able to test, whereas the tx.origin usage, is not presented since
none of the SCs were identified with that bug. AT presents the abbreviation for
‘analysis timeout’. This is different from ‘failed loading’, since when the latter hap-
pens none of the vulnerabilities are checked (it is considered a failure to analyze
the whole SC). With AT, Securify is able to analyze the SC as a whole but fails to
analyze a particular vulnerability. Securify identified 100% of vulnerable SCs with
the transaction reordering bug.

Securify
Results

Transaction
Reordering

Insecure
Coding
Patterns

Use of untrusted
Input in Security

operations
Ether receiver

affected
Ether amount

affected
Unhandled
Exceptions

Use of untrusted
input

Vulnerable
SCs

Bytecode 15 (100%) 15 (100%) 13 (86.6%) (13.4% AT) 0 (0%)
Solidity 20 (100%) 20 (100%) 15 (75%) (25% AT) 2 (10%)

Audited
SCs

Bytecode 4 (25%) 4 (25%) 0 (0%) 0 (0%)
Solidity 5 (31.25%) 5 (31.25%) 0 (0%) (6.25% AT) 1 (6.25%)

Table 19: Securify - Total number (and percentage) of vulnerable SCs
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Figure 6: Securify - Results

6.4 SmartCheck

SmartCheck too runs analysis in Solidity source code only. It successfully analyzed
all 100% of smart contracts from both categories; vulnerable and audited. Unlike
Oyente and Securify, same as in Remix, SmartCheck identifies whether there is
more than one issue for the same vulnerability in a SC. Therefore, Table 20 shows
an overview of the total number of vulnerabilities detected by SmartCheck. The
most present issue is send instead of transfer within the vulnerable SCs (85), fol-
lowed by re-entrancy vulnerability (67) – again, in the whole data-set of vulnera-
ble SCs. The send instead of transfer issue can not be considered as a vulnerability,
because it only represents a warning and a recommendation that is better to use
transfer than send. Since, SmartCheck checks 21 vulnerabilities in total, the ones
that have not been identified by any SC are removed from the tables and charts.
Those are: strict balance equity, byte array, transfer forwards all gas, redundant fall-
back function, tx.origin usage, and unchecked math.

SmartCheck
Results DoS

Token
API

Costly
loop

Integer
division

Locked
money

Malicous
libraries

Compiler
version

Vulnerable
SCs 15 0 17 34 1 1 5

Audited
SCs 49 14 13 6 0 6 20

Private
modifer

Re-
entrancy

send
transfer

Style
guide

Time-
stamp

Unchecked
call

Unsafe
inference

Vulnerable
SCs 57 67 85 17 18 0 7

Audited
SCs 4 15 10 2 38 1 2

Table 20: SmartCheck - Total number of vulnerabilities

Table 21 presents the total number and percentages of vulnerable SCs as iden-
tified by SmartCheck, for each vulnerability separately. As expected from Table 20,
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almost all vulnerable SCs (91.3%) are using send instead of transfer. Whereas, 86%
of the vulnerable SCs are identified with the re-entrancy bug.

SmartCheck
Results DoS

Token
API

Costly
loop

Integer
division

Locked
money

Malicous
libraries

Compiler
version

Vulnerable
SCs

13
(56.52%)

0
(0%)

13
(56.52%)

11
(47.82%)

1
(4.34%)

1
(4.34%)

5
(21.73%)

Audited
SCs

14
(66.6%)

7
(33.33%)

6
(28.57%)

4
(19.04%)

0
(0%)

6
(28.57%)

18
(85.71%)

Private
modifer

Re-
entrancy

send
transfer

Style
guide

Time-
stamp

Unchecked
call

Unsafe
inference

Vulnerable
SCs

7
(30.43%)

20
(86.95%)

21
(91.3%)

5
(21.73%)

8
(34.78%)

0
(0%)

2
(8.69%)

Audited
SCs

1
(4.76%)

6
(28.57%)

7
(33.33%)

1
(4.76%)

8
(38.09%)

1
(4.76%)

1
(4.76%)

Table 21: SmartCheck - Total number (and percentage) of vulnerable SCs

Figure 7 visualizes the results from Table 21 – for the purpose of having a better
representation of the overall SmartCheck results.

Figure 7: SmartCheck - Total Vulnerable SCs visualized
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6.5 Overall Results

This section provides an overall interpretation and comparison of the results for all
four tools. It consists of four subsections: effectiveness, accuracy, consistency, and
overall assessment.

6.5.1 Effectiveness

Figure 8 and 9 visualize the comparison between the effectiveness of the tools
and Table 22 presents the merged results from both figures, additionally with the
number of SCs analyzed. The results (percentages) obtained are based on how
many SCs, from the whole data-set, each tool was able to analyze. As we can see,
only SmartCheck achieved 100% effectiveness on both categories. Oyente achieved
100% on both categories, but only in bytecode analysis. On the other hand, Remix
achieved 100% only in vulnerable SCs analysis. Overall, Securify performed worse
with 65% effectiveness in bytecode-vulnerable SCs analysis, and 86% in Solidity-
vulnerable SCs analysis.

Figure 8: Tool Effectiveness in Vulnerable SCs

Total
SCs

Analyzed
SmartCheck Oyente Remix Securify

Vulnerable Audited Vulnerable Audited Vulnerable Audited Vulnerable Vulnerable
Bytecode / / 23 (100%) 18 (100%) / / 15 (65.2%) 16 (88.88%)
Solidity 23 (100%) 21 (100%) 22 (95.6%) 18 (85.7%) 23 (100%) 19 (90.4%) 20 (86.9%) 16 (76.1%)

Table 22: Tools Effectiveness (Vulnerable & Audited SCs)
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Figure 9: Tool Effectiveness in Audited SCs

6.5.2 Accuracy

The accuracy of the tools is obtained through an in-depth inspection of audited
SCs result analysis. To assess the false positive rate for each tool, we chose only
five severe vulnerabilities which could be manually analyzed.

Since in the beginning each vulnerability detected in an audited SC is consid-
ered to be a false positive, Figure 10 presents the initial results for false positives –
before the manual check. As discussed in the methodology chapter, considering the
fact that audited SC are not necessarily secure, we ran manual checks to ensure the
detection of false positives. Figure 11 presents the results after the manual check. It
can be seen in both of the figures that only four vulnerabilities are presented, and
this is because the tx.origin usage vulnerability is removed since none of the tools
identified a SC with this bug. The percentages show how many SCs were identified
as vulnerable with a specific bug. For example, SmartCheck identified 38.09% of
audited SCs with the timestamp dependence and after the manual check, it turned
out that only 9.52% SCs in total (or 25% of the 38.09%) were false positives.

The most substantial difference before and after the manual analysis is within
the timestamp-dependence vulnerability. The other three results from reentrancy,
transaction re-ordering, and unchecked-send bug remained unchanged. That means
that, e.g. out of 28.57% SCs identified with the reentrancy vulnerability from
SmartCheck, after the manual analysis, 100% of the 28.57% SCs, are false posi-
tives.
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Figure 10: False Positives Before Manual Check

Figure 11: False Positives After Manual Check

The next assessment done in regards to the accuracy of the tools, is the false
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negative rate (Figure 12). The percentages are obtained with a thorough inspection
of the vulnerable SCs analysis results. In our case, considering the small data-set
size, we only found one case of false negative (which represents 4.35%). The smart
contract TheRun, suffers from the timestamp dependence vulnerability, which
is used to generate random numbers and reward a jackpot based on that. Even
though Oyente states that it identifies potential timestamp-dependence vulnerabil-
ities, in this case, it failed to do so.

Furthermore, this thorough analysis on discovering the false negative is also
used to check the vulnerabilities which the tools are not supposed to cover. As we
can see from Figure 12, that percentage is significantly high for all four tools. How-
ever, that percentage is vastly influenced from our data-set, which is furthermore
discussed in Chapter 7.

Figure 12: False Negatives

The raw data results obtained from the analysis of the false positive and false
negative rates are presented in Appendix A.3.

6.5.3 Consistency

Consistency is assessed only in two tools, the ones that analyze both bytecode and
Solidity analysis, which are Oyente and Securify. It is assessed throughout both
experiments to find any inconsistency within the tools, e.g., if the tool produces
some results for a SC with the bytecode analysis, and different results for the same
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SC with the Solidity analysis.
The inconsistency of the tools could potentially be explored through the Oyente

general results (Table 15), and Securify results (Table 19). However, taking into
consideration that the data-size is different for each analysis, it is hard to do so.

In Oyente, we encountered one case of inconsistency. The HKG smart contract
with the Solidity analysis identified the timestamp dependence, whereas with the
bytecode it did not. This can also be considered as a false negative case with Oyente
(which makes it two). In Securify, we encountered three cases of inconsistency in
one SC analysis. Securify, in Kin smart contract Solidity analysis identified three
vulnerabilities (transactions affect Ether receiver, transactions affect Ether amount,
and block timestamp), whereas with the same contract in bytecode analysis it did
not identify any of the aforementioned vulnerabilities. These corresponding results
are already considered as false positives in the previous section.

6.5.4 Overall Assessment

The observations that we made throughout our experiments are:

• Oyente’s website was down several days during the period of time when we
inspected the tools. The developers of Oyente were not aware of the issue,
and before we started the experiment, they were informed and fixed it.

• Oyente failed to analyze 13 (out of 81) analysis in the first try.
• Securify falsely identified two SC bytecodes as contract creation codes.

Additional Information
The complete data-set (vulnerable and audited smart contracts) and the re-
sults for each tool experiment separately can be found in the GitHub reposi-
tory in https://github.com/DikaArdit/Master-Thesis.
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7 Discussion

Ethereum smart contract security represents a challenging issue, and is tackled by
many studies. Some of them focus on vulnerability taxonomies, or best practices
that should be followed, whereas others focus on security code analysis tools and
other automated means to run security checks. Therefore, to answer the research
questions of this thesis, we performed a comprehensive investigation of security
vulnerabilities in smart contracts, and provided several taxonomies. Additionally,
we thoroughly investigated several popular security code analysis tools.

The general tool analysis and comparisons based on the effectiveness, accuracy
and consistency represent the main results of the experiment conducted. However,
the examination of each tool separately, is of a great importance as well. Firstly,
the manual analysis of the tools gave us an overview of their behaviour and other
observations which we would not be able to obtain through an automated exper-
iment. Secondly, inspecting each tool separately aimed to identify specific pitfalls
within each tool.

The first research question and its sub-questions are answered through our re-
search work and mostly rely on the proposed taxonomies. The second research
question and its sub-questions are answered through the results obtained from our
experiment. Lastly, a limitations section is presented with the main pitfalls we ex-
perienced and the issues which may have jeopardized the overall validity of the
results.

First Research Question: What kind of security vulnerabilities arise in smart
contract programming?

Through our research work we identified several types of smart contract vulner-
abilities. Mainly, the vulnerabilities are presented jointly with their severity level,
i.e., the damage they could cause and the overall risk they carry. Therefore, based
on the severity level, the vulnerabilities could be identified as:

• Low - Useful warnings and minor issues.
• Medium - Vulnerabilities that lead to incidents and do not constitute an op-

portunity for an adversary to hack the smart contract. Medium severity vul-
nerabilities are considered to be problematic because they might affect the
effective continuity of a SC, where – in case of exploiting that vulnerabil-
ity, nobody benefits from it. For example, the GovernMental smart contract
incident, in which 1100 Ether got stuck because of a gas costly pattern.
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• High - Major and critical vulnerabilities present risky issues in the sense that
they endanger the wholeness of smart contracts and make them prone to
hacks and malicious modifications from adversaries/hackers.

Categorizing vulnerabilities only through their severity level does not tell us
much about the whole nature of the vulnerability. To answer the first sub-question
on how can we categorize these vulnerabilities, we proposed the taxonomy of
vulnerabilities in Section 10. Based on our research and categorization we argue
that the categories (levels) used, are the most valid representation for all types of
security vulnerabilities in Ethereum smart contracts. Our taxonomy, same as the
one introduced by [23], categorizes the vulnerabilities in:

• Blockchain
• EVM
• Solidity (applicable for other high-level programming languages)

We append a severity level from 1-3, i.e., low, medium, high, to each security vul-
nerability. On the other hand, in [23], they append an attack example for each
vulnerability. Furthermore, the same categorization is also used by Li et al. [11],
which additionally attach a cause category to explain the reason (root) for each
vulnerability exploit. Despite the similarity in categorizing the vulnerabilities with
the same levels with the two aforementioned taxonomies, our taxonomy covers all
discovered vulnerabilities so far, whereas they merely cover the most severe ones.
Our results indicate that sometimes some minor issues exploited in crucial SC com-
ponents can lead to huge losses. Thus, we stipulate the need to incorporate issues
with low-severity as well in future taxonomies of vulnerabilities.

In the second sub-question on why do these vulnerabilities occur and what
are the factors that raise these vulnerabilities, we partially rely on the tax-
onomies proposed and the systematic mapping study for smart contracts by Alharby
and Moorsel [5]. They state that all smart contract vulnerabilities arise because of
four reasons, including here:

• Codifying issues
• Security issues
• Privacy issues
• Performance issues

However, we argue that most of the already discovered security vulnerabilities oc-
cur with the ground basis of codifying issues, i.e. developers’ mistakes. Even
though in our taxonomy we categorize some vulnerabilities as EVM or blockchain
specific, they are usually exploited by developers’ mistakes, such as the case with
the privacy-preserving vulnerability, which is usually due to developers failing to

60



Security of Ethereum Smart Contracts

apply cryptography or unintentionally making crucial functions/data public, which
should have been private in the first place. Additionally, even though transaction-
ordering dependence is a security issue concerning blockchain technology, it could be
mitigated with the use of ‘sendIfReceive’ function or other preventive methodolo-
gies (e.g. guarded transactions) [7]. Furthermore, if some use cases of applications
could not be implemented in Ethereum or blockchain generally, for a specific rea-
son, those limitations should be taken into consideration by developers before they
implement such an application, and not blaming the platform or the technology.
Thus, generally speaking, we argue that the initial cause (factor) of all vulnerabili-
ties is as a consequence of developers’ mistakes.

The third sub-question concerns the concept of ‘how can we mitigate these
vulnerabilities and promote new engineering mindset for programming se-
cure smart contracts’. Throughout our research, in order to mitigate security vul-
nerabilities and generally to implement more secure and trustworthy smart con-
tracts, we composed a list of proposals to follow. The list consists of:

• Following Ethereum smart contract best practices (recommendations), such
as, the ConsenSys list [41]

• Using only documented and official (approved by Ethereum) programming
languages and programming patterns

• Including SC test coverage
• Being up-to-date with ongoing Ethereum discussions (attacks, updates, mod-

ifications) through community forums (Reddit), chat groups (Gitter, Slack,
etc.), and networking (communicating) with blockchain developers

• Developing smart contracts with a new engineering mindset, i.e., everything
is public, immutable, and decentralized

• Utilizing the use of security code analysis tools
• In heavy financial smart contracts, utilizing the services of security audit firms

Overall, there is no single technology or method to put an end to security is-
sues in Ethereum smart contracts. Thus, a developer should heavily rely on many
sources and techniques simultaneously. The proposals mentioned above establish
a safe base-knowledge to start developing securely on Ethereum.

Second Research Question: What are the limitations with the current security
code analysis tools in Ethereum?

The answer to this question, somewhat constructs the answer for the second
sub-question as well, which relates to the possible future improvements within
the tools. Based on the limitations we identified, we propose several possible
improvements. Thus, the answers to these questions are merged and jointly pre-
sented. The proposed improvements are a collection of the best practices and func-
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tionalities from all security tools (based on our observations). The aim is to propose
what an ideal/optimal security code analysis tool should include. The following
limitations and possible improvements are:

User Interface

The method of how the security tools display and visualize the obtained re-
sults from security checks, presents the main limitation. Consequently, it be-
comes the most appropriate starting point for future improvements. First of
all, all four analyzed security tools present the results in different ways. We
choose the most convenient, again based on our observations, which could
be used as future improvements in the rest of existing security tools or future
new tools. Results visualization should mainly include the following:

• Highlight the line where the vulnerability is present
• Explain the vulnerability and the associated consequences
• Propose possible solution (with examples) for the detected vulnerability
• Provide links to relevant articles for further aid on solving or mitigating

a particular vulnerability
• Provide the option for a user to confirm or mark a particular result as

false
• Show the total (sum) number of detected vulnerabilities
• Save past-analysis results

For research purposes and other tool experiments, such as ours, it would be
helpful if the security tools provide a before-hand list with all the vulnera-
bilities that they are supposed to identify. So far, this is done by SmartCheck
(KnowledgeBase section), and Remix. The vulnerabilities that Oyente identi-
fies, are covered in their paper [7] and we were not able to find Securify’s list
of vulnerabilities, apart from the general statement that they cover critical
security vulnerabilities. Thus, to get the list from Securify we had to run one
test analysis, and based on the results, to assemble a list of vulnerabilities
they cover.

Furthermore, it is important for the security tools to boldly state which anal-
ysis they are able to run (bytecode or Solidity), and properly distinguish their
usage (such as in Securify, Figure 15). On the other hand, Oyente, consider-
ing the fact that it uses an identical UI as Remix, it is not perfectly suitable for
bytecode analysis and most importantly it is not self-explanatory, as it could
be seen in Figure 13. We had to rely on developers’ help to realize whether
the web version of the tool supported bytecode analysis yet.

Generally, these usability (UI) issues make developers reluctant to embrace
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the use of such security tools and have a negative impact on the overall adop-
tion.

Vulnerability checks

Each security tool covers a distinct number of vulnerabilities. Some tools fo-
cus for example on several severe vulnerabilities, such as Oyente, and Se-
curify. Whereas, other tools cover a more comprehensive list of vulnerabil-
ities (including here, warnings, medium-severe, etc.), such as Remix and
SmartCheck. Based on our experiment, we suggest that security tools should
try and cover as many vulnerabilities as possible (low, medium and high).
More specifically, considering the fact that a vulnerability which is referred
to as a ‘minor’ issue – the blockchash usage, led to a theft of 400 Ether
(approximately $200,000) from the "SmartBillions" smart contract. This vul-
nerability was only discovered by Remix, and all other three tools were not
able to identify/discover the vulnerability because they consider it as a minor
issue and do not include it in their checks, event though the hack showed oth-
erwise. This further justifies our decision to include all vulnerabilities (low to
high) in our taxonomy.

Furthermore, as we have already explained, some severe vulnerabilities, if
used in non-crucial components of a smart contracts, do not present any risk
from adversaries or hackers, such as the timestamp dependence vulnerabil-
ities detected in the audited SCs. Therefore, it is helpful and beneficial to
state what severity level a specific vulnerability detected indicates, and
to avoid making a general assumption, as all the tools analyzed so far do.

Moreover, compiler bugs1 are not covered by any security tool. It would be
beneficial if the security tool, based on the compiler version that SCs use,
report those potential Solidity compiler bugs. Also, considering the unpre-
dictable state of smart contracts and Ethereum, further work on detecting
zero-days vulnerabilities2 would positively affect the tool performance.

Overall Observations
Two out of four tools, Oyente and Remix, have more than one website for the
same tool. This causes confusion for users and developers. We had to contact
the tool development teams to find out which websites were the official and
legitimate ones. Having one website, i.e. one official source for the security
tool, eliminates this unnecessary confusion and simplifies the use, in terms of
accessibility. Other overall future improvements that could be made are:

1Link with the list of compiler bugs: https://etherscan.io/solcbuginfo
2Unknown vulnerabilities.

63

https://etherscan.io/solcbuginfo


Security of Ethereum Smart Contracts

• Include a verification technique for the obtained results
• Measure the degree of testing for each SC analysis
• Provide tool-usage explanation3

Lastly, the first sub-question in the second research question is regarding
the current state of security tools based on their accuracy, effectiveness
and consistency. This question is fully answered through our conducted ex-
periment which is presented in Chapter 6. However, it is worth mentioning
several significant results. Oyente and SmartCheck were the only tools which
achieved 100% on successfully analyzing all SCs. Since the accuracy of the
tools was assessed for five vulnerabilities only, and not all tools identify those
five vulnerabilities, it was challenging to obtain an overall accuracy. How-
ever, based on the results, Oyente seems to have the lowest false positive
rate, whereas it is the only tool in which we detected one false negative. Nev-
ertheless, almost 80% of the timestamp dependence vulnerabilities identified
by Remix and SmartCheck, after the manual check, came out as true posi-
tives. This could imply that Oyente was not able to identify them, and these
should be considered as false negatives. However, this is not necessarily the
case because the timestamp issues identified are not severe and the reason
for Oyente not identifying them might be that it only checks for severe is-
sues4. As for the reentrancy vulnerability and the unchecked-send bug, Remix
has the highest rate of false positives, followed by Securify in transaction re-
ordering vulnerability checks, and SmartCheck in reentrancy analysis. Since
none of the vulnerabilities (five chosen for manual checks) are covered by all
four tools, we cannot draw general conclusions of the tools’ accuracy.

As for the consistency assessment, Securify performed worse compared to
Oyente in which we identified only one case of inconsistency. In contrast, in
Securify we identified three cases of different results for the same SC analy-
sis and also two cases of incorrectly recognizing the bytecode as a contract
creation code.

Overall, the results indicate that some tools outperformed the others, but only in
some specific aspects, not generally. SmartCheck’s strongest points are: the results
visualization, the high coverage of known vulnerabilities, and the effectiveness of
successfully analyzing the whole data-set. Remix’s strongest point is that the secu-
rity analysis is incorporated within a compiler5. Whereas Oyente’s strongest point

3Only in security tools in which you have to manually set up some arguments (timeout variable, gas
limit, depth limit, etc.), such as in Oyente.

4Disputable statement.
5We argue that it is more convenient for developers to have the security analysis incorporated within

a compiler.
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is on the accuracy level due to having the lowest false positive rate compared to
the other tools. Since we had limited access to Securify, the results are also limited.
However, Securify’s weakest point is the ability to analyze the data-set provided
because it failed multiple times and performed worse than any other tool in this
task.

Generally speaking, despite the fact that the same data-set was used for all four
tools analysis, their results are vastly dissimilar. Thus, this indicates that there is a
general inconsistency within the tools and the results they produce. However, these
security tools, at this stage, should be used as an aid (in addition to our proposals
for safe smart contract programming) for increased security and developers should
not rely on them 100%.

7.1 Limitations

This section covers the project’s limitations and the main pitfalls we encountered
throughout our experiment.

Since Ethereum and the security of its smart contracts especially are on their
infancy stage, the primary limitation of this thesis is the lack of high-quality and
peer-reviewed papers. Therefore, this thesis relies mostly on grey literature and
web articles from trusted sources. Another significant limitation which affected the
results of our experiments, is that most of the security tools we analyzed (3 out
of 4), are in their beta-versions, except for Remix, which is considered to be in a
more stable state.

For example, Oyente WUI version was recently released. As such, a major lim-
itation that effected Oyente’s results in general is the improper function of the
‘timeout’ variable. When we set the ‘timeout’ variable to 30 minutes, the analysis
failed6 after some time. When we set the timeout variable to less (e.g. 2-5 min-
utes), the tool did not detect the vulnerability. This might also be the reason why
Oyente did not identify the timestamp dependencies in the audited SCs7. Overall,
the limitation of early-versions (i.e. unstable) of security tools led to other restrains,
such as, the security tools experiencing unidentified issues, and sometimes acting
strangely.

A significant limitation regarding the taxonomies we proposed is based on their
validation. At this stage, we assume based on our research and the results obtained
that the proposed taxonomies would aid developers in mitigating some already
known vulnerabilities, which is not conclusive. Thus, currently this thesis lacks the
validation process and the overall community-acceptance of these taxonomies.

6Error: Some errors occurred. Please try again!
7In a discussion with Oyente’s developer, they proposed to use a timeout of 2000 seconds for one

specific SCs.
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A limitation concerning the experiment is the fact that all security tools ap-
proach the SC analysis in different ways, with a variety of functionalities.
Therefore, it was challenging and unfeasible to do a direct comparison of the tools
and state which one performed better. This is due to them not identifying the same
vulnerabilities, as well as producing distinct results. More importantly, these tools
were still considered a work-in-progress, and as such, not widely common in prac-
tice.

Additional limitation related to the experiment results, is that the majority (19
out of 23) of SCs from the vulnerable SCs data-set are old, i.e., use old compiler
versions and deprecated techniques which are prone to errors. As such, most of
these SCs are identified as vulnerable with many issues from all four tools. This is
the reason why we decided to assess only the false negative rate in the vulnerable
SCs category. This also indicates that the compiler-version had a major impact on
the results obtained from the vulnerable SCs category.

The small data sample did not affect our results. However, the results would
have been more comprehensive if we had several other vulnerable SCs with some
specific severe issues. I.e., the results would have been more meaningful and sup-
plementary expressive if we had a more structured data-set for the vulnerable SCs
category. Furthermore, we used audited SCs for the other category, which does
not necessarily mean they are secure and bug-free. Even though we took pre-
cautions to eliminate the possible vulnerable SCs from the audited SCs category,
we still had to perform the manual analysis to ensure for the validity of the results.

Moreover, the data sample has four vulnerable SCs with the issue of ‘contracts
that do not refund’, which represents around 17% of the total category of vulnera-
ble SCs. Considering the fact that this is an old vulnerability (occurring only in SCs
with old compilers), the security tools do not run such checks. Thus, the high per-
centage of ‘not supposed to identify’ vulnerabilities for each tool, was significantly
influenced by this.

To conclude, the aforementioned limitations present a challenge on replicating
the experiment and obtaining the same results as us, for the sole reason of the
security tools being in their beta versions, i.e. under heavy development work and
experiencing ongoing changes, which means that they are continuously upgrading
and becoming more efficient in detecting security vulnerabilities.
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8 Conclusion

Ethereum is a relatively new platform, launched officially in June 2015. It intro-
duces the concept of smart contract applications in a blockchain technology. Since
Ethereum is a decentralized, public, and most importantly an immutable platform
– it requires a novel engineering mindset from developers. Smart contracts are
self-executable and self-verifying agents which cannot be altered once they are de-
ployed in the blockchain. As a result, they are vulnerable and a constant target
for adversaries. Motivated by security breaches and financial losses that Ethereum
smart contracts have experienced so far, academia and the industry have directed
their attention towards the security of smart contracts. Similarly, the purpose of this
thesis was to investigate the security vulnerabilities on Ethereum smart contracts
and assess the overall effectiveness of several popular security code analysis tools
used to detect those vulnerabilities. Contributing to a more secure and trustworthy
Ethereum environment was the main motivation behind this work.

We have conducted a comprehensive research on peer-reviewed papers and
online websites. The research outcome was two proposed taxonomies. The first
taxonomy outlines already exploited vulnerabilities and classifies them based on
their architectural and severity level. It serves as a list of issues that can aid devel-
opers who plan to develop smart contract applications. The second one, to the best
of our knowledge, is a novel taxonomy of current security tools. We classified the
tools based on the methodology they use, the user interface, and the analysis they
are able to execute, which allows us to build a ‘state of the art’ of security tools
on Ethereum. Lastly, we construct a matrix of security tools and the vulnerabilities
they cover in order to identify gaps and absent vulnerability checks. Moreover, we
provide a scheme with a list of suggestions to follow, for the purpose of avoiding
and mitigating the deployment of vulnerable smart contracts. We also developed
an experiment on the most popular security tools and assess their effectiveness,
accuracy, and consistency.

Our taxonomies are an improvement of the existing ones because they take into
consideration vulnerabilities of all severity levels. This approach is advantageous
because the consequences of a vulnerability cannot always be predicted. Therefore,
our taxonomies include low severity level vulnerabilities that may potentially cause
a lot of damage if exploited in crucial smart contract components. On the other
hand, the results from our experiments differentiate the security tools according to
different properties. In terms of effectiveness, SmartCheck outperformed the other
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tools with a score of 100% by successfully analyzing both vulnerable and audited
SCs. Oyente, on the other hand, successfully analyzed the complete data-set on
bytecode analysis but performed slightly worse on Solidity analysis. When assess-
ing accuracy, Oyente performed generally better than the rest of the tools although
it did not perform well on the false negative rate. Finally, Securify performed worse
compared to Oyente when assessing consistency.

Our experiment shows that the current performance of the existing security
tools is not ideal. The tools being in their beta-version may be one indication
as to why they do not cover the full range of vulnerabilities outlined in the the-
sis. Additionally, the tools were under heavy development during the experiment
which may have affected their overall performance. Being in their infancy, the tools
have promising potential to evolve further. Thus, based on the drawbacks identi-
fied throughout our experiment, we propose a list of possible future improvements
within: the user interface (i.e. results visualization), verification techniques, and
vulnerability checks.

To the best of our knowledge, this is the first attempt on evaluating the secu-
rity analysis tools on Ethereum. We acknowledge that there is extensive room for
improving security and vulnerability detection in smart contracts. The contribution
of our results is twofold in that: (1) it will help developers of security tools with
their future developments, and (2) advise smart contract developers on mitigating
security errors. To conclude, we quote the founder of Ethereum:

“There will be further bugs, and we will learn further lessons; there will not be
a single magic technology that solves everything”. - Vitalik Buterin [27]

8.1 Future Work

This thesis proposes several potential future work studies and experiments. First of
all, since the whole experiment is manually conducted and it proved to be labour-
intensive, an automated test environment would simplify the process, reduce the
amount of time needed, and overall improve the procedure performance. Addition-
ally, considering the rapid advancement of security tools and smart contracts, the
experiment could be replicated once the security tools are in a more stable
version and with a larger, more comprehensive data-set.

As for the proposed taxonomies, we propose future work on validating the
generated taxonomies through an experiment with SC developers or through a
university course in programming. This would evaluate the effectiveness of the
taxonomies and identify potential avenues for changes.

Further work could be conducted on discovering the unknown vulnerabilities
and how we can prevent them, i.e. have a self-protection (revocable) mechanism
for smart contracts in order to automatically take some precautions if an attack
occurs. This would be highly important work, considering that once the smart con-
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tract is deployed, the owner can no longer alter it.
Moreover, we consider the incorporation of tests to be a bare minimum criteria

for application security and thus recommend future work on analyzing all de-
ployed smart contracts in Ethereum and evaluating how many of them incor-
porate tests. Also, we briefly discussed that there are multiple attempts to provide
a categorization of the range of possibilities for the use of smart contracts. A future
project could be to generate a list of application domains for Ethereum SCs
based on a systematic analysis of all current-deployed smart contracts.

Lastly, Ethereum users often become victims of various Ponzi schemes which
negatively stain Ethereum’s philosophy of a trustworthy environment. In the scope
of our work, we only focus on the security of smart contracts from developers’
point of view. As an effort to decrease the negative impact of Ponzi schemes on
users’ adoption of Ethereum, it would be beneficial to assess the security of smart
contracts from a users’ point of view. Thus, we argue that the users would ben-
efit from a blockchain explorer which checks if smart contracts behave as in-
tended. This would aid users in mitigating scams, and backdoor options as well as
provide them with comprehensible information by e.g. translating the bytecode to
op-code or an alternative approach.

To conclude, smart contracts hold valuable digital assets but are simultane-
ously vastly vulnerable even to simple development errors. Therefore, it is vital
for academia and the industry to engage in future work which will enhance the se-
curity of smart contract programming and assist towards a more secure and trust-
worthy Ethereum environment.
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A Appendix

A.1 Security Tools User Interfaces

Figure 13: Oyente-Web User Interface

Figure 14: Oyente-Web Results - Visualized
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Figure 15: Securify User Interface
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Figure 16: Securify Results - Visualized

Figure 17: SmartCheck User Interface
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Figure 18: SmartCheck Results - Visualized
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Figure 19: Remix User Interface

Figure 20: Remix Results - Visualized

A.2 SolC Set Up

SolC is used in Ubuntu through Oracle VirtualBox in a Windows machine. Set-up
steps that we followed are provided in these links:

• https://www.npmjs.com/package/solc#usage-on-the-command-line
• http://blog.teamtreehouse.com/install-node-js-npm-linux
• http://linuxbrew.sh/
• http://solidity.readthedocs.io/en/develop/using-the-compiler.html
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A.3 Accuracy Analysis - Raw-Data Results

Security Tool
NR. Vulnerable SCs Vulnerability

Oyente Remix SmartCheck Securify

1
SimpleDao Sample

compiler version 0.3.1 Re-entrancy, call to the unkown YES YES YES NA

2
SimpleDao Sample

compiler version 0.4.2 Re-entrancy, call to the unkown YES YES YES NA

3
King of the Ether game

(KoET)
Unchecked-send bug,

Gasless send, Mishandled exception YES YES YES YES

4
KotET Sample compiler

version 0.3.1 Gasless send YES YES YES YES

5
KotET Sample compiler

version 0.4.2 Gasless send YES YES YES YES

6
GovernMental

(PonziGovernmental)
Unchecked-send bug,

Call-stack limit YES YES YES YES

7
GovernMental simplified

sample 0.3.1
Immutable bugs, exception

disorder, call-stack limit YES YES YES YES

8 Rubixi
Immutable bugs, wrong

constructor name NA NA NA NA

9 FirePonzi Type casts (intentional scam) NA NA NA NA
10 Parity Multisig Unintended function exposure NA YES YES NA
11 GoodFellas Typo (wrong constructor name) NA NA NA NA
12 StackyGame Typo (wrong constructor name) NA NA NA NA
13 DynamicPyramid Contract that do not refund NA NA NA NA
14 GreedPit Contract that do not refund NA NA NA NA
15 NanoPyramid Contract that do not refund NA NA NA NA
16 Tomeka Contract that do not refund NA NA NA NA
17 ProtectTheCastle Call-stack limit, Withdraw option YES NA NA NA
18 RockPaperScissors (RPS) Public moves NA NA YES NA
19 SmartBillions Blockhash bug NA YES NA NA
20 EtherPot Unchecked-send bug NA YES YES YES
21 TheRun Timestamp dependence No YES YES NA

22
OddsAndEvents Compiler 0.3.1

Sample Keeping secrets NA NA YES NA

23
OddsAndEvents Compiler 0.4.2

Sample Keeping secrets NA NA YES NA

Table 23: False Negative Analysis - Raw-data Results
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Re-entrancy Timestamp Dependence
Transaction
reordering

Unchecked-send bug/
Unchecked callFalse Positives

Analysis Oyente Remix SmartCheck Oyente Remix SmartCheck Oyente Securify Remix SmartCheck
Hacker Gold

(HKG) No No No Yes Yes Yes No Yes Yes No

ArcadeCity
(ARC) No Yes No No No No No Yes Yes No

Golem
Network NA No Yes NA Yes Yes NA NA Yes No

ProjectKudos No No No No Yes Yes No NA No No
SuperDAO
Promissory No Yes Yes No No No No NA Yes No

ROSCA NA No No NA NA Yes NA NA NA Yes
Matchpool

GUP No No No No Yes Yes No No No No

iEx.ec
RLC No No No No No No No No No No

Cosmos No Yes No No No No No Yes Yes No
Blockchain

Capital (BCAP) No No No No Yes No No No No No

WingsDAO No No No No No Yes No No No No
Moeda No Yes Yes No No No No No No No
Basic

Attention No No No No No No Yes Yes Yes No

Storj No Yes Yes No No No No No No No
Metal No No No No No No No No No No

Decentraland
MANA No No No No No No No No No No

Tierion No No No No No No No No No No
Kin No Yes Yes No Yes Yes No Yes No No
Fuel No No No No Yes Yes No No No No

Enigma No No No No No No No No No No
Global

Messaging NA No YES NA NA No NA No NA No

Table 24: False Positive Analysis - Raw-data Results
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