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Abstract— In this paper, a new meta-heuristic optimization 
algorithm called Grey Wolf Optimizer (GWO) is applied to 
offshore crane design. An offshore crane is a pedestal-mounted 
elevating and rotating lifting device used to transfer materials or 
personnel to or from marine vessels, barges and structures 
whereby the load can be moved horizontally in one or more 
directions and vertically. Designing and building offshore cranes 
is a very complex process. It depends on the configuration of a 
large set of design parameters and is characterized by increased 
workability and functionality for the owner and cost effectiveness 
in the total cost of ownership. In an attempt to reduce time and 
cost involved in the design process, this paper defines a best set of 
design parameters and uses GWO for the automatic 
configuration of this set of parameters in a manner that increases 
the maximum safe working load of the crane and reduces its total 
weight. Results are verified by a comparative study with other 
Evolutionary Algorithms (EAs). Results show that the GWO 
algorithm is able to provide very competitive results compared to 
these well-known meta-heuristics. 
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I. INTRODUCTION 
Production of industrial goods tailored to the requirements 

of individual customers has become widely accepted for 
staying ahead of the competition when operating in highly 
developed markets [1]. A direct consequence of that is the 
extensive number of assemblies and parts needed to cover the 
specific needs of every customer, higher complexities, and 
smaller production batches, which, in turn, can lead to  cost 
disadvantages. Since this approach is very costly for 
development and production, enterprises aim at optimizing 
their costs while still maintaining the possibility of satisfying 
their customers. The need to reduce the time and cost involved 
in taking a product from conceptualization to production and 
the desire to meet customers' demands have encouraged 
manufacturers to adopt new technologies in manufacturing 
such as virtual prototyping (VP) [2] and optimization 
algorithms. 

Being a relatively new technology, VP typically involves 
the use of virtual reality (VR), virtual environments (VE), 
computer-automated design (CautoD) solutions, computer-
aided design (CAD) tools, and other computer technologies to 

create digital prototypes [3]. A virtual prototype, or digital 
mock-up, can be defined as “a computer simulation of a 
physical product that can be presented, analyzed, and tested 
from concerned product life-cycle aspects such as 
design/engineering, manufacturing, service, and recycling as if 
on a real physical model. The construction and testing of a 
virtual prototype is called virtual prototyping (VP)” [4]. Virtual 
prototyping is not necessarily only for design optimization; it 
might be used just for concept verification, presentation, and 
training. Based on the above definition, VP should include 
essentially three types of models; a computer simulation of a 
product, a human-product interaction model, and perspective 
test-related models. Depending on the application, a virtual 
prototype may only include a subset of these components [3]. 

We have previously developed a computer-automated 
design (CautoD) software framework for product design 
optimization and tested it on the design of offshore cranes [5-
8]. The framework has several components. On the server-side, 
a crane prototyping tool (CPT) with a crane calculator is able 
to calculate a number of key performance indicators (KPIs) of 
a specified crane design based on a set of about 120 design 
parameters [5]. A client-side web graphical user interface 
(GUI) facilitates the process of manually selecting the design 
parameters in the CPT to obtain a simple visualization of the 
designed crane and its 2D safe working load (SWL) chart [5]. 
For design optimization, we have developed a client-side 
product optimization client, namely the Artificial Intelligence 
for Product Optimization (AIPO) module that uses a genetic 
algorithm (GA) for optimizing the design parameters in a 
manner that achieves the crane's desired design criteria (e.g., 
KPIs related to performance and cost specifications)  [6]. 
Complementing the AIPO module, we have also implemented 
a Matlab® software module, the Matlab® crane optimization 
client (MCOC), that also used a GA for single and multi-
objective optimization [7]. Subsequently, we have added other 
evolutionary algorithms such as Particle Swarm Optimization 
(PSO) and Simulated Annealing (SA) algorithms to the MCOC  
[8].  

The purpose of this paper is to further extend the MCOC 
with a new meta-heuristic called Grey Wolf Optimizer inspired 
by grey wolves and apply it to the same real-world offshore 
crane design problem as examined earlier to confirm the 
performance of GWO in practice by comparing its behavior to 



other evolutionary algorithms. GWO mimics the social 
hierarchy and hunting behavior of grey wolves and has been 
successfully used for solving various benchmark optimization 
problems [9].  

The remainder of the paper is organized as follows: A brief 
description of our product design optimization framework is 
presented in Section 2. In Section 3, an introduction to GWO 
algorithm and various objective functions are presented. 
Problem setup and results of the GWO applied to the offshore 
crane design problem are presented in Section 4. Finally, a 
comparison between various algorithms in terms of 
convergence time and accuracy, concluding remarks, and 
future work is presented in Section 5. 

II. OFFSHORE CRANE DESIGN SOFTWARE FRAMEWORK 
This section outlines the software architecture and describes 
the main components of our software framework used for 
automation and optimization of offshore crane design. An 
offshore crane such as the one mounted on an offshore subsea 
construction (OSC) vessel in Fig. 1 is a complex system of 
components interacting to achieve safe movement of heavy 
goods, often under harsh and difficult conditions. Even simple 
versions of such offshore cranes consist of a large number of 
components, including hooks, winches, slewing rings, 
cylinders, booms, hinges, sheaves, and pedestals (see Fig. 2). 
The choice of crane components and their physical properties 
and interrelationships determines various measures of 
performance of interest to the crane designer. 
 

 
Fig. 1. Boomerang-shaped knuckle-boom crane on OSC vessel (courtesy 

Offshore Energy Today) [10]. 

A. Client-Server Architecture 
The diagram in Fig. 3 shows the client-server architecture 

of our software framework (adapted from [6]). On the server-
side, the CPT contains a product (in this case, an offshore 
crane) calculator able to calculate a number of KPIs of a 
specified crane design based on a set of about 120 design 
parameters. On the client-side, a web GUI facilitates the 
process of either manually by trial-and-error selecting the 
design parameters of the crane, or automatically using an 
optimization algorithm (contained in a product (crane) 
optimization client). The GUI also provides a simple 
visualization of the designed crane and its 2D workspace safe 

working load (SWL) chart [5]. Additionally, the MCOC uses 
various optimization algorithms for optimizing the design 
parameters in a manner that achieves the crane's desired design 
criteria [7-8]. Each KPI is typically related to overall 
performance, weight and cost of the designed crane. Both 
WebSocket (WS) and the hypertext transfer protocol (HTTP) 
have been implemented as communication interfaces, using 
data messages conforming to the JavaScript Object Notation 
(JSON), which is a lightweight human-readable data-
interchange format. 

 

Fig. 2. Illustration of the main components of an offshore knuckle-boom 
crane and its 2D load chart [5-6]. 

 

 
Fig. 3. Generic and modular software architecture for intelligent CautoD of 

offshore cranes, winches, or other products (adapted from [6]).  

B. Online Crane Prototyping Tool (CPT) 
The CPT server consists of a crane calculator and two 

modules for handling WS/JSJON and HTTP/JSON 
connections (see Fig. 3). Here, the MCOC connect to the CPT 
via WS/JSON. Messages are sent as JSON objects in a 
standardized format that the CPT accepts, consisting of three 
parts (sub-objects) [6]: 

(i) a “base” object: with a complete set of default design 
parameter values. 



(ii) a “mods” object: with a subset of design parameter 
values that modifies the corresponding default values. and 

(iii) a “kpis” object: with the desired KPIs to be 
calculated from “base” and “mods” and returned to the MCOC 
by the CPT. 

This simple description is sufficient for the rapid 
implementation of product optimization clients in any 
programming language supporting either WS or HTTP for 
communication and JSON for data messages. 

C. Crane Calculator 
The components of an offshore crane may consist of 

several thousand parameters, however, with the help from 
crane designers we have been able to isolate the most 
important ones and reduce this number to a set of about 120 
design parameters. Based on the values of these parameters, 
which can be set manually or by a client CautoD tool such as 
MCOC, the crane calculator is able to calculate a fully 
specified crane design and its associated KPIs [5]. The goal of 
the designer is therefore to determine appropriate design 
parameter values that achieve some desired design criteria 
based on KPIs, or to try to improve an existing design. 

The design must simultaneously meet requirements by 
laws, regulations, codes and standards, as well as other 
constraints, such as a maximum total delivery price and total 
crane weight for the owner.  

We have verified the accuracy of the crane calculator 
against other crane calculators and spreadsheets that are 
commonly used in the industry. The developed CPT server and 
web GUI client for manual crane design is now being adopted 
by our industrial partner and major offshore handling 
equipment manufacturer, Seaonics AS, located in Ålesund, 
Norway [10].   

D. Web Graphical User Interface (GUI) 
For the sake of simplicity and practicality, the previously 

developed web GUI is used to interact with the crane calculator 
via WS/JSON communication. The web GUI can be used to 
manually adjust the 120 design parameters in the crane 
calculator by a trial-and-error approach, or automatically by 
employing the AIPO module backend. The effect of the chosen 
parameter values on a number of KPIs and other design criteria 
can then be investigated numerically, with the possibility of 
exporting the resulting crane design data to text files. The GUI 
also provides a simple visualization of the crane's main 
components and its 2D SWL load chart similar to the one 
shown in Fig. 2. The load chart is updated in real-time when 
the user modifies either of the design parameters. 

E. Matlab Crane Optimisation Client (MCOC) 
Traditional manual trial-and-error design optimization is 

time-consuming and cost-inefficient, since there are more than 
120 parameters that must be specified by the crane designer. 
This large number of parameters makes the space of all 
possible combinations of parameter values very large and a 
manual trial-and-error approach will necessarily be 
cumbersome and running the risk of suboptimal designs. 
Previously [7-8], we used the Matlab® Global Optimization 
Toolbox from Mathworks® [11] to implement a crane 

optimization client (MCOC) that used evolutionary algorithms 
to find the best configuration of the design parameters. Here, 
we extend the MCOC with the GWO algorithm. 

Based on input from domain experts, four parameters are 
used as the best set of design parameters, namely, “boom 
length”, “jib length”, “main cylinder max pressure”, and “jib 
cylinder max pressure”. Two KPIs, namely, the maximum safe 
working load, SWLmax, and the total crane weight, W, are used 
as the components of our objective function for design 
optimization. Whilst the total crane delivery price is of great 
concern, we do not currently have price estimates as a function 
of crane design implemented in the CPT. Nevertheless, the 
total weight can to some extent be used as a proxy for price. 
This is because price will correlate to the total crane weight, 
and one wants to minimize both measures. Moreover, since 
these cranes are installed on-board vessels, it is desirable to 
reduce the crane weight to allow for a higher deadweight 
tonnage (DWT). Hence, weight is important for both capital 
and operating expenditure. The maximum SWL, on the other 
hand, is a measure of the maximum lifting capacity of the 
crane in the entire workspace.  

The goal of the crane optimizer is thus to maximize SWLmax 
while simultaneously minimizing W. To achieve this goal, the 
objective function can be formulated as follows: 

f = SWLmax /W (1) 

where maximizing f entails maximizing SWLmax and 
minimizing W. 

III. GREY WOLF OPTIMIZER (GWO) 
This section briefly describes the GWO algorithm applied 

to the offshore crane design problem we have presented above. 
GWO is a relatively new optimization algorithm proposed by 
Mirjalili et al. (2014) [9]. This algorithm mimics the leadership 
hierarchy and hunting mechanism of grey wolves in nature 
[12]. GWO is similar to other meta-heuristics where the search 
begins with a population of randomly generated wolves (i.e., 
candidate solutions). 

A. Background 
Grey wolves are at the top of the food chain and mostly 

prefer to live in a pack in groups of 5–12 wolves on average 
with strict leadership hierarchy. Four types of grey wolves 
called alpha, beta, delta, and omega are employed for 
simulating the leadership hierarchy, shown in Fig. 4. The 
alphas are responsible for making decisions about hunting, 
sleeping place, time to wake, and so on. The alphas’ decisions 
are dictated to the pack through betas. Alphas are not the 
strongest members of the pack but they are the best in terms of 
management skills. 

The betas are subordinate wolves that help the alpha in 
decision-making or other pack activities. They are the best 
candidates to be alphas in case one of the alpha wolves passes 
away, becomes old, or is retired. Each beta wolf must show 
respect to the alpha and provide advice, but commands the 
other lower-level wolves as well. The beta reinforces the 
alpha’s commands throughout the pack and gives feedback to 
the alpha. The lowest ranking grey wolf is omega. The omega 
plays the role of scapegoat. Omega wolves always have to 



submit to all the other dominant wolves. They are the last 
wolves that are allowed to eat. Omegas in some cases are used 
as babysitters of the pack. If a wolf is not an alpha, beta, or 
omega, he/she is called subordinate, or delta. 

 
Fig. 4. Hierarchy of grey wolf (dominance decreases from top down). 

Delta wolves have to submit to alphas and betas, but they 
dominate the omega. Scouts, sentinels, elders, hunters, and 
caretakers belong to this category. Scouts are responsible for 
watching the boundaries of the territory and warning the pack 
in case of any danger. Sentinels protect and guarantee the 
safety of the pack. Elders are the experienced wolves who used 
to be alpha or beta. Hunters help the alphas and betas when 
hunting prey and providing food for the pack. Finally, the 
caretakers are responsible for caring for the weak, ill, and 
wounded wolves in the pack [9]. 

In addition to the social hierarchy of wolves, group hunting 
is another interesting social behavior of grey wolves. The main 
phases of grey wolf hunting are: searching for prey, encircling 
prey, and attacking prey [13]. The hunting technique and the 
social hierarchy of grey wolves are mathematically modeled in 
order to design GWO to perform optimization. 

B.  Mathematical modeling of social hierarchy 
In order to formulate the social hierarchy of wolves when 

designing GWO, in this algorithm the population is split into 
four groups: alpha (α), beta (β), delta (δ), and omega (ω). Over 
the course of iterations, the first three best solutions are called 
α, β, and δ, respectively. The rest of the candidate solutions are 
named as ω. In the GWO algorithm the hunt (optimization) is 
guided by α, β, and δ. The ω wolves are required to encircle α, 
β, and δ, so to find better solutions, they must follow these 
three wolve types. 

C. Mathematical modeling of hunting behaviour 
The encircle process could be modeled as follows [9]:  

   

!D =
!C . !X p 't )− !X 't ) ,

!X 't +1)= !X 't )− !A ⋅
!D

 (2) 

where t indicates the current iteration, 
   
!C =2!r2

,
   
!A =2!a ⋅ !r1 −

!a , 
  
!X p

is the position vector of the prey,   
!X is  the position vector of a 

grey wolf,  
!
α is gradually decreased from 2 to 0, and   r1 and   r2

are random numbers over the range [0,1]. In order to 
mathematically simulate the hunting behavior of grey wolves, 
in the GWO algorithm we always assume that by α, β, and δ 
have better knowledge about the position of the prey 
(optimum). Therefore, the positions of the first three best 

solutions (α, β, δ) obtained so far are saved and other wolves 
(ω) are obliged to reposition with respect to α, β, and δ. The 
mathematical model of readjusting the positions of ω wolves is 
presented as follows [9]: 

   

!Dα =
!C1. !Xα −

!X ,
!Dβ =

!C2. !X β −
!X ,

!Dδ =
!C3. !Xδ −

!X .

 
(3) 

   

!X1 =
!Xα −
!A1. !Dα( ) ,

!X 2 =
!X β −
!A2. !Dβ( ) ,

!X 3 =
!Xδ −
!A3. !Dδ( ).

 
(4) 

   
!X t +1( ) =

!X1 +
!X 2 +
!X 3

3 .  (5) 

where 
  
!Xα

is the position of the alpha, 
  
!X β

is the position of the 

beta, 
  
!Xδ

is  the position of the delta, 
   
!C1

,
   
!C2

, 
   
!C3

,
   
!A1

,
   
!A2

, and 
   
!A3

are all random vectors,   
!X is the position of the current solution, 

and t is the iteration number. 

 

 
Fig. 5. Exploration versus exploitation periods depending on the value of A 

in GWO. 

Initialize	 the	 grey	 wolf	 population	Xi	 (i=1,2,	 …,n)	 and	
parameters	
Calculate	the	fitness	of	population	
Find	the	first	three	agents	Xα,	Xβ,	Xδ		
While	(t	<	Max	number	of	iterations)	
					Update	the	position	of	the	curreent	search	agent	by	

Eq.	(5)	
					Calculate	the	fitness	of	population	
					Update	Xα,	Xβ,	Xδ	
End	While	
Return	Xα 

Fig. 6. GWO algorithm [14]. 

In these formulas, it may be observed that there are two 
vectors   

!A  and   
!C obliging the GWO algorithm to explore and 

exploit the search space. With decreasing A, half of the 
iterations are devoted to exploration (

  A ≥1 ) and the other half 

are dedicated to exploitation (
  A <1 ), as it is shown in Fig. 5. 

The range of C is   2≤C ≤0 , and the vector C also improves 
exploration when C>1 and the exploitation is emphasized 
when C<1. Note here that A is decreased linearly over the 
course of the iterations. In contrast, C is generated randomly 
whose aim is to emphasize exploration/exploitation at any 



stage avoiding local optima. The main steps of grey wolf 
optimizer are given in Fig. 6. 

IV. RESULTS AND DISCUSSIONS 
The ability of the GWO algorithm presented in this paper to 

perform product optimization is tested using a real world 
offshore crane. A real knuckle-boom crane is used as a nominal 
benchmark against which the optimized crane design could be 
compared. The nominal crane has been designed, sold, and 
delivered by Seaonics AS to a company in Baku, Azerbaijan 
[10]. The crane had a total delivery price of approximately 2.9 
million EUR. Two KPIs were chosen as components of an 
objective function to be optimized:  

(i) The maximum safe working load SWLmax  

(ii) The total crane weight W 

The total weight, W, is used as an estimate of the total 
delivery price of the crane. The goal of the optimization 
algorithm is to minimize the function given in (1). The crane 
design consist of 120 variables, as a best set of optimization 
variables, with 4 variables that greatly affect both SWLmax and 
W are chosen:  

(i) The boom length, Lboom 

(ii) The jib length, Ljib 

(iii) The maximum pressure of the boom cylinder, Pboom 

(iv) The maximum pressure of the jib cylinder, Pjib 

All other design parameters were identical to those of the 
nominal crane. The parameter values were constrained to a 
range with minimum and maximum allowable limits by the 
manufacturer and nominal values, as it is shown in Table I.  

TABLE I.  ALLOWABLE VALUES OF DECISION VARIABLES 

Parameter Lower bound Upper bound Nominal 
Lboom (mm) 12000 26000 15800 
Ljib (mm) 6000 16000 10300 
Pboom (ton) 100 400 315 
Pjib (ton) 50 300 215 

 

The problem can then mathematically formulated as 
follows: 

Minimize 

Subjected to 

f = SWLmax /W 

  

12000≤Lboom ≤26000
6000≤Ljib ≤16000
100≤Pboom ≤400
50≤Pjib ≤300

 

The algorithm is implemented in Matlab® version R2015a 
running on Mac OS X Version: 10.11.6 executed on 2.2 GHz 
Intel Core i7 Processor with a memory of 16 GB. The 
algorithm was independently run 20 times for 5, 50, 100, and 
200 iterations for 4 search agents to guarantee stability and 
statistical significance of the results. Coefficient a is linearly 
decreased from 2 to 0 as a function of maximum iteration 
number. Table II shows the average, best, worst, and standard 

deviation values of the fitness function for GWO algorithm for 
20 independent runs. Fig. 7 shows the boxplot of the resultant 
fitness values over 20 independent runs. Convergence curves 
of GWO for the best results over 20 independent runs are 
shown in Fig. 8. 

TABLE II.  GWO FITNESS VALUES FOR 20 INDEPENDENT RUNS. 

Iterations Best Worst Mean Std. tmean (m) 
5 3.2674 1.8349 2.8534 0.4225 1.3908 

50 3.2674 3.2123 3.2424 0.0273 18.0099 
100 3.2674 3.2123 3.2428 0.0279 14.5607 
200 3.2674 3.2123 3.2593 0.0198 40.2536 

 

 
Fig. 7. Boxplot of fitness values over 20 independent runs for 5, 50, 100 and 

200 iterations. 

  
(a) 5 iterations. (b) 50 iterations. 

  
(c) 100 iterations. (d) 200 iterations. 

Fig. 8. Convergence curves for the best results over 20 independent runs. 

The performance of GWO algorithm in terms of fitness 
value and convergence time compared to that of very well 
known optimization algorithms in literature such as GA, PSO, 
and SA for the same benchmark problem applied to the 
objective function given by Eq. (1) [8] is shown in Table III. 
Results from Table III show that the proposed GWO algorithm 
outperforms other algorithms in terms of stability, achieved 
fitness value and convergence time.  



TABLE III.  GWO FITNESS VALUES FOR 20 INDEPENDENT RUNS. 

Algorithm Best fitness 
value 

Best convergence 
time (m) 

GWO 3.27 1.3908 
PSO 1.30 90.00 
GA 1.26 98.40 
SA 1.00 488.40 

 

V. CONCLUSIONS 
Advantages of GWO over other algorithms are as follows; 

easy to implement due to its simple structure, less storage and 
computational requirements, faster convergence due to 
continuous reduction of search space and fewer decision 
variables (i.e., α, β, and δ); its ability in avoiding local minima; 
and having only two control parameters (i.e., a and C) to tune 
the algorithm performance and hence better stability and 
robustness. 

In this paper, two competing individual objective functions 
are combined into a single fitness function, which might imply 
that improving one objective deteriorates the other one, and 
vice versa. As a future work, multi-objective GWO is proposed 
to simultaneously optimize each objective function 
individually. 
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