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Abstract—This paper presents a non-invasive approach for
real-time grid impedance identification based on the principle
of instantaneous frequency tracking of voltage and current
harmonics already present in the system, by the use of Kalman
Filter (KF). The KF based technique is compared to the FFT
frequency domain approach highlighting the advantages and
disadvantages of each method. The main limitation of the KF-
based identification lies in its intrinsic model based nature,
which in this case will limit its scope to the system steady state
and to stationary signals. The KF based approach presented in
this paper, can be useful as a basis for real-time grid stability
assessment based on the impedance identification.

I. INTRODUCTION

Knowledge of the source and load impedances in an electri-
cal grid is essential to estimate the stability of the grid using
the impedance-based method with the generalized Nyquist
stability criterion, first described in [1], with an application
for AC systems in [2]. The impedance-based method requires,
however, the injection of small signals in a wide range of
frequencies to obtain a good estimate of the stability of the
grid. This frequency scanning technique does not allow for
a real-time estimation of the impedances and stability. The
real-time identification of the impedances of the grid can be
relevant considering the non-stationary environment where the
impedance may vary with the operating conditions and with
parameter variations over time [3]. This paper is proposing a
non-invasive method to identify the impedances of the grid
based on the use of the information of the distortions already
present in the current and voltage waveforms, without resorting
to any small-signal injection.

Modern electrical systems are including more and more
non-linear loads that are a frequent source of harmonic dis-
tortions. Electrical grids that are already affected by distorted
voltages and currents can readily benefit from a non-invasive
approach of impedance identification that makes use of the
information provided by such distortions and can lead to a
straightforward grid stability assessment in time-domain. The
tracking, at a given node, of each of the harmonic components
present in the voltage and current, can enable the identification
of the grid impedances in a non-invasive way, by simply
calculating the ratio V (ω)/I(ω) = Z(ω) at each harmonic
distortion.

The commonly applied methods relying on frequency scan-
ning [4], generally require assumptions to be made about the
signal such as the signal being stationary and periodic, where
the sampling frequency is equal to the number of samples
multiplied by the fundamental frequency, the Nyquist sampling
theorem holds and each frequency is an integer multiple of
the fundamental frequency which will be the inverse of the
window length [5].

Harmonics estimation in the time-domain using Kalman
theory will track the phase and amplitude of the harmonics
of a distorted signal (voltage and current) using state space
form and has the potential for real-time processing due to
the relatively low computational load. The use of KF for
this problem is proposed in [5] using a linear KF as first
described in [6]. These methods conclude that KF theory can
estimate accurately harmonic components even during high
power system disturbance conditions.

In the following, this paper will present how a linear KF can
be used for combined harmonic identification and impedance
estimation based on a linear state-space model and best fitting
curve.

II. HARMONIC IDENTIFICATION BY KALMAN FILTER

The method for harmonic detection builds on the work from
[7] where an Adaptive Kalman Filter (AKF) is introduced.
In [8] a method for tracking the angular frequency ω for a
Smart Grid is proposed by following the positive and negative
sequence fundamental frequency for a three-phase system.
By restating the problem to track all harmonics and assume
that the angular frequency is known, tracking of positive and
negative sequence harmonics can be done with inspiration
from the work in that paper. The development for such a
tracking is given in this section.

Given a three-phase signal in the abc frame in (1), where
ω(t) is the angular frequency which is assumed to be known,
Aa(t), Ab(t), Ac(t) are the amplitude for each of the phases
and φa, φb, φc are the initial phase angles for each phase. ω =
2πf is the angular frequency, and one defines θi(t) = ωt+φi
for each phases i ∈ {a, b, c}.978-1-5090-1815-4/16/$31.00 c©2016 IEEE



Sa(t) = Aa(t)cos(ω(t)t+ φa(t)) (1a)
Sb(t) = Ab(t)cos(ω(t)t+ φb(t)) (1b)
Sc(t) = Ac(t)cos(ω(t)t+ φc(t)) (1c)

In a balanced system there is a relationship between the
phase angles by stating them as time-invariant given by φb =
φa− 2π

3 and φc = φa+ 2π
3 , and for the amplitudes Aa = Ab =

Ac = A. In an unbalanced system, no such assumptions can
be made, and one ends up with six variables for each time
instant by stating the system in the abc frame for tracking
the components of such a signal. To reduce the number of
variables, the unbalanced three-phase system is transformed
into three balanced systems named the positive, negative and
zero sequence by using the Fortescue Theorem [9]. The system
of the three balanced systems is given by

Sa = Sa,p + Sa,n + Sa,0 (2a)
Sb = Sb,p + Sb,n + Sb,0 (2b)
Sc = Sc,p + Sc,n + Sc,0. (2c)

The unbalanced Sabc = [Sa,Sb,Sc]T is now stated
as 3 balanced systems Sp = [Sa,p,Sb,p,Sc,p]T, Sn =
[Sa,n,Sb,n,Sc,n]T and S0 = [Sa,0,Sb,0,Sc,0]T. By using
the phase sequence one can state this problem in time domain
form in (3) by using θp = ωt+ φp and θn = ωt+ φn.Sa(t)

Sb(t)
Sc(t)

 =

Sp

 cos(θp(t))
cos(θp(t)− 2π

3 )
cos(θp(t) + 2π

3 )

+ Sn

 cos(θn(t))
cos(θn(t) + 2π

3 )
cos(θn(t)− 2π

3 )

+ S0

1
1
1


(3)

This signal is transformed using the Clarke transform to the
αβ0 stationary frame with the transformation defined in (4).

Tαβ0 =

 2
3

−1
3

−1
3

0 1√
3

−1√
3

1
2

1
2

1
2

 (4)

The three-phase signal in Sαβ0 is obtained by using the
defined transformation (5).

Sαβ0(t) = Tαβ0Sabc(t) (5)

This transformation is useful because if the system is
balanced, then the 0 component will always be reduced to
zero. Applying the Tαβ0 transformation on the system in (3)
one obtains the following.

Sαβ0 = Tαβ0Sabc =

Tαβ0Sp

cos(θp)sin(θp)
0

+ Tαβ0Sn

 cos(θn)
−sin(θn)

0

Tαβ0S0

0
0
0


(6)

By inspection of (6) one sees that all the zero components
are zero, because of the assumption that the Fortescue’s
theorem holds. The reduced model with only the α and β
component is shown in (8) using the reduced Clarke Transform
as shown in (7):

Tαβ =

[ 2
3

−1
3

−1
3

0 1√
3

−1√
3

]
(7)

Sαβ = TαβSabc = TαβSp

[
cos(θp)
sin(θp)

]
+ TαβSn

[
cos(θn)
−sin(θn)

]
(8)

By remembering that θp = ωt + φo and θn = ωt + φn
and using the sum and difference formulas for trigonometric
functions: sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b) and
cos(a±b) = cos(a) cos(b)∓sin(a) sin(b) one can write the (8)
as (9). Here all the harmonics of the system are included into
one equation. By stating the fundamental angular frequency
of the grid as ω other harmonics, but not limited to natural
numbers i, is a harmonic with angular frequency ωi = iω.
Here Ai,p and Ai,n are the magnitudes of the positive and
negative sequence respectively for harmonic i. φi,p and φi,n
are the initial phase angles for the negative and the positive
sequence for harmonic i. [

Sα(t)
Sβ(t)

]
=∑

i∈hp

[
cos(iωt) − sin(iωt)
sin(iωt) cos(iωt)

] [
Ai,p cos(φi, p)
Ai,p sin(φi,p)

]
+

∑
i∈hn

[
cos(iωt) − sin(iωt)
− sin(iωt) − cos(iωt)

] [
Ai,n cos(φi,n)
Ai,n sin(φi,n)

] (9)

Si cos(φi) and Si sin(φi) in (9) are written as xi,1 and
xi,2 for making the formulation suitable for KF. Using this
formulation one has separated the time-varying ωt and the
slow varying part of magnitude and initial phase angle. The
state-space and measurement equations are given in (10) and
(11) which estimate the states xi,1 and xi,2 in which states
have information about the phase and amplitude of each
harmonic i analyzed by the KF.

y[k] =∑
h∈hp

[
cos(iω∆tk) − sin(iω∆tk)
sin(iω∆tk) cos(iω∆tk)

] [
xi,1
xi,2

]
k

+

∑
i∈hn

[
cos(iω∆tk) − sin(iω∆tk)
− sin(iω∆tk) − cos(iω∆tk)

] [
xi,1
xi,2

]
k

(10)

[
xi,1
xi,2

]
k+1

=

[
1 0
0 1

] [
xi,1
xi,2

]
k

(11)

A. Instantaneous Frequency Tracking

In contrast to the frequency domain approach of the FFT,
the Kalman filter identification operates directly in the time
domain, and there is no lag from measurements to the es-
timation result. Using frequency domain approach there is a



minimum lag of one fundamental period before the estimation
has meaningful data. In KF based estimation, the states are
estimated using an adaptive KF in linear state space form with
a random walk for the states which corresponds to the α and
β signal magnitude at each time instant. The tuning of a KF
is a difficult task when tracking signals with sudden changes;
hence, an adaptive KF filter based on [7] is implemented. For
adaptively changing the model error covariance Q, depending
on the errors and variations in the system, the update law for
an adaptive Kalman filter algorithm is given in (12).
Vi cos(φi) and Vi sin(φi) in (9) are written as xi,1 and

xi,2 for making the formulation suitable for KF. Using this
formulation one has separated the time-varying ωt and the
slow varying part of magnitude and initial phase angle. The
state space and measurement equations are given in (10)
and (11), which estimate the states xi,1 and xi,2 in which
states have information about the phase and amplitude of each
harmonic i analyzed by the KF.

x̂−[k] = Ax̂[k − 1] (12a)

P−[k] = AP[k − 1]AT + Q[k − 1] (12b)

K[k] = P−[k]C[k]T (C[k]P−[k]C[k]T + R)−1 (12c)

x̂[k] = x̂−[k] + K[k](y[k]−C[k]x̂−[k]) (12d)

ŵ[k] = K[k](y[k]−C[k]x̂−[k]) (12e)

Q[k] =
∑
i

ŵi[k]2 (12f)

P[k] = (I−K[k]C[k])P−[k] (12g)

In the adaptive Kalman filter, one can define the size of
the system N as twice the number of positive and negative
harmonics. Then the A is a N×N system matrix, C is a 2×N
measurement matrix. For the Kalman filter, the Q is a N ×N
adaptively updated covariance matrix, which is initialized to
the zero matrix. R is a 2×2 measurement error matrix which
needs to be tuned by measurement noise.

With the states estimated, the phasor information of the
positive and negative sequence are obtained by calculating the
magnitude and phase. Furthermore, the impedance could be
calculated by voltage over current phasor division of Vi and
Ii for each harmonic i estimated by

Ai =
√

(x2i,1 + x2i,2) (13a)

θi = arctan(
xi,2
xi,1

) (13b)

In the system described in Fig.1, three-phase voltage and
current measurements in the abc-frame, Vabc and Iabc are
sampled. To ease the extraction of the phase and amplitude of
the phasors, the Clarke transform is used to obtain the signal
in the αβγ frame with the γ component omitted.

B. Comparison to the Sequence Analyzer in MATLAB

The KF based identification results shown in Fig. 2 and 4 are
compared to a Fourier-based method [10] where a waveform

RS1

LS1 LS2

RMB

LMB

RS2

GEN1 GEN2

Load 1

Bus 1 Bus 2

Load 2

Fig. 1: Power Grid model with harmonic distortions due to
the presence of the non-linear loads

x(t) can be approximated by estimating all harmonics with
angular frequency ωk = k 2π

T , k ∈ {1, 2, ..} and T is the
sliding window length. This estimation method will provide a
dynamic phasor with high accuracy when the harmonic is an
integer multiple of the inverse of the window function length,
which in most applications is one period of the fundamental
frequency.

C. Prerequisites for Application of the Method

For the proposed method to function correctly, the assump-
tion of neglecting zero sequences has to hold. If not, this
could easily be added to the algorithm by changing the Clarke
transform. For the method to measure impedances at multiple
frequencies, the system must be distorted with harmonic
frequencies. This assumption holds when using line commuted
rectifiers which distort the grid with higher harmonic frequen-
cies above the fundamental frequency. One of the limitation
with this is that impedance below the fundamental frequency
is not detected. In the Kalman measurement equation, (10), it
is assumed that the waveform can be structured into harmonic
sine functions with a given frequency and phase angle. If the
signal does not have this characteristic, this equation has to
be changed accordingly.

III. SIMULATION AND ANALYSIS

The method is verified by using two models, one simple grid
model where a source impedance of the line and a generator
are identified and a more complex system with a Modular-
Multilevel Converter (MMC).

A. Power Grid and Measured Signals

The system under investigation in this paper is a shipboard
power system with two generators and two loads based on 6-
pulse diode rectifiers. The 6-pulse diode rectifier will distort
the AC side of the converter currents with higher order
harmonics because of the non-linear relation between voltages
and currents [11]. These harmonic currents will propagate
through the electrical grid and distort the source voltage for
other grid-connected equipment. Nd-pulse diode rectifiers will
create harmonic distortions in the positive sequence in the
harmonic components in the set hp = {1, Ndk+1|k = 1, 2, ...}
and in the negative sequence hn = {Ndk − 1|k = 1, 2, ...}.

A simulation model is built in MATLAB Simulink using
the SimPowerSystems library components. The first step is
to estimate the phasor of the harmonics for the currents and



voltages. The voltage is measured at Bus 1 and the current
through Generator 1 in Fig. 1. The grid is simulated for 100ms
before the estimation starts for the grid to stabilize. The signal
is filtered by a low-pass filter with cut-off frequency equal to
13th harmonic component.

The grid is simulated for 50ms with a sampling time of
1× 10−5 µs. This signal is low-pass filtered using a Finite
Impulse Response filter and down-sampled according to the
Nyquist sampling theorem. The grid has a nominal frequency
of 50Hz.

B. Harmonics Identification

The KF based method in Fig. 2 and the sequence analyzer in
Fig. 3 give both very similar results when tracking components
of periodic signals. The KF has slightly faster response as
it does not need one fundamental period before meaningful
results are obtained. When adding a non-characteristic har-
monic, the Fourier method is not able to track the harmonics
with sufficient accuracy. This is because the signal is not an
integer multiple of the inverse of the window length. However,
the KF based method is unaffected by the presence of non-
characteristic harmonics, resulting in a good identification as
shown in Fig. 4 and Fig. 5. This is simulated by injecting two
non-characteristic harmonics with frequencies of 75Hz and
175Hz, (1.5 and 3.5 harmonics) in the grid from Generator
1.

Both methods can track non-stationary signals, but the KF
based method has a slightly faster response compared to
the Fourier method with dynamics faster than the inverse of
the window length. These results are seen in Fig. 10 with
amplitude variation of the fundamental frequency component
in addition to the 5th and the 13th order harmonics with no
time-variation. In this case, the non-stationary signal is not
generated by the grid, but artificially generated signals so that
the time variation is better viewed instead of the transient after
a step change in the grid.

For tracking of non-stationary signals in systems with
dynamics, the assumption that there are only frequency com-
ponents at the given frequencies does not hold outside of the
steady state. The derivatives of such dynamical system are
not equal to zero in the transient response. One can by this,
argue that the method is a steady state method. In steady state,
the impedance is simply a function of the imaginary angular
frequency jω for linear systems Z(jω), but outside the steady
state the impedance is a function of the complex variable s,
Z(s). This gives a smooth band of frequencies, which means
that this is a steady state method where the signals are assumed
to vary slowly.

C. Impedance Estimation of MMC Converter

The method is verified using a MATLAB Simulink model
of a MMC as shown in Fig. 6 with the setup in Table I The
MMC behaves as a voltage source at the ac terminal. In Fig.
7 the estimated impedance as a time series is shown and the
impedance at a given time step is shown in Fig. 8. Using this
model, the method can identify the impedance at each higher

TABLE I: System Specification

MMC setup
Agen1 = Agen2 690V
fnom 50Hz

harmonic component and converges quickly. The impedance
of each component is verified by doing an FFT analysis and
also compared to the analytically obtained impedance.

IV. REAL-TIME IMPEDANCE IDENTIFICATION

Based on the identified impedance values for each given
harmonic component, the Least Squares method is used to
best fit the identified points to an impedance curve following
the technique described in [12]. The proposed method utilizes
the harmonics present in the system to obtain all the operating
points in each time step. By modeling the portion of the grid
under investigation as a pure series R-L branch in series with
a voltage source with component only for the fundamental
frequency, the impedance is Z = Rg + jωLg and is equal
for each harmonic where Rg and Lg is the sum of impedance
in the generator and the distribution lines [13]. The estimated
impedance magnitudes and phases on frequency are presented
in Fig. 9 where the estimations from the Kalman filtering, the
estimated impedance from the Least Squares method and the
analytical expression for the impedance are shown. The result
is promising when assuming an impedance model of the grid.
For doing this estimation in real-time, a recursive least squares
estimator could be used to fit the parameters to the measured
impedance.

V. DISCUSSIONS AND CONCLUSION

A non-invasive method based on Kalman filter for tracking
magnitude and phase of harmonics is proposed in this paper.
The method can track harmonics and relate those to the real
grid parameters with good accuracy. The method yields good
results in the steady state for systems where certain frequen-
cies are naturally occurring but comes short for estimating
harmonics during transient response.
By using the proposed method, the positive and negative
sequence harmonics are detected with the Kalman based
harmonics tracker for systems in the steady state. To estimate
the parameters correctly, based on the harmonics, a model of
the impedance in the steady state has to be known. From this
basic assumption, it is evident that the method will not yield
accurate results in the presence of non-stationary signals, as
for the case of the existence of an oscillatory instantaneous
frequency.
From the measured harmonics, one can estimate the param-
eters specifying the impedance of a system by fitting them
in real-time using a recursive least squares estimator. When
the impedance can be parametrized from for instance linear
elements, such as a resistor, capacitor, and inductor, this
method can be used to estimate the impedance in real-time
based on the harmonics already present in the grid in a non-
invasive way.
From the estimated parameters of the impedance for different
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Fig. 2: Current and voltage harmonics estimated with Kalman filter
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Fig. 3: Current and voltage harmonics estimated with Sequence Analyzer in MATLAB Simulink
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Fig. 4: Non-characteristics harmonics current and voltage phasor estimated with Kalman filter
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Fig. 5: Non-characteristics harmonics current and voltage phasor estimated with Sequence Analyzer in MATLAB Simulink
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Fig. 6: Souce-Load System with MMC as source and Diode
Rectifier as load
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Fig. 7: Estimated impedance of the MMC with Kalman filter

parts of a grid, an stability analysis will be possible with the
use of the Nyquist stability criterion. The extension of this
research from impedance estimation to the stability analysis
will be the subject of our next paper.
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