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Abstract

This paper develops the warranty cost analysis of a two-component in se-
ries system with stochastic dependence. From the perspectives of both the
manufacturer and the consumer, the short-run total profits and costs under
the non-renewing free replacement (non-renewing FRW) policy and the re-
newing free replacement (RFRW) policy are derived respectively. Numerical
examples are given showing the impact of the failure dependence to both the
consumer and the manufacturer.
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1. Introduction

A warranty is a contractual agreement from the manufacturer to its con-
sumers which requires the manufacturer to compensate its consumers if the
sold product fails when properly used within a specified time period which
is referred to as warranty period [4, 19, 20]. The compensation may have
different forms. For example, the manufacturer takes full charge or shares
with the consumer the replacement/repair cost of the product. It is a double-
edged sword to the manufacture which, on the one hand, it is a promotional
tool attracting more potential customers by sending the product message
to the market regarding its reliability and quality, on the other hand, it is
a negative profit to the manufacturer by covering the entire or part of the
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product maintenance cost. Therefore, warranty has a significant influence
on both the product manufacturer and the consumer. Different perspectives
have been investigated in the literature. For instance, the estimation of the
arrival rate of the warranty claims, the product lifetime analysis, the war-
ranty cost analysis, the sales lag and reporting analysis, the prediction of
warranty claims, etc. More details can be found in [14, 21]. In this study, we
examine the cost associated with two frequently-used warranty policies.

In the literature, numerous warranty policies have been considered in the
warranty cost analysis modeling. For example, the free replacement/repair
policy and the pro rata policy ([27, 6, 31, 10]). The former means that the
product maintenance/replacement costs within the warranty period are cov-
ered by the manufacture while the latter indicates that before the warranty
expiration the product repair costs depend on the product age at failure. Two
types of free replacement/repair policy have been widely considered in the lit-
erature: the non-renewing free replacement/repair warranty ([13, 25]) under
which the warranty length is fixed and the renewing free replacement/repair
warranty([25, 33, 5, 8, 7, 12, 32]) which implies that if the product fails within
the initial warranty period it is repaired and simultaneously a full warranty
is offered. [1] proposed a ’full-service warranty’ policy under which the func-
tional component(s) or subsystem(s) were opportunistically repaired at no
charge to the consumer within the warranty period. The aforementioned
authors examined the manufacture’s warranty cost under different system
configurations. [24] examined the warranty of multi-component systems re-
grading the fixed warranty period and imperfect repair.

In the past few years, more attention has been paid to multi-component
systems in the the warranty cost analysis. Comparing to the single-component
system, the multi-component system is more intractable and intricate. Firstly,
the dependencies between components complicate the warranty modeling and
the optimization of the warranty policy. Secondly, the opportunistic mainte-
nance can be applied to the system which may be more economic.

It is worth mentioning that in the previously reviewed studies, the anal-
ysis of the warranty cost usually focus on the single-component system or
the multi-component system with the assumption of possessing independent
items. The models regarding the multi-component are always maintenance-
cost-oriented or system reliability/availability-oriented without mentioning
the maintenance cost allocation between for example the product supplier
and its consumer. To address this limitations, in this study, we consider the
warranty cost allocation between the manufacturer and the consumer where
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the product is modeled by a two component in series system with stochastic
dependence between each other.

For the maintenance policy study of multi-component systems regarding
stochastic dependence we can list essential papers such as [22] considering
2 types of failure interactions of two-component systems, [23] dealing with
a shock damage model known also as the model with the type 3 failure in-
teraction. Since then, numerous maintenance policies and related optimiza-
tion/system reliability problems of the multi-component system with failure
interactions are investigated ([2, 11, 15, 30, 34, 18]). For instance, [3] con-
sidered the maintenance optimization problem of a two-component system
where the system monitoring was imperfect. [16] investigated the condition
based maintenance policy of a multi-component system where the failure de-
pendence was modeled by Lévy copulas. It was shown that the stochastic
dependence had significant influence on the optimization of the maintenance
policy. [28] developed a dynamic opportunistic condition-based maintenance
policy for multi-component systems where the degradation level of each com-
ponent had impact on the remaining useful life of other components. [17] de-
veloped the warranty cost analysis of multi-component systems with failure
interaction between components under the renewing free replacement policy.
The manufacturer’s expected warranty costs with different system configura-
tions were examined. Therefore, this paper is motivated by the idea of, from
both the perspectives of the manufacturer and the consumer, investigating
the warranty costs of a system having inner dependent components.

The main contributions of the paper are

• To propose warranty policy of a two-component system with failure
interaction,

• To consider minimal repairs as well as replacements of the whole sys-
tem,

• To consider the deterioration level of one component and failure rate
of the other component

• To propose exact cost calculation based on the renewal theory;

• For the first time the expressions of warranty costs considering failure
dependence from two point of views are derived with exact mathemat-
ical formulations;
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• The proposed expressions make it more efficient in the estimating of the
warranty costs for the manufacture comparing to the simulation-based
method;

• The methodology is general and could be applied to the warranty cost
analysis when system replacement are involved;

The rest of the paper is organized as follows. Model assumptions, mainte-
nance policies and warranty policies are introduced in section 2. In section 3,
under both the non-renewing free replacement policy and the renewing free
replacement policy warranty policy (we will call them non-renewing FRW
and RFRW for short hereafter), the warranty costs within the warranty cy-
cle are derived from the perspective of the manufacturer. By assuming that
the product service time is finite and fixed, the warranty profits to the man-
ufacturer and the costs to the consumer are obtained. A numerical example
with sensitivity analysis is illustrated in section 4. Finally we make our
conclusions in section 5.

2. Model descriptions and assumptions

2.1. General assumptions

Here we consider a two-component in series system with failure depen-
dence as follows.

• Component 1 is repairable with lifetime distribution F (t), F (0) = 0,

density function f(t) and failure rate h(t) = f(t)
1−F (t)

.

• Whenever component 1 failure occurs, it induces the failure of compo-
nent 2 with probability r̄, 0 < r̄ < 1 and has no effect on component 2
with probability r, r + r̄ = 1.

• Component 2 is non-repairable and it fails when its deterioration level
exceeds a predetermined threshold L. The failure of component 2
causes the failure of component 1.

• Denote {Y (t), t ≥ 0} be the natural deterioration level of component
2 at time t and σL be the time at which the deterioration level reaches
or first exceeds L, L > 0. Then its distribution function is

GσL(t) = P(σL ≤ t) = P(Y (t) ≥ L), t ≥ 0.
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2.2. Mathematical formulation of failure probabilities

For simplification, in the following we call the system failure as

1. minor failure if only component 1 fails;

2. major failure if both component 1 and 2 fail.

Let N(t) be the number of component 1 failures by time t and pn(t) =
P{N(t) = n}. Then it follows a non-homogeneous Poisson process with

pn(t) =
H(t)n

n!
e−H(t) (1)

where H(t) =
∫ t
0
h(θ)dθ.

Let T1 be the major failure time with lifetime distribution Fs(·). Denoted
F s(t) = 1− Fs(t). Then we have

F s(t) =
∞∑
k=0

rkpk(t)GσL(t)

where GσL(t) = 1−GσL(t). Therefore the major failure time distribution is

Fs(t) = 1−
∞∑
k=0

rkpk(t)GσL(t) (2)

2.3. Maintenance and Warranty assumptions

Suppose that component 1 is minimally repaired when it fails itself with-
out evoking the failure of component 2. The system is renewed when both
component 1 and 2 fail. The component 1 repair cost and the system re-
newal cost for the manufacturer are c1 and c2 respectively. The two warranty
policies non-renewing FRW and RFRW are described as follows.

Assume that the initial warranty period offered by the manufacturer un-
der both the non-renewing FRW and the RFRW are W , during W

• under the non-renewing FRW

– component 1 is minimally repaired at its failure time Tf1 and the
warranty of the system remains valid during the remainingW−Tf1
period.
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– the system is replaced when both component 1 and component 2
fail at time Tf2 and the warranty of the system remains valid only
during the remaining W − Tf2 period.

• under the RFRW

– component 1 is minimally repaired at its failure time Tf1 and the
warranty of the system remains valid during the remainingW−Tf1
period.

– the system is replaced when both component 1 and component 2
fail at time Tf2 and a full system warranty period of length W is
offered.

In the following section, firstly, under both the non-renewing FRW and
RFRW policy, the expected warranty costs within the warranty period from
the viewpoint of the manufacturer are examined.

3. Warranty cost analysis

3.1. The warranty costs of the manufacturer under the non-renewing FRW
and RFRW respectively

Assume that the initial warranty period is W , the maintenance cost of
component 1 and the replacement cost of the system for the manufacturer
are c1 and c2 respectively.

3.1.1. The warranty costs of the manufacturer under non-renewing FRW

Theorem 3.1. Under the non-renewing FRW, the expected manufacturer
cost E(C(W )) within the warranty period W is given by

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt

where Fs(t) is the system renewal time distribution given in equation 2, M(t)

is the renewal function related with Fs(t) denoted by M(t) =
∑∞

n=1 F
(n)
s (t),

k(t) = c1rh(t)F s(t) + c2fs(t), fs(t) is the intensity function of Fs(t).

See Appendix A for the proof.
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3.1.2. The expected manufacturer’s cost under the RFRW policy

Under the RFRW, the manufacture takes full charge of the warranty
cost for the repair/replacement of the failed product during the warranty
period and a full warranty is simultaneously offered to the consumer at the
system renewal time. In this situation, the total warranty cycle defined as
the time period from the initial product purchase time to the end of warranty
contract depending on the initial warranty period W and also on the system
replacement frequency. Denoted by

• Ttotal the total warranty cycle,

• Nw the system renewal number when the initial warranty period is W ,

• θi, i = 1, 2, · · · , Nw the inter-arrival major failure times between the
(i− 1)th system replacement and the ith system renewal.

It can be easily noticed that θi, i = 1, 2, · · · , Nw are identically and
independently distributed with distribution function given as follows.

Lemma 1. Let θ be an inter-arrival major failure time and W the warranty
period

Fθ(t) = P(θi ≤ t) = P(T1 ≤ t | T1 ≤ W )

=

{
Fs(t)
Fs(W )

t < W

1 t ≥ W

where T1 is the first system renewal time. Hence the total warranty length
can be expressed as

Ttotal =
Nw∑
i=1

θi +W

For example, Figure 1 depicts a possible warranty cycle where Nw = 3 and
Ttotal = θ1 + θ2 + θ3 +W . Therefore, the expected warranty cost E(CR(W ))
for the manufacturer under the RFRW is derived.
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Figure 1: A possible system warranty period under RFRW policy

Theorem 3.2. Under the RFRW, from the viewpoint of the manufacturer,
the expected warranty cost within the warranty cycle is

E(CR(W )) =
∞∑
n=0

F s(W )F n
s (W )(

nc2 + c1rH(W ) + nrc1

∫W
0
H(t)dFs(t)

Fs(W )

)

where Fs(t) is the system renewal time distribution given in equation 2, h(t)
and H(t) are the component 1 failure rate and cumulative hazard function
respectively.

See Appendix B for the proof.

3.2. The expected total cost of consumers and total profit of manufacturers
on a finite time horizon

In the previous section, we have focused on the expected warranty cost of
the manufacturer within the warranty period. One step further, if we consider
the consumer behaviour, suppose that he/she intends to put the product in
service for a finite time period T , W < T <∞. Besides, after the warranty
period, the consumer prefers coming back to the original manufacturer (or
the retailer, or the seller etc. here we held the same regard between them)
for the maintenance. Denoted c11, c22 be the charges for component 1 repair
and system replacement respectively to the consumer. It is reasonable to
assume that cii > ci, i = 1, 2 as the manufacturer makes profits from the
disparities between the prices c11, c22 and the costs c1, c2. In the following, the
warranty cost allocation to the consumer and the manufacturer are examined.
Assume that the expected warranty cost to the consumer under the RFRW
within the finite time horizon T is E(C(T )) and the corresponding expected
manufacturer profit is E(P (T )).
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3.2.1. Expected warranty expense analysis under the RFRW

Theorem 3.3. Under the RFRW, the expected maintenance cost of the own-
ership and the expected total profit of the manufacturer in [0, T ] are as follows:

E(C(T )) =

∫ T

W

(1 +M(T − u))k(u)du

E(P (T ))=E(C(T ))−
∫ T

0

(1 +M(T − t))k1(t)dt− c2M(T )

where Fs(t) is the system renewal time distribution given in equation (2),
k(t) = c22fs(t)+c11F s(t)rh(t) for t ≥ W and 0 otherwise; k1(t) = c1rF s(t)h(t),
t > 0 and M(t) is the renewal function related with Fs(t) given as M(t) =∑∞

n=1 F
(n)
s (t), fs(t) is the derivative function of Fs(t).

See Appendix C for the proof.

3.2.2. Expected maintenance cost analysis under the non-renewing FRW

Under the non-renewing FRW, the product warranty is W and not sup-
posed to be renewed. System failure occurs during (W,T ] are taken charge
by the consumer. It is reasonable to assume that the consumer is provided
by a new product and also a full warranty when he/she replaces the failed
system with a new one himself/herself and pays the whole price c22 as the
initial purchase price including a new product and a full warranty. Denoted
by Eno(C(T )) and Eno(P (T )) the expected warranty cost to the consumer
and the expected cost to the manufacturer under the non-renewing FRW
when the product service cycle is T , we have the following theorem.

Theorem 3.4. Under the non-renewing FRW, the expected warranty cost of
the consumer in [0, T ] is derived as

E(Cno(T )) = K0(T ) +

∫ T

0

K0(T − u)dMU(u)

where K0(t) = c22FU(t) + c11r
∫ t
W
FU(θ)h(θ)dθ for t ≥ W and 0 otherwise;

FU(t) = Fs(t) −
∫W
0
F (t − x)dM(x) for t ≥ W and 0 otherwise; and MU(t)

is the renewal function related with FU(t).
If F ∈ IFR, the manufacturer profit Eno(P (T )) satisfies

E(Pno(T )) ≥ Elow(P (T ))
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where Elow(P (T )) = E(Cno(T )) − c1rH(T ) − c2M(T ) and the ’≥’ becomes
’=’ when h(t) is a constant.

See Appendix D for the proof.

4. Sensitivity analysis

Here we consider that component 1 has Weibull-distributed lifetime F (t) =
1− exp(−λtb), t > 0. The deterioration of component 2 is described by a ho-
mogeneous Gamma process which has been extensively applied in describing
the system deterioration on the account of system erosion, corrosion, crack
growth, etc. ([35, 26, 9]). Assume that the density function is

gαt,β(u) =
βαtuαt−1e−βu

Γ(αt)
, u ≥ 0,

where

Γ(α) =

∫ ∞
0

uα−1e−udu

Hence as it is mentioned in [29], the component 2 lifetime distribution GσL(t)
is

GσL(t) =
Γ(αt, Lβ)

Γ(αt)
, t ≥ 0

where

Γ(α, x) =

∫ ∞
x

zα−1e−zdz

Let α = 2, β = 2, λ = 1
64
, b = 2, L = 8, c1 = 1, c2 = 5. Tables 1 and 2 show

the manufacturer’s expected warranty costs within the warranty cycle under
different warranty policies with respect to the failure interaction factor r̄ and
the initial warranty length W respectively.

r̄ 0 0.1 0.2 0.3 0.4 0.5
E(C(W )) 0.60 0.75 0.88 1.02 1.15 1.28
E(CR(W )) 0.62 0.78 0.95 1.13 1.33 1.53

Table 1: The warranty costs of the manufacture under the non-renewing FRW and RFRW
with respect to different values of r̄ when W = 5

We can observe that the expected warranty costs increase continuously
with the failure interaction factor (r̄) and the initial warranty length (W )
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W 4 5 6 7 8
E(C(W )) 0.58 1.02 1.70 2.65 3.72
E(CR(W )) 0.61 1.13 2.14 4.13 8.09

Table 2: The warranty costs of the manufacture under the non-renewing FRW and RFRW
with respect to different values of W when r̄ = 0.3

respectively. It is more sensitive in regards of the RFRW policy, for example,
when r̄ = 0.5, the warranty cost under the RFRW is (1.53−0.62)/0.62 = 1.48-
fold larger than the cost of the system without failure interaction (r̄ = 0). For
the non-renewing FRW case, this figure stands at (1.28− 0.60)/0.60 = 1.13.
It is easy to understand that as r̄ (or W ) increases, more system major failure
occurs within the warranty cycle which results in a rise of the warranty cost.
Besides, the non-renewing FRW is always more economic to the manufacturer
than the RFRW. The reason is due to that under the non-renewing FRW, the
manufacturer pays in full of the warranty costs during a fixed time period W ,
whereas under the RFRW, a longer warranty cost coverage period is required.

It should deserve mentioning that the warranty cost during the warranty
cycle could be served as a reference for the warranty budget. It is also impor-
tant to consider the consumer’ behaviour (for example his or her expected
usage time period of the product) and the manufacturer’s market share (for
example the number of the consumers who prefers to come back for the prod-
uct maintenance after the warranty expiration) for a general estimation of
the warranty cost.

Suppose that the product is put into use for a time period T . The con-
sumer comes back to the manufacturer (or the retailer, the seller, here we
held the same regard between them) for the product maintenance after the
expiration of the warranty cycle. He or she is charged c11, c22 respectively for
the component 1 maintenance and the system replacement. Let W = 5, T =
10, r̄ = 0.3, α = 2, β = 2, λ = 1

64
, b = 1, L = 8, c1 = 1, c2 = 5, c11 = 4, c22 = 12

be the basic parameter settings. The following figures and tables demon-
strate the sensibilities of the manufacturer profits and the consumer costs by
varying different system indicators and remaining others unchanged.
The following points can be highlighted.

• Figures 2 and 3 illustrate the warranty profits and costs for the manu-
facturer and the consumer with different values of W and r̄ respectively.
Both the manufacturer profits and the consumer costs decrease with
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Figure 2: The manufacturer’s warranty profits E(P (T )) and Elow(P (T )) and the con-
sumer’s warranty costs E(C(T )) and Eno(C(T )) with different values of W

the initial warranty length W and the failure interaction between com-
ponents r̄ respectively. It is easy to understand that as the the warranty
period increases, the manufacturer has to cover more warranty costs.
Consequently the expected manufacturer profit or the expected cost
of the consumer decrease as the warranty period grows. The larger is
r̄, the shorter is the expected system lifetime. Therefore more system
replacements are required during the warranty period W and the prod-
uct service time T reducing the manufacturer warranty profit and the
consumer’s cost. Under each warranty policy, the difference between
the consumer cost and the manufacturer profit is independent of W .
The reason is that the difference between the consumer’s cost and the
manufacturer’s profit is actually the manufacturer’s maintenance cost
during the product service time T which is independent of W . The
failure interaction between components has negative effect to the man-
ufacturer profit. It is recommended to the engineers to eliminate the
failure interaction between components.

• Table 3 describes the variations of the manufacturer profits and the
consumer costs with respect to (λ, b) the parameters of the Weibull
distribution and the product service time T . For fixed T , under both
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Figure 3: the manufacturer’s warranty profits E(P (T )) and Elow(P (T )) and the consumer’s
warranty costs E(C(T )) and Eno(C(T )) with different values of r̄

the non-renewing FRW and RFRW, the warranty costs of the consumer
are decreasing functions of λ and b. It shows that given the product
service time T , the consumer will prefer better quality and reliability
of component 1 (small values of λ and b) . Besides, from the per-
spective of the manufacturer, under the non-renewing FRW, for short
product service time (T = 10), the manufacturer benefits less from a
good quality component 1: the manufacturer’s profit is 4.41 when the
expected life time of component 1 is 12 (λ = 1

12
, b = 1)) and the profit

is more than 4.69 when the expected lifetime of component 1 is 6.93
(λ = 1

12
, b = 2)). On the contrary, the corresponding manufacturer

profits are −69.12 and 21.56 when the product service time is T = 50.
Therefore the service time of the product has a non negligable impact
on the warranty profits which need to be well estimated in the devising
of warranty strategies. It might be improper or even counterproduc-
tive to assume that the consumer uses the product for a long-run time
horizon (T =∞).

• Table 4 represents the sensibility of the manufacturer profits and the
consumer costs with different component 2 deterioration rates. The
average deterioration rate is α/β in this case. It indicates that un-
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(λ, b, T ) E(C(T )) E(P (T )) Eno(C(T )) Eno(P (T ))
( 1
64 , 2, 10) 10.68 5.12 11.26 5.34

( 1
12 , 2, 10) 11.29 0.45 18.36 4.69

( 1
12 , 1, 10) 9.55 4.16 9.84 4.41

( 1
64 , 2, 50) 74.02 38.26 62.39 3.24

( 1
12 , 2, 50) 82.67 20.56 123.79 -69.12

( 1
12 , 1, 50) 66.81 33.18 56.01 21.56

Table 3: The warranty cost and profit under RFRW and the non-renewing FRW policies
respectively with different values of λ, b and T

(α, β) E(C(T )) E(P (T )) Eno(C(T )) Eno(P (T ))
(2, 1) 4.98 -4.81 11.20 1.40
(1, 1) 7.65 3.65 7.82 3.81

Table 4: The warranty cost and profit under RFRW and the non-renewing FRW policies
respectively with different values of α and β.

der the non-renewing FRW, both the manufacturer and the consumer
prefer component 2 with slow deterioration speed. However, it is
more economic for the consumer owning a fast deteriorate speed when
the RFRW is offered. Because in the situation that α = 2, β = 1,
Fs(W ) = 0.72 which means with an opportunity of more than 70%
the system is replaced by the manufacture with no charge and then
the process repeats. However, this figure descends strikingly to 0.12
when α = 1, β = 1. Besides, the system failure probability at T is
Fs(T ) = 0.73 which implies that the system major failure occurs fre-
quently during the period [W,T ] during which the consumer has to take
in charge the system replacement costs.

5. Conclusions

In this study, the warranty analysis of a two-component in series system is
examined. Under both the non-renewing FRW and the RFRW, from the per-
spectives of the consumer and the manufacturer, the short-run total warranty
profits and costs are calculated. The model is general enough to be applied
to any 2-component in series system where the components have absolutely
continuous lifetime distributions. A Numerical case is studied indicating that
the failure interaction between components can affect the benefits of both the
manufacturer and the consumer. The sensitivity analysis of other parameter
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settings are displayed. It provides a good reference to the decision-maker
planning the warranty policy for the maximisation of the company profit.

Appendix A. Proof of Theorem 3.1

Proof. As component 1 failure occurs according to the non-homogeneous
Poisson process with intensity rate h(t), from the decomposition property
of the non-homogeneous Poisson process, the number of component 1 failure
inducing the minor system failure follows a non-homogeneous Poisson process
with intensity rate rh(t). Therefore before the major system failure, the
expected failure number of component 1 by time t can be given as E1(t) =
rH(t). By conditioning on the first renewal time of the system T1, we have

E(C(W )|T1 = t)=

{
c1rH(W ) t > W
c2 + c1rH(t) + E(C(W − t)) t ≤ W

where E(N(t)) =
∑∞

n=0 npn(t) is the expected maintenance cost of compo-
nent 1 in [0, t]. Based on the law of total probability

E(C(W )) = c1F s(W )rH(W )

+

∫ W

0

{c2 + c1rH(t) + E(C(W − t))}dFs(t)

= K(W ) +

∫ W

0

E(C(W − t))dFs(t)

where

K(W ) = c1F s(W )rH(W ) +

∫ W

0

(c2 + c1rH(t))dFs(t)

From the renewal property, equation (A.1) is equal to

E(C(W )) = K(W ) +

∫ W

0

K(W − x)dM(x)

where M(t) is the renewal function. The above equation is equal to

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt

where k(t) = c1rh(t)F s(t) + c2fs(t). Therefore we obtained the expected
warranty cost of the manufacturer under the non-renewing FRW.�
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Appendix B. Proof of Theorem 3.2

Proof. It can be noticed that P(Nw = n) = F n
s (W )F s(W ). Let E(C(t))

be the expected warranty cost of the manufacturer during time period t from
the initial product sold moment. Then we have

E(CR(W )) = E
[
E(CR(W |Nw = n))

]
=
∞∑
n=0

Fns (W )F s(W )E[C(θ1 + θ2 + · · ·+ θn +W )]

=

∞∑
n=0

Fns (W )F s(W )

∫ W

0
· · ·
∫ W

0
(nc2 + c1r

n∑
i=1

H(ti)+c1rH(W ))

dFθ(t1) · · · dFθ(tn) =

∞∑
n=0

F s(W )(
nc2F

n
s (W )+c1rH(W )Fns (W )+nrc1F

n−1
s (W )

∫ W

0
H(t)dFs(t)

)
=
∞∑
n=0

F s(W )Fns (W )

(
nc2 + c1rH(W ) + nrc1

∫W
0 H(t)dFs(t)

Fs(W )

)
(B.1)

Therefore we obtain the expected warranty cost of the manufacturer under
the RFRW. �

Appendix C. Proof of Theorem 3.3

Proof. By conditioning on the first system renewal time T1, we have

E(C(T ) | T1 = t) =
c11r(H(T )−H(W )), t > T
c22+c11r(H(t)−H(W ))+E(C(T − t)),W< t≤ T
E(C(T − t)), 0 < t ≤ W

By the law of total probability:

E(C(T )) = K(T )+

∫ T

0

K(T − u)dM(u)

=

∫ T

W

(1 +M(T − u))k(u)du
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where

K(t) = c22(Fs(t)− Fs(W )) + c11

∫ t

W

F s(θ)rh(θ)dθ

for t ≥ W and 0 otherwise. k(u) is the derivative of K(u) given as k(u) =
dK(u)
du

= c22fs(u) + c11F s(u)rh(u).
In addition, let be E(C0(T )) the expected warranty cost caused by minor

system failure by time t for the manufacturer. By the similar method as in
the calculation of E(C(T )), we have

E(C0(T )) =

∫ T

0

(1 +M(T − t))k1(t)dt

where
k1(t) = F s(t)h(t), t > 0 and M(t) is the renewal function related with

Fs(t). As the warranty profit of the manufacture is equivalent to the income
gaining from the consumer’s warranty payment minus the total warranty cost
in [0, T ]. So the manufacturer profit is deduced by substituting E(C(T )),
E(C0(T )) and c2M(T ) in the equation E(P (T )) = E(C(T )) − E(C0(T )) −
c2M(T ) �

Appendix D. Proof of Theorem 3.4

Proof. Let U , (U > W ) be the time epoch when the system is firstly
renewed after W and FU(t) be its lifetime distribution function. Denote
γ(W ) be the residual life to the system at time W , then U = W + γ(W ) and
Fγ(t) be its distribution function. Then

Fγ(t) = Fs(W + t)−
∫ W

0

F s(W + t− x)dM(x)

and so

FU(t) =

{
0 0 ≤ t ≤ W

Fs(t)−
∫W
0
F s(t− x)dM(x) W < t

where M(W ) =
∑∞

n=1 F
(n)
s (W ). By conditioning on the first consumer pur-

chase time U we have:

Eno(C(T )) = K0(T ) +

∫ T

W

K0(T − x)dMU(x)
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where K0(t) = c22FU(t) + c11
∫ t
W
FU(θ)rh(θ)dθ for t > W and 0 otherwise,

MU(t) is the renewal function related with FU(t).
Therefore the expected total cost of the ownership is derived by the law of

total probability. The expected profit of the manufacturer is then obtained
by as the revenue minus the maintenance cost by time T . It is easily seen
that the system renewal cost during T is M(T ). The minimal repair cost
of component 1 is less or equal to rH(T ) when the component 1 lifetime
distribution F ∈ IFR. For example, assume that the system is renewed
once at T1 during T . Let T2 = T − T1, then the minimal repair cost is

r(H(T1) + rH(T2)) = r(

∫ T1

0

h(t)dt+

∫ T

T1

h(t− T1)dt)

≤ r

∫ T

0

h(t)t = H(T )

and ’≥’ becomes ’=’ only when h(t) is a constant. �
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