

Trace Elements in Norwegian and Polish Tea Infusions

Determined by High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR ICP-MS) and Ion Selective Electrode (ISE)

Anne Ingelill Engvik Kronborg

Teacher Education with Master of ScienceSubmission date:June 2013Supervisor:Trond Peder Flaten, IKJCo-supervisor:Tomasz Ciesielski, IBI

Norwegian University of Science and Technology Department of Chemistry

Acknowledgements

This master thesis has been carried out at the Department of Chemistry at the Norwegian University of Science and Technology (NTNU) as the final part of a Master's degree in NTNU's teaching programme – LUR –with specialization in chemistry and biology.

First I would like to thank my supervisors, Trond Peder Flaten and Tomasz Cielsielski. They have been helpful and a great support during the work with my master thesis.

I also have to thank Syverin Lierhagen, who helped me with the Ultra Clave and did all of the ICP-MS analyses. He has been a great support when I needed help to understand the results he gave me. Øyvind Mikkelsen also deserves my thanks for helping me complete the fluoride analysis.

Te og kaffehuset, the local tea and coffee shop in Trondheim, provided me with a great number of samples from their best selling teas, and has provided me information and met me with great interest every time I needed to ask about something. Thank you.

As a student at NTNU's teaching programme LUR, I have been able to combine my interest in chemistry and biology with teaching. This I have done through courses, laboratory work, pedagogical courses and practice teaching, and during my work with this thesis. This has been interesting, challenging and have given me new perspectives about scientific work and myself.

I also have to thank all of my fellow students at the Department of Chemistry, who have been ready for tea and mocha whenever the going got tough. I would like to thank the leaders and assistants in the kindergarten that have taken good care of my girls during schooldays and always meeting me with a smile. At least, I would like to thank my family, especially Rakel and Ariel, and friends for their support throughout my entire studies. I would not have done this without your help.

Gløshaugen

Anne Ingelill Kronborg

Abstract

Tea from the plant *Camellia sinensis* is the world's most popular non-alcoholic beverage, next to water. Tea can be divided into six types, and the most popular teas are black tea, green tea and oolong. In this study infusions of 85 Norwegian and Polish tea samples were analysed to investigate the content of trace elements. 40 samples from Norwegian supermarkets, 30 from the local tea and coffee shop and 15 Polish samples were infused for 5 minutes with ultrapure boiling water (1 gram tea/100 mL). The fluoride content in the tea infusions was determined using an ion selective electrode (ISE), and the rest of the elements were determined by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS).

Tea is a rich source of essential elements as calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn). The infusions also contain non essential elements as nickel (Ni),lead (Pb), fluoride (F) and aluminium (Al). The average concentrations in one cup of tea from the Norwegian market contains among other elements average concentrations of 0.6 mg Ca/L, 2.8 mg P/L, 37.1 mg K/L, 2.0 mg Mg/L, 5.9 μ g Fe/L, 14.1 μ g Cu/L, 26.4 μ g Zn/L, 0.6 mg Mn/L, 9.9 μ g Ni/L, 0.16 μ g Pb/L, 0.5 μ g Cr/L, 1.0 mg F/L and 1.1 mg Al/L. For the essential elements Ca, P, K, Mg, Fe, Cu and Zn the tea infusions will not contribute to attain the recommended dietary allowances (RDAs) in any extent, but for Mn where the AI are 2.3 mg/day (men) and 1.8 mg/day (women) a few cups of tea can exceed the given AI level. The amount of Pb in the infusions is sustainable lower than the provisional tolerable weekly intake (PTWI) of 25 μ g/kg body weight. Drinking tea will therefore not contribute in any high extent to the PTWI.

There were on the other hand obtained vast variations of F concentrations in different types of tea and tea contributes also in huge extent to AI of F - 3 mg/day (women), 4 mg/day (men) and from 0.5-1 mg/day (0 -12 year olds). One cup of tea could easily exceed the AI, at least considering children drinking tea. The Al content in tea is high, and for heavy tea drinkers may tea be the largest single source of Al to contribute to the total weekly intake (TWI) of 1 mg/ kg body weight/ week.

The study showed higher concentrations of elements in tea infusions made of tea bags than infusions made of loose tea. Suggesting that the elements in the crushed leaves in tea bags are more extractable than in the loose tea leaves. One other explanation is that the tea bags contain older tea leaves with lower quality and therefore older leaves with higher concentrations of e.g. Al. There was also seen a significant difference in the element composition in Norwegian and Polish infusion, with higher concentrations of elements in the Norwegian infusions.

Sammendrag

Te fra planten *Camellia sinensis* er den alkoholfrie drikken i verden, som nytes mest, etter vann. Te kan deles inn i tre typer, hvorav de mest populære er svart te, grønn te og oolong te. I denne masteroppgaven ble grunnstoffinnholdet analysert i totalt 85 forskjellige teprøver, preparert av blader fra planten. 40 tesorter ble kjøpt inn fra norske dagligvarehandler, 30 typer kom fra den lokale te og kaffe butikken – Te og kaffehuset – i Trondheim. De siste 15 tetypene kom fra det polske markedet gjennom et samarbeidsprosjekt med Universitetet i Gdansk. 1 gram av de forskjellige prøvene ble trukket i 100 mL kokende ultrarent vann for 5 minutter. Fluorinnholdet i teprøvene ble bestemt ved bruk av ione selektive elektroder (ISE), mens resten av grunnstoffinnholdet i teen ble bestemt ved induktiv koplet plasma massespektrometer (ICP-MS).

Te er en rik kilde på essensielle grunnstoffer som kalsium (Ca), fosfor (P), kalium (K), magnesium (Mg), mangan (Mn), jern (Fe), kopper (Cu) og sink (Zn). Teuttrekkene inneholder også ikke essensielle grunnstoffer som bly (Pb), fluor (F) and aluminium (Al). En kopp te fra det norske markedet inneholder blant annet 0.6 mg Ca/L, 2.8 mg P/L, 37.1 mg K/L, 2.0 mg Mg/L, 5.9 µg Fe/L, 14.1 µg Cu/L, 26.4 µg Zn/L, 0.6 mg Mn/L, 9.9 µg Ni/L, 0.16 µg Pb/L, 0.5 µg Cr/L, 1.0 mg F/L og 1.1 mg Al/L. Innholdet av Ca, P, K, Mg, Fe, Cu og Zn i te, vil ikke bidra til å nå de anbefalte inntaksgrensene Soisial og Helsedirektoratet i Norge har satt. Innholdet av Mn i te, vil derimot bidra til å nå de anbefalte inntaksgrensene USA har satt på henholdsvis 2.3 mg Mn/ dag for menn, og 1.8 mg/dag for kvinner. Mengden Pb i teuttrekkene er så lav at tedrikking vil ikke i noen grad påvirke inntaksgrensa på 25 µg/kg kroppsvekt/ uke (PTWI). Innholdet av F i teuttrekkene bidrar i høy grad til å nå anbefalt inntaksgrenser (USA) på 3 mg/dag for kvinner, 4 mg/dag for menn og fra 0.5 - 1 mg/dag for barn i en alder av 0-12 år. Da det ble målt store variasjoner i konsentrasjonen i de forskjellige norske teene, kan en kopp te lett bidra til at inntaksgrenene blir overgått, spesielt hos barn som drikker te. Det samme ble observert med tanke på Al innholdet i te. For de som drikker veldig mye te vil Al i te være en av de viktigste kildene til å bidra til det totale ukentlige inntaket på 1 mg/kg kroppsvekt.

De endelige resultatene viste et høyere grunnstoffinnhold i te brygget meg teposer enn te brygget med løs te. Dette kan forklares med at det finmalte materialet i teposene er lettere løselig, enn grunnstoffinnholdet i de løse tebladene, eller med at kvaliteten på teen i teposene er noe lavere enn i den løse teen og at det i denne er brukt eldre blader fra teplanten. De eldre bladene inneholder større mengder av for eksempel Al og vil på denne måten bidra til å øke konsentrasjonen av grunnstoffer i teposene. Det ble også observert forskjeller i grunnstoffinnholdet mellom de norske og de polske teuttrekkene, uten at en kan si noe om hva som forårsaket dette.

Table of Contents

ACKNOWLEDGEMENTS	1
Abstract	2
Sammendrag	3
TABLE OF CONTENTS	-
1 INTRODUCTION	6
2 BACKGROUND AND THEORY	
2.1 Camellia sinensis	
2.1 Recommended dietary allowance	
2.3 Trace elements	
2.9. Trace clements in tea	
2.4.1 Aluminium	
2.4.2 Lead	
2.4.3 Manganese	
2.4.4 Chromium	
2.4.5 Copper	
2.4.6 Nickel	
2.4.7 Fluoride	
3. MATERIALS AND METHODS:	
3.1 Selection of teas	
3.2 Preparation of tea infusions	
3.3 Reference material	
3.4 Fluoride detected by the use of ISE	
3.5 Principal component analysis	
4 Results	
4.1 Trace elements detected by use of ICP-MS	
4.2 Principal component analysis	
4.3 Fluoride	
5 DISCUSSION	30
5.1 Reference material – accuracy	30
5.2And precision	30
5.3 Principal Component Analysis	30
5.4 Differences in Norwegian and Polish tea infusions	31
5.5 Differences between infusions made of loose tea and tea bags	31
5.6 Tea infusions with flavour – no flavour	32
5.7 Infusion time	32
5.8 Differences in content of elements in the infusions due to processing of the tea leaves	32
5.9 Sodium	33
5.10 Calcium	33
5.11 Phosphorous	33
5.12 Potassium	33
5.13 Magnesium	34
5.14 Iron	34
5.15 Zinc	34
5.16 Copper	35
5.17 Manganese	
5.18 Aluminium	36
5.19 Lead	36
5.20 Chromium	36
5.21 Nickel	37
5.22 Fluoride	
5.23 The content of elements extracted from the tea leaves	39

6 CONCLUSION	
7 References	
Appendix 1	Ι
Appendix 2	XVIII
Appendix 3	XIX
Appendix 4	XX
Appendix 5	XXV
Appendix 6	XXVI
Appendix 7	
Appendix 8	XXXII
Appendix 9	XXVI

1 Introduction

The tea leaves from the plant *Camellia sinensis* has a complex chemical composition. Apart from polyphenols, flavonoids, proteins, amino acids, enzymes, aroma-forming substances, vitamins, fibers, volatile oils and carbohydrates, it is known that prepared tea is an important source of essential and non-essential elements (Harbowy et al., 1997, Wickremasinghe, 1978, Karak and Bhagat, 2010). In recent years, there has been much interest in and concern about the uptake of trace metals by plants from soils, because excess metals getting into the food chain through uptake by plants might be harmful to the health of humans (Li et al., 1998). This is interesting considering tea is the second most popular non-alcoholic beverage in the world, next to water (Szymczycha-Madeja et al., 2012, Wickremasinghe, 1978). During infusion of tea, the essential and non-essential elements are extracted from the leaves and into the infusion, in different concentrations. This makes the infusions a major source of minor, major and trace elements in the human diet and could have health implications (Karak and Bhagat, 2010, Welna et al., 2012).

The study started out with 70 Norwegian tea infusions, but 15 Polish infusions were included in the trace element analysis as well. The Polish infusions were included to investigate similarities between teas bought in the two countries. The infusions were analysed with ICP-MS, and the Fluoride content was determined using an ion selective electrode. A principal component analysis (PCA) was performed, used to reduce the number of variables and to manage to see a pattern in the results. In this thesis the PCA plot is only discussed briefly. A Student T-test was performed to decide if the results were significant or if the results were a coincidence.

Tea infusions are important from both a nutritional and toxicological view. The aim of this study was to determine and get an overview of the content of elements in Norwegian and Polish tea infusions. The content of elements were investigated to decide whether or not tea contribute to the intake of essential and non essential elements.

2 Background and theory

2.1 Camellia sinensis

Next to water, tea prepared from steamed and dried leaves of the plant *Camellia sinensis* is the most popular non-alcoholic beverage, consumed by about half of the world's population (Szymczycha-Madeja et al., 2012, Flaten, 2002). The tea shrub is evergreen, originally from China and can be found in tropical, sub-tropical and temperate regions. It grows best at lower temperature (5-20 °C), in regions with relatively high humidity (80-90%) and high annual rainfall (1500-2000 mm) (Fung et al., 2003).

Tea can be classified into six basic categories: white, yellow, green, oolong, black and pu-erh (Szymczycha-Madeja et al., 2012). The global tea production in 2000 was 2,89 million tons (Flaten, 2002). The most popular ones are black, green and oolong, nearly 85% is black, 14 % is green and the remaining amount is oolong and white tea (The Tea Association of the USA, 2013). Differences in the fermentation process make the different types of tea (Szymczycha-Madeja et al., 2012, Harbowy et al., 1997). Black tea is produced by air-drying (withering) of the leaves from Camellia sinensis before they are bruised through rolling and cutting to activate the endogenous enzyme polyphenol oxidase. The activating of the enzyme starts the fermentation process, which largely consists of oxidation of the polyphenols present in the tea leaves. When the quality is optimal, drying stops the fermentation. Green tea is not fermented, but the leaves are steamed or pan fired to inactivate the polyphenol oxidase, thus avoiding the oxidation. If this procedure is carried out immediately after the leaves are plucked, the result is "white" tea. If the leaves are withered before firing the result is "yellow" tea (Harbowy et al., 1997). Oolong tea is an intermediate type of tea, produced employing a shorter fermentation time than for black tea (Harbowy et al., 1997), and pu-erh tea is fermented natural aged tea (Global Tea Brokers, Malinowska et al., 2008).

As mentioned in the introduction, the chemical composition of tea is complex. Apart from polyphenols, flavonoids, proteins, amino acids, enzymes, aroma forming substances, vitamins, fibers, volatile oils and carbohydrates, tea is also a rich source of dietary essential major, minor elements and trace elements (Szymczycha-Madeja et al., 2012, Welna et al., 2012, Wickremasinghe, 1978). During infusion of the tea, the elements in the leaves are differentially extracted into the infusions. The presence of different elements in tea is considered to have certain health implications for the well-being of heavily tea consumers. (Szymczycha-Madeja et al., 2012, Welna et al., 2012, Welna et al., 2012, Karak and Bhagat, 2010) Daily, or regularly, intake of tea may significantly contribute to recommended daily intake of some essential, nutritionally important elements like Cr, K, Mn, Ni and Zn. (Szymczycha-Madeja et al., 2012, Welna et al., 2010, Han et al., 2006, Flaten, 2002, Sofuoglu and Kavcar, 2008) With this information tea should not be considered neutral to human health (Salahinejad and Aflaki, 2010, Sofuoglu and Kavcar, 2008, Welna et al., 2012).

2.2 Recommended dietary allowance

Recommended dietary Allowance (RDA) was developed for guidance and meant to provide superior nutrition for the people. RDA is defined as the average daily dietary nutrient intake level that is sufficient to meet the nutrient requirements of nearly all (97-98 %) healthy individuals in a particular life stage and gender group (Otten et al., 2006). Acceptable daily intake (ADI) is a measure of the amount of a specific substance in food or drinking water that can be ingested on a daily basis over a lifetime without an appreciable health risk. ADIs are usually expressed in mg/kg body weight per day. Dietary reference intake (DRI) is a system of nutrition recommendations composed of Estimated Average Requirements (EAR), RDA, Adequate intake (AI) and Tolerable upper intake levels (UL). EAR is expected to satisfy the needs of 50% of the people in a certain age and AI is used where no RDA has been established, but the amount established is somewhat less firmly believed to be adequate for everyone in the demographic group. UL is used to caution against excessive intake of nutrients that can be harmful in large amounts, and this is the highest level of daily consumption that current data have shown to cause no side effects in humans (Otten et al., 2006). The Norwegian RDAs for some essential elements can be seen in Table 1.

Age/Years	Ca (mg)	P (mg)	K (g)	Mg (mg)	Fe (mg)	Zn (mg)	Cu (mg)	I (µg)	Se (µg)
Children									
<6 months	-	-	-	-	-	-	-	-	-
6-11 months	540	420	1.1	80	8	5	0.3	50	15
12-23 months	600	470	1.4	85	8	5	0.3	70	20
2-5 year	600	470	1.8	120	8	6	0.4	90	25
6-9 year	700	540	2	200	9	7	0.5	120	30
Male									
< 13	900	700	3.3	280	11	11	0.7	150	40
14-17	900	700	3.5	350	11	12	0.9	150	50
18-30	800	600	3.5	350	9	9	0.9	150	50
31-60	800	600	3.5	350	9	9	0.9	150	50
61-74	800	600	3.5	350	9	9	0.9	150	50
>= 75	800	600	3.5	350	9	9	0.9	150	50
Female									
<13	900	700	2.9	280	11	8	0.7	150	35
14-17	900	700	3.1	280	15	9	0.9	150	40
18-30	800	600	3.1	280	15	7	0.9	150	40
31-60	800	600	3.1	280	15	7	0.9	150	40
61-74	800	600	3.1	280	9	7	0.9	150	40
>=75	800	600	3.1	280	9	7	0.9	150	40
Pregnant	900	700	3.1	280	-	9	1	175	55
Nursing	900	900	3.1	280	15	11	1.3	200	55

Table 1: Recommended dietary allowance for some essential elements given in Norwegian recommendations for nutrition and physical activity (Sosial- og Helsedirektoratet, 2005).

2.3 Trace elements

If an organism is to grow and reproduce normally, the dietary concentrations in animals, or soil concentrations in plants, have to be maintained. These elements are essential elements (Walker et al., 2012). Carbon (C), hydrogen (H), oxygen (O) and nitrogen (N) are essential elements. In addition to these there are seven major minerals required for ionic balance and as integral parts of amino acids, nucleic acids and structural compounds. These seven major mineral elements are calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg), sodium (Na), chlorine (Cl) and sulphur (S) (Walker et al., 2012). Iron (Fe), iodine (I), copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), molybdenum (Mo), selenium (Se), chromium (Cr), nickel (Ni), vanadium (V), silicon (Si) and arsenic (As) are also required and so-called trace elements. They are required in different biological processes (Klaassen and Casarett, 2008, Walker et al., 2012). Iron for example is a part of haemoglobin, the oxygencarrying pigment in red blood cells (Walker et al., 2012).

The window of essentiality for some elements is very narrow. The dose of the element determines the poison and even essential elements will become toxic with increasing exposure (Klaassen and Casarett, 2008). Nonessential elements such as mercury or cadmium, in addition to being toxic above certain levels, could also affect organisms by inducing deficiencies of essential elements through competition at active sites in biologically important molecules. It is also often the case that the nonessential toxicant elements mimic essential elements and thereby gain access to, and potentially disrupt, key cellular functions. This can also account for bioaccumulation of toxic elements (Klaassen and Casarett, 2008).

2.4. Content of elements in tea

Most of the organic material in plants is carbohydrate, including the cell walls that are made of cellulose. The components of carbohydrates – carbon, oxygen and hydrogen are the most abundant in plants, but also nitrogen, sulphur and phosphorus are relatively abundant in plants. Chemical elements are considered as essential elements if they are required for a plant to grow and complete its life cycle and produce another generation. The nutrients are divided into two groups – macronutrients and micronutrients. The plants require these elements in either large amounts or in small quantities. In addition to the latter group of elements – potassium, calcium and magnesium are macronutrients the plant need in large amounts for different biological processes. Chlorine (Cl), iron (Fe), manganese (Mn), boron (B), zinc (Zn), copper (Cu), nickel (Ni) and molybdenum (Mo) are on the other hand among the essential micronutrients. The minerals have different mobility within the plant. Magnesium is for example a relatively mobile element and is shunted preferentially to young leaves, and a deficiency will here first show signs in its older leaves, while a relatively immobile mineral will first affect the young leaves (Campbell and Reece).

The main source of elements in tea plants is their growth media (Salahinejad and Aflaki, 2010, Chen et al., 2010). In which extent the roots absorb the elements while leaves take them up, depend on the concentrations of the elements in soil and their physiochemical forms in

soil or when the elements are bound to other soil constituents (Chen et al., 2010, Szymczycha-Madeja et al., 2012).

The tea plant is one of few plants that favour growth in acidic conditions, with pH values ranging from 4.5 to 6.0. Even though the plant will grow in soil as low as 4.0, pH higher than 5.6 is not favouring growth without adjustments of the pH in soil (Chand et al., 2011). The pH in soil is controlling the passage and the availability of some elements into the plant (Dong et al., 1999), and acidification (pH < 4,5) of soil in the different tea plantation will favour solubilisation and release of selected elements (i.e. aluminium (Al), Copper (Cu), Cadmium (Cd), Lead (Pb)) from the soil (Dong et al., 1999, Szymczycha-Madeja et al., 2012). These elements can be readily available to the root system. With a decrease in soil pH below 5.0, there has been seen a significantly increase in for example extractable Al in soils and the uptake of Al in tea leaves (Szymczycha-Madeja et al., 2012, Dong et al., 1999). Under these conditions, and together with minerals containing inorganic P, and if elements associated with Fe and Mn oxides and other inorganic residues may be released – then the uptake of elements from the soil and the accumulation in tea leaves will increase (Dong et al., 1999).

The concentrations of the different elements taken into tea plants (i.e. Al, Cu, Pb and Zn) (Chen et al., 2010, Wong, 1998, Fung et al., 2009, Fung et al., 2003) vary in the different parts of the plant (roots, branches and mature and young leaves). Accordingly, young leaves have lower levels of Al and Pb and higher levels of Cu and Zn than old leaves (Fung et al., 2009). Availability and uptake of elements and their content in leaves also significantly correlate with the age of the plantation (Fung et al., 2009, Fung et al., 2003). The tea bush is also known to accumulate elements such as aluminium (Al), Fluoride (F) and Lead (Pb) (Szymczycha-Madeja et al., 2012) and the mobility of e.g. Al within the tea plant is great, but the element is not retained in roots but transported to shoots, which is a well-known behaviour of hyperaccumulators (Fung et al., 2009).

In some cases when the soil is contaminated through pollution of water, air or industrial and urban activities (e.g., Pb), plants also take up these elements (Salahinejad and Aflaki, 2010, Chen et al., 2010, Han et al., 2006, Jin et al., 2005). The soil may also be contaminated by agriculture practices, application of crop-protection agents and measures containing Cd, Cu, Pb and Zn species or chemical and organic fertilizers of low quality (contaminated with Cd, Ni, Pb) (Han et al., 2006, Szymczycha-Madeja et al., 2012). This will result in elements getting transported directly from the soil by roots and contribute to higher levels of elements in different parts of the plant, especially leaves (Han et al., 2006, Szymczycha-Madeja et al., 2012).

During the stages of manufacturing of the tea, possible contamination by Al, Cr, Cu, Pb and Zn may happen. The water is removed from the leaves; the leaves are twisted, dried, milled and packed (Fung et al., 2003). The contamination may happen because the equipment that is used is made of copper, stainless steel or brass (Salahinejad and Aflaki, 2010, Szymczycha-

Madeja et al., 2012). In general, if the tea leaves are in contact with metallic surfaces, impurities may adsorb and be bound to leaves, thereby increasing concentrations of metals like Cu and Pb (Jin et al., 2008, Szymczycha-Madeja et al., 2012). The Al and Cu increase in black tea can also be connected with the frying of the leaves aiming to change the composition and stop the fermentation process. This is because of that the frying is done in pans made of Al-Cu alloys (Fung et al., 2003).

One of the aims of this study is as mentioned earlier to investigate how much the Norwegian and Polish infusions contribute to the intake of essential and non essential elements. There has been more focus on Mn, Al, Pb, Cr, Ni and F.

2.4.1 Aluminium

Tea is a major contributor to human's dietary aluminium (Al) intake, because *Camellia sinensis*, is as earlier mentioned, one of a few plants accumulating aluminium (Flaten, 2002, Szymczycha-Madeja et al., 2012). Accumulation of very high quantities of Al (5000 – 16,000 mg/kg) has been reported and it is also reported higher concentrations of Al in old than in younger leaves (Karak and Bhagat, 2010). Heavy drinking of tea would because of this contribute with more than a double of an individual's intake of Al (Flaten, 2002).

Al is the third most abundant metal in the earth's crust after oxygen and silicon, but due to its high reactivity, Al is not found in the free state in nature. Al occurs typically as Al³⁺, and binds strongly to oxygen-donor ligands as citrate and phosphate (Harris W.R et al., 1996). Because of the mobility of Al within the tea plant, this element is not retained in the roots, but transported to shoots. This is well-known behaviour of hyperaccumulators (Fung et al., 2009).

Less than 1% of the Al in the diet is absorbed (Flaten, 2002, Harris W.R et al., 1996). Al is poorly absorbed during oral or inhalation exposure, and is essentially not absorbed dermally. The pH and the present complexing ligands are variables that control the absorption in the gut. Particularly carboxylic acids make the Al more absorbable. For example, in presence of citrate, the intestinal absorption is enhanced. The speciation is also of major importance in distribution and excretion of Al in mammals (Harris W.R et al., 1996). In plasma, 80-90% of the Al binds to transferrin, an iron-transport protein with receptors in many tissues. The transferrin pathway is considered a mechanism for Al transport across the blood-brain barrier (Klaassen and Casarett, 2008).

The kidneys remove the Al from the blood before it is excreted in the urine. The different Al compounds can alter absorption of other elements in the gastrointestinal tract. For example can the fluoride absorption be inhibited by the Al, and may decrease the absorption of calcium and iron compounds, and salisylic acid, which may affect the Al absorption. (Klaassen and Casarett, 2008) When Al binds to phosphorus by Al in the GI tract, this can lead to phosphate depletion and potentially, osteomalacia (Klaassen and Casarett, 2008,

Flaten, 2002). Al interacts with calcium in bone and kidney, resulting in Al osteodystrophy (Klaassen and Casarett, 2008, Flaten T.P et al., 1996).

There have been discussed a possible relationship between Al and Alzheimer's disease (Flaten, 2001, Flaten, 1988, Klaassen and Casarett, 2008), and the basis for these discussions is the elevated Al levels in Alzheimer patients' brains. However, the increased values of Aluminium in Alzheimer's brains can also be a consequence of and not only a cause of the disease. This is because of the reduced effectiveness of the blood-brain barrier in these patients might allow more Al to pass the barrier (Klaassen and Casarett, 2008).

Since Al is very poorly absorbed in the GI tract, a dietary source of Al with high bioavailability could greatly increase the Al uptake. This would occur even if the total Al concentration in this source were not particularly high (Flaten, 2002). Studies investigating the speciation of Al in tea infusions before and after stomach condition treatment indicate a shift to lower molecular mass species under stomach conditions. When the pH increased to 6.3-6.5, as in intestinal condition, a new speciation took place and formed high molecular weight soluble species of two insoluble species. However, some species could also be stable enough to pass the GI tract unchanged. Lipophility, hydrophility and hydrolytical stability and Al complexes are associated with differences in biological effects, and some organic complexes can be stable enough to pass through the stomach and accumulate in brain and bone (Flaten, 2002).

2.4.2 Lead

Camellia Sinensis absorb Pb from the surrounding soil, and can accumulate Pb in the leaves. It is reported higher levels of Pb in older leaves than in younger leaves (Karak and Bhagat, 2010). The adverse health effects caused by low-level exposure to Pb have been well documented, and you can find stipulated allowable levels of Pb in food and beverages. Pb concentrations in tea leaves have caused concern to both consumers and producers, as one of the major route of exposure for the general population is from food and water (Klaassen and Casarett, 2008, Karak and Bhagat, 2010, Jin et al., 2005).

By ingestion of lead adults usually absorb 5-15 % and retain 5 %, on the other hand children absorb 42% and retain 32% (Ziegler et al., 1978). The absorption could be enhanced by low dietary intake of iron and calcium, especially in children (Mahaffay, 1990). Absorption through the alveoli in the lungs by airborne lead particles can be relatively efficient, but airborne particles are a minor component of exposure (Klaassen and Casarett, 2008). Pb in blood is primarily in erythrocytes bound to hemoglobin, only 1% of circulating lead in serum is available for tissue distribution. Pb is initially distributed to soft tissues such as kidney and liver, and afterwards redistributed to skeleton and hair. Pb in blood has a half life for about 30 days, while lead in bone has a half life for about 20 years. Lead can be released from bones and contribute to keep blood lead levels high. This is important in adults with accumulated occupational exposure and in women due to bone resorption during pregnancy, lactation,

menopause and from osteoporosis. Lead crosses the placenta, and in this way the accumulation in fetal tissues, including the brain of the fetus, is proportional to the mother's blood lead levels (Klaassen and Casarett, 2008).

The most important route of excretion of absorbed lead is the kidney. Renal excretion of lead is usually through glomerular filtrate with some renal tubular resorption. One third of the total excretion of absorbed lead is done by fecal excretion via biliary tract (Klaassen and Casarett, 2008).

Lead can cause a lot of adverse effects in humans depending on the dose and for how long the exposure last. The toxic effects range from inhibition of enzymes to pathology or death(Klaassen and Casarett, 2008). In adults you can see peripheral neuropathy, chronic nephropathy, and hypertension. Children are most sensitive to effects in the central nervous system (Klaassen and Casarett, 2008). It can also lead to learning disabilities and anaemia (Rosen and Needleman, 1992, Jin et al., 2005).

2.4.3 Manganese

Manganese (Mn) is an important element in many biochemical processes in plants and usually acts as an activator for different enzymes (Burnell James N, 1988). According to data, Mn is an element with a significant dietary amount in tea (Street et al., 2006, Powell et al., 1998). Mn is an essential element required for many metabolic and cellular functions in humans (Aschner and Aschner, 2005), and the major source of Mn intake is from food. Vegetables, grains, fruits and nuts are other sources rich on Mn in addition to tea (Aschner and Aschner, 2005, WHO, 2003).

The guideline value of Mn in drinking water prescribed by WHO is 0.4 mg/L (WHO, 2003), and estimated daily dietary intake is 2-5 mg (Powell et al., 1998). Route of Mn excretion is with the feces. It is eliminated in the bile and reabsorbed in the intestine. Biliary excretion is poorly developed in neonates and exposure during this period may result in increased delivery of Mn to the brain and other tissue (Aschner and Aschner, 2005). A high dietary Mn intake can lead to excessive Mn accumulation in the central nervous system. This is called manganism and resembles idiopathic Parkinson's disease, resulting in adverse neurological effects both in laboratory animals and humans (Aschner and Aschner, 2005). It is not clear if deficiency has been demonstrated in humans, but deficiency in animals results in impaired growth, skeletal abnormalities, and disturbed reproductive functions (Klaassen and Casarett, 2008).

2.4.4 Chromium

Chromium (Cr) is an essential trace element for human beings and animals (Karak and Bhagat, 2010). Although Cr is essential, it might cause adverse effects introducing Cr to humans through food and beverages (Karak and Bhagat, 2010). Chromium is naturally occurring in soil and plants take up both Cr (III) and Cr (VI), which interfere with metabolic processes, causing toxicity to the plants.

Cr compounds are distributed to all organs of the body, because they are taken up with erythrocytes. This results in high level of Cr in liver, spleen and kidney. Absorbed Cr are excreted primarily in urine (Klaassen and Casarett, 2008). It is thought that toxicity of Cr (VI) compounds results from damage to cellular components, including generation of free radicals and formation of DNA adducts. This is thought to happen during the reduction from Cr (VI) to Cr (III) (Zhitkovich, 2004).

2.4.5 Copper

Copper (Cu) is a micronutrient for plants, but at high concentrations Cu can be phytotoxic (Karak and Bhagat, 2010). Cu is widely distributed in nature, and is an essential element. The major sources of exposure are food, beverages and drinking water (Klaassen and Casarett, 2008). Overconsumption of Cu from food and beverages is also detrimental for human health as well (Kawada et al., 2002), and the content in food and beverages must be controlled (Karak and Bhagat, 2010). Average daily dietary intake of Cu through food and beverages is 2.5 mg/day (Powell et al., 1998) Route of excretion of an oral dose is absorption from the GI tract, primarily in the duodenum. 55-75% of an oral dose of Cu is absorbed. (Klaassen and Casarett, 2008) The most common adverse health effect of excess oral Cu intake is gastrointestinal distress (Klaassen and Casarett, 2008).

2.4.6 Nickel

Nickel (Ni) is essential for plant growth at low concentrations, and although it is also one of the most important heavy metals in terms of its potential toxicity to plants and animals (Karak and Bhagat, 2010). It has been said that NI influences iron absorption and metabolism, however biochemical functions is humans and higher animals are not been demonstrated (EFSA, 2006). Nickel are found to be carcinogenic, but the carcinogenicity of nickel compounds which occurs through inhalation mainly as a result of occupational exposure does not appear to be relevant to oral exposure from low levels in food, although data are lacking in this area (EFSA, 2006).

2.4.7 Fluoride

Tea is also a major contributor to human's dietary fluoride (F) intake. AlFx complexes contribute to total soluble Al and F in the soil where pH is generally less than 5.5. When pH is that low, the complex would decompose and the plants roots will absorb the free F^- ion passively and the ion will be transported to the young leaves (Karak and Bhagat, 2010).

Fluorine is a halogen element and the most reactive non-metal. Chemical behaviour and properties are mainly different from other halogens elements. F an important anion too and occurs in various environmental, clinical and food samples. Fluorine is both beneficial oligoelement – that means that it is needed for growth and bone tissue upholding, teeth and toxic (Giljanovic et al., 2012). Mild dental fluorosis is seen as white areas on the tooth surface, and as yellow and brown to black stains in its severe form. In areas with endemic levels of fluorosis, dental fluorosis is more common. Skeletal fluorosis can occur after long-term exposure of high doses with fluoride, and the element is mainly deposited in the neck,

knee, pelvic, and shoulder joints and/or bone, which makes it difficult to walk or move. (Klaassen and Casarett, 2008). Higher F⁻ concentration in the human body can be resulted by living in polluted environment and feeding with polluted food. Acute fluoride intoxication can have neurological complications, urinary stone formation and hypocalcaemia as consequences on endemic patients (Giljanovic et al., 2012). There are also papers that link cancer with fluoride intake (Giljanovic et al., 2012).

The GI tract absorbs 75-90% of the fluorides, and then it is distributed throughout the body. Approximately 99% of the fluoride in the body is found in bones and teeth. The hydroxyl ion in hydroxyapatite in bones is replaced by the fluoride ion to form hydroxyfluoapatite. The fluoride in bone can be remobilized slowly s a result of the ongoing process of bone remodelling, especially in young children. The fluoride is transported across the placenta, but poorly transferred to breast milk. Fluoride is mainly excreted in urine, and the levels in urine and in plasma are related to intake and are used as a biomarker for excess exposure. Hair, fingernails and tooth enamel are indicators of long-term exposure (Klaassen and Casarett, 2008).

The content of trace elements in tea infusions from some other publications are presented in Table 2. They were selected from following criteria's: all infusions were prepared of leaves from *Camellia Sinensis*, there are both black tea, green tea and oolong tea, and the infusion methods used are almost the same as in this study.

Country of origin	Sample analysed	Number of samples	Extraction procedure*	Concentration range	Reference
Aluminium (Al) (mg/L)					
China and India	Black tea	4	1	2-4	(Varo and Koivistoinen, 1980)
Unknown	Black tea	5	2	2,0-6,2	(Flaten, 1988)
China	Black tea	-		2,0-6,0	(Chen, 1984)
India	Black tea	5	3	3,72	(Natesan and Ranganathan, 1990)
China	Green, black and oolong	18	4	2,3-2,5	(Wong, 1998)
China, India, Indonesia, Japan, Sri Lanka and Thailand	Green tea	17	6	1,88-16,52	(Nookabkaew. S, 2006)
Turky	Black tea	100	7	1,66-5,35	(Sofuoglu and Kavcar, 2008)
China	Green and black tea	2	5	2,45-6,76	(Fung et al., 2003)
China	Oolong	9	8	1,5-5,4	(Fung et al., 2009)

Table 2: Trace elements in tea infusion from some other publications.

Country of origin	Sample analysed	Number of samples	Extraction procedure*	Concentration range	Reference
China	Green tea	7	8	0,7-5,5	(Fung et al., 2009)
Chromium (Cr) (µg/L) India	Black tea	5	3	1,7	(Natesan and
Turkey	Black tea	100	7	1,58-43,2	Ranganathan, 1990) (Sofuoglu and
Copper (Cu)	Diack lea	100	,	1,36-43,2	(Sofuogia and Kavcar, 2008)
(µg/L) India	Black tea	5	3	0,69	(Natesan and Ranganathan,
China	Green,black and oolong	18	4	0,029-0,061	1990) (Wong, 1998)
China, India, Indonesia, Japan, Sri Lanka and	Green tea	17	6	0,04-0,24	(Nookabkaew. S, 2006)
Thailand Turky	Black tea	100	7	3,57-65,4	(Sofuoglu and Kavcar, 2008)
Ceylon, India and Iran	Black tea	11	9	2,38-9,00	(Salahinejad and Aflaki, 2010)
Fluoride (F) (mg/L)					,
Unknown	Green tea	12	7	0,0064-0,016	(Giljanovic et al., 2012)
China	Green tea and black tea	2	5	2,45-6,76	(Fung et al., 2003
China,Japan,Sri Lanka and India	Black tea	12	10	1,08-1,32	Cao et al., 2004)
Turkey Lead (Pb)	Black tea	100	7	0,34-1,48	(Sofuoglu and Kavcar, 2008)
$(\mu g/L)$ India	Black tea	5	3	0,038	(Natesan and Ranganathan,
China, India, Indonesia, Japan, Sri Lanka and Thailand <i>Manganese</i> (Ma)(ma(L)	Green tea	17	6	0,004-0,032	1990) (Nookabkaew. S, 2006)
(Mn) (mg/L) India	Black tea	5	3	1,24	(Natesan and Ranganathan, 1990)
China, India, Indonesia, Japan, Sri Lanka and Thailand	Green tea	17	6	1,38-7,42	(Nookabkaew. S, 2006)

Country of origin	Sample analysed	Number of samples	Extraction procedure*	Concentration range	Reference
Turkey	Black tea	100	12	0,188-2,105	(Sofuoglu and Kavcar, 2008)
Ceylon, India and Iran	Black tea	11	13	125,8-164,0	(Salahinejad and Aflaki, 2010)
Ceylon Nickel (Ni)	Black tea	4	13	88,7-249,4	(Salahinejad and Aflaki, 2010)
(mg/L) India	Black tea	5	14	0,118	(Natesan and Ranganathan, 1990)
China, India, Indonesia, Japan, Sri Lanka and Thailand	Green tea	17	11	0,04-0,16	(Nookabkaew. S, 2006)
Turkey	Black tea	100	12	0,001-0,049	(Sofuoglu and Kavcar, 2008)
Ceylon, India and Iran	Black tea	11	15	1,86-7,65	(Salahinejad and Aflaki, 2010)

*1:2 g tea+100 mL deionized water, simmered for 5 min; 2: 1 g tea+100 mL distilled water, infused for 5 min.; 3:2 g tea+100 mL boiling water for 1 min; 4: 2 g tea + 200 mL boiling distilled water, 5 min.; 5: 1 g tea +100mL double-distilled water, infused at 100 °C for 5 min; 6: 2.0 g tea+100 mL of boiling deionized water, sample was left at room temperature for 5 min; 7:2 g tea+200 mL ultrapure water, boiled for 15 min; 8: 2g tea +200 mL double-distilled water, infused at 90°C for 30 min; 9: 1 g tea + 45 mL hot distilled water, kept for 5 min; 10: 2 g tea+200 mL deionized water, infused for 10 min at 100°C;11: 2,0 g tea + 100 mL of boiling deionized water, sample was left at room temperature for 5 min; 12: 2 g tea + 200 mL ultra pure water, boiled for 15 min;13: 1 g tea+45 mL hot distilled water, kept for 5 min; 14: 2 g tea + 100 mL boiling water for 1 min; 15: 1 g tea+45 mL hot distilled water, kept for 5 min.

3. Materials and Methods:

3.1 Selection of teas

85 different teas were analysed in this study; 40 samples from three different supermarkets in Trondheim, 30 samples from the local tea and coffee shop (Te og kaffehuset) and 15 samples collected from Polish supermarkets and tea shops.

The teas from the Norwegian supermarkets were selected based on the supermarkets assortment (Appendix 1). Information of the different supermarkets assortment were collected and the teas the supermarkets had in common were assumed to be some of the most popular ones. This assumption was made out of how much space the different teas got in the stores shelf. Some of the selected samples were also personal favourites, and some of the samples were selected, to easier make comparisons. The Norwegian market is dominated by two major tea producers; Twinings and Lipton, as can be seen in Appendix 1. Some teas from a few other producers were also selected an analysed.

30 of the samples were provided by the local tea and coffee shop. These samples were a selection from their most popular and best-selling teas (Appendix 1). The collection included black tea, green tea, oolong and white tea. 15 infusions from Poland were included, in order to investigate differences between the two countries.

3.2 Preparation of tea infusions

Tea infusions were made by adding 100 mL boiled ultrapure water to 1.0 g of loose tea or one tea bag (~2 g). Bottles used for the infusion period were in advance rinsed three times with ultrapure water. The tea, together with blanks and reference material, was infused for 5 minutes before the sample was filtrated with 0.45 μ m filter. A syringe (50 mL) was filled with the infused tea and injected through the filter. This procedure was done two times to rinse the syringe and the filter before the sample (15 mL) was filled in ICP-MS tubes (rinsed 2x with the filtered infusion) and added 5 droplets of ultra pure concentrated nitric acid (HNO₃). The samples were diluted 6.67x with ultrapure water and then analysed with ICP-MS (see details of the instrument conditions in Appendix 2).

Method detection limits (MDL) were calculated by 3 times the standard deviation of the blanks, or on the instrument detection limits (IDL). The IDLs were estimated from the subsequent analysis of solutions, containing decreasing, low concentrations of the element. Finally, the concentration resulting in a relative standard deviation of approximately 25% (n=3) scans were selected as IDL with baseline corrections applied for these values. The detection limit was calculated from the method that resulted in the highest values. Elements with 50 % of the samples below the detection limit were excluded. The detection limits are listed in Appendix 3.

Sample C41, N6, N16 and N31 were analysed three times to determine and calculated the relative standard deviation (RSD) from the ICP-MS analysis. The RSDs are listed in Appendix 4.

3.3 Reference material

Two types of certified reference material; Tea Leaves GBW-07605 and certified material from Institute of Nuclear Chemistry and Technology Warszawa- Poland, Polish Virginia Tobacco Leaves were analysed for comparing the accuracy, calibration of the instrument and to evaluate the results of the Norwegian and Polish tea infusions samples.

Reference material (~250-450 mg) was put in a Teflon tube, that had been rinsed 3x with ultrapure water, and 50% HNO₃ (6 mL) was added before digestion with Ultra Clave, see Appendix 5 for further information on the temperature profile. The samples were then diluted with ultrapure water until 0.6M HNO₃, and then transferred to ICP-MS tubes (15 mL). The determined concentrations for the two reference materials are listed in Appendix 6.

Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the different elements in the infusions, while the fluoride content was determined by use of a fluoride ion selective electrode.

3.4 Fluoride detected by the use of ISE

Total ionic strength adjustment buffer (TISAB) solution was prepared by adding 1M sodium chloride, 0.25M acetic acid, 0.75M Sodium acetate and 0.001M Sodium citrate in a volumetric beaker (1L) and filled with ultrapure water.

A standard solution of Sodiumfluoride (0.0491M, NaF) was made of dried NaF (110 °C for 2 hours). Standard solutions from 0.1, 0.2, 0.5, 0.7, 1, 5, 15 and 50 mL of the stock solution were put in beakers (100 mL) and 10 mL of the TISAB solution was added. The rest was filled with ultrapure water. The TISAB solution regulates the ionic strength of samples and standard solutions and adjusts the pH. It also avoids interferences by polyvalent cations such as Al (III), Fe (III) and Si (IV) that are able to complex or precipitate with fluoride, and reduce the free fluoride in the solution. (Sofuoglu and Kavcar, 2008) The fluoride level was measured with the ion selective electrode in the standard solutions, starting with the lowest concentration and a standard curve was made. See Appendix 7 for details regarding the standard curve.

The tea infusions were filtrated with a 0.45µm filter before 25 mL was added in a beaker (100mL) with TISAB solution (10 mL) and ultrapure water. The beaker was in advance rinsed three times with ultrapure water. The fluoride level was then determined in each of the 70 Norwegian infusions, together with blanks and triplicates. The fluoride level was also measured in 4 samples of tea that had been infused for 30 minutes. The average of the blanks were subtracted from the calculated fluoride concentrations and the concentrations were corrected for final volume and gram of tea in the infusion, before the fluoride concentrations

were calculated in mg/L per gram of tea used in the infusions. This can be seen in Appendix 7, together with relative standard deviation (RSD), calculated for the triplicates N16 and N31.

3.5 Principal component analysis

A Principal component analysis (PCA) was perfomed using SIMCA (Version 13, Umetrics, Umeå, Sweden) to manage group and sort the results. PCA extracts the most important information and patterns from a data set; it excludes much of the noise, and simplifies the data set while retaining the maximum level of variation. The simplified information is expressed as a set of new variables called principal components. The first principal component contain the highest level of variance and the second the highest possible level of variance under the constraint of being orthogonal to the first principal component (Abdi and Williams, 2010).

Two PCA plots were created, one of the samples (score plot) and another of the variables (loading plot). Samples that group, or are closely associated in the score plot, can be expected to show similar variable compositions. Variables that cluster or are in the same area in the loading plot are likely to correlate positively. Possible outliers can be examined using the Hotellings T2 with a 95% confidence interval that forms an ellipse in the score plot. Student T-test was performed using Statistica.

4 Results

4.1 Trace elements detected by use of ICP-MS

Data from the ICP-MS analysis can be seen in Appendix 1. The average values, standard deviation and the range for each element are presented in Table 3. In Table 4, the concentration of detected elements per cup is listed. These results are further discussed in section 5 Discussion.

Table 3: Average \pm standard deviation, and range of detected trace elements in tea infusions (μ g/L) from Poland (Po) and Norway (No). The results are grouped in loose tea and tea bag.

		Y	Cd	Sn	Cs	Се
Loose tea	Ро	0.106±0.0698 (0.0184-0.234)	0.0145±0.0138 (0.00308-0.0528)	0.00863±0.00769 (0.00123-0.0294)	1.45±1.15 (0.253-3.24)	0.0639±0.0396 (0.0129-0.155)
	No	0.177±0.176 (0.0125-0.936)	0.0217±0.0114 (0.00607-0.0487)	0.0144±0.0194 (0.000412-0.0932)	3.38±4.99 (0.131-28)	0.0876±0.0438 (0.02-0.18)
Tea bag	Ро	0.348±0.187 (0.0479-0.651)	0.0215±0.0148 (0.00992-0.059)	0.00785±0.00661 (-0.0000778-0.0218)	6.7±12.6 (0.721-40.7)	0.18±0.205 (0.0563-0.735)
	No	0.552±0.293 (0.112-1.4)	0.0652±0.0704 (0.00561-0.425)	0.0533±0.217 (-0.00122-1.34)	6.69±5.61 (0.209-19.2)	0.384±0.32 (0.0195-1.44)
_		Pr	Nd	Sm	Tb	Dy
Loose tea	Ро	0.0121±0.00743 (0.00101-0.0244)	0.047±0.0285 (0.00734-0.0956)	0.0119±0.00659 (0.0034-0.0225)	0.00268±0.00159 (0.000602-0.00571)	0.0156±0.00952 (0.00263-0.0314)
	No	0.018±0.018 (0.00288-0.111)	0.0762±0.0735 (0.00984-0.441)	0.0172±0.0147 (0.0012-0.0807)	0.00392±0.00373 (0.000266-0.0173)	0.0249±0.0216 (0.00225-0.112)
Tea bag	Ро	0.0429±0.022 (0.00791-0.0764)	0.163±0.082 (0.0301-0.286)	0.0365±0.0175 (0.00888-0.06)	0.00753±0.00399 (0.00145-0.0136)	0.0481±0.0255 (0.00772-0.0862)
	No	0.0627±0.0412 (0.00693-0.178)	0.258±0.162 (0.0311-0.666)	0.0618±0.0367 (0.0074-0.142)	0.012±0.00657 (0.00191-0.0271)	0.0793±0.0421 (0.0149-0.185)

B		Но	Er	Tm	Yb	Lu
Loose tea	Ро	0.00351±0.00238 (0.000611-0.00743)	0.0109±0.00729 (0.00108-0.0243)	0.00186±0.00133 (0.000234-0.00457)	0.0104±0.007 (0.00211-0.0252)	0.0019±0.00142 (0.000148-0.00507)
	No	0.00562±0.00547 (0.000187-0.0286)	0.0182±0.0183 (0.000623-0.0923)	0.00306±0.00312 (0.000159-0.0159)	0.0212±0.022 (0.00143-0.11)	0.00333±0.00356 (0.000168-0.0184)
Tea bag	Ро	0.0114±0.00656 (0.00164-0.0216)	0.0345±0.0196 (0.00492-0.0663)	0.00572±0.00367 (0.000539-0.0129)	0.0373±0.0223 (0.0036-0.0784)	0.0069±0.0042 (0.000891-0.0151)
-	No	0.0178±0.00967 (0.0031-0.0416)	0.0575±0.0318 (0.0104-0.14)	0.00948±0.00513 (0.00168-0.0228)	0.0635±0.0353 (0.00886-0.154)	0.0102±0.00578 (0.00147-0.0268)
		Hf	Tl	Pb	Th	U
Loose tea	Ро	0.0015±0.000904 (0.000622-0.00323)	0.203±0.194 (0.0131-0.609)	0.521±1.09 (0.0432-3.92)	0.00263±0.00238 (0.000493-0.00714)	0.00391±0.00416 (0.000575-0.0143)
	No	0.000928±0.00069 (-0.0000561-0.0035)	0.282±0.217 (0.038-0.872)	0.392±0.323 (0.0213-1.3)	0.00396±0.00226 (0.000819-0.0111)	0.00725±0.00632 (0.000589-0.0278)
Tea bag	Ро	0.00162±0.00121 (0.000811-0.00477)	0.31±0.362 (0.0446-1.09)	0.315±0.497 (0.0227-1.6)	0.00384±0.00334 (0.00134-0.0124)	0.0131±0.0161 (0.00307-0.055)
	No	0.00152±0.00117 (-0.0000975-0.0061)	0.499±0.335 (0.0368-1.4)	0.759±0.647 (0.0473-2.32)	0.016±0.0174 (0.000304-0.0545)	0.0234±0.0195 (0.00124-0.0767)
		Li	В	Na	Mg	Al
Loose tea	Ро	0.201±0.117 (0.0412-0.412)	19±10.8 (8.24-44.5)	133±115 (31.8-404)	3310±1260 (1620-6170)	1100±496 (144-1810)
	No	0.406±0.204 (0.0527-0.918)	31.9±19.4 (5.71-91.9)	260±248 (41.9-1020)	4190±2000 (1540-9260)	1850±1120 (316-5300)
Tea bag	Ро	0.493±0.312 (0.207-1.25)	48.9±24.7 (28.9-95.8)	712±1610 (74.8-5230)	4930±1090 (2930-6860)	3240±1480 (1860-5910)
	No	1.23±0.776 (0.077-2.84)	75.2±27.9 (24.5-141)	5150±5610 (115-18300)	9910±2460 (4460-15000)	5760±2330 (1150-12100)

		C.	D	G	К	C.
Loose tea	Ро	Si 56.2±55.3 (4.92-207)	P 8770±2220 (5370-13600)	S 5960±1700 (3600-9130)	K 96200±20500 (57200-121000)	Ca 420±149 (192-649)
	No	144±92.7 (21.7-452)	9430±3700 (3850-24800)	6870±1910 (2600-10800)	111000±26800 (50400-159000)	796±459 (378-2630)
Tea bag	Ро	153±112 (42.9-302)	8390±1820 (4450-11000)	7380±1520 (5110-9390)	110000±18600 (75500-134000)	966±472 (494-1660)
	No	412±207 (71-1140)	14200±4490 (4700-24700)	15500±5010 (4270-37200)	185000±48100 (56600-279000)	3040±2180 (417-12600)
_		Ti	v	Cr	Mn	Fe
Loose tea	Ро	0.123±0.032 (0.0636-0.167)	0.0455±0.024 (0.0156-0.0867)	0.842±1.09 (0.124-3.78)	797±441 (279-1780)	7.34±4.17 (2.77-15.1)
	No	0.192±0.0533 (0.0912-0.303)	0.0446±0.0236 (0.00946-0.116)	0.635±0.99 (0.065-5.6)	1100±863 (273-5140)	13.8±10.3 (2.79-51.7)
Tea bag	Ро	0.136±0.0305 (0.0939-0.173)	0.0776±0.0505 (0.0164-0.178)	2.85±2.06 (0.354-6.97)	1800±789 (291-2930)	8.53±8.71 (3.9-32.9)
	No	0.334±0.168 (0.163-1.12)	0.116±0.0725 (0.0164-0.361)	2.52±1.77 (0.191-8.86)	2990±1220 (744-5710)	29.8±21.2 (5.73-73.7)
		Со	Ni	Cu	Zn	Sr
Loose tea	Ро	0.455±0.272 (0.124-1.15)	12.6±6.4 (4.87-25.9)	21.5±5.95 (12.6-32.3)	59.6±17.5 (34.3-90.3)	1.98±1.45 (0.166-5.38)
	No	0.677±0.573 (0.187-2.92)	19.2±8.28 (6.69-40.6)	28.1±15.7 (1.4-80.7)	67.4±33.2 (23.2-147)	4.49±2.44 (1.27-11)
Tea bag	Ро	0.538±0.341 (0.135-1.07)	20.8±6.81 (11.4-29.6)	35.5±8.83 (23.9-50.3)	74.8±27.2 (45.3-120)	6.58±3.33 (1.45-12.3)
	No	1.67±0.718 (0.587-3.11)	49.7±20.1 (7.64-87.8)	70.3±29.2 (14.9-128)	132±45 (57.2-262)	18.1±10.5 (2.51-47.3)

F		Ru	Ba	La	Nb	Rb
oose tea	Ро	0.00431±0.00196 (0.00139-0.00788)	4.26±3.11 (0.59-9.37)	0.0497±0.0306 (0.0093-0.0942)	0.00217±0.00161 (0.000341-0.00514)	311±135 (114-554)
Γ	No	0.00923±0.00472 (0.00241-0.0201)	9.21±5.74 (1.36-23.8)	0.0811±0.0825 (0.0141-0.514)	0.00398±0.00207 (0.000696-0.0118)	364±165 (126-810)
Tea bag	Ро	0.00502±0.00296 (0.000667-0.0108)	19±17.9 (1.69-49.7)	0.19±0.0999 (0.028-0.321)	0.00205±0.0014 (-0.000885-0.00423)	464±146 (155-676)
Ľ ·	No	0.0132±0.00438 (0.0039-0.0242)	42.8±27.3 (2.38-90.4)	0.278±0.201 (0.0337-0.902)	0.00658±0.00222 (0.00111-0.0109)	584±191 (170-882)

Table 4: Results from calculation of trace elements per cup of tea, when a cup is 200 mL. All results are given in µg/cup of tea. The results are grouped in to loose tea, tea bag, Norwegian and Polish tea. For each element the average ± standard deviation and range.

	Y	Cd	Sn	Cs	Ce
Ica	0.0212±0.014	0.00289±0.00276	0.00173±0.00154	0.29±0.23	0.0128±0.00792
B Po	(0.00367-0.0467)	(0.000616-0.0106)	(0.000246-0.00588)	(0.0506 - 0.648)	(0.00258-0.0311)
<u>S</u>	0.0354 ± 0.0353	0.00434 ± 0.00228	0.00288 ± 0.00387	0.677 ± 0.998	0.0175 ± 0.00876
No	(0.00249-0.187)	(0.00121-0.00974)	(0.0000823-0.0186)	(0.0263-5.6)	(0.004-0.036)
a 20	0.0696±0.0373	0.0043 ± 0.00297	0.00157 ± 0.00132	1.34 ± 2.52	0.0361±0.041
Po B	(0.00958-0.13)	(0.00198-0.0118)	(-0.0000156-0.00437)	(0.144-8.15)	(0.0113-0.147)
	0.11±0.0587	0.013±0.0141	0.0107±0.0433	$1.34{\pm}1.12$	0.0769 ± 0.0641
No	(0.0224-0.279)	(0.00112-0.0851)	(-0.000243-0.269)	(0.0418-3.84)	(0.00389-0.289)
	Pr	Nd	Sm	Tb	Dy
Ica	0.00242±0.00149	0.00939 ± 0.00569	0.00238±0.00132	0.000536 ± 0.000318	0.00312±0.0019
Po g	(0.000201 - 0.00489)	(0.00147-0.0191)	(0.00068 - 0.0045)	(0.00012-0.00114)	(0.000527-0.00628)
Ş	0.00359±0.00361	0.0152±0.0147	0.00343±0.00293	0.000783±0.000747	0.00498±0.00433
No	(0.000577-0.0222)	(0.00197-0.0883)	(0.00024-0.0161)	(0.0000532 - 0.00347)	(0.000451-0.0225)
a 20	0.00858±0.0044	0.0327±0.0164	0.00729±0.00351	0.00151±0.000799	0.00961±0.0051
PO B	(0.00158-0.0153)	(0.00602 - 0.0572)	(0.00178-0.012)	(0.000289 - 0.00272)	(0.00154-0.0172)
e Po	0.0125±0.00825	0.0515±0.0323	0.0124±0.00735	0.00241±0.00131	0.0159±0.00843
No	(0.00139-0.0355)	(0.00621 - 0.133)	(0.00148-0.0284)	(0.000382 - 0.00542)	(0.00298 - 0.037)

Tea bag Loo	Po No Po No	Ho 0.000702 ± 0.000475 (0.000122-0.00149) 0.00112 ± 0.00109 (0.0000374-0.00572) 0.00228 ± 0.00131 (0.000328-0.00433) 0.00357 ± 0.00193 (0.000621-0.00833)	Er 0.00218 ± 0.00146 (0.000216-0.00485) 0.00365 ± 0.00366 (0.000125-0.0185) 0.0069 ± 0.00392 (0.000983-0.0133) 0.0115 ± 0.00637 (0.00208-0.028)	Tm 0.000372 ± 0.000265 (0.0000468-0.000915) 0.000612 ± 0.000624 (0.0000317-0.00319) 0.00114 ± 0.000735 (0.000108-0.00258) 0.0019 ± 0.00103 (0.000337-0.00457)	Yb 0.00208 ± 0.0014 (0.000422-0.00505) 0.00425 ± 0.00439 (0.000286-0.022) 0.00745 ± 0.00446 (0.00072-0.0157) 0.0127 ± 0.00706 (0.00177-0.0307)	Lu 0.000381 ± 0.000283 (0.0000295-0.00101) 0.000665 ± 0.000712 (0.0000337-0.00367) 0.00138 ± 0.000839 (0.000178-0.00303) 0.00205 ± 0.00116 (0.000295-0.00535)
Loose tea	Ро	Hf 0.0003±0.000181 (0.000124-0.000645)	Tl 0.0407±0.0388 (0.00262-0.122)	Pb 0.104±0.218 (0.00865-0.785)	Th 0.000526±0.000476 (0.0000986-0.00143)	U 0.000783±0.000833 (0.000115-0.00287)
Tea bag Lo	No Po	0.000186±0.000138 (-0.0000112-0.000701) 0.000325±0.000241 (0.000162-0.000954)	$\begin{array}{c} 0.0565 {\pm} 0.0435 \\ (0.0076 {-} 0.174) \\ 0.062 {\pm} 0.0723 \\ (0.00893 {-} 0.219) \end{array}$	$\begin{array}{c} 0.0785 {\pm} 0.0646 \\ (0.00426 {-} 0.261) \\ 0.063 {\pm} 0.0993 \\ (0.00453 {-} 0.32) \end{array}$	0.000791±0.000452 (0.000164-0.00222) 0.000769±0.000668 (0.000268-0.00248)	0.00145±0.00126 (0.000118-0.00557) 0.00262±0.00322 (0.000614-0.011)
	No	0.000303±0.000233 (-0.0000195-0.00122) Li	0.0997±0.067 (0.00737-0.28) B	0.152±0.129 (0.00947-0.464) Na	0.00321±0.00347 (0.0000608-0.0109) Mg	0.00468±0.00391 (0.000249-0.0153) Al
Loose tea	Po	0.0401±0.0234 (0.00825-0.0823) 0.0812±0.0408 (0.0125-0.104)	3.8 ± 2.16 (1.65-8.89) 6.38 ± 3.88	26.5±22.9 (6.36-80.8) 52.1±49.6	662±251 (324-1230) 838±401 (200 1950)	221±99.2 (28.9-362) 369±224
Tea bag	No Po	(0.0105-0.184) 0.0986 ± 0.0624 (0.0414-0.25) 0.246 ± 0.155	(1.14-18.4) 9.78±4.93 (5.78-19.2) 15±5.59	(8.39-204) 142±323 (15-1050) 1030±1120	(308-1850) 986±217 (587-1370) 1980±491	(63.1-1060) 649±297 (371-1180) 1150±466
	No	(0.0154-0.567) Si 11.2±11.1	(4.9-28.1) P 1750±444	(23.1-3650) S 1190±340	(893-2990) K 19200±4100	(231-2410) Ca 84±29.8
Loose tea	Po No	(0.985-41.4) 28.7±18.5 (4.33-90.5)	(1070-2710) 1890±739 (770-4950)	(719-1830) 1370±382 (521-2160)	(11400-24200) 22100±5370 (10100-31800)	(38.4-130) 159±91.7 (75.7-525)
Tea bag	Po No	30.6±22.3 (8.58-60.4) 82.3±41.5 (14.2-227)	1680±365 (891-2210) 2830±897 (940-4940)	$1480\pm304 \\ (1020-1880) \\ 3100\pm1000 \\ (854-7440)$	22100±3710 (15100-26700) 37100±9630 (11300-55700)	193 ± 94.3 (98.8-332) 608 \pm 436 (83.4-2530)

	Ti	V	Cr	Mn	Fe
tea	0.0245 ± 0.0064	0.00911±0.0048	0.168 ± 0.218	159±88.2	1.47 ± 0.834
🖇 Po	(0.0127-0.0334)	(0.00312-0.0173)	(0.0248-0.757)	(55.8-355)	(0.555-3.01)
Tea bag Loose tea oN oA oA	0.0384 ± 0.0107	0.00891±0.00473	0.127±0.198	220±173	2.76 ± 2.07
	(0.0182-0.0606)	(0.00189-0.0232)	(0.013-1.12)	(54.7-1030)	(0.558-10.3)
	0.0271 ± 0.00611	0.0155 ± 0.0101	0.569 ± 0.411	360±158	1.71 ± 1.74
a Po	(0.0188-0.0345)	(0.00329-0.0356)	(0.0708-1.39)	(58.3-587)	(0.781-6.58)
Te	0.0668±0.0336	0.0232 ± 0.0145	0.504 ± 0.354	598±244	5.96 ± 4.25
No	(0.0325-0.224)	(0.00328-0.0722)	(0.0382-1.77)	(149-1140)	(1.15-14.7)
	Со	Ni	Cu	Zn	Sr
Loose tea	0.0911±0.0544	2.52 ± 1.28	4.31±1.19	11.9 ± 3.5	0.395±0.29
8 Po	(0.0249-0.23)	(0.974-5.17)	(2.52-6.45)	(6.86-18.1)	(0.0332 - 1.08)
00 V	0.135 ± 0.115	3.84±1.66	5.63±3.14	13.5±6.65	0.897 ± 0.488
NO	(0.0374-0.583)	(1.34-8.12)	(0.28-16.1)	(4.63-29.4)	(0.253 - 2.21)
Tea bag od	0.108 ± 0.0681	4.17±1.36	7.1±1.77	15±5.43	1.32 ± 0.667
a Po	(0.0271-0.214)	(2.28-5.92)	(4.77-10.1)	(9.06-23.9)	(0.291 - 2.46)
Te	0.334 ± 0.144	9.93±4.01	14.1±5.85	26.4±9	3.63±2.1
No	(0.117-0.622)	(1.53-17.6)	(2.99-25.5)	(11.4-52.4)	(0.502 - 9.46)
	Ru	Ba	La	Nb	Rb
tea	0.000862 ± 0.000392	0.853±0.623	0.00994 ± 0.00611	0.000434 ± 0.000323	62.2±27
Loose tea	(0.000278-0.00158)	(0.118-1.87)	(0.00186-0.0188)	(0.0000681-0.00103)	(22.9-111)
8	0.00185 ± 0.000945	$1.84{\pm}1.15$	0.0162±0.0165	0.000796 ± 0.000414	72.7±33
NO	(0.000483-0.00403)	(0.273-4.76)	(0.00282-0.103)	(0.000139-0.00236)	(25.1-162)
ag	0.001 ± 0.000592	3.79±3.59	0.038 ± 0.02	0.00041±0.000279	92.9±29.1
Tea bag od a	(0.000133-0.00216)	(0.337-9.93)	(0.00561-0.0641)	(-0.000177-0.000846)	(30.9-135)
Ţ	0.00264 ± 0.000877	8.56±5.46	0.0556 ± 0.0402	0.00132 ± 0.000444	117±38.2
No	(0.000781-0.00484)	(0.476-18.1)	(0.00675-0.18)	(0.000223-0.00219)	(33.9-176)

4.2 Principal component analysis

PCA revealed patterns between different groupings of the elements in the tea infusions. Results from the fluoride analysis were not included in the PCA plot. The analysis resulted in a model with 4 principal components (In Appendix 8 you can see the details of the model). In order to explain the diverse contents of elements in the infusions, object scores were drawn for samples to which particular teas correspond. All infusions were seen in score plot (Figure 1) and (Figure 2). Plot of loadings can be seen in Figure 3. Results from the Student T-test can be seen in Appendix . Both the PCA and Student T-test are discussed in section 5.3 Principal Component Analysis.

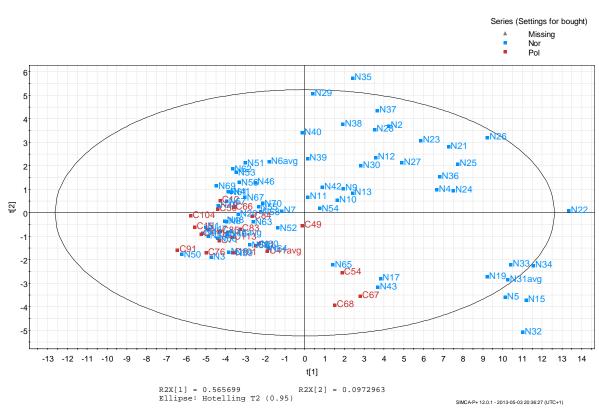


Figure 1: PCA score plot over the Norwegian (N) and Polish (C) tea infusions, divided into Norwegian (blue) and Polish (red).

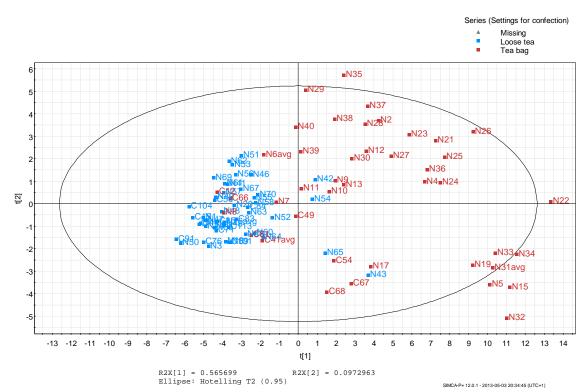


Figure 2: PCA score plot for the Norwegian (N) and Polish (C) infusions, grouped into loose tea (blue) and tea bag (red).

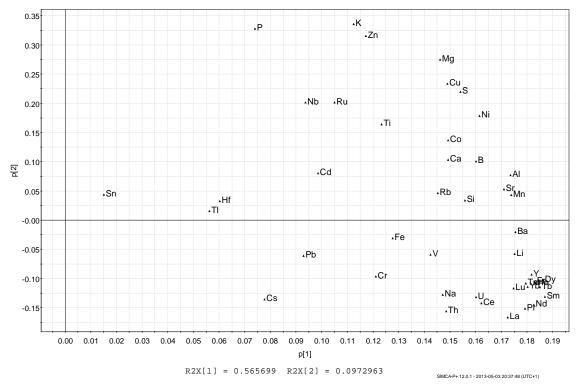


Figure 3: PCA loading plot for principal component 1 and 2. Includes the chemical elements detected using ICP-MS.

4.3 Fluoride

Data from the fluoride analysis and calculations are listed in Appendix 7. In Table 5 the average, standard deviation, median and range from the fluoride analysis are presented. In Table 6 the fluoride content in one cup of tea (200 mL) is presented. Results are discussed in section 5.22 Fluoride.

Table 5: Fluoride content in loose tea and in tea bag infused for 5 and 30 minutes. The results are presented as average ± standard deviation, median and range in mg/L.

	F ⁻ (mg/L) (5 minutes)	F ⁻ (mg/L) (30 minutes)
	5.35±6.26	1.75±0.934
Loose tea	2.65	1.75
	(0.579-34.6)	(1.09-2.41)
	2.02 ± 1.04	4.34 ± 0.657
Tea bag	1.81	4.343
	(0.77-5.67)	(3.88-4.81)

Table 6: Fluoride content in one cup of tea (200 mL). Divided in loose tea or tea bag, and presented as average ± standard deviation, median and range in mg/cup.

	F ⁻ (mg/cup)
	1.07 ± 1.25
Loose tea	0.53
	(0.116-6.92)
	0.405 ± 0.208
Tea bag	0.362
	(0.154-1.13)

5 Discussion

5.1 Reference material – accuracy

The reference material used in this study were, as earlier mentioned; Tea Leaves GBW-07605 and certified material from Institute of Nuclear Chemistry and Technology Warszawa-Poland, Polish Virginia Tobacco Leaves. Both reference materials were plant material added nitric acid (HNO₃) and digested in Ultra Clave. In Appendix 6, one can see from the reference material that the accuracy for most elements is between the 85% confidence interval. For both of the reference materials the results are low in Hf – 12.1% and 2.6%. In addition to Hf, the accuracy is too low in Ag, Be, Dy, Hg, Ho, Lu, Nd, Pr, Si, Sm, Ti, V and Yb in the tea leaves, and in Cr, Cs, Ni, Pb, Th, Sb, Sc, Ta, U and Yb in the reference material Polish tobacco.

The low values of some elements can be explained by the reason that certified results are totally digested, by use of hydrogenflouride (HF) together with HNO₃, since HNO₃ added before the digestion does not solve all the analytes in the material, for example hafnium (Hf), wolfram (W) and so on. This indicates that the values attained in this study also could be higher, especially for elements as Hf, Ag, Be, Dy, Hg, Ho, Lu, Nd, Pr, Si, Sm, Ti, V, Cr, Cs, Ni, Pb, Th, Sb, Sc, Ta, U and Yb.

For the elements were no accuracy given, it did not exist certified values. Au, Ga, Ge, In, Ir, Nb, Pt, Rh, Tm, W and Zr are not certified in both of the reference material – the tea leaves and the Polish tobacco. In addition to those elements, Er, Sn and U were not certified in the tea leaves, and Be, Dy, Ho, Se and Si were not given in the Polish tobacco.

5.2...And precision

In Appendix 4 the relative standard deviation (RSD) from parallel samples is listed. The measurements were performed to investigate the method and its repeatability. For the selected samples three analysis were carried out for sample C41 (Lipton Yellow Label), N6 (Lipton Indian Chai), N16 (Twinings Earl Grey) and N31 (Twinings Apple, cinnamon and raisins).

Concerning the REEs, the variation in precision is higher for these elements. The RSDs are higher when measured values are close to the detection limits. This is because the instrument in this region is having trouble separating the analyte from the noise. Tea sample C41 – Lipton Yellow Label – is the one of the triplicates that is least homogen, since the values are higher than the other triplicates. N16 also have high values of RSDs, while N6 has less high values and in N31 the precision seems to be good since the most elements have an RSD less than 10% and some of them also have a RSD less than 5%. This indicates that there are variability between each of the determined concentrations of the triplicates, and higher RSDs – higher variability.

5.3 Principal Component Analysis

PCA reveals, as earlier mentioned, patterns between different groupings of the elements in the different infusions. The analysis resulted in a model with 4 principal components; t[1], t[2], t[3] and t[4] (In Appendix 8 the details of the model can be seen). Factor 4 was not significant

with a negative Q2 and a low eigenvalue. The three components described 74,1 % of the variability contained in the raw data set. The eigenvalues of these factors are 25.5 (t[1]), 4.38 (t[2]), 3.49 (t[3]), respectively. In order to explain the causes of the diverse contents of elements in the tea infusions, object scores (Figure 1 and Figure 2) were drawn for the samples.

As can be seen in Figure 1 the Polish infusions are characterised of lower values of component t[1], while the Norwegian infusions are more widely spread characterized by lower and higher values of t[1]. In Figure 2 one can see that infusions where tea bags were used are characterised of higher values of component t[1], in contrast to infusions made of loose tea described by lower values of t[1]. In spite of some overlapping between the infusions with tea bag or loose tea, there is enough clear diversification between the infusions with the lowest and highest values of t1.

In order to state which element that is responsible for the grouping of the infusions, plots of loadings were drawn (Figure 3) for component t[1] and t[2]. The distribution of the points corresponding to the individual elements shows that factor p[1] achieves the lowest loadings for Sn, Tl and Hf. This group is clearly distinct from the group connected with elements such as Ce, Lu, La, Pt, Nd, Sm, Er, Yb, Y, Dy, Tb and Tm, the REEs. This latter group of elements is ascribed to the points mostly corresponding to the infusions brewed with tea bags (Figure 2) i.e. with higher values of t[1]. There were made scores from factor t[1] and t[3] as well, but this did not reveal anything and are therefore left out. N35, N22, N34, N5, N15 and N32 are all outside the Hotelling T2 95% confidence. They are outliers, but not strong enough outliers to pull the PCA toward themselves. It must also be mentioned that with N observations, it is to be expected that around N*0,05 will be found outside the 95% confidence region. Only a handful of these "potential" outliers are likely to be "real" outliers (Eriksson et al., 2006).

5.4 Differences in Norwegian and Polish tea infusions

The PCA plot revealed patterns as described over between the Norwegian and Polish infusions (Figure 1). From the student T-test in Appendix 9 (Table 22) one can see that the p-value>0.05 for Sn, Cs, Ce, Pr, Hf, Tl, Pb, U, V and Cr considering the Norwegian and Polish infusions. Therefore, one could suspect that the differences between the latter elements are a coincidence, but for all the other elements there are significant differences. The reason for this difference is difficult to say something about other than that the difference exist, because it is not enough information collected about the different teas and the country of origin. In the Norwegian tea samples from the local tea and coffee store, most of the original countries are known. These are countries from the whole world, which can possibly explain the higher content of elements, due to different local growth conditions.

5.5 Differences between infusions made of loose tea and tea bags

In Table 23 one can see that the average of the infusions with tea bag are clearly higher than the mean values for the infusions with loose tea. One explanation is that the tea leaves in the tea bags are more crushed into smaller pieces, and therefore the elements are more extractable than elements in whole leaves. However, the tea bags are often filled with older tea leaves, low cost tea, with a higher content of elements than the younger leaves (Malinowska et al., 2008, Szymczycha-Madeja et al., 2012). If you consider the clustering of the REEs in the plot of loadings (Figure 3), you see that the REEs are present in tea bags in a higher content than in loose tea. Those metals could be easier to extract, or it could be explained by the quality of the leaves used in tea bags or loose tea. If the REEs are not that mobile the older leaves will have higher concentrations. There was no success attaining literature that supported this theory.

As can be seen in Table 23, Sn and Pb have p-values greater than 0.05; therefore, the differences considering tea brewed with bags or loose tea are not significant for these two elements. Considering all the other elements, the differences are significant and cannot be explained by coincidence since p<0.05.

5.6 Tea infusions with flavour - no flavour

As can be seen from Table 16, there were observed differences in mean values in tea with flavour and no flavour. Mean values of trace elements in tea with added flavours were higher than in regular tea. Cd, Sn, Cs, Hf, Pb, Mg, P, K, Cr, Zn and Rb are not significant with p-values > 0.05. Other elements were considered significant with p-values < 0.05. This indicates that the additatives in the tea might also contribute with a content of elements in the different tea infusions.

5.7 Infusion time

There are possibilities that differences in infusion time will affect the results. In this study the tea brewed in 5 minutes, which is a few more minutes than some of the producers recommend in their description. Szymczycha-Madeja et al. (2012) reported that the type of water used for brewing, its temperature, the pH and the infusion time can also affect the yield of the brewing process. This will be further discussed in section 5.22 were some of the samples where brewed for 30 minutes, before the fluoride level was determined in the infusions.

5.8 Differences in content of elements in the infusions due to processing of the tea leaves Tea is, as mentioned earlier, divided into six basic categories by processing: white, yellow, green, oolong, black and pu-erh. The most popular ones are green, oolong and black. When the results from the trace metal analysis were compared and divided into groups of processing, no pattern was seen. However, Szymczycha-Madeja et al. (2012) and Malinowska et al. (2008) report that black and oolong teas very often contain higher concentrations of As, Cd, Cr, Cu, Pb and F than green teas. There are also exceptions, since apparently some green teas have higher concentrations of Al, Cd and Co than other types of tea. As may be anticipated, differences in the elemental composition among tea brands are quite individual. The observed differences are mostly related to methods of the production, type, the amount and the age of the leaves, the season of harvesting, the degree of fermentation, the use of subsequent substances and processes and finally the ways of maturing and storing made teas. Green teas are usually produced from younger leaves than black and oolong and usually contain lower amounts of elements than older leaves (i.e. Al and Pb). Therefore, green teas are characterised by lower concentrations of trace elements.

5.9 Sodium

From Table 22 there can be seen huge variations in mean values for Sodium (Na). When the results were observed for possible outliers, there was seen a pattern with higher Na values in tea produced by Twinings, than with the other producers (see Appendix 1). You can especially see vast differences between the two producers Lipton and Twinings, suggesting differences in the manufacturing and processing of the leaves. There are no other publications supporting this theory.

5.10 Calcium

The content of Ca in the Norwegian infusions were determined to 796 μ g/L (loose tea) and 3040 μ g/L (tea bag), while in the Polish infusions the content was less than in the Norwegian infusions 420 μ g/L (loose) and 966 μ g/L (bag) (Table 3). In Appendix 6 one can see the detected concentrations of Ca in the two reference materials gave accuracy of 101 % (tea leaves) and 106 % (Polish tobacco), which suggests that the determined Ca content in the Norwegian and Polish infusions are accurate. Considering the RSDs for Ca (Appendix 4) the range of variability is 7.4-29.0 % for the four triplicates and this suggests that the variability is high.

The Ca content calculated from one cup of tea is $680 \ \mu g$ in the Norwegian infusions made of tea bags, and $159 \ \mu g/cup$ in the infusions made of loose tea. This is lower than the Norwegian RDAs (Table 1) that ranges from 540 mg-900 mg Ca each day, and even though tea infusions contribute to the Ca intake, drinking tea will not contribute exceeding the RDAs.

5.11 Phosphorous

The content of P (Table 3) in Norwegian infusions were 9.4 mg/L (loose) and 14.2 mg/L (bag), while the content in Polish infusions were 8.8 mg/L (loose) and 8.4 mg/L (bag). The differences between the Norwegian and Polish infusions are also observable here. The accuracy is 105% (tea leaves) and 111% (polish tobacco) as can be seen in Appendix 6, which are accurate. The RSDs in Appendix 4 were 18.9%, 3.3%, 10.1% and 3.8%. This means that the variability is not that high, since three of the triplicates are 10% or lower.

Teas infused with tea bags have an averagely content of 2.8 mg P/cup, while in loose tea the content is 1.9 mg P/cup (Table 4). From Table 1 one can see that the concentration of P in Norwegian tea infusions do not contribute to the RDAs (420-900 mg) in any extent.

5.12 Potassium

As can be seen from Table 3, the Norwegian infusions contained 0.1 g K/L (loose) and 0.2 g K/L (tea bag), while the Polish infusions contained 0.09 g K/L (loose) and 0.1 g K/L (bag) that corresponds to earlier findings. In Appendix 6 the accuracy of determined reference material; 95.8 % (tea leaves) and 90.5% (Polish tobacco), respectively, suggested that the attained values might have been lower than reported. The RSDs were 19.2 %, 6.4 %, 8.9%

and 3.6 % (Appendix 4) – as one can see, the variability were not that huge, with three triplicates lower than 10%.

The level of K was below the Norwegian RDAs, which are between 1.1 g-3.1 g. The content of K was 37,1 mg/cup in the tea bag infusions and 22,1 mg/cup in the samples brewed with loose tea. This indicates that K in tea infusions does not contribute to the recommended dietary allowances in any extent.

5.13 Magnesium

The Norwegian tea infusions contain 4.2 mg Mg/L (loose) and 9.9 mg Mg/L (bag). The Polish infusions contain 3.3 mg Mg/L (loose) and 4.9 mg Mg/L (bag) as given in Table 3. The calculated accuracy determined from analysis of the reference material was 94.1% and 93.2 % (Appendix 6). This means that the attained values can be a little lower than reported. The RSDs were 18.1 %, 14.2 %, 13.8 % and 10.1 % as can be seen in Appendix 4; this means that there is variability between the determined triplicates.

As can be seen in Table 1, the RDAs for Mg are between 80-280 mg. The calculated concentrations of Mg in Norwegian infusions were 0.8 mg/cup (loose) and 2.0 mg/cup (bag). Tea therefore contributes in a low extent to humans recommended dietary allowance for Mg.

5.14 Iron

From Table 3 one can see that the Norwegian and Polish tea infusions contained 13.8 μ g Fe/L (loose), 29.8 μ g Fe/L (bag), 7.34 μ g Fe/L (loose) and 8.53 μ g Fe/L (bag), respectively. The Polish infusions have also lower concentrations of Fe as the earlier mentioned elements. From Appendix 6 one can see the values of accuracy from the determination of elements in the reference material – 96.1% in tea leaves and 107.3% in the Polish tobacco. This suggests that attained values for Fe in the Norwegian and Polish infusions were accurate. The RSDs listed in Appendix 4; 11.4%, 34.6%, 15.6% and 5.9% showed some variability in the triplicates and indicates some variability in the concentrations.

The Nowegian RDA for Fe range from 8-15 mg as seen in Table 1. The content of Fe in one cup of tea from the Norwegian market results in an intake of 2.76 μ g/L (loose tea) and 5.96 μ g/L (tea bag) (Table 4). Drinking tea will therefore not contribute exceeding the limits of RDA, considering the Fe content in the Norwegian and Polish infusions.

5.15 Zinc

67.4 μ g Zn/L were detected in Norwegian infusions made of loose tea, 132 μ g Zn/L in tea bag infusions, while the Polish infusions contained 59.6 μ g Zn/L (loose tea) and 74.8 μ g Zn/L in infusions made of tea bags, as can be seen in Table 3. From the analysis of the reference materials the accuracy were determined; 103% (tea leaves) and 93.5% (polish tobacco) (Appendix 6). This means that the accuracy is high and that the values attained in this study are accurate. In Appendix 4 the RSDs for the triplicates are listed. Considering Zn the values were 38.5, 3.1, 26.1 and 5.3, these values indicates that the variability is high in two of the triplicates – which indicates that the values in this study have some variability.

The Norwegian RDAs for Zn, listed in Table 1, range from 5 -11 mg. One cup of tea from the Norwegian supermarkets contains 13.5 μ g Zn (loose) and 26.4 μ g Zn (tea bag) (Table 4), respectively. This means that the content of Zn in tea infusions is so low that it will not affect the recommended dietary allowances for Zn.

5.16 Copper

Norwegian tea infusions contain 28.1 μ g Cu/L (loose tea) and 70.3 μ g Cu/L (tea bag), while Polish infusions contain 21.5 μ g Cu/L (loose tea) and 35.5 μ g Cu/L (tea bag) (Table 3). These values were a lot higher than attained average values in this study than values reported from some other publications listed in Table 2. This suggests an analytical error in the study. Accuracy determined from analysis of reference material (Appendix 6) resulted in 96.8 % in the tea leaves and 87.7% in the Polish tobacco, which are accurate in the tea leaves, but less accurate in the Polish tobacco. This indicates that values attained could be lower than the ones reported for Cu. The RSDs (Appendix 4) were 13.0%, 8.5%, 8.5% and 4.9% that suggested that the variability was low and that the analysis of Cu in the infusions had high precision, since three of the triplicates had RSDs below 10%.

As can be seen in Table 4, the content Cu in one cup of Norwegian infusions were 5.63 μ g/cup in infusions made of loose tea and 14.1 μ g/cup in infusions made of tea bags. The Norwegian RDAs range from 0.3 -1.3 mg (Table 1) and the intake of Cu through a few cups of tea will not contribute in any extent to exceed the RDA.

5.17 Manganese

Results from Mehra and Baker (2007) showed that in general , tea provides 35.5% of available Mn, as a percentage of the average daily dietary intake. Hence, tea drinking may be regarded as a major source of essential dietary Mn. As can be seen from Table 3 the average concentrations of Mn in the Norwegian infusions are 1.1 mg/L (loose tea) and 3.0 mg/L (tea bag), while the concentration in the Polish infusions were 0.8 mg/L (loose) and 1.8/L (bag). The accuracy attained from analysis of the two reference materials (Appendix 6) were 94.5% (tea leaves) and 94.4% (Polish tobacco), which is accurate. The RSDs (Appendix 4) were 18.2%, 15.7%, 12.7% and 7.1%, respectively. The variability was high in three of the triplicates regarding Mn, which means there can be variability in the determined Mn concentrations.

The EU Scientific Committee on Food considered a "safe and adequate intake of Mn" to be 1-10 mg/person/day (Becker et al., 2008) The US Food and Nutrition Board have settled a level for adequate intake (AI). AI for men and women are 2.3 and 1.8 mg/day, respectively. In Nordic Nutrition Recommendations 2004 (Becker et al., 2008) Mn recommendations are not included, since the data is to limited. Considering the calculated concentrations per cup of tea, 0.22 mg/cup (loose tea) and 0.60 mg/cup (tea bag) as one can see in Table 4 a few cups of tea, especially made out of tea bags, will contribute to attain the AI to a high extent.

5.18 Aluminium

As can be seen in Table 3, the Norwegian infusions contained 1.85 mg/L (loose tea) and 5.76 mg Al/L (tea bag). The Polish infusions contained 1.1 mg Al/L (loose tea) and 3.2 mg Al/L (tea bag). These results correspond to earlier results from similar procedures, which range from 2-16 mg/L (Table 2). In Appendix 6 the accuracy from analysis of reference materials are listed, and for Al the accuracy was 89.2 % in tea leaves and 137.6% in Polish tobacco. This means that the achieved results in this study would not be that accurate considering Al. From Appendix 4 one can also see that the RSDs were 21.2 %, 7.0%, 12.8% and 7.8 %, meaning the variability is low in two of the triplicates – N6 and N31- while higher in the two other triplicates, indicating the Al concentrations also have variability.

The tolerable weekly intake (TWI) for Al is 1 mg/kg body weight (EFSA et al., 2008). Considering the TWI one can see that the content of AL in one cup of tea, 0.369 mg (loose tea) and 1.15 mg (tea bags), would be an important source for Al intake for heavily tea consumers. For the majority of heavy tea drinkers around the world, tea is likely to be the largest single source of Al intake (Karak and Bhagat, 2010, Flaten, 2002).

5.19 Lead

Average content Pb (Table 3) in the Norwegian infusions is $0.39 \ \mu g/L$ (loose) and $0.75 \ \mu g/L$ (tea bag), while the content in Polish infusions is $0.52 \ \mu g/L$ (loose tea) and $0.32 \ \mu g/L$ (tea bag). This is higher than the reported values in Table 2, where the range was $0,004-0,038 \ \mu g/L$. It is difficult to say why there is a difference in the results since there is not given any information about country of origin in most of the Norwegian and Polish samples, so growth conditions, processing and manufacturing can not be out ruled, but this is believable caused by some analytical error. As can be seen in Appendix 6, the accuracy from the reference materials was 86.1 % in tea leaves and 68.1 % in Polish tobacco. These low values indicate that the accuracy on Pb is low and that the values attained in this study probably are lower than they actually are. From Appendix 4, one can see that the calculated values; 12.1 %, 22.0%, 9.5% and 12.6% suggests some variability in the analysis.

Considering the amount of Pb in one cup of tea from Norwegian supermarkets – the calculated concentrations were 0.152 μ g/cup (tea bag) and 0.079 μ g/cup (loose tea). The Joint FAO/WHO Expert Committee on Food Additives (1993) established a provisional tolerable weekly intake (PTWI) of Pb at 25 μ g/kg body weight for infants and children, and later extended this value for all groups. The amount of Pb in tea infusions is sustainable lower than the PRWI.

5.20 Chromium

As can be seen in Table 3 the concentrations of Cr were 0.635 μ g/L (loose tea), 2.52 μ g/L (tea bag) in Norwegian infusions, 0.84 μ g/L (loose tea) and 2.85 μ g/L (tea bag) in Polish

infusions. These values was similar to selected values from some other publications (Table 2) where the results was in the same range as in this study, but the highest concentrations in one of them were much higher (~43 μ g/L) than the results in this study. In Appendix 6 the accuracy listed were 89.3 % for tea leaves and 70.6 % for Polish tobacco. These values suggests that the accuracy were to low for Cr and that the obtained values in this study are to low. 21.3%, 13.6%, 19.7 % and 7.4% (Appendix 4) indicates that the variability between the triplicates was high. As earlier mentioned, pattern repeats and the concentration of Cr is as higher in the infusions made of tea bags than with loose tea, but for Cr the concentrations are higher in the Polish infusions than in the Norwegian infusions.

The Norwegian infusions contain 0.127 μ g Cr/cup (loose tea) and 0.504 μ g Cr/cup (tea bag) (Table 4). The US Food and Nutrition Board calculated AI for chromium (19-50 years) to 35 μ g/day for men and 25 μ g/day for women. The Nordic Nutritions Recommendations 2004 did not include recommendations for Cr, because of lacking data (Becker et al., 2008). The level of Cr in tea will not be significant for heavy tea drinkers, and Sofuoglu and Kavcar (2008) concluded with that the risk levels through consumption of black tea were not significant for the carcinogenic distribution. Karak and Bhagat (2010) reported of lack of focus and not enough information to say something about the speciation of Cr in tea.

5.21 Nickel

The Norwegian tea infusions contained 19.2 μ g Ni/L (loose), 49.7 μ g Ni/L (tea bag), while Polish tea infusions contained 12.6 μ g Ni/L (loose tea) and 20.8 μ g Ni/L (tea bag) (Table 3). These values were in the same range as the values listed from other publications in Table 2. In Appendix 6 one can see that detecting Ni in the reference material obtained 96.9 % accuracy in tea leaves and 81.9 % for Polish tobacco. This indicates that the content of Ni in this study could be lower than they are. The RSDs were 14.4%, 25.6%, 10.5% and 7.0 % indicating variability between each of the triplicates and in the other samples (Appendix 4). EFSA (2006) did no manage to establish a tolerable upper intake level, due to absence of adequate dose-response data for these effects, so it is difficult to make conclusions based on the Ni content per cup of Norwegian tea, which were 3.8 μ g in loose tea and 9.93 μ g in infusions made out of tea bags.

5.22 Fluoride

The fluoride level in Norwegian infusions is shown in Table 5. The average concentration in infusions made from loose tea in this study was 5.35 mg/L, and the average level in the infusions made with tea bags 2.02 mg/L. These levels are similar to levels from other literature presented in Table 2, where the average levels are from 0-3 mg/L, but the highest ones are 6 mg F/L. However, if the total average concentration of fluoride in tea is taken into consideration (Appendix 7, Table 19), the content is 3.7 mg/L, which is more similar to the other published values. One can also study the median value when the variation in data is huge – 2.65 mg F/L in loose tea infusions and 1.81 mg F/L in tea bag infusions. Considering the median values, the values are not too far from concentrations of F in other publication.. The RSDs (Appendix 7) were 33.1 % (N16) and 5.4 % (N31), which shows that the data for

N16 have some variability and suggests that the obtained values from the analysis have some variability.

There was expected a distinct difference in fluoride content in loose tea and the fluoride content in tea bag. It was expected a higher fluoride content in tea infused with tea bags, because of the tea leaves being more crushed and the fluoride easier extractable from the leaves. This was presumably because tea bags have lower quality, low cost and is made of older leaves (Malinowska et al., 2008, Giljanovic et al., 2012, Cao et al., 2006). Some of the teas had really high measured levels of fluoride, which created a significant variation. Mango tea and Mexican Mango (Appendix) had fluoride levels as high as 16,8 mg/L and 34,6 mg/L, suggesting some analytical error. These high levels increased the average so no conclusion can be made regarding the expected difference in loose tea or the tea bag infusions. The fluoride level in these samples was measured two times to control the high values. Since these teas are from smaller, more local producers, the growth media would perhaps make the plant absorb a lot more fluoride than in other areas. Szymczycha-Madeja et al. (2012) reports that great variance in concentrations of elements is observed due to geographical origin of the tea, referring to the composition of local soils, different agricultural and climatic factors. In addition, the mango tea is among other additatives added mango flower, which could have an impact on the fluoride content in the tea.

From the tea brewed for almost 30 minutes (Table 5) the pattern is as expected; the fluoride content in tea infused from tea bags is higher than from loose tea. The fluoride content is as well higher than the amount in tea infused for five minutes (Malinowska et al., 2008, Szymczycha-Madeja et al., 2012). This would have an impact on daily dietary intake, if the bag or the tea leaves are not left out from the tea after a couple of minutes, following the manufacturers advice. Even though there was no observations of a pattern between black, oolong and green teas, Malinowska et al. (2008) and Szymczycha-Madeja et al. (2012) have reported that there are expected to observe differences in the amount of F (see more detailed section 5.8.

Nordic Nutrition Recommendations (NNR) 2004 (Becker et al., 2008) did not give any daily fluoride intake since it is not considered an essential trace element. Neither did the EU Scientific Committee on Foods. The US Institute of Medicine was unable to establish an RDA, but has set a reference value for fluoride. The reference value was based on observed estimated intake to reduce dental caries with adults. For adults this limit was set to 3 mg/day (women) and 4 mg/day (men). NNR 2004 have settled that an intake of 2.2 g F/kg body weight is lethal in adults and 15 mg/kg body weight in children. Fluorosis develops during teeth formation between 0 to 6-7 years of age. The recommended maximum daily dose of intake for this group is 0.75 mg, for 6-12 year olds 1.0 mg and the water content is recommended to be below 0.8-1 mg/L (Becker et al., 2008). Considering the calculated content of F per cup of tea 1.07mg (loose tea) and 0.41 mg (tea bag), would humans who consume a lot of tea, easily exceed the limits. Shyu and Chen (2013) suggest that tea

beverages should be indicated with F concentrations to prevent the intake of excessive fluoride, especially considering children drinking them. As earlier mentioned, with big variation in different types of tea, this could make tea drinkers consume high levels of F, which not only gives positive effects.

5.23 The content of elements extracted from the tea leaves

It is difficult to say something about how much of the fluoride in the tea leaves has been extracted into the solution. To do this the tea leaves should have been digested in the ultra clave and the concentration of trace elements should have been measured. Then the percentage of trace elements solved into the solution could have been calculated.

As mentioned earlier, the achieved results from this study are higher than in other similar studies (Table 2). The different preparation methods will also affect the results. The water quality and the content of elements in the water, will affect the amount of free fluoride measured by the electrodes (Malinowska et al., 2008).

6 Conclusion

Tea made of *Camellia sinensis* consist of a lot of elements – essential and non-essential. Essential elements as Ca, P, K, Mg, Fe, Cu and Zn contribute to the recommended dietary allowance to a lower extent, while the essential element Mn, and non essential elements F and Al are among the elements that contribute to a vast extent – and possibly exceeding the RDA or TWI for the elements.

One cup of tea from the Norwegian market contains among other elements average concentrations of 0.6 mg Ca/L, 2.8 mg P/L, 37.1 mg K/L, 2.0 mg Mg/L, 5.9 μ g Fe/L, 14.1 μ g Cu/L, 26.4 μ g Zn/L, 0.6 mg Mn/L, 0.16 μ g Pb/L, 0.5 μ g Cr/L, 1.0 mg F/L and 1.1 mg Al/L. . For the essential elements Ca, P, K, Mg, Fe, Cu and Zn the tea infusions wilt not contribute to attain the recommended dietary aloowances (RDAs) in any extent, but for Mn, the AI are 2.3 mg/day (men) and 1.8 mg/day /women) and a few cups of tea can exceed the given AI level.

The amount of Pb in the infusions is sustainable lower than the PTWI of 25 μ g/kg body weight. Drinking tea will therefore no contribute in any high extent to the PTWI. The fluoride content is high and will contribute to the AI of F (Becker et al., 2008), and in some cases exceed the limits of 3 mg/day (women), 4 mg/day (men) and from 0.5- 1 mg/day (0 -12 year olds). Because of this, Shyu and Chen (2013) suggest that tea beverages should be indicated with F concentrations to prevent the intake of excessive fluoride, especially considering children drinking them. With big variation in different types of tea, this could make tea drinkers consume high levels of F, which not only lead to positive effects in form of healthy teeth (Giljanovic et al., 2012), but excessive intake of F can lead to mild dental fluorosis or skeletal fluorosis (Yi and Cao, 2008, Malinowska et al., 2008, Wong et al., 2003). The Al content in tea is high, and will for heavy tea drinkers be the largest single source of Al (Flaten, 2002) to contribute exceeding the TWI of 1 mg/ kg body weight/ day (EFSA et al., 2008).

There was observed a higher content of elements in the infusions made with tea bags, than in infusions made of loose tea. This was presumably because of the quality of the tea. Tea bags consist often of low cost tea and older leaves, which have a higher content of some elements (e.g. Al and Pb). Another pattern discovered was different amount of elements in the infusion that had been infused for a longer time. There were significant differences determined in the tea infusions that had been infused for 5 minutes and the infusions that had been infused for 30 minutes. The longer brewing time, more elements were extracted into the solution (Malinowska et al., 2008).

Food and beverages are the most important source of essential and non essential elements, and it is the total consumption that determines if the calculated intake levels are exceeded. There are positive and negative effects by drinking tea. The essential elements in tea contribute to several important biological processes in the human body (Klaassen and Casarett, 2008) and habitual drinking of tea may protect against cardiovascular diseases and several types of cancer (Karak and Bhagat, 2010, Flaten, 2002). Although investigations in this study are focused on the total concentration of elements in tea, this study does not enable information about the existing species of elements. The identification of physiochemical forms of the different elements in tea infusions are important to for the evaluation of their actual bioavailability and/or toxicity to humans.

7 References

- Abdi, H. & Williams, L. J. 2010. Principal component analysis. *Wiley Interdisciplinary Reviews: Computational Statistics*, **2**, 433-459.
- Aschner, J. L. & Aschner, M. 2005. Nutritional aspects of manganese homeostasis. *Molecular Aspects of Medicine*, **26**, 353-362.
- Becker, W., Lyhne, N., Pedersen, A. N., Aro, A., Fogelholm, M., Phórsdottir, P., Alexander, J., Anderssen, S. A., Meltzer, H. M. & Pedersen, J. I. 2008. *Nordic Nutrition Recommendations2004 - integrating nutrition and physical activity*.
- Burnell James N 1988. The Biochemistry of Manganese in Plants. *In:* Graham, R., Hannam, R. & Uren, N. (eds.) *Manganese in Soils and Plants.* Springer Netherlands.
- Cao, J., Zhao, Y., Li, Y., Deng, H. J., Yi, J. & Liu, J. W. 2006. Fluoride levels in various black tea commodities: Measurement and safety evaluation. *Food and Chemical Toxicology*, **44**, 1131-1137.
- Chand, P., Sharma, R., Prasad, R., Sud, R. & Pakade, Y. 2011. Determination of Essential & Toxic Metal and Its Transversal Pattern from Soil to Tea Brew. *Food and Nutrition Sciences*, **2**, 1160-1165.
- Chen, Y., Xu, J., Yu, M., Chen, X. & Shi, J. 2010. Lead contamination in different varieties of tea plant (Camellia sinensis L.) and factors affecting lead bioavailability. *Journal of the Science of Food and Agriculture*, **90**, 1501-1507.
- Chen, Z. M. 1984. The environemtal pollutants in tea products. *Chinese Journal of External Agriculture,* **3**, 1-10.
- Dong, D., Xie, Z., Du, Y., Liu, C. & Wang, S. 1999. Influence of soil ph on aluminum availability in the soil and aluminum in tea leaves. *Communications in Soil Science and Plant Analysis*, **30**, 873-883.
- EFSA 2006. Tolerable upper intake levels for vitamins and minerals. *In:* Food, S. C. o. & Scientific Panel on Dietetic Products, N. a. A. (eds.).
- EFSA, Aguilar, F., Autrup, H., Barlow, S., Castle, L., Crebelli, R., Dekant, W., Engel, K.-H., Gontard, N., Gott, D., Grilli, S., Gürtler, R., Larsen, J.-C., Leclerq, C., Leblanc, J.-C., Malcata, F.-X., Mennes, W., Milana, M.-R., Pratt, I., Rietjens, I., Tobback, P. & Toldrá, F. 2008. Scientific opinion of the Panel on Food Additives, Flavourings, Processing, Aids and Food Contact Materials on a request from European Commission on Safety of aluminium from dietary intake. *In:* EFSA (ed.). EFSA.
- Eriksson, L., Johansson, E. & Kettaneh-Wold, N. 2006. *Multi- and megavariate data analysis.Part I: basic principles and aplications,* Umeå, Umetrics.
- Flaten T.P, Alfrey A.C, Birchall D.J, Savory J & R.A, Y. 1996. Status and Future Concerns of Clinical and Environmental Aluminium Toxicology. *Journal of Toxicology and Environmental Health*, **48**, 527-542.
- Flaten, T. P. 2001. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. *Brain Research Bulletin*, **55**, 187-196.
- Flaten, T. P. 2002. Aluminium in tea—concentrations, speciation and bioavailability. *Coordination Chemistry Reviews*, **228**, 385-395.
- Flaten, T. P., Ødegard, M. 1988 Tea, aluminium and Alzheimer disease. *Food and Chemical Toxicology*, **26**, 959-960.
- Fung, K. F., Carr, H. P., Poon, B. H. T. & Wong, M. H. 2009. A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India. *Chemosphere*, **75**, 955-962.

- Fung, K. F., Zhang, Z. Q., Wong, J. W. C. & Wong, M. H. 2003. Aluminium and Fluoride Concentrations of Three Tea Varieties Growing at Lantau Island, Hong Kong. *Environmental Geochemistry and Health*, **25**, 219-232.
- Giljanovic, J., Prkic, A., Bralic, M. & Brkljaca, M. 2012. Determination of Fluoride Content in Tea Infusion by Using Fluoride Ion-Selective Electrode. *International Journal of Electrochemical Science*, **7**, 2918-2927.
- Global Tea Brokers. *Tea Processing* [Online]. Available: <u>http://www.globalteabrokers.com/TeaProcessing.aspx</u> [Accessed 16.05 2013].
- Han, W.-Y., Zhao, F.-J., Shi, Y.-Z., Ma, L.-F. & Ruan, J.-Y. 2006. Scale and causes of lead contamination in Chinese tea. *Environmental Pollution*, **139**, 125-132.
- Harbowy, M. E., Balentine, D. A., Davies, A. P. & Cai, Y. 1997. Tea Chemistry. *Critical Reviews in Plant Sciences*, **16**, 415-480.
- Harris W.R, Berthon G., Day J.P, Flaten T.P, Forbes W.F, Kiss T, Orvig C & P.F, Z. 1996. Speciation of Aluminium in Biological Systems. *Journal of Toxicology and Environmental Health*, **48**, 543-568.
- Jin, C. W., Du, S. T., Zhang, K. & Lin, X. Y. 2008. Factors determining copper concentration in tea leaves produced at Yuyao County, China. *Food and Chemical Toxicology*, **46**, 2054-2061.
- Jin, C. W., He, Y. F., Zhang, K., Zhou, G. D., Shi, J. L. & Zheng, S. J. 2005. Lead contamination in tea leaves and non-edaphic factors affecting it. *Chemosphere*, **61**, 726-732.
- Joint FAO/WHO Expert Committee on Food Additives 1993. Evaluation of Certain Food Additatives and Contaminants. *In:* Organization, W. H. (ed.) *WHO Technical Report Series.* Geneva.
- Karak, T. & Bhagat, R. M. 2010. Trace elements in tea leaves, made tea and tea infusion: A review. *Food Research International*, **43**, 2234-2252.
- Kawada, T., Lee, Y., Suzuki, S. & Rivai, I. F. 2002. Copper in carrots by soil type and area in Japan: A baseline study. *Journal of Trace Elements in Medicine and Biology*, **16**, 179-182.
- Klaassen, C. D. & Casarett, L. J. 2008. *Casarett and Doull's Toxicology : the basic science of poisons,* New York, McGraw-Hill Medical.
- Li, F., Shan, X., Zhang, T. & Zhang, S. 1998. Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis. *Environmental Pollution*, **102**, 269-277.
- Mahaffay, K. R. 1990. Environmental Lead Toxicity: Nutrition As a Component of Intervention. *Environmental Health Perspectives*, **89**, 75-78.
- Malinowska, E., Inkielewicz, I., Czarnowski, W. & Szefer, P. 2008. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. *Food and Chemical Toxicology*, **46**, 1055-1061.
- Mehra, A. & Baker, C. L. 2007. Leaching and bioavailability of aluminium, copper and manganese from tea (Camellia sinensis). *Food Chemistry*, **100**, 1456-1463.
- Natesan, S. & Ranganathan, V. 1990. Content of various elements in different parts of the tea plant and in infusions of black tea from Southern India. *Journal of the Science of Food and Agriculture*, **51**, 125-139.
- Nookabkaew. S, R. N., Satayavivad. J. 2006. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. *Journal of Agricultural and Food Chemistry*, **54**, 6939-6944.
- Otten, J. J., Hellwig, J. P. & Meyers, L. D. 2006. *DRI, dietary reference intakes: the essential guide to nutrient requirements,* Washington, D.C., National Academies Press.

- Powell, J. J., Burden, T. J. & Thompson, R. P. H. 1998. In vitro mineral availability from digested tea: a rich dietary source of manganese. *Analyst*, **123**, 1721-1724.
- Rosen, J. F. & Needleman, H. L. 1992. Effects of low levels of lead exposure [2]. *Science*, **256**, 294-295.
- Salahinejad, M. & Aflaki, F. 2010. Toxic and Essential Mineral Elements Content of Black Tea Leaves and Their Tea Infusions Consumed in Iran. *Biological Trace Element Research*, **134**, 109-117.
- Shyu, T. H. & Chen, J. H. 2013. Fluoride levels in different types and forms of tea drinks consumed in Taiwan and daily human exposure from tea drinks. *Journal of Food, Agriculture and Environment,* **11**, 178-183.
- Sofuoglu, S. C. & Kavcar, P. 2008. An exposure and risk assessment for fluoride and trace metals in black tea. *Journal of Hazardous Materials*, **158**, 392-400.
- Sosial- og Helsedirektoratet. 2005. *Norske anbefalinger for ernæring og fysisk aktivitet* [Online]. Sosial- og helsedirektoratet. Available: <u>http://www.helsedirektoratet.no/publikasjoner/norske-anbefalinger-for-</u> <u>ernering-og-fysisk-aktivitet/Publikasjoner/norske-anbefalinger-for-ernering-og-</u> <u>fysisk-aktivitet.pdf</u> [Accessed 15.04 2013].
- Street, R., Száková, J., Drábek, O. & Mládková, L. 2006. The status of micronutrients (Cu, Fe, Mn, Zn) in tea and tea infusions in selected samples imported to the Czech Republic. *Czech Journal of Food Sciences*, **24**, 62-71.
- Szymczycha-Madeja, A., Welna, M. & Pohl, P. 2012. Elemental analysis of teas and their infusions by spectrometric methods. *TrAC Trends in Analytical Chemistry*, **35**, 165-181.
- The Tea Association of the USA. 2013. *Tea Fact Sheet* [Online]. Available: <u>http://www.teausa.com/14655/tea-fact-sheet</u> [Accessed 29.05 2013].
- Varo, P. & Koivistoinen, P. 1980. Mineral element composition of Finnish foods: N,K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo, Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb and ash. *Acta Agriculturae Scandinavica. Supplementum*, **22**, 1-171.
- Walker, C. H., Sibly, R. M., Hopkin, S. P. & Peakall, D. B. 2012. *Principles of ecotoxicology*, Boca Raton, Fla., CRC Press.
- Welna, M., Szymczycha-Madeja, A., Stelmach, E. & Pohl, P. 2012. Speciation and Fractionation of Elements in Tea Infusions. *Critical Reviews in Analytical Chemistry*, 42, 349-365.
- WHO 2003. Manganese in drinking-water, background document for preparation of WHO Guidelines for drinking-water quality. WHO/SDE/WSH/03.04/104/Rev/1 ed. Geneva.
- Wickremasinghe, R. L. 1978. Tea. *In:* Chichester, C. O. (ed.) *Advances in Food Research*. Academic Press.
- Wong, M. H., Fung, K. F. & Carr, H. P. 2003. Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications. *Toxicology Letters*, **137**, 111-120.
- Wong, M. H., Zhang, Z.Q, Wong, J.W.C, Lan, C.Y 1998. Trace metal contents (Al, Cu and Zn) of tea: Tea and soil from two tea plantations, and tea products from different provinces of China. *Environmental Geochemistry and Health*, **20**, 87-94.
- Xie, M., Von Bohlen, A., Klockenkämper, R., Jian, X. & Günther, K. 1998. Multielement analysis of Chinese tea (*Camellia sinensis*) by total-reflection X-ray fluorescence. *Z Lebensm Unters Forsch A*, **207**, 31-38.
- Yi, J. & Cao, J. 2008. Tea and fluorosis. *Journal of Fluorine Chemistry*, **129**, 76-81.

Zhitkovich, A. 2004. Importance of Chromium–DNA Adducts in Mutagenicity and Toxicity of Chromium(VI). *Chemical Research in Toxicology*, 18, 3-11.
Ziegler, E. E., Edwards, B. B., Jensen, R. L. & Mahaffey, K. R. 1978. Absorption and Retention of Lead by Infants. *Pediatric Research*, 12, 29-34.

Table 7: Raw data with all information regarding the different samples. Number, name, if the tea is brewed with bag (T) or if it is loose (L), producer, country of origin, if it is bought in Poland (P) or Norway (N), which store it is bought, the processing; black tea (b), green tea (g), white tea (w), oolong (o). The table show as well if the tea is flavoured (flav.) or with no flavour (no), and the results for each element. Results presented in 4.1 and discussed in section 5 Discussion.

Nr	Tea	T/L	Producer	Origin	Bought	Shop	Proc.	Flav.	Y	Cd	Sn	Cs	Ce	Pr	Nd	Sm
C12	Ceylon	Т	Ahmad Tea	Sri Lanka	Р	Supermarket	b	no	0.048	0.032	0.017	1.076	0.0921	0.0079	0.0301	0.009
C15	Scottish Breakfast	L	Chelton Tea Collection	Sri Lanka	Р	Supermarket	b	no	0.023	0.00667	0.008	1.247	0.0523	0.0041	0.0114	0.003
C49	Black Tea	Т	Minutka	blend	Р	Supermarket	b	no	0.328	0.018	0.003335	3.250	0.1993	0.0358	0.1512	0.038
C50	Darjeeling	L	Premier`s Tea Limited	India	Р	Supermarket	b	no	0.096	0.00667	0.029	0.542	0.0444	0.0072	0.0286	0.007
C54	Black Tea	Т	Saga	blend	Р	Supermarket	b	no	0.607	0.00667	0.003335	14.047	0.2057	0.0514	0.2258	0.055
C61	Intensive Tea	Т	Tetley	India	Р	Supermarket	b	no	0.260	0.00667	0.003335	2.012	0.0985	0.0362	0.1309	0.033
C66	Darjeeling Tea	Т	Twinings	India	Р	Supermarket	b	no	0.135	0.025	0.022	0.736	0.0563	0.0087	0.0401	0.012
C67	Earl Grey	Т	Twinings	blend	Р	Supermarket	b	no	0.651	0.00667	0.007	40.741	0.2132	0.0575	0.2348	0.057
C68	Prince of Wales	Т	Twinings	China	Р	Supermarket	b	no	0.368	0.059	0.008	2.662	0.7353	0.0764	0.2859	0.060
C71	Black Tea	L	Yunnan	China	Р	Supermarket	b	no	0.116	0.00667	0.008	3.010	0.0887	0.0156	0.0610	0.013
C76	Kenia GFOP "Milima	L		Kenya	Р	Maraska	b	no	0.132	0.00667	0.015	0.275	0.0315	0.0149	0.0549	0.014
C83	Earl Grey	L		blend	Р	Maraska	b	no	0.206	0.013	0.003335	2.604	0.0788	0.0176	0.0637	0.023
C84	Kenia TGFOP Golden Tipped	L		Kenya	Р	Maraska	b	no	0.234	0.00667	0.012	0.459	0.0505	0.0244	0.0956	0.018
C85	Kenia Marinyn	L		Kenya	Р	Five o`clock	b	no	0.154	0.016	0.003335	2.676	0.0528	0.0187	0.0723	0.018
C91	Assam Marangi FTGFOP1	L		India	Р	Five o`clock	b	no	0.018	0.00667	0.009	0.253	0.0129	0.0010005	0.0073	0.004
C101	Lapsang Souchong	L		China	Р	Five o`clock	b	no	0.082	0.053	0.003335	3.238	0.1555	0.0139	0.0577	0.012
C104	China Black Golden Monkey	L		China	Р	Five o`clock	b	no	0.026	0.00667	0.003335	0.294	0.0231	0.0028	0.0124	0.004
C111	Ceylon High Grown	L		Sri Lanka	Р	Czas na herbate	b	no	0.060	0.00667	0.003335	1.302	0.0701	0.0070	0.0283	0.008
C113	China Keemun Congu	L		China	Р	Czas na herbate	b	no	0.127	0.028	0.003335	1.482	0.1069	0.0180	0.0702	0.019
C41	Yellow Label Tea	Т	Lipton	Sri Lanka	Р	Supermarket	b	no	0.361	0.014	0.003	0.842	0.067	0.052	0.178	0.033
N1	Lipton Yellow Label	L	Lipton		Nor	Supermarket	b	no	0.067	0.00667	0.003335	1.550	0.0756	0.0070	0.0335	0.007
N2	Lipton Yellow Label	Т	Lipton		Nor	Supermarket	b	no	0.578	0.030	0.007	9.212	0.1970	0.0620	0.2365	0.055
N3	Russian Earl Grey	L	Lipton		Nor	Supermarket	b	no	0.103	0.00667	0.003335	1.727	0.1025	0.0223	0.0832	0.015
N4	Green Tea Mandarin Orange	Т	Lipton		Nor	Supermarket	g	flav	0.846	0.038	0.003335	16.925	0.1191	0.0778	0.3296	0.086
N5	White tea Raspberry	Т	Lipton		Nor	Supermarket	W	flav	1.397	0.053	0.003335	0.209	0.3853	0.1777	0.6660	0.142
N7	Greeen Gunpowder	Т	Lipton		Nor	Supermarket	g	no	0.290	0.014	0.007	19.210	0.0476	0.0203	0.0902	0.030

Nr	Tea	T/L	Producer	Origin	Bought	Shop	Proc.	Flav.	Y	Cd	Sn	Cs	Ce	Pr	Nd	Sm
N8	Green tea	Т	Lipton		Nor	Supermarket	g	no	0.112	0.00667	0.003335	7.796	0.0195	0.0069	0.0311	0.007
N9	Peach & Mango	Т	Lipton		Nor	Supermarket	b	flav	0.407	0.028	1.343	6.445	0.2631	0.0390	0.1634	0.045
N10	Forest Fruit	Т	Lipton		Nor	Supermarket	b	flav	0.484	0.037	0.014	3.336	0.2416	0.0427	0.1843	0.050
N11	Blue Fruit	Т	Lipton		Nor	Supermarket	b	flav	0.342	0.023	0.003335	2.373	0.2241	0.0312	0.1351	0.038
N12	Russian Earl Grey	Т	Lipton		Nor	Supermarket	b	no	0.530	0.016	0.014	11.631	0.2076	0.0533	0.2260	0.052
N13	Earl Grey	Т	Lipton		Nor	Supermarket	b	no	0.470	0.024	0.008	4.984	0.2782	0.0434	0.1907	0.048
N14	Prince of Wales	L	Twinings		Nor	Supermarket	b	no	0.065	0.028	0.003335	1.868	0.0652	0.0100	0.0402	0.012
N15	Prince of Wales	Т	Twinings		Nor	Supermarket	b	no	0.685	0.108	0.011	4.705	1.4427	0.1369	0.5360	0.107
N17	Earl Grey	Т	Twinings		Nor	Supermarket	b	no	0.544	0.041	0.008	9.955	0.4636	0.0647	0.2903	0.060
N18	Lady Grey	L	Twinings		Nor	Supermarket	b	no	0.134	0.018	0.010	2.186	0.1252	0.0239	0.0951	0.019
N19	Lady Grey	Т	Twinings		Nor	Supermarket	b	no	0.852	0.070	0.009	15.914	0.6396	0.1008	0.4112	0.103
N6	Indian Chai	Т	Lipton		Nor	Supermarket	b	flav	0.129	0.023	0.003	0.880	0.090	0.015	0.060	0.016
N20	English Breakfast tea	L	Twinings		Nor	Supermarket	b	no	0.193	0.00667	0.003335	3.707	0.0654	0.0151	0.0610	0.014
N21	English Breakfast tea	Т	Twinings		Nor	Supermarket	b	no	0.612	0.050	0.008	6.410	0.3904	0.0787	0.3067	0.066
N22	Green tea& Cranberry	Т	Twinings		Nor	Supermarket	g	flav	0.780	0.157	0.093	3.434	0.9883	0.1151	0.4775	0.109
N23	Green tea & apple	Т	Twinings		Nor	Supermarket	g	flav	0.524	0.094	0.059	4.594	0.2678	0.0440	0.1902	0.054
N24	Pure green tea	Т	Twinings		Nor	Supermarket	g	no	0.619	0.135	0.026	2.454	0.5435	0.0671	0.2958	0.074
N25	Green tea & orange	Т	Twinings		Nor	Supermarket	g	flav	0.624	0.114	0.117	4.186	0.3793	0.0625	0.2536	0.064
N26	Green tea & lemon	Т	Twinings		Nor	Supermarket	g	flav	0.530	0.117	0.026	5.116	0.4019	0.0554	0.2160	0.059
N27	Green tea & lemon eco.	Т	Twinings		Nor	Supermarket	g	flav	0.551	0.031	0.096	0.645	0.2113	0.0476	0.2099	0.060
N28	Voyage Indian Chai	Т	Twinings		Nor	Supermarket	b	flav	0.359	0.063	0.008	2.063	0.3147	0.0441	0.1870	0.042
N29	Voyage Brazilian Baia	Т	Twinings		Nor	Supermarket	b	flav	0.186	0.030	0.003335	5.684	0.1084	0.0182	0.0789	0.017
N30	White tea & pomegranate	Т	Twinings		Nor	Supermarket	w	flav	0.336	0.064	0.018	2.729	0.2465	0.0345	0.1466	0.038
N32	Blackcurrant	Т	Twinings		Nor	Supermarket	b	flav	1.023	0.082	0.013	14.585	0.9910	0.1313	0.5290	0.128
N33	Four Red Fruits	Т	Twinings		Nor	Supermarket	b	flav	0.874	0.077	0.007	13.560	0.7044	0.1044	0.4253	0.112
N34	Passionfruit, Mango, Orange	Т	Twinings		Nor	Supermarket	b	flav	0.876	0.094	0.013	9.776	0.8380	0.1058	0.4400	0.100
N35	Darjeeling tea	Т	Twinings		Nor	Supermarket	b	no	0.395	0.033	0.011	1.569	0.1313	0.0213	0.0936	0.024
N36	Earl Grey tea eco.	Т	Twinings		Nor	Supermarket	b	no	0.880	0.023	0.010	6.578	0.2504	0.0813	0.3380	0.081
N37	Earl Grey Fair trade	Т	Confecta		Nor	Supermarket	b	no	0.452	0.021	0.003335	1.378	0.2174	0.0466	0.1962	0.037
N38	Earl Grey	Т	Jacobs utvalgte øko		Nor	Supermarket	b	no	0.425	0.425	0.035	1.434	0.1519	0.0417	0.1625	0.037
N39	Earl Grey	Т	First Price		Nor	Supermarket	b	no	0.239	0.035	0.010	2.879	0.1796	0.0270	0.1114	0.024
N40	Earl Grey	Т	Landlord		Nor	Supermarket	b	no	0.189	0.047	0.003335	2.503	0.1953	0.0192	0.0888	0.019
N31	Apple, cinnamon & raisins	Т	Twinings		Nor	Supermarket	b	flav	0.863	0.076	0.005	15.742	0.766	0.112	0.456	0.112

Nr	Tea	T/L Producer	Origin	Bought	Shop	Proc.	Flav.	Y	Cd	Sn	Cs	Ce	Pr	Nd	Sm
N41	Darjeeling green tea	L	India	Nor	Te og kaffehuset	g	no	0.104	0.00667	0.063	1.583	0.0250	0.0045	0.0188	0.004
N42	Ceylon Breakfast	L	Sri Lanka	Nor	Te og kaffehuset	b	no	0.527	0.016	0.011	1.263	0.1566	0.0391	0.1726	0.039
N43	Tanzania	L	Tanzania	Nor	Te og kaffehuset	b	no	0.936	0.025	0.003335	0.393	0.1041	0.1110	0.4415	0.081
N44	White China tea eco	L	China	Nor	Te og kaffehuset	W	no	0.064	0.015	0.038	0.821	0.0712	0.0073	0.0333	0.0017
N45	Krydder te	L	Sri Lanka	Nor	Te og kaffehuset	b	flav	0.142	0.037	0.003335	3.376	0.0551	0.0133	0.0532	0.013
N46	Jasmin tea	L	China	Nor	Te og kaffehuset	g	no	0.125	0.028	0.051	2.587	0.1350	0.0164	0.0723	0.017
N47	Lapsang Souchong	L	China	Nor	Te og kaffehuset	b	flav	0.044	0.027	0.003335	0.425	0.0480	0.0068	0.0275	0.004
N48	Keemun eco	L	China	Nor	Te og kaffehuset	b	no	0.073	0.025	0.003335	0.809	0.0872	0.0148	0.0576	0.009
N49	Japan Kukicha	L	Japan	Nor	Te og kaffehuset	b	no	0.106	0.00667	0.011	1.054	0.0365	0.0107	0.0425	0.007
N50	Søndags te	L	India	Nor	Te og kaffehuset	b	flav	0.035	0.00667	0.003335	0.131	0.0276	0.0047	0.0156	0.004
N51	Assam Gbop	L	India	Nor	Te og kaffehuset	b	no	0.089	0.017	0.003335	1.048	0.0606	0.0081	0.0336	0.007
N52	Japan Bancha eco	L	Japan	Nor	Te og kaffehuset	g	no	0.187	0.037	0.023	0.505	0.1798	0.0231	0.1029	0.029
N53	Assam Tgfop 1	L	India	Nor	Te og kaffehuset	g	no	0.061	0.00667	0.093	1.048	0.0268	0.0035	0.0189	0.005
N54	Kaktus te	L		Nor	Te og kaffehuset	b/g	flav	0.332	0.045	0.003335	8.419	0.1750	0.0339	0.1598	0.036
N55	Blå blomst te	L		Nor	Te og kaffehuset	b	flav	0.209	0.049	0.003335	5.866	0.0716	0.0172	0.0861	0.021
N56	Darjeeling	L	India	Nor	Te og kaffehuset	b	no	0.138	0.017	0.021	0.930	0.0606	0.0113	0.0425	0.013
N57	Ceylon Bop	L	Sri Lanka	Nor	Te og kaffehuset	b	flav	0.080	0.00667	0.013	1.873	0.1668	0.0109	0.0476	0.010
N58	Samowar Douchka	L	Russia	Nor	Te og kaffehuset	b	flav	0.201	0.048	0.003335	1.461	0.1146	0.0211	0.0880	0.021
N59	Skomakerens julete	L		Nor	Te og kaffehuset	b	flav	0.124	0.026	0.003335	0.618	0.1248	0.0169	0.0811	0.017
N60	Formosa Oolong	L	Taiwan	Nor	Te og kaffehuset	0	no	0.245	0.023	0.011	4.769	0.1438	0.0237	0.0950	0.025
N61	Golden Nepal	L	Nepal	Nor	Te og kaffehuset	b	no	0.069	0.018	0.014	0.999	0.0477	0.0072	0.0294	0.007
N62	Yunnan Pu Erh	L	China	Nor	Te og kaffehuset	р	no	0.028	0.017	0.003335	1.521	0.0568	0.0064	0.0346	0.006
N63	Mango te	L	India/China	Nor	Te og kaffehuset	b	flav	0.236	0.038	0.003335	7.124	0.0785	0.0182	0.0860	0.024
N64	Gunpowder eco	L	China	Nor	Te og kaffehuset	g	no	0.367	0.028	0.013	9.422	0.1361	0.0253	0.1076	0.028
N65	Mexican Mango	L		Nor	Te og kaffehuset	b	flav	0.534	0.016	0.017	28.017	0.1265	0.0390	0.1734	0.044
N66	Advents te	L		Nor	Te og kaffehuset	b	flav	0.137	0.014	0.003335	4.981	0.0546	0.0120	0.0531	0.012
N67	Choui Fong	L	Thailand	Nor	Te og kaffehuset	g	no	0.122	0.00667	0.027	2.707	0.1217	0.0181	0.0705	0.015
N68	Bengal Fire	L	India	Nor	Te og kaffehuset	b	flav	0.301	0.00667	0.003335	12.717	0.0952	0.0259	0.1171	0.023
N69	Rwanda Grønn	L	Rwanda	Nor	Te og kaffehuset	g	no	0.012	0.027	0.039	0.785	0.0200	0.0029	0.0098	0.0017
N70	Bjørnebær te	L	China/Sri Lanka	Nor	Te og kaffehuset	b	flav	0.267	0.017	0.003335	6.204	0.0724	0.0210	0.0856	0.019
N16	Earl Grey Twinings	L Twinings		Nor	Supermarket	b	no	0.090	0.024	0.008	1.364	0.071	0.010	0.042	0.014

Table 8: Raw data for each sample number and name. For more information about the different samples see Table 7 Results presented in 4.1 and
discussed in section 5.

Nr	Tea	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Tl	Pb	Th
C12	Ceylon	0.0014	0.0067	0.0016	0.0049	0.0017	0.0036	0.0007	0.0048	0.1772	0.0959	0.0017
C15	Scottish Breakfast	0.0007	0.0067	0.0007	0.0025	0.0017	0.0013	0.0007	0.0016	0.3997	0.0432	0.0017
C49	Black Tea	0.0072	0.0443	0.0114	0.0318	0.0058	0.0372	0.0066	0.0016	0.4908	0.1951	0.0061
C50	Darjeeling	0.0017	0.0067	0.0031	0.0089	0.0017	0.0075	0.0007	0.0014	0.0406	0.6755	0.0017
C54	Black Tea	0.0127	0.0862	0.0216	0.0648	0.0106	0.0667	0.0121	0.0005	0.7470	0.2935	0.0046
C61	Intensive Tea	0.0056	0.0336	0.0086	0.0264	0.0041	0.0298	0.0056	0.0014	0.0709	0.0375	0.0017
C66	Darjeeling Tea	0.0026	0.0197	0.0038	0.0128	0.0017	0.0114	0.0022	0.0005	0.0569	0.7021	0.0017
C67	Earl Grey	0.0136	0.0833	0.0215	0.0663	0.0129	0.0784	0.0151	0.0012	1.0937	0.1479	0.0017
C68	Prince of Wales	0.0107	0.0685	0.0130	0.0369	0.0055	0.0385	0.0066	0.0010	0.3097	1.6001	0.0124
C71	Black Tea	0.0032	0.0193	0.0043	0.0124	0.0017	0.0105	0.0016	0.0030	0.1262	0.1727	0.0055
C76	Kenia GFOP "Milima	0.0032	0.0169	0.0039	0.0121	0.0017	0.0106	0.0020	0.0016	0.0151	0.0850	0.0017
C83	Earl Grey	0.0048	0.0314	0.0074	0.0243	0.0046	0.0252	0.0051	0.0005	0.6093	0.3051	0.0017
C84	Kenia TGFOP Golden Tipped	0.0057	0.0305	0.0074	0.0218	0.0036	0.0192	0.0033	0.0032	0.0340	0.0934	0.0017
C85	Kenia Marinyn	0.0034	0.0181	0.0053	0.0150	0.0017	0.0125	0.0026	0.0023	0.2187	0.1276	0.0017
C91	Assam Marangi FTGFOP1	0.0007	0.0067	0.0007	0.0010	0.0017	0.0013	0.0007	0.0005	0.0748	0.0605	0.0017
C101	Lapsang Souchong	0.0026	0.0171	0.0025	0.0105	0.0017	0.0102	0.0027	0.0005	0.3190	3.9231	0.0071
C104	China Black Golden Monkey	0.0007	0.0067	0.0007	0.0026	0.0017	0.0013	0.0007	0.0005	0.0131	0.0874	0.0017
C111	Ceylon High Grown	0.0018	0.0067	0.0018	0.0064	0.0017	0.0078	0.0014	0.0012	0.4182	0.1440	0.0017
C113	China Keemun Congu	0.0035	0.0218	0.0041	0.0135	0.0017	0.0148	0.0022	0.0010	0.1724	0.5283	0.0064
C41	Yellow Label Tea	0.0072	0.0458	0.0109	0.0337	0.0053	0.0357	0.0066	0.0014	0.0516	0.0263	0.0017
N1	Lipton Yellow Label	0.0016	0.0067	0.0024	0.0089	0.0017	0.0122	0.0017	0.0005	0.5455	0.0934	0.0017
N2	Lipton Yellow Label	0.0106	0.0728	0.0149	0.0519	0.0092	0.0598	0.0098	0.0030	0.2523	0.1577	0.0041
N3	Russian Earl Grey	0.0027	0.0162	0.0036	0.0101	0.0017	0.0099	0.0018	0.0005	0.5139	0.1637	0.0017
N4	Green Tea Mandarin Orange	0.0178	0.1264	0.0301	0.0907	0.0153	0.1059	0.0195	0.0012	1.3683	0.1170	0.0017
N5	White tea Raspberry	0.0271	0.1851	0.0416	0.1400	0.0228	0.1537	0.0268	0.0035	0.0368	0.1640	0.0158
N7	Greeen Gunpowder	0.0064	0.0415	0.0103	0.0293	0.0051	0.0365	0.0067	0.0005	1.0454	0.1635	0.0017
N8	Green tea	0.0019	0.0149	0.0031	0.0104	0.0017	0.0089	0.0023	0.0016	0.4896	0.0473	0.0017
N9	Peach & Mango	0.0084	0.0582	0.0131	0.0442	0.0070	0.0504	0.0074	0.0005	1.4020	0.3140	0.0040
N10	Forest Fruit	0.0104	0.0679	0.0158	0.0527	0.0092	0.0527	0.0094	0.0005	0.8880	0.3807	0.0017

Nr	Tea	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Tl	Pb	Th
N11	Blue Fruit	0.0072	0.0554	0.0113	0.0354	0.0060	0.0441	0.0062	0.0011	0.8078	0.3410	0.0017
N12	Russian Earl Grey	0.0102	0.0617	0.0151	0.0450	0.0075	0.0478	0.0078	0.0061	0.4629	0.2352	0.0054
N13	Earl Grey	0.0094	0.0664	0.0159	0.0507	0.0080	0.0558	0.0098	0.0011	1.1071	0.4641	0.0077
N14	Prince of Wales	0.0016	0.0067	0.0017	0.0060	0.0017	0.0067	0.0007	0.0005	0.0954	0.3480	0.0038
N15	Prince of Wales	0.0192	0.1152	0.0246	0.0807	0.0127	0.0853	0.0123	0.0021	0.5066	2.3186	0.0527
N17	Earl Grey	0.0117	0.0840	0.0174	0.0538	0.0100	0.0667	0.0129	0.0015	0.2375	0.7843	0.0296
N18	Lady Grey	0.0034	0.0188	0.0045	0.0132	0.0017	0.0122	0.0018	0.0010	0.4235	0.3603	0.0072
N19	Lady Grey	0.0204	0.1143	0.0273	0.0948	0.0144	0.1018	0.0152	0.0005	0.5311	1.1119	0.0337
N6	Indian Chai	0.0030	0.0211	0.0039	0.0116	0.0017	0.0118	0.0019	0.0010	0.2857	0.2409	0.0025
N20	English Breakfast tea	0.0038	0.0258	0.0063	0.0223	0.0040	0.0231	0.0045	0.0005	0.4939	0.0807	0.0042
N21	English Breakfast tea	0.0132	0.0875	0.0191	0.0599	0.0091	0.0628	0.0103	0.0011	0.4806	0.5111	0.0166
N22	Green tea& Cranberry	0.0176	0.1242	0.0259	0.0845	0.0131	0.0876	0.0137	0.0039	0.5025	2.2206	0.0545
N23	Green tea & apple	0.0113	0.0684	0.0184	0.0561	0.0086	0.0547	0.0083	0.0005	0.2850	1.1387	0.0111
N24	Pure green tea	0.0138	0.0917	0.0196	0.0629	0.0099	0.0637	0.0107	0.0023	0.4221	1.8733	0.0100
N25	Green tea & orange	0.0136	0.0919	0.0182	0.0604	0.0099	0.0632	0.0100	0.0017	0.3254	1.3139	0.0300
N26	Green tea & lemon	0.0126	0.0807	0.0194	0.0619	0.0102	0.0627	0.0098	0.0037	0.5884	1.7819	0.0105
N27	Green tea & lemon eco.	0.0117	0.0783	0.0177	0.0615	0.0089	0.0629	0.0105	0.0014	0.0413	0.3540	0.0125
N28	Voyage Indian Chai	0.0077	0.0555	0.0103	0.0356	0.0049	0.0405	0.0058	0.0015	0.1225	0.3855	0.0084
N29	Voyage Brazilian Baia	0.0035	0.0249	0.0049	0.0143	0.0017	0.0195	0.0025	0.0014	0.5298	0.1534	0.0034
N30	White tea & pomegranate	0.0075	0.0485	0.0113	0.0373	0.0053	0.0404	0.0058	0.0010	0.2634	0.8930	0.0065
N32	Blackcurrant	0.0225	0.1413	0.0350	0.1093	0.0171	0.1209	0.0189	0.0010	0.3589	1.3746	0.0417
N33	Four Red Fruits	0.0203	0.1266	0.0286	0.0924	0.0155	0.1094	0.0156	0.0016	0.3827	1.2244	0.0441
N34	Passionfruit, Mango, Orange	0.0195	0.1321	0.0299	0.0885	0.0160	0.1090	0.0177	0.0016	0.4506	1.7918	0.0430
N35	Darjeeling tea	0.0072	0.0421	0.0120	0.0325	0.0062	0.0326	0.0057	0.0013	0.1056	0.8121	0.0052
N36	Earl Grey tea eco.	0.0180	0.1126	0.0248	0.0840	0.0151	0.0901	0.0164	0.0005	0.1733	0.2839	0.0043
N37	Earl Grey Fair trade	0.0093	0.0633	0.0134	0.0446	0.0078	0.0512	0.0086	0.0010	0.2358	0.4283	0.0017
N38	Earl Grey	0.0085	0.0637	0.0140	0.0485	0.0086	0.0533	0.0091	0.0005	0.4296	0.1904	0.0017
N39	Earl Grey	0.0056	0.0348	0.0077	0.0251	0.0048	0.0343	0.0048	0.0012	0.8750	0.3377	0.0038
N40	Earl Grey	0.0033	0.0241	0.0063	0.0197	0.0039	0.0233	0.0037	0.0014	0.8927	0.4673	0.0017
N31	Apple, cinnamon & raisins	0.0202	0.1313	0.0296	0.0975	0.0159	0.1080	0.0165	0.0007	0.4952	1.3288	0.0422
N41	Darjeeling green tea	0.0018	0.0067	0.0019	0.0088	0.0013	0.0104	0.0017	0.0035	0.0421	0.8476	0.0044
N42	Ceylon Breakfast	0.0089	0.0665	0.0170	0.0546	0.0088	0.0529	0.0081	0.0021	0.3892	0.2984	0.0017
N43	Tanzania	0.0173	0.1123	0.0286	0.0923	0.0159	0.1102	0.0184	0.0024	0.0622	0.0213	0.0038

Nr	Tea	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Tl	Pb	Th
N44	White China tea eco	0.0007	0.0067	0.0018	0.0067	0.0013	0.0060	0.0007	0.0005	0.1540	0.9530	0.0042
N45	Krydder te	0.0029	0.0196	0.0049	0.0143	0.0013	0.0182	0.0024	0.0015	0.3140	0.2901	0.0017
N46	Jasmin tea	0.0028	0.0203	0.0035	0.0141	0.0013	0.0142	0.0025	0.0010	0.4393	0.6488	0.0047
N47	Lapsang Souchong	0.0014	0.0067	0.0017	0.0041	0.0013	0.0028	0.0007	0.0005	0.0675	0.3107	0.0048
N48	Keemun eco	0.0025	0.0146	0.0028	0.0059	0.0013	0.0066	0.0007	0.0005	0.0504	0.5450	0.0065
N49	Japan Kukicha	0.0017	0.0067	0.0023	0.0060	0.0013	0.0060	0.0007	0.0012	0.1379	0.1011	0.0017
N50	Søndags te	0.0007	0.0067	0.0007	0.0031	0.0013	0.0055	0.0007	0.0005	0.0553	0.0515	0.0017
N51	Assam Gbop	0.0018	0.0135	0.0024	0.0080	0.0013	0.0092	0.0007	0.0005	0.2450	0.4297	0.0017
N52	Japan Bancha eco	0.0044	0.0267	0.0061	0.0189	0.0036	0.0216	0.0039	0.0022	0.1430	1.3033	0.0051
N53	Assam Tgfop 1	0.0007	0.0067	0.0017	0.0050	0.0013	0.0062	0.0007	0.0005	0.0589	0.8339	0.0017
N54	Kaktus te	0.0150	0.0473	0.0105	0.0385	0.0056	0.0417	0.0065	0.0005	0.8720	0.6909	0.0017
N55	Blå blomst te	0.0042	0.0334	0.0080	0.0254	0.0040	0.0275	0.0048	0.0011	0.5339	0.3112	0.0017
N56	Darjeeling	0.0028	0.0189	0.0048	0.0122	0.0013	0.0147	0.0023	0.0005	0.1018	0.7996	0.0017
N57	Ceylon Bop	0.0021	0.0067	0.0028	0.0135	0.0013	0.0121	0.0016	0.0005	0.4711	0.1275	0.0017
N58	Samowar Douchka	0.0046	0.0309	0.0058	0.0173	0.0034	0.0220	0.0031	0.0005	0.1967	0.4867	0.0068
N59	Skomakerens julete	0.0036	0.0181	0.0042	0.0121	0.0013	0.0101	0.0007	0.0013	0.1450	0.2215	0.0111
N60	Formosa Oolong	0.0048	0.0340	0.0079	0.0290	0.0057	0.0452	0.0066	0.0005	0.5811	1.1908	0.0061
N61	Golden Nepal	0.0007	0.0067	0.0018	0.0053	0.0013	0.0077	0.0007	0.0005	0.0620	0.6832	0.0052
N62	Yunnan Pu Erh	0.0007	0.0067	0.0007	0.0020	0.0013	0.0030	0.0007	0.0005	0.0380	0.2058	0.0071
N63	Mango te	0.0053	0.0337	0.0072	0.0245	0.0056	0.0320	0.0050	0.0005	0.5151	0.1517	0.0017
N64	Gunpowder eco	0.0081	0.0577	0.0133	0.0439	0.0071	0.0450	0.0076	0.0011	0.0970	0.4082	0.0017
N65	Mexican Mango	0.0113	0.0669	0.0153	0.0549	0.0089	0.0741	0.0110	0.0012	0.4793	0.0638	0.0017
N66	Advents te	0.0030	0.0211	0.0047	0.0135	0.0013	0.0154	0.0023	0.0005	0.3057	0.1444	0.0017
N67	Choui Fong	0.0029	0.0196	0.0048	0.0163	0.0013	0.0232	0.0032	0.0005	0.1394	0.1178	0.0054
N68	Bengal Fire	0.0052	0.0382	0.0083	0.0272	0.0049	0.0374	0.0057	0.0010	0.7059	0.1304	0.0044
N69	Rwanda Grønn	0.0007	0.0067	0.0007	0.0010	0.0013	0.0013	0.0007	0.0005	0.1053	0.1125	0.0017
N70	Bjørnebær te	0.0055	0.0392	0.0090	0.0293	0.0044	0.0339	0.0058	0.0005	0.4912	0.1934	0.0017
N16	Earl Grey Twinings	0.0021	0.0135	0.0031	0.0083	0.0014	0.0089	0.0013	0.0007	0.2203	0.3983	0.0062

Table 9: Raw data for each sample number and name. For further information about the different samples see Table 7 .Results presented in 4.1 anddiscussed in section 5.

Nr	Tea	U	Li	В	Na	Mg	Al	Si	Р	S	Κ	Ca
C12	Ceylon	0.0031	0.2157	29.0823	96.4160	4361.8439	2397.9105	55.1574	8543.6658	8672.8335	133566.5305	500.3240
C15	Scottish Breakfast	0.0008	0.1001	14.4994	87.2803	2387.4976	1201.5908	16.0584	7504.2946	7604.7414	115949.8097	267.8386
C49	Black Tea	0.0112	0.4287	68.2240	173.9341	5071.4107	4464.1647	228.7770	9834.6820	8395.5749	127033.8874	1362.0441
C50	Darjeeling	0.0032	0.1001	18.7498	33.3500	4028.6954	1368.1207	35.3777	9831.4762	6648.6513	112256.9102	573.0624
C54	Black Tea	0.0161	0.6017	83.2189	134.7162	5862.9212	5141.2873	297.6659	8441.3986	8793.2447	119430.7141	1459.6335
C61	Intensive Tea	0.0048	0.2068	46.0281	109.2028	4611.2231	2066.7317	90.9957	8596.1205	5448.1372	102156.9593	769.5564
C66	Darjeeling Tea	0.0047	0.2431	30.2551	74.8136	4937.6754	1856.9993	62.2683	9995.0001	7658.8757	110423.8230	721.7108
C67	Earl Grey	0.0230	0.6365	95.8115	1013.4693	6863.3466	5911.1183	302.2398	6831.9209	7265.3362	116764.0934	1503.0471
C68	Prince of Wales	0.0550	1.2491	40.5809	5229.9351	2933.7575	3764.5888	289.7232	4454.4076	9387.4042	75536.9037	1661.8997
C71	Black Tea	0.0056	0.1001	13.2157	302.1092	3411.1148	969.3388	64.9055	8915.9917	4773.1840	88146.6993	396.3336
C76	Kenia GFOP "Milima	0.0008	0.1001	24.3366	80.0224	3124.6183	790.7830	16.0584	5826.7189	3701.1418	70931.4961	383.4320
C83	Earl Grey	0.0043	0.2248	33.7992	127.0416	4382.0370	1811.6513	78.2492	9003.7006	9127.2883	120529.7660	552.1708
C84	Kenia TGFOP Golden Tipped	0.0019	0.2371	44.4527	33.3500	6166.9620	1424.5003	58 1284	10016.6385	6294 8633	120865.3013	568.5491
C85	Kenia Marinyn	0.0019	0.1001	18.3448	72.3777	4133.7827	859.3261	33.3493	9371.0125	4993.0531	105237.0669	358.9921
005	Assam Marangi	0.0034	0.1001	10.5440	12.3111	4155.7627	057.5201	55.5475	<i>)31</i> 1 .012 <i>3</i>	4775.0551	105257.0007	550.7721
C91	FTGFOP1	0.0008	0.1001	8.9913	33.3500	1698.6061	417.1658	32.4118	5366.6981	3596.9296	57201.2841	192.2278
C101	Lapsang Souchong	0.0143	0.4083	8.2428	33.3500	1621.3882	1703.9402	101.3842	8497.6397	6567.9186	78880.4540	522.5481
C104	China Black Golden	0.0000	0 1 0 0 1	0.0700	200 0077	2120 1260	144 4024	160504	12560 6007	4212 2692	04000 4501	250 4224
C104	Monkey	0.0008	0.1001	8.8680	200.8077	3138.1268	144.4024	16.0584		4312.3682	84029.4581	259.4234
C111	Ceylon High Grown	0.0008	0.2620	19.5290	403.9781	2826.5610	1134.5937	16.0584	6926.6942	7377.4915	101224.2953	314.6770
C113	China Keemun Congu	0.0094	0.4116	15.2102	126.8922	2785.5425	1414.1321	207.2194		6472.8491	98570.7236	649.2798
C41	Yellow Label Tea	0.0044	0.4497	31.9864	96.4085	4883.8048	2274.6663	67.9184	9072.2585	6044.5885	106539.5296	559.4357
N1	Lipton Yellow Label	0.0019	0.1001	26.3950	130.5808	3635.8722	1336.6976	66.5294	7409.4384	7492.5418		412.0963
N2	Lipton Yellow Label	0.0077	0.6961	87.9849	1011.0200	14490.4399	7455.7696	325.0422		17525.3882		1769.1508
N3	Russian Earl Grey	0.0037	0.2460	17.0267	158.7982	2414.1683	879.0974	78.6562	4730.9382	5052.6128	79912.7062	1300.1373
NT4	Green Tea Mandarin	0.0007	1 1074	06 5224	264 7242	11676 0257	((2)) (9(5	457 4500	12202 0001	11064 1541	170244 1521	2029 2216
N4	Orange	0.0097	1.1974	96.5334	264.7343		6629.6865	457.4590		11964.1541	178344.1531	2038.3316
N5	White tea Raspberry	0.0242	1.5393	62.8582	115.4212		4954.5419	288.8626		10013.8678	173921.7981	2382.5735
N7	Greeen Gunpowder	0.0032	0.3551	56.6400	155.7673	8204.7028	2773.8081	262.4712	9660.1308	9755.0422	136732.7957	1075.3132
N8	Green tea	0.0008	0.1001	28.5593	555.1970	4462.7849	1153.9314	689.2865	4699.0353	4270.0009	56626.0935	416.7944
N9	Peach & Mango	0.0220	0.8528	58.3777	801.6425	7021.1025	4056.2489	596.8882	12210.3124	13517.4035		2111.5376
N10	Forest Fruit	0.0114	0.6032	67.7383	359.2753	7721.9092	4864.4710	395.0401	11505.4275	12171.4759	183530.2137	2068.3283
N11	Blue Fruit	0.0107	0.5749	43.8901	294.5238	6870.8074	3524.0689	344.3225	11000.6656	11547.2483	162445.1168	1352.9944

Nr	Tea	U	Li	В	Na	Mg	Al	Si	Р	S	K	Ca
N12	Russian Earl Grey	0.0062	0.4516	97.8534	775.3208	12755.5611	7649.6995	686.1561	16920.7741	15482.9796	206903.8573	2776.3706
N13	Earl Grey	0.0154	0.7331	50.5360	4102.0397	7718.6207	4759.0285	398.7065	13004.5730	14148.7391	192167.8520	1577.4020
N14	Prince of Wales	0.0096	0.4065	10.2344	89.2621	1988.7336	1027.5896	92.3882	8803.7320	5166.4933	85443.7780	471.9731
N15	Prince of Wales	0.0622	2.5292	68.6277	18265.0726	8338.7766	7073.4153	578.8746	11653.0176	17345.0253	142911.1184	3548.6469
N17	Earl Grey	0.0350	1.1991	51.9053	11229.9105	5559.8097	5004.4962	245.5551	7000.3098	10660.2925	96692.2175	2307.9564
N18	Lady Grey	0.0101	0.5120	11.1476	165.8117	1539.6735	1342.8387	74.2069	5145.1756	4932.2744	68895.4329	673.7855
N19	Lady Grey	0.0411	1.9691	99.5699	10434.4321	9133.1275	6922.8074	519.0115	12403.1248	14656.9395	156258.5174	3865.8098
N6	Indian Chai	0.0068	0.6208	31.3633	1930.1365	8149.5883	2096.5902	190.4509	18015.2050	11928.7833	192174.6264	988.9703
N20	English Breakfast tea	0.0034	0.3111	27.2336	207.3185	4998.3683	2510.2343	82.6186	9370.6945	8985.9913	132412.1960	538.2924
N21	English Breakfast tea	0.0188	1.0771	94.6332	5716.2762	14962.5461	9095.9301	463.4996	24717.8768	20514.6267	268736.1140	2769.6649
N22	Green tea& Cranberry	0.0767	2.8366	77.3532	8466.1639	10350.1989	6573.8419	1137.2591	12839.0368	17271.5584	161010.4934	5394.3308
N23	Green tea & apple	0.0326	1.1127	72.3615	1538.5325	10277.4744	5838.6319	379.7026	11962.5326	20804.1708	178491.4025	5674.4048
N24	Pure green tea	0.0503	2.7879	78.1027	4058.5235	9600.1115	6096.3233	612.8286	11006.5691	17228.8195	148045.7346	5240.3876
N25	Green tea & orange	0.0459	1.8163	63.1966	3386.0950	11932.8022	5637.6988	517.3743	12162.8095	19564.9140	175613.5234	5641.5832
N26	Green tea & lemon	0.0442	2.3345	82.7145	10187.4101	11721.1697	5385.8435	679.7642	11802.4403	37207.0835	176614.6304	12642.1787
N27	Green tea & lemon eco.	0.0134	0.4548	133.9775	1556.8613	9290.1797	7050.9535	229.8629	8704.8366	11604.3584	171140.7437	6268.8190
N28	Voyage Indian Chai	0.0106	0.9689	72.9486	3683.9044	10671.7392	6560.4701	338.8381	15387.7968	14945.7357	242127.2606	2748.2719
N29	Voyage Brazilian Baia White tea &	0.0035	0.5637	75.6088	1681.7497	12494.9407	5782.4385	240.5836	24035.4887	17420.9374	262946.9292	2638.4783
N30	pomegranate	0.0217	1.1822	52.0911	5134.2758	9211.4057	3589.9657	463.7087	12382.9166	13570.3439	158566.7849	4038.1169
N32	Blackcurrant	0.0559	2.0785	86.4573	16123.8085	7652.8078	7159.8629	350.8897	9519.7270	13307.0675	132451.0527	2952.6600
N33	Four Red Fruits Passionfruit, Mango,	0.0386	2.1930	94.5586	14149.5625	9325.7251	7885.5780	443.4723	13639.5046	17646.0516	166814.2851	3685.0749
N34	Orange	0.0446	2.4728	107.8872	16299.6872	9224.6931	7536.7296	651.4789	13783.9160	19114.4961	157085.4959	3917.4291
N35	Darjeeling tea	0.0087	0.7956	57.3290	1159.3925	14171.2988	4735.0984	118.4183	24223.2551	17416.7311	262276.3004	2029.1573
N36	Earl Grey tea eco.	0.0139	0.9657	116.2357	1325.2531	12687.3114	12053.6172	366.1086	14992.5683	19334.7147	237401.5565	2840.7223
N37	Earl Grey Fair trade	0.0083	0.4388	140.6608	984.9985	13815.2999	9686.5406	326.5571	19194.4579	18624.5822	278594.7403	2381.6697
N38	Earl Grey	0.0032	0.3253	80.9536	823.0539	10146.6717	3150.0655	70.9817	16263.4782	14390.7342	233884.0898	940.0297
N39	Earl Grey	0.0056	0.8228	47.6256	4169.8663	10152.4132	4412.2507	155.4355	13724.5530	15887.4082	211668.4624	1189.6160
N40	Earl Grey	0.0050	0.9063	54.0236	861.2569	12062.7979	4092.3765	251.0904	16736.2604	17047.4647	236727.0431	1824.0910
N31	Apple, cinnamon & raisins	0.0392	1.9936	101.0571	13380.2782	9147.9114	7813.2728	495.8177	12978.6750	15881.6084	159481.6577	3490.6082
N31 N41	Darjeeling green tea	0.00392	0.4513	18.4794	33.3500	5189.5059	1316.0823		12978.0750	7108.1124		584.9620
N42	Ceylon Breakfast	0.0023	0.4012	80.4947	213.3061	8580.5964	3234.2067	136.6279	9165.8688	9337.7793	129070.1012	1260.6321
1142	Ceyloli Dicaklast	0.0038	0.4012	00.494/	213.3001	0300.3904	5254.2007	130.0279	7103.0000	7351.1193	130014.0390	1200.0321

Nr	Tea	U	Li	В	Na	Mg	Al	Si	Р	S	Κ	Ca
N43	Tanzania	0.0066	0.7341	48.9015	68.4477	6295.4807	4035.1057	153.6733	9393.4535	7921.7675	133207.6018	769.1643
N44	White China tea eco	0.0028	0.1001	15.4903	82.5705	1631.0607	315.6620	16.0584	7865.2884	3576.4283	70905.1598	448.4903
N45	Krydder te	0.0035	0.3972	30.1337	220.0105	3188.7275	1980.6040	166.1309	7120.0539	6530.8049	93437.4553	851.4273
N46	Jasmin tea	0.0068	0.1001	33.4246	188.3709	4585.2825	862.6054	145.0058	11150.5001	6226.9311	112270.5249	949.0405
N47	Lapsang Souchong	0.0087	0.4978	10.8131	33.3500	1619.9510	1577.2543	126.3767	6687.1463	4757.0705	73309.6436	443.6667
N48	Keemun eco	0.0063	0.3162	16.5073	881.4487	2408.4155	1101.7043	164.1260	11779.1778	6224.0329	100449.8240	623.3524
N49	Japan Kukicha	0.0017	0.5134	35.2105	484.9497	4704.7539	879.8390	141.9171	10023.4322	5553.4319	129002.1400	842.8499
N50	Søndags te	0.0008	0.2259	5.7074	33.3500	1787.8867	639.1215	44.3760	4884.0089	2603.0825	50370.5603	378.4073
N51	Assam Gbop	0.0050	0.6761	25.0366	106.0623	9260.3181	1139.3621	195.5463	16677.9021	10822.1010	154473.7554	905.2107
N52	Japan Bancha eco	0.0228	0.9183	33.7022	33.3500	2507.3292	2902.1655	452.3513	5633.0234	7096.2233	95897.7188	1394.2418
N53	Assam Tgfop 1	0.0030	0.3795	35.4914	79.1751	5875.2409	1277.5196	110.1860	9958.5382	6152.2895	124884.4210	692.4399
N54	Kaktus te	0.0255	0.8073	68.8350	146.9562	5683.1878	4039.1624	332.8410	10223.3588	10584.8600	147598.8206	1420.4894
N55	Blå blomst te	0.0052	0.3569	43.2904	300.1502	6093.3965	2963.1526	176.4351	11904.1187	9560.0792	142084.6526	1076.5508
N56	Darjeeling	0.0055	0.2172	20.9246	33.3500	6851.6059	1346.8177	68.6692	14323.7622	7544.5171	145152.1640	691.3862
N57	Ceylon Bop	0.0018	0.1001	59.1356	334.6239	4639.1084	871.3523	49.4825	12280.8091	9543.8670	133813.6327	512.2231
N58	Samowar Douchka	0.0112	0.5038	31.7767	1022.0695	4169.0090	2728.0539	215.5958	10319.4756	8305.1236	121659.8306	830.4845
N59	Skomakerens julete	0.0095	0.3902	62.6657	600.4167	3149.4945	672.7522	108.4702	3851.5961	3225.8838	75082.8605	2625.0979
N60	Formosa Oolong	0.0092	0.3227	17.4997	101.6928	2377.1565	1500.0853	245.2880	8784.6070	6025.0313	93742.6017	577.0598
N61	Golden Nepal	0.0048	0.2222	24.5529	158.3826	5075.4136	1448.0923	101.9444	11324.8016	6118.5980	125525.0382	536.4075
N62	Yunnan Pu Erh	0.0027	0.3306	39.1094	289.2826	3525.4920	417.1251	251.9105	24752.3630	7379.3980	120650.5744	401.6778
N63	Mango te	0.0047	0.2568	35.1527	843.0643	4798.1878	2744.0258	62.9036	10083.5803	8881.1663	125449.7815	933.0125
N64	Gunpowder eco	0.0072	0.3476	22.3287	33.3500	3181.2415	1309.1010	145.4142	6371.2618	6060.7198	83036.6529	676.9908
N65	Mexican Mango	0.0278	0.5782	91.9305	259.0069	5969.2065	5300.5786	353.3766	6922.7846	6292.5887	111739.4972	1931.9098
N66	Advents te	0.0039	0.3935	29.5879	253.2743	3095.5666	1830.0167	110.1937	7757.5210	6183.4482	97251.5464	595.2805
N67	Choui Fong	0.0119	0.1001	41.4277	33.3500	6097.1231	1715.2469	39.4759	10712.0542	6478.2720	131588.2517	447.1015
N68	Bengal Fire	0.0025	0.2412	28.1465	258.5229	4739.5262	2587.3942	105.0356	8652.4349	7282.7423	107825.5869	590.3737
N69	Rwanda Grønn	0.0018	0.3201	34.7367	33.3500	6910.0531	739.3451	48.0316	10418.4033	6038.0829	123867.8939	416.8109
N70	Bjørnebær te	0.0045	0.3250	32.4129	256.5955	4978.4423	2987.8186	150.6949	11289.0931	9672.6348	137397.0908	859.5675
N16	Earl Grey Twinings	0.0110	0.7029	15.9462	519.8520	1860.6739	2208.1872	193.1177	7438.3431	6787.1441	90230.3813	527.8323

Ti V Nr Cr Fe Co Ni Zn Sr Ru Tea Mn Cu 291.3539 7.0572 0.1355 11.4027 C12 Ceylon 0.1642 0.0767 0.7368 42.9554 97.7684 1.4526 0.0072 Scottish Breakfast C15 0.1672 0.1478 0.1244 0.0813 278.9666 2.7726 4.8699 12.5920 51.8922 0.7928 0.0031 C49 Black Tea 0.1469 0.1782 2.8789 1552.6468 6.7773 0.9161 26.1047 39.2217 119.6682 12.2778 0.0031 C50 Darjeeling 0.1364 0.0629 0.3898 641.0166 0.4394 25.8601 32.2696 0.0031 7.8131 78.4659 2.2818 C54 Black Tea 0.1226 0.0668 6.9725 2007.9742 1.0712 26.4071 38.5423 8.8841 0.0031 6.5699 57.5878 Intensive Tea 0.3346 14.4244 0.0031 C61 0.0990 0.0533 2.6006 2141.5799 4.2559 25.8675 74.0224 8.1543 C66 **Darjeeling** Tea 0.1220 0.3540 839.9215 8.8935 0.4166 29.5896 50.2982 98.7935 2.6041 0.0031 0.1725 Earl Grey C67 0.1074 0.0460 5.4974 2474.4608 5.4367 0.9654 29.4627 41.2322 45.8391 8.3527 0.0031 Prince of Wales C68 0.1620 0.1305 1.2570 1419.7838 32.9155 0.6812 22.3626 37.6226 0.0031 45.3045 9.0169 C71 Black Tea 0.0390 0.0595 895.0750 0.4077 22.2365 0.0031 1.1242 11.1294 13.1737 73.5584 1.2131 Kenia GFOP "Milima 14.3872 C76 0.0824 0.0237 2.1943 952.3858 4.6088 0.6052 11.0098 36.6108 3.5471 0.0031 C83 Earl Grey 0.1482 0.0464 0.5856 965.6504 4.7421 0.6745 17.9030 27.9416 66.6422 2.2494 0.0031 C84 Kenia TGFOP Golden Tipped 0.1341 0.0262 3.7826 1777.1520 5.7583 1.1492 19.9088 22.0738 65.1622 5.3800 0.0063 C85 Kenia Marinyn 0.1442 0.0346 0.3796 1374.3605 5.9738 0.3264 12.1650 26.6494 66.8275 2.4277 0.0031 Assam Marangi FTGFOP1 C91 0.0907 0.0100 0.1240 290.3179 2.9640 0.2697 6.6940 17.5684 34.3098 0.3725 0.0031 Lapsang Souchong C101 0.1084 0.0586 0.3645 599.5263 12.0283 0.5089 6.6276 18.5397 56.4578 1.4214 0.0063 China Black Golden Monkey C104 0.1288 0.0279 0.3254 533.6151 3.3462 0.2642 8.3890 17.3270 90.2887 0.0834 0.0079 Ceylon High Grown C111 0.1089 0.0228 0.1994 446.5214 11.8671 0.2117 7.8289 19.8015 37.0126 1.4068 0.0031 C113 China Keemun Congu 0.0867 0.4834 26.9276 0.0031 0.1584 0.4915 811.4876 15.0628 17.0671 58.4062 2.4663 Yellow Label Tea C41 0.1269 0.0319 2.7231 2429.0695 4.4493 0.2854 16.2178 26.3524 69.7033 5.0173 0.0067 Lipton Yellow Label 2.7885 0.3184 N1 0.1557 0.0239 0.2912 592.2992 9.7786 19.8632 41.8726 1.2655 0.0065 6.6915 N2 Lipton Yellow Label 0.3187 0.0323 3.0373 4306.6828 1.1032 45.4676 83.2211 181.4036 13.5434 0.0196 Russian Earl Grey 5.5249 N3 0.0912 0.0309 0.3025 464.1728 0.2694 6.6856 9.5438 24.2713 9.1896 0.0031 Green Tea Mandarin Orange N4 0.2418 0.0434 5120.8306 24.1073 1.4056 38.3353 61.0300 225.2502 22.2814 0.0204 1.6468 N5 White tea Raspberry 0.1898 0.0681 1.7986 5707.9858 19.6850 1.3111 47.7261 32.6315 135.5016 26.2858 0.0110 Greeen Gunpowder N7 0.1625 0.0247 0.3905 1461.6459 61.3812 0.7312 14.9450 46.0961 79.5811 4.8218 0.0124 N8 Green tea 0.4211 0.0100 0.1908 743.7337 28.0494 0.5870 7.6434 14.9323 57.1974 2.5113 0.0031 N9 Peach & Mango 0.2042 0.0825 2.4387 2161.9067 9.1156 2.3685 54.2333 47.9895 6.7070 0.0132 99.1615 N10 Forest Fruit 0.2041 0.0752 1.7980 2219.7738 6.8810 2.2039 48.8473 36.6583 107.8077 7.0342 0.0089 N11 Blue Fruit 0.1849 0.0763 2.0010 2084.9586 15.0016 1.9427 40.4453 34.4160 83.4996 4.6759 0.0137

Table 10: Raw data for each sample number and name. For further information about the different samples see Table 7 .Results presented in 4.1 and discussed in section 5.

Nr	Tea	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Sr	Ru
N12	Russian Earl Grey	0.2397	0.0620	4.2272	1613.8636	5.7673	1.1763	35.8633	83.0044	126.7161	24.2259	0.0122
N13	Earl Grey	0.2998	0.0947	2.4214	2283.8841	6.9989	2.3917	54.0261	53.6760	95.7359	5.8597	0.0145
N14	Prince of Wales	0.1067	0.0398	0.2305	679.0754	8.3819	0.4498	17.7515	22.2221	45.3330	1.8896	0.0080
N15	Prince of Wales	0.2514	0.2547	3.0889	3314.3905	58.9050	1.8714	55.1068	74.8928	115.0943	26.6693	0.0110
N17	Earl Grey	0.2276	0.1069	2.7629	2152.7482	29.2074	0.9772	30.8930	39.5458	63.9874	17.4728	0.0178
N18	Lady Grey	0.1303	0.0708	0.5920	444.3646	11.4472	0.4334	16.0005	17.3547	35.9755	4.2013	0.0113
N19	Lady Grey	0.2890	0.1937	4.2933	3559.7250	45.5011	1.7250	48.2009	58.2712	132.3080	27.0331	0.0064
N6	Indian Chai	0.2310	0.1107	3.0523	2080.9122	8.9863	0.7797	25.3071	41.2047	108.8869	3.4847	0.0100
N20	English Breakfast tea	0.1746	0.0100	0.4067	818.3628	4.5226	0.5167	15.0605	34.4812	53.2371	3.2929	0.0110
N21	English Breakfast tea	0.3096	0.1044	8.8555	3982.5912	14.4067	1.9414	50.9701	81.5823	149.2614	24.0277	0.0208
N22	Green tea& Cranberry	1.1222	0.3609	1.8538	4754.8009	73.6885	3.1118	74.5952	120.9490	176.9707	25.7443	0.0156
N23	Green tea & apple	0.3621	0.1278	0.8319	4510.3580	61.1980	2.8696	87.1244	118.9114	194.4258	20.4570	0.0106
N24	Pure green tea	0.3169	0.1161	1.1445	4579.9600	49.3055	2.9093	78.2162	107.9080	141.0109	22.6913	0.0128
N25	Green tea & orange	0.5150	0.1340	1.0032	4594.0440	57.0531	2.7745	77.2031	127.5950	168.4051	28.7721	0.0102
N26	Green tea & lemon	0.4109	0.1732	1.5012	4550.9675	58.1122	3.0368	68.3688	114.5101	177.4317	34.3038	0.0172
N27	Green tea & lemon eco.	0.7416	0.0881	1.2324	1584.4897	45.6510	1.4393	87.8364	63.0377	132.0099	47.2877	0.0200
N28	Voyage Indian Chai	0.3225	0.1109	2.4786	3307.6954	26.9249	2.4852	69.2761	98.0651	167.6375	21.3760	0.0119
N29	Voyage Brazilian Baia	0.3361	0.0624	1.2781	1740.7791	7.0964	1.2098	37.6761	65.9248	129.7991	20.8629	0.0172
N30	White tea & pomegranate	0.3395	0.0804	0.8391	3166.4550	38.0585	2.0412	51.4988	83.6876	143.3518	25.8507	0.0132
N32	Blackcurrant	0.3176	0.2185	4.2649	3225.7124	54.0619	1.5275	46.0865	69.0771	85.0622	24.0790	0.0127
N33	Four Red Fruits	0.4212	0.1613	4.8109	3475.0774	49.1745	1.7429	53.8481	64.6832	102.5372	26.2871	0.0096
N34	Passionfruit, Mango, Orange	0.4221	0.2609	4.1242	3657.6158	59.1343	1.9551	54.1224	65.8527	107.1926	30.8388	0.0167
N35	Darjeeling tea	0.3703	0.1138	0.9054	2463.3511	16.9794	1.1563	77.2886	122.1017	262.0409	9.9212	0.0116
N36	Earl Grey tea eco.	0.3134	0.0587	3.4200	2677.1559	5.7291	1.0961	80.5601	105.9052	131.5990	17.7894	0.0174
N37	Earl Grey Fair trade	0.3590	0.0447	1.4065	1907.1419	6.0134	1.2455	49.4154	110.6799	151.4736	16.8681	0.0104
N38	Earl Grey	0.3042	0.0376	0.5178	1859.5866	6.8215	1.9947	38.6899	68.2694	222.5012	3.0553	0.0129
N39	Earl Grey	0.2704	0.0767	1.0718	2074.4035	21.0026	0.9387	26.3491	52.1976	114.7215	10.3251	0.0118
N40	Earl Grey	0.3003	0.1032	0.5783	1515.1777	13.2327	0.6866	21.9319	49.8798	129.2653	12.5755	0.0113
N31	Apple, cinnamon & raisins	0.3004	0.1724	4.8054	3673.5934	41.2340	1.7479	52.7024	63.0084	100.6973	22.1722	0.0142
N41	Darjeeling green tea	0.2886	0.0463	0.1038	781.8887	19.8052	0.6514	34.1970	23.7902	105.4543	3.8742	0.0080
N42	Ceylon Breakfast	0.2054	0.0235	0.9224	2491.3891	4.8935	2.9157	40.6142	80.6841	121.2268	4.7698	0.0131
N43	Tanzania	0.2185	0.0100	3.3649	5142.0167	4.2579	0.4268	27.3723	35.2209	74.3960	7.9620	0.0083
N44	White China tea eco	0.2048	0.0513	0.0790	699.7268	4.9855	0.6001	15.1083	19.7720	73.4782	3.0198	0.0031

Nr	Tea	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Sr	Ru
N45	Krydder te	0.1063	0.0676	0.8188	811.3102	10.3865	0.4776	12.0559	29.0286	49.5965	5.3683	0.0088
N46	Jasmin tea	0.2626	0.0326	0.2181	1454.0427	14.9066	1.2708	23.6941	65.6224	146.8117	3.5972	0.0120
N47	Lapsang Souchong	0.1784	0.0391	0.2367	395.4476	10.1936	0.4529	16.4862	16.4865	32.1883	2.6910	0.0077
N48	Keemun eco	0.2698	0.0787	0.2348	640.5008	20.5993	0.3590	20.2762	24.8474	53.5242	3.2163	0.0031
N49	Japan Kukicha	0.2509	0.0273	0.1143	1280.4671	15.6743	0.2716	24.0962	12.0287	103.0310	2.0533	0.0031
N50	Søndags te	0.1081	0.0100	0.8735	417.1211	4.8594	0.1869	7.7181	7.5244	23.1710	2.0013	0.0031
N51	Assam Gbop	0.1659	0.0554	0.2701	975.7665	2.7896	0.7699	15.9559	47.0274	116.9101	3.5825	0.0104
N52	Japan Bancha eco	0.2709	0.0838	0.5646	1859.7555	35.5602	2.3338	18.6128	8.5693	72.2165	3.5082	0.0163
N53	Assam Tgfop 1	0.2390	0.0286	0.2141	1374.7073	22.8344	0.9880	32.7167	23.4180	121.4847	4.3313	0.0168
N54	Kaktus te	0.2098	0.0632	0.8802	2067.0375	25.4449	2.0455	32.1278	39.4045	73.2678	8.5768	0.0201
N55	Blå blomst te	0.1728	0.0342	0.5106	1305.0986	9.5533	0.6402	19.8984	43.9173	77.7410	5.4783	0.0064
N56	Darjeeling	0.2588	0.0418	0.1509	995.1471	11.8258	0.5157	31.4058	44.6382	110.5823	2.4113	0.0101
N57	Ceylon Bop	0.2245	0.0423	0.1134	651.6923	29.1565	0.2803	9.8095	3.9256	49.3621	3.0303	0.0161
N58	Samowar Douchka	0.1851	0.0736	0.7599	1148.9218	13.2145	0.7770	26.3800	35.2250	69.5369	3.6692	0.0125
N59	Skomakerens julete	0.1744	0.1158	0.3309	273.4518	51.6891	0.3245	7.2202	14.6201	25.7670	10.1370	0.0087
N60	Formosa Oolong	0.1637	0.0388	0.7939	880.0064	13.4703	0.6465	20.3546	28.9370	45.9261	3.9167	0.0104
N61	Golden Nepal	0.1895	0.0393	0.6797	803.4533	10.5585	0.4989	28.2989	31.3153	90.2117	1.9813	0.0149
N62	Yunnan Pu Erh	0.3032	0.0424	0.3565	871.9147	36.0189	0.2701	11.5800	1.3987	56.2307	5.5402	0.0120
N63	Mango te	0.1837	0.0855	0.3583	1014.7244	9.2061	0.4197	11.8740	34.5092	60.3981	6.4764	0.0063
N64	Gunpowder eco	0.1499	0.0344	0.1813	1095.7322	16.9590	0.7173	19.8932	36.0115	58.1686	3.0290	0.0099
N65	Mexican Mango	0.1754	0.0336	5.5998	1927.9061	6.9067	0.8905	22.5290	33.9854	40.6843	11.0446	0.0082
N66	Advents te	0.1108	0.0327	0.3228	629.8878	5.8141	0.3915	11.0539	24.5058	39.9145	4.2801	0.0031
N67	Choui Fong	0.1955	0.0100	0.9909	898.8393	10.5648	0.5785	14.3992	28.1338	125.7713	2.1369	0.0111
N68	Bengal Fire	0.1747	0.0254	0.3458	895.4408	11.7518	0.3007	7.4322	35.4043	46.4740	8.1595	0.0031
N69	Rwanda Grønn	0.2180	0.0100	0.0650	2343.8187	9.9740	0.7007	18.4491	21.4878	116.0680	5.4209	0.0031
N70	Bjørnebær te	0.1588	0.0275	0.5026	1116.4602	10.9186	0.5510	18.5459	39.0656	63.5555	6.3293	0.0196
N16	Earl Grey Twinings	0.2051	0.0615	0.4439	522.4462	12.5616	0.5001	21.6764	25.1673	39.3463	3.0069	0.0063

Nr	Tea	Ba	La	Nb	Rb
C12	Ceylon	1.6856	0.0280	0.0026	154.5158
C15	Scottish Breakfast	0.8221	0.0067	0.0027	166.2014
C49	Black Tea	33.0024	0.1419	0.0042	481.2574
C50	Darjeeling	8.5175	0.0254	0.0051	356.2035
C54	Black Tea	30.3618	0.1802	0.0033	535.9369
C61	Intensive Tea	11.6296	0.1631	0.0018	508.2700
C66	Darjeeling Tea	7.6181	0.0475	0.0029	343.2989
C67	Earl Grey	49.6740	0.2201	0.0009	589.5576
C68	Prince of Wales	41.8927	0.3206	0.0025	365.3807
C71	Black Tea	3.0293	0.0644	0.0009	497.0148
C76	Kenia GFOP "Milima	5.4873	0.0629	0.0009	224.7590
C83	Earl Grey	6.4150	0.0635	0.0022	326.034
C84	Kenia TGFOP Golden Tipped	9.3676	0.0942	0.0051	397.810
C85	Kenia Marinyn	2.4075	0.0890	0.0021	290.7961
C91	Assam Marangi FTGFOP1	1.5017	0.0067	0.0009	114.324
C101	Lapsang Souchong	3.0056	0.0542	0.0009	553.828
C104	China Black Golden Monkey	0.5898	0.0067	0.0009	192.503
C111	Ceylon High Grown	2.2145	0.0322	0.0003	217.613
C113	China Keemun Congu	7.8182	0.0322	0.0009	396.468
C41	Yellow Label Tea	4.5638	0.2670	0.0009	555.338
N1	Lipton Yellow Label	2.2157	0.0273	0.0009	246.761
N2	Lipton Yellow Label	22.5609	0.2567	0.0059	777.163
N3	Russian Earl Grey	10.5376	0.2307	0.0039	246.545
	•				
N4	Green Tea Mandarin Orange	22.5108	0.3238	0.0109	555.097
N5	White tea Raspberry	23.5914	0.9024	0.0091	540.463
N7	Greeen Gunpowder	4.7367	0.0540	0.0044	295.511
N8	Green tea	2.3790	0.0337	0.0095	169.626
N9	Peach & Mango	17.7325	0.1593	0.0009	659.711
N10	Forest Fruit	20.7511	0.1743	0.0045	431.259
N11	Blue Fruit	15.4916	0.1390	0.0059	423.591
N12	Russian Earl Grey	33.6476	0.2153	0.0069	555.547
N13	Earl Grey	23.1420	0.1874	0.0048	488.601
N14	Prince of Wales	5.4948	0.0529	0.0009	273.750
N15	Prince of Wales	90.4107	0.6524	0.0060	685.470
N17	Earl Grey	51.2014	0.3343	0.0054	482.153
N18	Lady Grey	13.1954	0.1370	0.0035	362.439
N19	Lady Grey	70.3321	0.4806	0.0043	744.641
N6	Indian Chai	8.0985	0.0617	0.0061	505.482
N20	English Breakfast tea	7.5319	0.0683	0.0038	268.444
N21	English Breakfast tea	58.9195	0.3455	0.0052	878.966
N22	Green tea& Cranberry	64.1128	0.4728	0.0077	653.291
N23	Green tea & apple	39.5994	0.1715	0.0076	882.419
N24	Pure green tea	54.3575	0.2788	0.0064	526.256
N25	Green tea & orange	70.5430	0.2414	0.0071	685.035
N26	Green tea & lemon	56.0445	0.2366	0.0041	819.023
N27	Green tea & lemon eco.	72.2175	0.1800	0.0043	274.174
N28	Voyage Indian Chai	59.7149	0.1788	0.0094	302.295
N29	Voyage Brazilian Baia	35.5546	0.0625	0.0090	208.959
N30	White tea & pomegranate	49.2790	0.1727	0.0059	590.185

Table 11: Raw data for each sample number and name. For further information about the different samples see Table 7. Results presented in 4.1 and discussed in section 5.

Nr	Tea	Ba	La	Nb	Rb
N32	Blackcurrant	82.1773	0.6025	0.0035	681.3080
N33	Four Red Fruits	76.5697	0.4834	0.0103	806.7678
N34	Passionfruit, Mango, Orange	75.7438	0.5222	0.0072	819.3122
N35	Darjeeling tea	19.4772	0.0951	0.0074	812.8823
N36	Earl Grey tea eco.	50.5165	0.3417	0.0037	621.7004
N37	Earl Grey Fair trade	63.8300	0.2173	0.0094	557.0678
N38	Earl Grey	9.0019	0.1849	0.0077	430.6208
N39	Earl Grey	15.5517	0.0899	0.0085	483.3042
N40	Earl Grey	16.4381	0.0873	0.0089	431.3780
N31	Apple, cinnamon & raisins	78.0706	0.5005	0.0065	795.8844
N41	Darjeeling green tea	8.2624	0.0185	0.0033	317.4047
N42	Ceylon Breakfast	18.2858	0.1664	0.0048	330.1349
N43	Tanzania	6.5571	0.5137	0.0024	769.3994
N44	White China tea eco	1.3642	0.0311	0.0030	309.7522
N45	Krydder te	9.6856	0.0617	0.0009	202.9079
N46	Jasmin tea	3.5872	0.0835	0.0042	692.4086
N47	Lapsang Souchong	9.3178	0.0285	0.0067	261.3904
N48	Keemun eco	10.6916	0.0705	0.0050	275.5839
N49	Japan Kukicha	2.6678	0.0754	0.0036	140.8261
N50	Søndags te	1.5288	0.0265	0.0032	125.6748
N51	Assam Gbop	8.5707	0.0423	0.0041	670.1724
N52	Japan Bancha eco	8.4265	0.1198	0.0035	302.9186
N53	Assam Tgfop 1	7.6356	0.0221	0.0072	390.8295
N54	Kaktus te	16.8707	0.1287	0.0035	387.6956
N55	Blå blomst te	10.1937	0.0712	0.0021	303.5637
N56	Darjeeling	4.8883	0.0399	0.0024	426.4060
N57	Ceylon Bop	3.7944	0.0408	0.0035	273.3915
N58	Samowar Douchka	17.8301	0.0856	0.0044	391.0029
N59	Skomakerens julete	7.0313	0.0644	0.0020	156.8006
N60	Formosa Oolong	11.0346	0.0993	0.0047	484.0769
N61	Golden Nepal	7.7167	0.0350	0.0029	536.0010
N62	Yunnan Pu Erh	5.9762	0.0359	0.0118	367.7935
N63	Mango te	6.7299	0.0613	0.0053	258.9245
N64	Gunpowder eco	7.1919	0.1116	0.0067	493.7560
N65	Mexican Mango	23.0106	0.1702	0.0059	594.7942
N66	Advents te	7.8795	0.0527	0.0032	218.3167
N67	Choui Fong	2.7629	0.0769	0.0042	809.8624
N68	Bengal Fire	8.1351	0.0952	0.0035	264.4366
N69	Rwanda Grønn	3.8124	0.0141	0.0055	240.6863
N70	Bjørnebær te	10.0780	0.0741	0.0048	323.5968
N16	Earl Grey Twinings	19.7984	0.0495	0.0039	365.3399

Element	MDL	Element	MDL
Ag	0.334	Na	0.534
Al	0.00267	Nb	66.7
As	0.0133	Nd	2.33
Au	0.133	Ni	1.33
В	0.00667	Р	32.1
Ba	0.00334	Pb	2.67
Be	0.00334	Pr	133
Bi	0.00133	Pt	33.4
Ca	0.002	Rb	66.7
Cd	0.00133	Rh	0.0267
Ce	0.00334	Ru	0.078
Co	0.00133	S	0.02
Cr	0.0133	Sb	0.0584
Cs	0.00133	Sc	0.225
Cu	0.002	Se	0.8
Dy	0.00334	Si	0.0267
Er	0.00267	Sm	0.1
Fe	0.00133	Sn	0.2
Ga	0.00133	Sr	0.167
Ge	0.000972	Та	0.0467
Hf	0.00334	Tb	0.167
Hg	0.00667	Th	0.00616
Но	0.00138	Ti	0.133
In	0.00667	Tl	0.0133
Ir	0.0102	Tm	0.0867
Κ	0.00167	U	0.0133
La	0.0133	V	0.133
Li	0.0104	W	0.167
Lu	0.00334	Y	0.167
Mg	0.00167	Yb	0.00177
Mn	0.2	Zn	0.08
Mo	0.0534	Zr	0.296

Table 12: Method detection limits (MDLs) for all the detected elements in the tea samples.

Parameter	Value
Sample flow/pumping	200 μL/min
speed	
Sample loop	500 μL
Equipment	Туре
Nebulizer	PFA-ST with approx. volume range from 50-700µl/min
Spray Chamber	Quarts baffled micro cyclonic, with dual gas inlet type
	ESI – ES-3452-111-11
Torch	Quarts Demountable with o-rings
Injector	Quarts 2.5 mm with o-rings, ES-1024-0250
Sample cones	Aluminium ES-3000-18032
Skimmer cones	Aluminium type X-skimmer ES-3000-1805 X
Gas flows	Value
Cooling gas	15.5 L/min
Auxiliary gas	1.1 L/min
Sample gas 1	0.75 L/min
(nebulizer)	
Sample gas 2 (T-	0.55 L/min
connection)	
Additional gas	Approx 0.0004 CH4, corresponds to approx. 0.04% in the
	sample gas.
Determination	Value
Resolutions	Low (400), Medium (5 500) and High (10 000),

Table 13:Thermo Finnigan Element 2 instrument conditions

Table 14: RSDs calculated for each of the detected element in the four triplicates. These values are discussed in chapter 5.2.

	C41	N6	N16	N31
Y	19.8	6.4	25.8	6.6
Cd	21.6	22.8	24.8	3.4
Sn	104.4	23.1	15.2	24.8
Cs	19.3	3.7	17.6	2.3
Ce	19.3	4.3	20.1	5.6
Pr	20.5	2.1	28.0	6.8
Nd	16.4	6.4	20.0	6.4
Sm	13.6	26.5	26.2	0.6
Tb	21.6	9.9	15.5	9.2
Dy	13.3	15.9	15.3	10.8
Но	25.2	10.3	17.3	4.9
Er	21.8	6.3	30.6	7.3
Tm	16.8	12.4	48.4	4.2
Yb	13.4	9.0	34.1	1.1
Lu	19.1	21.8	26.3	7.9
Hf	53.1	28.5	68.4	74.8
Tl	16.2	13.2	21.3	20.6
Pb	12.1	22.0	9.5	12.6
Th	17.9	38.1	16.9	8.0
U	6.1	2.9	10.1	3.8
Li	32.1	8.6	11.0	3.9
В	15.3	23.6	21.3	14.1
Na	9.8	4.9	12.2	6.8
Mg	18.1	14.2	13.8	10.1
Al	21.2	7.0	12.8	7.8
Si	35.9	32.9	20.4	20.9
Р	18.9	3.3	10.1	6.2
S	20.0	2.8	9.2	3.4
K	19.2	6.4	8.9	3.6
Ca	16.3	29.0	7.4	11.3
Ti	29.8	5.2	17.6	15.4
V	52.8	8.6	27.0	4.5
Cr	21.3	13.6	19.7	7.4
Mn	18.2	15.7	12.7	7.1
Fe	11.4	34.6	15.6	5.9
Co	15.6	29.1	3.1	13.6
Ni	14.4	25.6	10.5	7.0
Cu	13.0	8.5	8.5	4.9
Zn	38.5	3.1	26.1	5.3
Sr	15.9	25.6	21.5	7.8
Ru	50.0	37.3	59.2	60.7
Ba	11.5	30.9	20.0	4.9
La	17.7	6.9	22.9	8.2
Nb	225.5	41.9	67.1	20.8
Rb	19.0	5.8	9.8	2.2

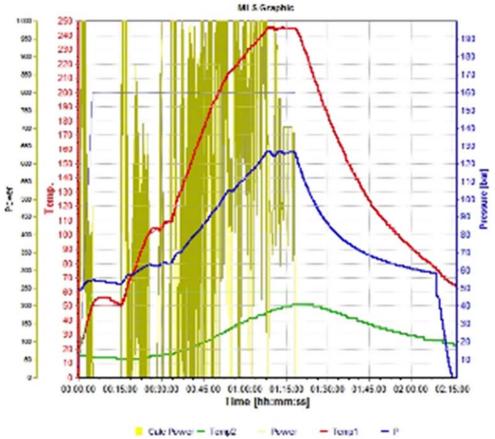


Figure 4: Temperature profile for the digestion with Ultra Clave. 6 mL 50% HNO₃ was added to the sample, before digestion, and then diluted to 60 mL with ultrapure water.

Step	Time [hh:mm:ss]	Temp 1 [°C]	Temp 2 [°C]	Press [bar]	Engery [Watt]
1	00:05:00	50	60	160	1 000
2	00:10:00	50	60	160	1 000
3	00:10:00	100	60	160	1 000
4	00:08:00	110	60	160	1 000
5	00:15:00	190	60	160	1 000
6	00:05:00	210	60	160	1 000
7	00:15:00	245	60	160	1 000
8	00:10:00	245	60	160	1 000

MIL Deserves

Table 15: Programme for digestion with Ultra Clave.

Table 16: Reference material from tea leaves GBW-07605 was used to determine the accuracy of the analysis of tea infusions by ICP-MS. Certified values for the elements are listed as well as the percent of measured mean concentrations. Empty rows are listed where no certified values are given. The values are given in μ g/g. These values are further discussed in chapter 5.1.

			Standard	Certified	
Element	Isotope	Average (min-max)	deviation	values	Accuracy (%)
Ag	109	0.0102 (0.00936-0.011)	0.000699	0.018	56.5
Al	27	2680 (2470-2820)	123	3000	89.2
As	75	0.256 (0.251-0.263)	0.00403	0.28	91.4
Au	197	0.0000641 (0.0000328-0.000128)	0.0000344		
В	11	13.5 (12.5-14.1)	0.626	15	90.3
Ba	137	56.7 (55.7-57.8)	0.704	58	97.8
Be	9	0.0241 (0.0233-0.0255)	0.000846	0.034	70.8
Bi	209	0.0552 (0.0528-0.06)	0.00248	0.063	87.6
Ca	43	4360 (4030-4570)	195	4300	101
Cd	114	0.0598 (0.058-0.0613)	0.00124	0.057	105
Ce	140	0.874 (0.85-0.905)	0.0232	1	87.4
Co	59	0.176 (0.17-0.18)	0.00394	0.18	97.6
Cr	52	0.715 (0.681-0.738)	0.0212	0.8	89.3
Cs	133	0.248 (0.238-0.252)	0.00569	0.29	85.4
Cu	63	16.7 (15.7-17.4)	0.57	17.3	96.8
Dy	163	0.0573 (0.0532-0.0608)	0.00252	0.074	77.4
Er	166	0.0366 (0.0336-0.0379)	0.00158		
Fe	57	254 (242-264)	8.3	264	96.1
Ga	69	0.192 (0.179-0.203)	0.00845		
Ge	72	0.0124 (0.0109-0.0159)	0.00186		
Hf	178	0.00399 (0.00313-0.00426)	0.000427	0.033	12.1
Hg	202	0.00959 (0.00859-0.00998)	0.000536	0.019	50.5
Ho	165	0.012 (0.0108-0.0127)	0.000624	0.019	63.1
In	115	0.0017 (0.00167-0.00173)	0.0000217		
Ir	193	0.0000105 (-0.000000399-0.0000359)	0.0000135		
Κ	39	15900 (15300-16300)	337	16600	95.8
La	139	0.506 (0.489-0.528)	0.0155	0.6	84.3
Li	7	0.328 (0.314-0.342)	0.0101	0.36	91
Lu	175	0.00526 (0.00501-0.00549)	0.000185	0.007	75.2
Mg	25	1600 (1530-1690)	56.5	1700	94.1
Mn	55	1170 (1150-1180)	16	1240	94.5
Mo	98	0.0386 (0.0359-0.0436)	0.00277	0.038	102
Na	23	44.5 (42.6-46.4)	1.27	44	101
Nb	93	0.0355 (0.0284-0.0397)	0.00394		
Nd	146	0.366 (0.351-0.384)	0.0111	0.44	83.2
Ni	60	4.46 (4.21-4.78)	0.2	4.6	96.9
Р	31	2970 (2890-3120)	80.2	2840	105
Pb	208	3.79 (3.7-3.85)	0.0534	4.4	86.1
Pr	141	0.0971 (0.0934-0.103)	0.00321	0.12	80.9
Pt	195	0.0000614 (0.0000315-0.000126)	0.0000403		
Rb	85	70.2 (67.8-73)	1.89	74	94.9
Rh	103	-0.000241 (-0.0003450.0000867)	0.0000943		
S	34	2620 (2460-2780)	107	2450	107
Sb	121	0.0531 (0.0496-0.0614)	0.00429	0.056	94.9

			Standard	Certified	
Element	Isotope	Average (min-max)	deviation	values	Accuracy (%)
Sc	45	0.0867 (0.0816-0.0893)	0.00284	0.085	102
Se	78	0.0749 (0.0685-0.0869)	0.00625	0.072	104
Si	30	653 (621-672)	17.2	2100	31.1
Sm	147	0.0687 (0.066-0.0721)	0.00194	0.085	80.8
Sn	118	0.138 (0.134-0.143)	0.00327		
Sr	88	14.2 (13.6-14.6)	0.368	15.2	93.6
Та	181	0.00139 (0.000858-0.00164)	0.000273		
Tb	159	0.0102 (0.00969-0.0109)	0.000424	0.011	92.6
Th	232	0.0522 (0.0496-0.0548)	0.00177	0.061	85.6
Ti	47	9.36 (7.51-10.7)	1.13	24	39
Tl	205	0.026 (0.0253-0.0264)	0.000412		
Tm	169	0.0056 (0.00521-0.00575)	0.000205		
U	238	0.0142 (0.0136-0.0145)	0.000341		
V	51	0.447 (0.425-0.474)	0.0179	0.86	52
W	182	0.0255 (0.0202-0.0404)	0.0077		
Y	89	0.333 (0.32-0.362)	0.0157	0.36	92.4
Yb	172	0.0355 (0.0334-0.0365)	0.0011	0.044	80.7
Zn	67	27 (26.1-27.9)	0.638	26.3	103
Zr	90	0.125 (0.1-0.135)	0.0128		

Table 17 Certified reference material from Institute of Nuclear Chemistry and Technology Warzawa-Poland, Polish Virginia Tobacco Leaves was used to determine the accuracy of the analysis of tea infusions by ICP-MS. Certified values for the elements are listed as well as the percent of measured mean concentrations. Empty rows are listed where no certified values are given. The values are given in μ g/g. See discussion in chapter 5.1.

			Standard		Accuracy
Elements	Isotopes	Average (min-max)	deviation	Certified value	(%)
Ag	109	0.0189 (0.0164-0.0209)	0.00147	0.0191	98.8
Al	27	347 (305-422)	41.3	252	137.6
As	75	0.13 (0.116-0.156)	0.0141	0.138	94.1
Au	197	0.000729 (0.000555-0.00114)	0.000216		
В	11	34.8 (30-41.4)	3.8	33.4	104.2
Ва	137	42.2 (36.2-51.1)	4.88	41.6	101.5
Be	9	0.0233 (0.0197-0.0295)	0.0037		
Bi	209	0.145 (0.122-0.215)	0.0348	0.14	103.3
Ca	43	24400 (20700-29800)	3020	22970	106.4
Cd	114	2.21 (1.91-2.64)	0.235	2.23	99.0
Ce	140	0.718 (0.634-0.816)	0.0819	0.743	96.6
Co	59	0.137 (0.118-0.166)	0.016	0.154	88.7
Cr	52	0.643 (0.574-0.791)	0.0806	0.911	70.6
Cs	133	0.0225 (0.0198-0.027)	0.00249	0.0266	84.8
Cu	63	4.49 (3.95-5.48)	0.528	5.12	87.7
Dy	163	0.0379 (0.0341-0.0414)	0.00287		
Er	166	0.0204 (0.0176-0.0237)	0.00228	0.0185	110.4
Fe	57	277 (245-334)	30.4	258	107.3
Ga	69	0.0695 (0.0624-0.0843)	0.00818		
Ge	72	0.0121 (0.00932-0.0162)	0.00239		
Hf	178	0.00417 (0.00299-0.00488)	0.000832	0.161	2.6
Hg	202	0.0224 (0.0202-0.0269)	0.0024	0.0232	96.5
Ho	165	0.00733 (0.00659-0.00828)	0.000686		

Elements	Instance	Average (min mer)	Standard deviation	Certified value	Accuracy (%)
In	Isotopes 115	Average (min-max) 0.000466 (0.00039-0.000527)	0.0000509	Certified value	(%)
In Ir	113		0.0000526		
K	39	23900 (21400-29100)	2810	26400	90.5
La	139	0.488 (0.441-0.563)	0.0477	0.54	90.4
Li	137	3.82 (3.31-4.61)	0.445	3.35	114.1
Lu	, 175	0.00215 (0.00185-0.00242)	0.000239	5.55	117.1
Mg	25	2250 (1930-2700)	260	2410	93.2
Mn	55	128 (110-157)	15.4	136	94.4
Мо	98	0.403 (0.351-0.495)	0.0488	0.396	101.8
Na	23	70.2 (62.1-87.1)	9.88	62.4	112.4
Nb		0.0418 (0.0341-0.0467)	0.00501		
Nd		0.305 (0.271-0.344)	0.0306	0.322	94.7
Ni	60	1.22 (1.07-1.47)	0.136	1.49	81.9
Р	31	2700 (2320-3190)	283	2420	111.4
Pb	208		0.0855	0.972	68.1
Pr	141	0.0815 (0.0715-0.093)	0.00906	0.0829	98.4
Pt	195	0.00034 (0.0000978-0.000525)	0.000148		
Rb	85	5.49 (4.71-6.76)	0.695	5.97	92.0
Rh	103	0.000902 (0.000649-0.00105)	0.000162		
S	34	3860 (3250-4790)	518	3780	102.0
Sb	121	0.0263 (0.0221-0.0345)	0.00427	0.0372	70.6
Sc	45	0.05 (0.0446-0.0602)	0.00554	0.0595	84.1
Se	82	0.0303 (0.0266-0.0394)	0.00474		
Si	30	982 (880-1170)	102		
Sm	147	0.0503 (0.0446-0.0567)	0.00471	0.058	86.7
Sn	118	0.0367 (0.0303-0.0434)	0.00512	0.0311	118.0
Sr	88	125 (110-153)	14.8	133	94.2
Та	181	0.000937 (0.000614-0.00118)	0.000246	0.0109	8.6
Tb	159	0.00692 (0.0065-0.00758)	0.000488	0.0081	85.5
Th	232	0.075 (0.0656-0.0928)	0.00968	0.0888	84.5
Ti	47	14.1 (11.9-15.5)	1.62	12.3	114.9
Tl	205	0.0221 (0.0196-0.0268)	0.00254	0.0228	96.8
Tm	169	0.00266 (0.00227-0.00312)	0.000332		
U	238	0.0141 (0.0127-0.0159)	0.0012	0.022	64.1
V	51	0.396 (0.347-0.486)	0.0475	0.405	97.7
W	182	0.0149 (0.0131-0.0179)	0.00181		
Y	89	0.249 (0.221-0.292)	0.0251	0.218	114.0
Yb	172	0.0155 (0.0132-0.0174)	0.0017	0.0283	54.9
Zn		40.8 (35-49.8)	4.93	43.6	93.5
Zr	90	0.156 (0.117-0.179)	0.0247		

In **Table 18** the average concentrations of F in the standard solutions are given, with the drawn calibration curve in **Figure 5**. In **Table 19** the data from each of the 70 Norwegian infusions are listed, together with calculated concentrations of F before and after corrections, tea in grams and final volume.

Table 20 shows the concentrations of F in infusions infused for 30 minutes. The calculated RSDs for the triplicates N16 and N31 was 33.1 and 5.4, respectively.

 Table 18: Results from the calculation of the standard curve. Standard solutions of NaF were used.

C (F ⁻⁾	log C	Average (mV)
0.0000491	-4.308918508	155
0.0000982	-4.007888512	147
0.0002455	-3.609948504	129
0.0003437	-3.463820468	119
0.000491	-3.308918508	114
0.002455	-2.609948504	71
0.007365	-2.132827249	42
0.02455	-1.609948504	12

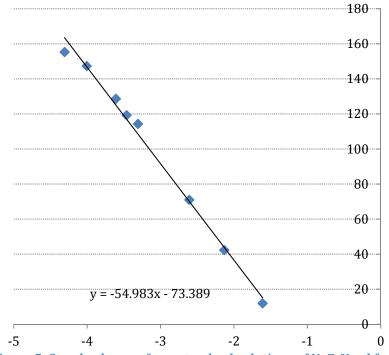


Figure 5: Standard curve from standard solutions of NaF. Used for calibrations of F level in Norwegian tea infusions.

Table 19: Raw data from determination of fluoride in the Norwegian tea infusions. Number of the infusions, name, loose tea (L) or tea bag (T), amount of F before corrections and after corrected for gram of tea and final volume. Presented average results can be seen in 4.3 Fluoride and discussions in section 5.22.

Number	Tea	L/ T	F ⁻ (mg/L)	Tea (g)	Final volume	F- (mg/L)/g
N1	Lipton Yellow Label	L	1.08	1.029	101.505	1.06
N2	Lipton Yellow Label	Т	7.32	2.453	100.844	3.01
N3	Russian Earl Grey	L	1.18	1.081	100.885	1.1
N4	Green Tea Mandarin Orange	Т	6.18	1.92	103.168	3.32
N5	White tea Raspberry	Т	6.73	1.627	104.34	4.31
N6	Indian Chai	Т	3.11	1.639	100.452	1.91
N7	Greeen Gunpowder	Т	6.45	2.022	104.843	3.34
N8	Green tea	Т	3.70	1.983	103.61	1.93
N9	Peach & Mango	Т	3.86	1.99	100.215	1.94
N10	Forest Fruit	Т	3.11	1.9	101.649	1.67
N11	Blue Fruit	Т	3.39	1.992	100.594	1.71
N12	Russian Earl Grey	Т	5.67	2.372	101.131	2.42
N13	Earl Grey	Т	4.99	2.078	100.163	2.41
N14	Prince of Wales	L	1.61	1.059	100.317	1.53
N15	Prince of Wales	Т	1.76	2.277	100.412	0.778
N16	Earl Grey	L	0.78	1.049	100.149	1.18
N17	Earl Grey	Т	2.10	2.239	103.738	0.975
N18	Lady Grey	L	0.85	1.087	100.948	0.793
N19	Lady Grey	Т	2.30	2.345	109.965	1.08
N20	English Breakfast tea	L	2.62	1.048	102.214	2.55
N21	English Breakfast tea	Т	4.58	2.331	99.754	1.96
N22	Green tea& Cranberry	Т	3.39	2.3	100.58	1.48
N23	Green tea & apple	Т	1.76	2.34	102.11	0.77
N24	Pure green tea	Т	2.62	2.304	100.014	1.14
N25	Green tea & orange	Т	2.20	2.313	100.292	0.953
N26	Green tea & lemon	Т	2.01	2.35	100.867	0.864
N27	Green tea & lemon eco.	Т	4.39	1.762	101.035	2.52
N28	Voyage Indian Chai	Т	4.58	2.309	100.275	1.99
N29	Voyage Brazilian Baia	Т	3.86	2.598	106.382	1.58
N30	White tea & pomegranate	Т	2.62	1.872	100.486	1.4
N31	Apple, cinnamon & raisins	Т	3.54	2.319	105.448	1.71
N32	Blackcurrant	Т	2.85	2.279	127.975	1.6
N33	Four Red Fruits	Т	4.21	2.249	101.973	1.91
N34	Passionfruit, Mango, Orange	Т	3.54	2.244	99.763	1.58
N35	Darjeeling tea	Т	3.70	2.265	101.484	1.66
N36	Earl Grey tea eco.	Т	6.18	2.219	100.201	2.79
N37	Earl Grey Fair trade	Т	3.39	2.727	100.999	1.26
N38	Earl Grey	Т	11.19	2.116	107.232	5.67
N39	Earl Grey	Т	7.32	2.457	102.397	3.05
N40	Earl Grey	Т	4.58	2.495	113.147	2.08
N41	Darjeeling tea	L	2.73	1.121	100.735	2.46
N42	Ceylon Breakfast	L	2.98	1.11	102.447	2.75
N43	Tanzania	L	10.72	1.003	100.331	10.7
N44	White China tea eco	L	1.69	1	103.029	1.74
N45	Krydder te	L	2.20	0.992	103.137	2.29
N46	Jasmin tea	L	1.93	1.073	104.477	1.88
N47	Lapsang Souchong	L	1.23	1.005	103.191	1.27

N48	Keemun eco	L	2.62	1.084	100.103	2.42
N49	Japan Kukicha	L	1.48	1.091	101.383	1.37
N50	Søndags te	L	0.61	1.065	100.875	0.579
N51	Assam Gbop	L	4.03	1.03	102.715	4.02
N52	Japan Bancha eco	L	1.84	1.037	102.015	1.81
N53	Assam Tgfop 1	L	1.93	1.02	100.622	1.9
N54	Kaktus te	L	2.51	1.162	100.103	2.16
N55	Blå blomst te	L	2.51	1.023	102.63	2.51
N56	Darjeeling	L	7.32	1.052	99.999	6.96
N57	Ceylon Bop	L	5.21	1.047	100.095	4.98
N58	Samowar Douchka	L	6.45	1.038	102.167	6.35
N59	Skomakerens julete	L	3.39	1.018	100.09	3.34
N60	Formosa Oolong	L	6.45	1.061	102.658	6.24
N61	Golden Nepal	L	8.68	1.155	100.839	7.58
N62	Yunnan Pu Erh	L	6.45	1.013	102.808	6.54
N63	Mango te	L	14.41	1.212	103.467	16.8
N64	Gunpowder eco	L	9.85	1.099	103.503	9.28
N65	Mexican Mango	L	21.95	1.021	99.957	34.6
N66	Advents te	L	12.17	1.064	104.223	11.9
N67	Choui Fong	L	8.68	1.063	100.957	8.24
N68	Bengal Fire	L	9.05	1.035	101.382	8.87
N69	Rwanda Grønn	L	7.97	1.046	101.574	7.74
N70	Bjørnebær te	L	5.67	1.093	100.028	5.19
Average						3.74
Min						0.579
Maks						34.6
Std.deviatio	on					4.82

Table 20: Fluoride content in tea infused in 30 minutes.. Number, name of the tea, loose tea (L) or tea bag (T), Fluoride content before and after corrections are given here. Presented average results can be seen in 4.3 Fluoride and discussions in section 5.22.

Number	Tea	L/T	F- (mg/L)	Tea (g)	Final volume	F-(mg/L)/g tea
N1	Lipton Yellow Label	L	1.35	1.237	100.102	1.09
N2	Lipton Yellow Label	Т	11.67	2.43	100.118	4.81
N16	Earl Grey	L	2.62	1.124	103.648	2.41
N17	Earl Grey	Te	8.32	2.2	102.589	3.88

Α	R2X	R2X(cum)	Eigenvalue	Q2	Limit	Q2(cum)	Significance	Iterations
0	Cent.							
1	0.566	0.566	25.5	0.535	0.0326	0.535	R1	7
2	0.0973	0.663	4.38	0.148	0.0332	0.604	R1	28
3	0.0776	0.741	3.49	0.141	0.0338	0.66	R1	25
4	0.0381	0.779	1.72	-0.0643	0.0345	0.638	R2	35

Table 21: Raw data from the PCA modelling.

Type: PCA-X Observations (N)=90, Variables (K)=45 (X=45, Y=0)

	Mean (Pol)	Mean (Nor)	t-value	df	р	Valid N (Pol)	Valid N (Nor)	Std.Dev. (Pol)	Std.Dev. (Nor)	F-ratio (Variances)	p (Variances)
Y	0.201	0.265	-2.30804	00	0.02334187589881450	· · /	70	0.192	· /	· /	0.01/09/
	0.201 0.017	0.365	-2.30804	88 88	0.02334187389881430	20	70 70	0.182 0.016	0.301 0.057	2.7278 13.1965	0.016884 0.000000
Cd		0.043				20					
Sn	0.008	0.036	-0.76955	88	0.44362851020500800	20	70	0.007	0.160	483.6448	0.000000
Cs	4.137	4.954	-0.50471	88	0.61502471039755900	20	70	9.115	5.386	2.8636	0.001506
Ce	0.122	0.230	-1.72843	88	0.08741765420923050	20	70	0.156	0.266	2.8960	0.011745
Pr	0.024	0.040	-1.83982	88	0.06916643272023030	20	70	0.021	0.038	3.2343	0.005848
Nd	0.092	0.165	-2.07931	88	0.04049908140777170	20	70	0.082	0.151	3.3684	0.004488
Sm	0.022	0.039	-2.08612	88	0.03986190693089410	20	70	0.018	0.035	3.6459	0.002646
Tb	0.005	0.008	-2.12892	88	0.03605488235292510	20	70	0.004	0.007	2.8518	0.012907
Dy	0.029	0.051	-2.26125	88	0.02620883373262040	20	70	0.025	0.042	2.8604	0.012672
Ho	0.007	0.012	-2.15746	88	0.03369501707327080	20	70	0.006	0.010	2.3958	0.035713
Er	0.020	0.038	-2.33613	88	0.02175704650944070	20	70	0.019	0.032	2.8477	0.013022
Tm	0.004	0.006	-2.15381	88	0.03398864415010130	20	70	0.003	0.005	2.6311	0.020909
Yb	0.021	0.042	-2.55242	88	0.01242226388595620	20	70	0.021	0.035	2.7160	0.017326
Lu	0.004	0.007	-2.03333	88	0.04503202762948840	20	70	0.004	0.006	2.1775	0.059831
Hf	0.001	0.001	0.96913	88	0.33513817983928800	20	70	0.001	0.001	1.1575	0.637231
Tl	0.272	0.395	-1.59197	88	0.11497689513659200	20	70	0.287	0.311	1.1722	0.722980
Pb	0.467	0.569	-0.63090	88	0.52974029759616500	20	70	0.893	0.544	2.6984	0.002816
Th	0.003	0.009	-2.00618	88	0.04790780268473920	20	70	0.003	0.013	20.7422	0.000000
U	0.008	0.015	-1.63106	88	0.10645181965449100	20	70	0.012	0.017	1.7864	0.156959
Li	0.314	0.791	-2.96054	88	0.00394637898443970	20	70	0.279	0.703	6.3609	0.000044
В	32.671	53.901	-2.75780	88	0.00707605467261998	20	70	24.693	31.746	1.6529	0.219916
Na	423.140	2480.975	-2.03331	88	0.04503405397114340	20	70	1152.426	4467.073	15.0252	0.000000
Mg	3961.546	7103.114	-3.74657	88	0.00031978010399350	20	70	1436.587	3657.971	6.4836	0.000038
Al	2055.851	3783.172	-2.74697	88	0.00729448346500683	20	70	1571.190	2676.672	2.9022	0.011591
Si	103.500	276.291	-3.51184	88	0.00070453095107239	20	70	100.833	212.668	4.4484	0.000657
Р	8551.828	11712.625	-2.89265	88	0.00481348352332710	20	70	2033.133	4748.615	5.4551	0.000144
S	6656.824	11161.070	-3.36165	88	0.00114802061381252	20	70	1775.917	5894.787	11.0177	0.000000
Κ	102263.785	148021.831	-3.65215	88	0.00044107304487797	20	70	20492.469	54759.764	7.1406	0.000018
Ca	678.809	1939.684	-2.82773	88	0.00580337068341468	20	70	448.778	1972.051	19.3096	0.000000

 Table 22: Results from Student T-test between Norwegian and Polish tea infusions. Discussed in chapter 5.

	Mean (Pol)	Mean (Nor)	t-value	df	р	Valid N	Valid N	Std.Dev. (Pol)	Std.Dev.	F-ratio	p (Variances)
						(Pol)	(Nor)		(Nor)	(Variances)	
Ti	0.127	0.264	-4.08886	88	0.00009561520125703	20	70	0.034	0.148	19.4103	0.000000
V	0.062	0.077	-0.94076	88	0.34940150637820800	20	70	0.042	0.065	2.4390	0.032319
Cr	1.656	1.476	0.41406	88	0.67983765258491700	20	70	1.923	1.662	1.3379	0.378836
Mn	1136.143	2041.120	-2.73358	88	0.00757319838930896	20	70	718.367	1425.572	3.9381	0.001559
Fe	8.221	21.874	-3.19214	88	0.00195893443192766	20	70	6.707	18.722	7.7917	0.000009
Co	0.514	1.189	-3.54325	88	0.00063505240608641	20	70	0.308	0.834	7.3460	0.000014
Ni	16.373	34.542	-3.59543	88	0.00053375875719667	20	70	8.031	22.109	7.5780	0.000011
Cu	28.020	49.722	-2.93515	88	0.00425220363622437	20	70	10.575	32.461	9.4235	0.000002
Zn	66.216	101.182	-2.91353	88	0.00452971177435823	20	70	22.720	52.107	5.2599	0.000190
Sr	3.970	11.462	-3.18695	88	0.00199067948979011	20	70	3.525	10.306	8.5479	0.000004
Ru	0.004	0.011	-6.53041	88	0.00000000408399688	20	70	0.002	0.005	7.8851	0.000008
Ba	11.580	25.209	-2.30051	88	0.02378390500016080	20	70	14.678	25.237	2.9564	0.010339
La	0.098	0.177	-1.92070	88	0.05800721758291630	20	70	0.090	0.179	3.9599	0.001500
Nb	0.002	0.005	-5.13665	88	0.00000166376473023	20	70	0.001	0.003	3.1202	0.007365
Rb	363.356	466.556	-2.04996	88	0.04334463419279380	20	70	150.507	209.863	1.9443	0.105773

 Table 23: Results from Student T-test between infusions made of loose tea or tea bag. Discussed in chapter 5.

	Mean (Tea	Mean (Loose	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	p (Variances)
	bag)	tea)				(Tea bag)	(Loose tea)	(Tea bag)	(Loose tea)	(Variances)	
Y	0.518	0.163	7.46171	88	0.0000000005743599	42	48	0.280	0.162	2.9814	0.000372
Cd	0.058	0.019	3.87648	88	0.00020375831806906	42	48	0.069	0.013	27.9173	0.000000
Sn	0.049	0.013	1.21203	88	0.22874590170632200	42	48	0.206	0.018	134.8285	0.000000
Cs	6.816	2.984	2.97852	88	0.00374223534828911	42	48	7.486	4.530	2.7303	0.001032
Ce	0.347	0.082	5.90149	88	0.00000006590515839	42	48	0.307	0.044	47.8252	0.000000
Pr	0.058	0.017	6.82140	88	0.00000000109469814	42	48	0.038	0.017	5.3896	0.000000
Nd	0.239	0.070	6.99513	88	0.00000000049507450	42	48	0.150	0.068	4.9525	0.000000
Sm	0.057	0.016	7.69684	88	0.00000000001919499	42	48	0.034	0.014	6.2699	0.000000
Tb	0.011	0.004	7.30748	88	0.0000000011745175	42	48	0.006	0.003	3.1855	0.000166
Dy	0.074	0.022	7.81795	88	0.0000000001089080	42	48	0.040	0.020	3.8078	0.000016
Ho	0.017	0.005	7.53882	88	0.00000000004012061	42	48	0.009	0.005	3.2609	0.000123
Er	0.053	0.017	7.26606	88	0.0000000014225736	42	48	0.030	0.017	3.1662	0.000179
Tm	0.009	0.003	7.14759	88	0.0000000024574185	42	48	0.005	0.003	3.1599	0.000183
Yb	0.059	0.019	6.94768	88	0.0000000061520565	42	48	0.033	0.020	2.7036	0.001152
Lu	0.010	0.003	7.08782	88	0.0000000032353735	42	48	0.006	0.003	2.8187	0.000718

	Mean (Tea	Mean (Loose	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	p (Variances)
	bag)	tea)				(Tea bag)	(Loose tea)	(Tea bag)	(Loose tea)	(Variances)	
Hf	0.002	0.001	2.46199	88	0.01576630601069790	42	48	0.001	0.001	2.3708	0.004630
T1	0.485	0.265	3.59577	88	0.00053315431283767	42	48	0.355	0.217	2.6817	0.001261
Pb	0.686	0.424	1.98589	88	0.05015782186683010	42	48	0.646	0.603	1.1495	0.641309
Th	0.013	0.003	4.14080	88	0.00007917452512575	42	48	0.016	0.002	47.7931	0.000000
U	0.022	0.006	5.26468	88	0.00000098263798985	42	48	0.020	0.006	10.4185	0.000000
Li	1.085	0.334	6.48398	88	0.00000000503075500	42	48	0.773	0.204	14.3887	0.000000
В	71.843	29.357	8.63665	88	0.0000000000022965	42	48	27.640	18.668	2.1923	0.009883
Na	4093.103	212.932	5.12313	88	0.00000175824428551	42	48	5245.830	229.123	524.1912	0.000000
Mg	9079.493	4064.795	9.47024	88	0.00000000000000441	42	48	3081.386	1864.671	2.7308	0.001030
Al	5403.179	1645.949	10.12473	88	0.00000000000000020	42	48	2307.055	1064.250	4.6993	0.000001
Si	373.013	119.663	7.35234	88	0.0000000009541757	42	48	217.049	93.290	5.4131	0.000000
Р	12911.460	9346.645	4.07949	88	0.00009890931007479	42	48	4812.458	3438.353	1.9590	0.026721
S	14177.065	6645.304	8.62698	88	0.0000000000024040	42	48	5692.950	1922.293	8.7707	0.000000
Κ	172122.570	107867.832	7.24675	88	0.0000000015553315	42	48	54660.977	26284.743	4.3246	0.000003
Ca	2741.074	713.103	6.29203	88	0.00000001185229943	42	48	2183.807	443.481	24.2482	0.000000
Ti	0.303	0.173	4.77015	88	0.00000725213320091	42	48	0.177	0.059	9.1430	0.000000
V	0.108	0.043	5.89830	88	0.0000006682431059	42	48	0.072	0.024	8.6347	0.000000
Cr	2.455	0.694	5.63855	88	0.00000020429089377	42	48	1.864	1.027	3.2956	0.000108
Mn	2744.543	1048.551	7.59321	88	0.0000000003113900	42	48	1290.886	799.168	2.6092	0.001703
Fe	26.369	12.251	4.09108	88	0.00009484854735767	42	48	21.502	9.805	4.8086	0.000001
Co	1.507	0.629	6.19367	88	0.0000001832518841	42	48	0.799	0.534	2.2422	0.007993
Ni	45.399	17.471	8.24524	88	0.0000000000146044	42	48	21.683	8.430	6.6164	0.000000
Cu	65.797	26.614	7.95997	88	0.0000000000559373	42	48	30.400	14.495	4.3986	0.000002
Zn	124.005	66.642	6.74748	88	0.0000000153181740	42	48	49.214	30.305	2.6373	0.001516
Sr	16.515	3.918	8.00373	88	0.0000000000455399	42	48	10.574	2.521	17.5932	0.000000
Ru	0.012	0.008	3.36048	88	0.00115233452994463	42	48	0.005	0.005	1.1516	0.637078
Ba	38.922	7.531	8.20472	88	0.0000000000176791	42	48	25.958	5.114	25.7682	0.000000
La	0.257	0.074	6.20149	88	0.00000001770267650	42	48	0.188	0.076	6.1141	0.000000
Nb	0.006	0.004	4.52737	88	0.00001863982556006	42	48	0.003	0.002	1.6364	0.103486
Rb	550.207	350.361	5.35990	88	0.00000066165270863	42	48	191.943	161.761	1.4080	0.256677

	Mean (no-flav)	Mean (flav)	t-value	df	р	Valid N	Valid N	Std.Dev. (no-	Std.Dev.	F-ratio	p (Variances)
	0.0.0	0.444	2 00 1 2 1	0.0	0.00400040450504	(no-flav)	(flav)	flav)	(flav)	(Variances)	0.004450
Y	0.268	0.444	-2.89131	88	0.00483219178784	59	31	0.24	0.33	1.8977	0.036673
Cd	0.031	0.050	-1.65508	88	0.10147041094051	59	31	0.06	0.04	2.4509	0.009121
Sn	0.014	0.061	-1.52316	88	0.13130323392160	59	31	0.02	0.24	216.5173	0.000000
Cs	4.000	6.242	-1.60500	88	0.11207731884422	59	31	6.31	6.28	1.0088	1.000000
Ce	0.166	0.282	-2.15646	88	0.03377549143909	59	31	0.22	0.28	1.5722	0.139691
Pr	0.030	0.048	-2.40802	88	0.01812639458869	59	31	0.03	0.04	2.1231	0.014029
Nd	0.122	0.201	-2.59701	88	0.01102111995370	59	31	0.12	0.17	2.0213	0.021689
Sm	0.028	0.049	-3.07966	88	0.00276469440805	59	31	0.03	0.04	2.3623	0.005010
Tb	0.006	0.010	-3.15918	88	0.00216889802020	59	31	0.01	0.01	1.9053	0.035507
Dy	0.037	0.064	-3.18124	88	0.00202618468806	59	31	0.03	0.05	2.0611	0.018300
Ho	0.009	0.014	-3.01623	88	0.00334539812772	59	31	0.01	0.01	2.0252	0.021336
Er	0.027	0.047	-3.09618	88	0.00262964191640	59	31	0.02	0.03	1.9801	0.025863
Tm	0.005	0.008	-2.73087	88	0.00763074984533	59	31	0.00	0.01	2.0145	0.022330
Yb	0.030	0.053	-3.22257	88	0.00178216808211	59	31	0.03	0.04	2.0006	0.023694
Lu	0.005	0.008	-2.72006	88	0.00786421427790	59	31	0.00	0.01	1.9574	0.028474
Hf	0.001	0.001	0.37413	88	0.70920676040434	59	31	0.00	0.00	1.4514	0.269044
T1	0.319	0.461	-2.11333	88	0.03740369851308	59	31	0.28	0.34	1.4241	0.247237
Pb	0.517	0.603	-0.61284	88	0.54156038687818	59	31	0.65	0.60	1.1648	0.660732
Th	0.006	0.012	-2.51882	88	0.01358218898187	59	31	0.01	0.02	3.4727	0.000048
U	0.010	0.020	-2.89580	88	0.00476967093955	59	31	0.01	0.02	2.0466	0.019469
Li	0.528	0.983	-3.25729	88	0.00159866430257	59	31	0.54	0.78	2.0979	0.015631
В	42.644	61.631	-2.82466	88	0.00585464962450	59	31	30.47	29.98	1.0331	0.946042
Na	1325.688	3352.111	-2.30306	88	0.02363321596455	59	31	3179.06	5158.68	2.6332	0.001566
Mg	5915.030	7337.489	-1.83478	88	0.06991645727642	59	31	3644.60	3185.74	1.3088	0.426935
Al	2916.557	4318.135	-2.53252	88	0.01309795075764	59	31	2615.33	2243.75	1.3586	0.364280
Si	189.944	329.151	-3.19993	88	0.00191218036806	59	31	174.32	232.53	1.7794	0.060204
Р	10858.378	11299.226	-0.44115	88	0.66018576234628	59	31	4816.39	3831.63	1.5801	0.174721
S	9008.589	12351.762	-2.80191	88	0.00624666864521	59	31	4598.33	6632.34	2.0803	0.016852
Κ	131891.605	149199.973	-1.48986	88	0.13983743931071	59	31	55549.68	45604.12	1.4837	0.241645
Ca	1123.236	2680.103	-4.18378	88	0.00006765994118	59	31	999.20	2514.84	6.3346	0.000000
Ti	0.204	0.291	-2.86431	88	0.00522486102716	59	31	0.08	0.21	6.0269	0.000000
V	0.061	0.099	-2.92573	88	0.00437118696495	59	31	0.05	0.08	2.6355	0.001550
Cr	1.407	1.723	-0.82966	88	0.40897731748092	59	31	1.81	1.53	1.3881	0.331144

 Table 24: Results from Student T-test between tea with flavour or no flavour. Discussed in chapter 5.

	Mean (no-flav)	Mean (flav)	t-value	df	р	Valid N	Valid N	Std.Dev. (no-	Std.Dev.	F-ratio	p (Variances)
						(no-flav)	(flav)	flav)	(flav)	(Variances)	
Mn	1547.946	2395.886	-2.94597	88	0.00411928457953	59	31	1117.40	1588.93	2.0220	0.021624
Fe	14.260	27.557	-3.60387	88	0.00051887522720	59	31	13.60	21.30	2.4515	0.003413
Co	0.844	1.409	-3.36909	88	0.00112097379111	59	31	0.66	0.92	1.9528	0.029043
Ni	25.882	39.302	-2.97358	88	0.00379733004509	59	31	17.59	24.83	1.9933	0.024447
Cu	40.239	53.769	-2.04293	88	0.04405116284544	59	31	27.71	33.62	1.4721	0.206186
Zn	89.996	99.912	-0.90617	88	0.36731971827927	59	31	46.70	54.06	1.3398	0.336540
Sr	6.881	15.347	-4.28453	88	0.00004663766404	59	31	6.96	11.79	2.8654	0.000584
Ru	0.008	0.012	-3.11098	88	0.00251384099336	59	31	0.01	0.01	1.0050	1.000000
Ba	16.887	32.254	-3.02585	88	0.00325057581390	59	31	20.25	27.29	1.8153	0.051834
La	0.133	0.211	-2.16822	88	0.03284087359917	59	31	0.13	0.21	2.3733	0.004778
Nb	0.004	0.005	-2.32319	88	0.02247512100597	59	31	0.00	0.00	1.1007	0.737447
Rb	432.700	464.412	-0.70537	88	0.48244191274224	59	31	188.34	227.84	1.4634	0.213103