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ABSTRACT

In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather

prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in ad-

dition to the one subject to forecasting is common for statistical calibration of deterministic forecasts.

However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A

Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for

the meanmodel. The splinemodel allows both wind speed and wind direction to be included nonlinearly. The

proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble

forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for

lead times from 112 to 1108 h. An improvement in the continuous ranked probability score is seen for

approximately 85% of the locations using the proposed method compared to standard BMA based on only

wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds

there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology

can be extended to include more NWP variables in the calibration and can also be applied to other variables.

1. Introduction

Ensemble forecasts have become an essential tool in

making optimal decisions in weather-dependent settings.

However, because of deficiencies in the models and the

perturbation methods, raw ensemble forecasts are often

not reliable in a probabilistic sense (e.g., Hamill and

Colucci 1997). To better calibrate ensembles to local

conditions, a variety of statistical methods have been

proposed during the last decade. The overall aim is to

provide probabilistic forecasts that are calibrated and

sharp, that is, that can be trusted and are as certain as

possible (Gneiting et al. 2007). Many methods assume a

parametric probability distribution for the variable of

interest and let its parameters depend on the ensemble

forecasts in various ways. Most often the mean of the

distribution is characterized by each ensemble member,

while the spread is related to the ensemble variability (e.g.,

Gneiting et al. 2005; Thorarinsdottir and Gneiting 2010).

Mixtures of parametric distributions provide more flexi-

bility and more closely resemble the weather-dependent

variations in the ensembles. The basic idea is that each

ensemble member is dressed with a probability distribu-

tion and that the sum of these constitutes the probabilistic

forecast. The most widely used mixture approach is

Bayesian model averaging (BMA; Raftery et al. 2005;

Sloughter et al. 2010). Other methods make no distribu-

tional assumptions and focus on quantiles. In these,

quantiles are modeled separately as functions of ensemble

members or ensemble statistics to better account for var-

iations seen in the ensemble distributions and data (e.g.,

Bremnes 2004; Taillardat et al. 2016).

In contrast to statistical postprocessing of de-

terministic forecasts, most of the methods for ensembles

only use the ensemble forecast of the variable under
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study as a predictor variable. There may be several rea-

sons for this practice. First, the total number of predictors

is increased by a factor equal to the number of ensemble

members, and dealing with high-dimensional grouped

data is challenging. Second, more variables often call for

more complex nonlinear relationships, which are not

straightforward to introduce. However, there are a few

recent studies that demonstrate that including additional

variables in the ensemble can improve the postprocessed

forecast. Scheuerer and Hamill (2015) used precipitable

water in precipitation forecasting with a shifted, censored

gamma distribution and concluded it had a positive im-

pact during the warm season. Taillardat et al. (2016)

added ensemble statistics of several variables in quantile

regression forests and demonstrated improvements of

about 3% and 6% for wind speed forecasts at two sites.

Messner et al. (2017) included variable selection directly

in the parameter estimation using boosting and showed

improvements of about 4%–12%depending on lead time

for minimum and maximum temperature forecasting at

five stations. Common for all of these methods is the use

of summarizing statistics like the ensemble mean and

standard deviation.

The objective of this article is to propose and test a

flexible methodology that allows for including the com-

plete ensemble forecast of several variables within aBMA

framework. The basic idea is to allow for additional var-

iables in the conditional mean of each member and to use

flexible regression methods for describing possible non-

linearities. The approach is demonstrated for wind speed

forecasting using ensemble forecasts of wind speed and

wind direction for Norwegian synoptic stations. A large

number of these stations are located inmountains, narrow

fjords, valleys, and along the rugged coastline, which may

strongly affect local wind conditions. These small-scale

features are not well represented in current ensemble

prediction systems, and statistical calibrationmethods can

often improve local wind forecasts considerably. Further,

the relation between model and locally observed wind

speeds may vary with flow direction. Hence, it is reason-

able to include wind direction as additional predictive

information. One practical use of wind forecasts is for

operations that have a threshold formaximumwind speed

(e.g., construction work). Therefore, the probabilistic

forecasts are evaluated for their probability of exceeding

thresholds as well as their overall performance.

The remainder of this article is structured as follows.

The data are presented in section 2. Section 3 describes

the methods and models we propose as well as the

evaluation scheme used. The results are presented in

section 4, and some final reflections and conclusions are

given in section 5.

2. Data

This article considers forecasts of wind speed and wind

direction at 10-m height at 204 synoptic stations inNorway

from the European Centre for Medium-Range Weather

Forecasts (ECMWF) Ensemble Prediction System and

measurements of hourly maximum 10-min-average wind

speed. The measurement stations were selected from the

Norwegian Meteorological Institute’s network of auto-

matic synoptic stations with the requirement of at least

70% data availability. Most, if not all, of the measurement

data have been processed by a simple automatic quality

control system, and some are also manually assessed. For

the period under study, theECMWFEnsemble Prediction

System had a horizontal resolution of about 32km and

consisted of 51 members; one unperturbed (control) and

50 exchangeable pairwise symmetrically perturbed mem-

bers. All forecasts were generated at 0000 UTC with lead

times of 112, 136, 160, 184, and 1108h and were bili-

nearly interpolated to the locations of the stations. The

observations and corresponding forecasts used are from

the period from 1 January 2014 to 31 December 2015,

yielding two years’ worth of data.

Figure 1 shows the locations, their mean observed

wind speeds, and their multiplicative biases. The multi-

plicative bias is defined as the mean wind speed of the

ensemble control forecasts divided by the mean obser-

vation. Mean observed wind speeds range from 1.7 to

11.0m s21. Norway has a varied topography, with

mountain ranges with peaks and plateaus, and valleys

and fjords, as well as lowlands. A considerable number

of the stations are therefore located in complex terrain.

The dark blue dots in Fig. 1, representing high average

wind speeds, mainly correspond to sites along the coast

and in mountain areas. The sites with the largest dis-

crepancy between themean forecast andmean observed

wind speeds are generally located in inland mountain

regions.

3. Models and methods

a. BMA model for wind speed forecasts

BMA provides probabilistic forecasts as predictive

probability density functions (PDFs) of the weather

quantityYbasedon an ensemble forecastwithMmembers

(Raftery et al. 2005; Sloughter et al. 2010). Let fm be the

forecast of ensemble member m. Assuming that each

forecast fm corresponds to a component PDF gm(yjfm; um),
where um are parameters to be estimated, the predictive

PDF of the weather quantity Y can be expressed as a

weighted sum of the component PDFs associated with

each ensemble member
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mance of forecast fm and �wm 5 1. Exchangeable en-

semble members are given equal weights and a single set

of corresponding parameters. Exchangeability is com-

monly assumed for ensemble members that use small,

stochastic perturbations of the initial conditions in the

model such as the ECMWF ensemble (Fraley et al. 2010).
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where f0 is the control member and f1, . . . , f50 are the

perturbed ensemble members.

For component PDFs, we follow the suggestion of

Sloughter et al. (2010) and use a gamma distribution, but

other distributions could be used as well (e.g., Baran

2014). A gamma PDF can be specified by its mean m and

standard deviation s. Sloughter et al. (2010) modeled

these parameters as linear in the ensemble member

forecast for each component PDF. In the linear model

for the mean, coefficients are fitted separately for the

control member and the perturbed members, while in

the model for the standard deviation, the same co-

efficients are used for all ensemble members:
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Assuming equal coefficients of the linear model for

the standard deviation for all members simplifies the

inference. This model will be referred to as BMA in the

following.

b. BMA utilizing wind speed and wind direction
forecasts

The ECMWF ensemble forecasts include both wind

speed and wind direction. As a result of the coarseness

of the forecasts compared to the local topography, it is

reasonable that, for example, bias can change with wind

direction. A way of utilizing the extra information in the

wind direction forecasts is to also include the wind di-

rection in the modeling of the mean of each component

PDF. As wind direction is circular, a linear model is

unreasonable. Hence, we want to introduce a nonlinear

FIG. 1. (left)Mean observed wind speed at each location. (middle) Topography, with the location of Ytterøyane fyr
(Y) marked. (right) Multiplicative bias of the wind speed forecast of the control member.
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model including both forecast wind speed and forecast

wind direction. An established and flexible framework

for nonlinear regression is thin-plate regression splines

(see the appendix for a brief introduction to this con-

cept). We denote the spline model s( f , d), where s( ) is

the spline function, and f and d are the forecast wind

speed and forecast wind direction, respectively. We

follow the same approach as for the BMA model above

and use gamma components that have different com-

ponent mean models for the control and perturbed

members, but the same linear model for the component

standard deviation. Hence, we use Eq. (2), with gamma-

distributed components with mean and standard de-

viation models for the ensemble members given by

m
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where sc( ) and sp( ) are thin-plate regression spline

functions for control members and perturbed members,

respectively. We will use BMA-D to refer to this model.

c. Model fitting and training scheme

We follow the approach for fitting BMA models in-

troduced by Raftery et al. (2005) and, based on a

training set, fit the model in two stages. First, the means

of the component PDFs are fitted using linear regression

for BMA, or regression splines for BMA-D (see the

appendix). Next, the coefficients for the standard de-

viation and the model weights are fitted using a variant

of the expectation–maximization (EM) algorithm.

There are several training schemes one can use. For

BMA it is common to use a sliding window scheme

where the postprocessing models are fitted using the

previous k days (e.g., Raftery et al. 2005; Erickson et al.

2012). To avoid the computational cost of fitting a new

model every day, a recomputation frequency is in-

troduced, so that a model that is fitted using the previous

k days for training is used for the following r days. This

paradigm means we must choose the length of the slid-

ing window k and the recomputation frequency r. To

carry out this approach, models are fitted for each site

and lead time with training periods of lengths 30, 60, 90,

120, 150, 180, 210, 240, 270, 300, 330, and 365 days and

recomputation frequencies of 30 and 365 days.

d. Validation

The validation approach includes the evaluation

of reliability and sharpness as well as summarizing mea-

sures for probabilistic forecasts. The overall fore-

cast quality is quantified using the continuous ranked

probability score (CRPS), which measures the difference

between the forecast CDF and the observation (Murphy

1988). Gneiting and Raftery (2007) showed that the

CRPS can be formulated in terms of two expectations and

the computations here are based on this approach. For

the continuous distributions generated by the BMA

models, the expectations in the CRPS formula are esti-

mated by simulating 10000 samples, while for the raw

ensemble the formula is used directly (i.e., with the en-

semble treated as a discrete distribution with equal

probability for each member). Further, the Brier score

(BS; Brier 1950) is applied to measure the quality of the

forecast probabilities of the wind speed exceeding

thresholds of 5, 10, 15, and 20ms21. Since this article aims

to compare forecast approaches, CRPS and BS are re-

ported as skill scores (Murphy 1988) and denoted by

CRPSS and BSS, respectively. The scores can then be

interpreted as improvements relative to the score of a

reference forecast system, which here is chosen to be the

standard BMA. The CRPSS and BSS results of standard

BMA are thus zero by definition. A positive skill score

therefore indicates improvements over standard BMA

and a negative skill score the opposite.

Reliability quantifies the degree to which forecast prob-

abilities and probability distributions can be trusted and is

often assessed using rank or probability integral transform

histograms (e.g., Gneiting et al. 2007), but when

considering a large number of different sites, lead times and

models, this approachbecomes infeasible. Instead,we focus

on the reliability of selected quantiles. For quantiles at level

a, the proportion ofmeasurements less than or equal to the

quantile should be a by definition. The proportions are

used as indicators of reliability and are calculated sepa-

rately for each site, lead time, and model in order to ex-

amine reliability in detail; for example, a rank histogram

with data pooled over sites is not sufficient to evaluate re-

liability at the site level. To ease the assessment of the de-

gree of reliability, 95% reference intervals are added by

computing the 2.5nd and 97.5th percentiles of the binomial

distribution with the quantile level and the number of val-

idation cases as parameters. Sharpness shows the degree of

concentration of the probability mass and is defined, here,

by the average widths of the central 50% and 90% forecast

intervals derived from quantiles (e.g., Gneiting et al. 2007).

The shorter the interval, the better the sharpness.

All validation measures are computed for the whole

test period. To further analyze the resulting post-

processing models, the scores are also computed for high,

medium, and low forecast wind speeds. This computation

is done by splitting the test data into three groups of equal

size according to the raw ensemblemedian. The grouping

is done separately for each site and lead time, which is

especially important for the reliability since all forecasts
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should be reliable, and too much averaging may conceal

systematic deviations from reliability.

4. Results

a. Choosing the training scheme

Comparing the CRPS for different training schemes for

all lead times revealed that the length of the training period

was more important than the recalculation frequency.

Increasing the number of training days led to a decrease in

the CRPS, until about 200 days, at which time it stabilized.

Refitting a new model every month had no noticeable ad-

vantage over fitting the model once a year. Therefore, the

postprocessing models analyzed below are all only fitted

once for each site and lead time, using 200 training days, and

the results are evaluated for the last 365 days of the dataset.

b. BMA-D for Ytterøyane fyr

We first demonstrate BMA-D by studying the fitted

model for Ytterøyane fyr, a lighthouse located on the

west coast of Norway that often experiences strong

wind. Figure 2 shows the thin-plate regression spline

surface used for the control member in BMA-D for lead

time 136h for Ytterøyane fyr. Figure 2 illustrates how

the resulting predicted wind speed in the BMA-D de-

pends on both forecast wind speed and forecast wind

direction. A forecast of 10ms21 results in component

means of 8m s21 for a wind direction forecast of 158,
10m s21 for a wind direction of 508, and 12m s21 for a

wind direction of 1158. For the BMAmodel the contour

lines are linear (vertical dashed lines in Fig. 2), and an

ensemble forecast of 10ms21 would give a component

mean of approximately 10.8m s21. Tracing the contour

lines of the spline in Fig. 2, we observe that many of

them have a marked peak at approximately 308, sug-
gesting that for a given forecast wind speed the winds

from the north-northeast are generally weaker than for

other forecast wind directions. In terms of CRPSS, using

the forecast wind direction increased the score by about

12%. Similar and even stronger wind direction de-

pendencies are seen for other sites.

Figure 3 shows time series of forecasts for lead time136h

and corresponding observations for July 2015. The forecasts

FIG. 2. Contour plot (solid lines) of the fitted thin-plate re-

gression spline for the control member forecast at lead time136 h

from the siteYtterøyane fyr. The dashed lines show the fitted linear

relation based on the control member forecast of wind speed only

(BMA) at the same site and lead time.

FIG. 3. Time series plots of the 5%, 50%, and 95% forecast quantiles for RAW, BMA, and BMA-D and corre-

sponding observations at Ytterøyane fyr for July 2015 and at lead time 136 h.
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of the raw ensemble (RAW), BMA, and BMA-D are dis-

played in terms of the 5%, 50%, and 95% quantiles. The

most noticeable feature is that too many observations

(about 30%) are outside the raw ensemble 90% forecast

interval, indicating that the raw ensemble is too sharp. The

BMA and BMA-D intervals are similar, but where they

differ most (4, 8, and 29 July), the BMA-D intervals tend to

be more centered around the measurements.

c. Overall performance

Figure 4 shows boxplots of the CRPSSs for BMA-D and

the raw ensemble relative to BMA for all sites, with the

distributions being over the 204 sites. In the top right and

bottom panels in Fig. 4, the boxplots show the same score

for forecasts grouped according to the raw ensemble me-

dian. The top left panel in Fig. 4 clearly shows that BMA-D

does better in terms of CRPS than BMA for the majority

of the sites used, especially for shorter lead times. The

proportions of sites with positive CRPSS for BMA-D for

lead times of112,136,160,184, and1108h are 84.8%,

87.7%, 87.7%, 83.3%, and 81.9%, respectively. The average

CRPSSs for BMA-D for the lead times are 6.1%, 5.5%,

4.4%, 3.5%, and 2.9% respectively. The raw ensemble

performs poorly as a result of model weaknesses, such as

bias, not being properly calibrated, and the NWP model

wind not quite being representative of the local wind con-

ditions. The remaining panels in Fig. 4 show that the im-

provement is especially pronounced when the raw

ensemble median is medium or high. A possible explana-

tion may be that in situations with weak wind, the wind is

more often locally driven, and since the ECMWFmodel is

not able to model these processes well, the large-scale

model wind direction is of less importance in these cases.

To formally assess the significance of the CRPS results,

theDiebold–Mariano (DM)hypothesis test (Diebold and

Mariano 1995) was applied for two settings to compare

FIG. 4. Boxplots of theCRPSSs (%)ofBMA-DandRAWrelative toBMAover all locations for lead timesof112,136, . . . , and1108h. (top left)

The results for all data, and the results for data where the raw ensemble median is categorized as (top right) low, (bottom left) medium, or (bottom

right) high.Thedashedgray lines at zero indicate theCRPSSs forBMA.Thevertical axes are cut tohighlight the relationbetweenBMA-DandBMA.
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BMA-D and BMA. First, the test was performed sep-

arately for each lead time (over all sites and issue

times). For all lead times the p values were extremely

close to zero (,10–30), indicating significantly better

scores for BMA-D compared to BMA. However, the

DM test does not account for the complex spatial de-

pendencies in the dataset (Hering and Genton 2011;

Gilleland and Roux 2015), so the outcome should be

interpreted with care. To avoid the spatial dimension, a

second test was performed where CRPS was averaged

over the sites for each issue time and lead time. The test

was then carried out for each lead time and, again, the p

values were extremely close to zero (,10–30). Thus,

based on the hypothesis testing, the results are clearly

in favor of BMA-D.

In Fig. 5 the CRPSS of BMA-D relative to BMA for

each site is plotted on a map. As previously men-

tioned, BMA-D is slightly better at most sites. How-

ever, the greatest improvements occur in areas where

the averaged observed wind speed is high (i.e., along

the coast and in mountainous areas).

d. Exceedance performance

Figure 6 shows the Brier skill score of BMA-D and the

raw ensemble relative to BMA for thresholds of 5, 10,

15, and 20ms21. The BSS for the BMA-D increases with

the thresholds, and especially for the 15 and 20ms21

thresholds, BMA-D is superior to BMA for the vast

majority of the sites. This result supports the findings

from Fig. 5—that it is particularly for higher wind speeds

that the BMA performs poorly and that BMA-D solves

this issue to a large extent.

The raw ensemble also appears to be equivalent to or

even better than both BMA and BMA-D in terms of the

Brier score for many sites at thresholds of 15 and 20ms21.

However, this conclusion is mainly due to the fact that

many sites very seldom experience strong winds. Conse-

quently, the raw ensemble frequently achieves the perfect

BS for high thresholds because high wind speeds are nei-

ther forecast by any ensemble member nor observed. At

more than 50% of the sites, wind speeds greater than

15ms21 are observed fewer than 10 times.

e. Reliability and sharpness

Figure 7 shows the reliability of the 5%, 50%, and 95%

quantiles of the forecasts for lead times of136 and1108h.

The raw ensemble’s reliability is very poor, especially for

the higher quantiles. It is generally slightly better for lead

time1108h than for136h, especially for the 5% and 95%

quantiles, where the observed reliabilities are closer to the

reference probabilities. The reliability for all quantiles is

much better for BMAandBMA-D, although the reliability

of the 50% quantile is not very good. For the 95% quantile

BMA is slightly better than BMA-D.

Figure 8 illustrates the sharpness of the BMA,

BMA-D, and raw ensemble forecasts, with the two top

panels showing the average lengths of the 50% and

90% prediction intervals. In general, the raw ensem-

ble is considerably sharper than BMA and BMA-D,

which is as expected. BMA-D also tends to give

sharper predictions than BMA. For approximately 10

sites the average lengths of the 90% intervals are

unrealistically high, indicating that for these sites the

gamma distribution is not suitable. These stations are

all among the windiest and for some of them, the

forecast uncertainty does not differ much with lead

time either. The bottom two panels in Fig. 8 show the

average forecast interval lengths relative to BMA.

From these findings, it can be concluded that for the

majority of sites BMA-D produced sharper forecasts

than BMA.

5. Discussion and conclusions

In this paper we have made use of the fact that the es-

timation of parameters in BMA models is split into two

parts: regression for the mean parameters and ex-

pectation maximization for the weights and variance

parameters. It is demonstrated that allowing the

FIG. 5. CRPSSs of BMA-D relative to BMA at each site for lead

time 136 h.
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mean parameters for each ensemble member to be de-

pendent on more than one predictor in a flexible manner

leads to improvements over standard BMAmodeling for

wind speed forecasting at Norwegian stations. Nonlinear

relationships were modeled by thin-plate splines, but any

other regression method estimating conditional means

could have been applied. In particular, most existing

statistical postprocessing methods for deterministic

forecasts can be used directly. Thus, valuable experience

concerning relevant predictors and their functional re-

lation to predictands in deterministic calibration is

transferable to ensemble calibration. Further, flexible

regression methods for the mean parameters can of

course also be applied during the calibration of other

variables, not only wind speed.

In our study, forecasts ofwind speed and directionwere

used as predictors for all stations and lead times. On

average the improvementswere about 5%,which is about

the same as in Taillardat et al. (2016). However, the re-

sults were clearly site dependent; improvements up to

about 40% were seen for some locations. At these sites,

advanced users will no longer notice systematic weak-

nesses in the forecasts and thereby likely increase their

confidence in the forecast system. Further advances could

possibly be achieved by considering even more predictor

variables. The scope for improvements, though, is likely

more limited by the information in the data rather than

the statistical methodology. Although the scores were

generally better, degradation was noticed at about 15%

of the stations. This suggests that wind direction was not a

relevant predictor for these locations and that algorithms

for choosing predictorswould be useful. These algorithms

could preferably be applied at the regression step or al-

ternatively on the finalmixture distribution. It should also

FIG. 6. Boxplots of the BSSs (%) of BMA-D and RAW relative to BMA for thresholds of 5, 10, 15, and 20 m s21, over all locations

for lead times of112,136, . . . , and1108 h. The dashed gray line at zero indicates the BSS for BMA. The vertical axes are cut to highlight

the relation between BMA-D and BMA.
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be added that for our specific problem and dataset, a bi-

variate wind vector approach could also be taken (Pinson

2012; Sloughter et al. 2013; Schuhen et al. 2012). Themain

advantage of the wind vector approach is that the wind

direction is adjusted or calibrated simultaneously.

A topic for future studies in ensemble postprocessing

would be developing methods to assess howmuch is gained

in forecast quality by using all ensemblemembers of several

variables compared to only using summarizing statistics like

the mean and standard deviations, as in Taillardat et al.

(2016) and Messner et al. (2017). An advantage with our

approach is that the relationbetweenpredictors is physically

consistent since they are derived from the same scenario. By

using summarizing quantities, the physical interpretation

and consistency are lost.
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APPENDIX

Thin-Plate Splines

Let fm and dm be forecasts of wind speed and wind

direction from ensemble member m, and let y be the

observed wind speed. Further, denote data of size n by

f(yi, fmi, dmi)g, i5 1, 2, . . . , n. Thin-plate splines are

then defined by the function s minimizing
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where l is a parameter that controls the degree of

smoothness (Duchon 1977;Wahba 1990). Solving Eq. (A1)

FIG. 7. Boxplots of the reliability of the 5%,50%,and95%forecast quantiles ofBMA,BMA-D, andRAWover all sites for lead times of136 and

1108h. (top left) The results for all data, and the results for data where the raw ensemble median is categorized as (top right) low, (bottom left)

medium, or (bottom right) high. The solid gray lines indicate the quantile levels, while the dashed gray lines represent 95% reference intervals.
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is in general computationally challenging with respect to

efficiency and numerical stability, and approximations are

therefore common (Wood 2003). The smoothing parame-

ter l is chosen by generalized cross validation (Golub et al.

1979). In this work, the R software package mgcv (Wood

2006) is applied to fit the approximate thin-plate splines.

Wind direction is a circular quantity and, ideally, fitted

spline functions should be continuous at 08/3608. This
constraint is not straightforward to include using the

thin-plate spline implementation in the mgcv package.

Tomake up for this shortcoming, some of the data were

instead copied such that the data covered the interval

[2908, 4508] in the wind direction. An option would be

to use wind vectors, but the results are less interpretable,

and data would become sparse for both low and high

values for each component.
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