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Sammendrag

Miljøforurensninger er et stort og sammensatt problem. Enkle, raske og
p̊alitelige metoder for å oppdage slike forurensninger kan sees p̊a som et
første ledd mot en løsning.

Ved hjelp av et hyperspektralt kamera som tar bilder i omr̊adet 923-1665 nm,
kjemometriske metoder som diskriminant delvis minste kvadraters regre-
sjon (discriminant partial least squares regression, DPLSR) og k-nærmeste
naboer (k-NN) samt ulike former for preprosessering, er flere modeller for
deteksjon av hydrokarboner p̊a bakgrunner som jord, sand, stein, humus
og vegetasjon utviklet. Disse bakgrunnene ble valgt som eksempler p̊a na-
turlig forekommende overflater der det kan være interessant og nyttig å
p̊avise eventuelle forekomster av hydrokarboner. Som hydrokarbon ble pa-
rafin brukt.

For enkelte av modellene viste det seg å ha stor betydning for feilen om
spektrene ble normalisert eller ikke. Dette skyldes sannsynligvis at overfla-
tene var ujevne og at gjennomtrengingen var forskjellig fra sted til sted. Da
overflater i naturen vanligvis ikke er glatte, er det naturlig å anta at dette vil
ha enda større betydning p̊a naturlige bakgrunner enn i et laboratoriemiljø.
Utglatting av dataene ga ogs̊a lavere feil for mange modeller.

En enklere modell, der data fra kun 16 av de 148 tilgjengelige bølgelengdene
ble benyttet, viste seg å gi overraskende gode resultater p̊a de fleste bak-
grunnene. Denne modellen var mindre selektiv enn DPLSR-modellene, og
detekterte ogs̊a andre hydrokarboner enn parafin. Dette antas å være fordi
modellen gjenkjenner C-H-bindingen i hydrokarboner.

Den prosentvise feilen til modellene varierte mye mellom bakgrunnene. De
ulike modellene hadde ulike sterke og svake sider. Vann for̊arsaket falske
positive for noen modeller og bakgrunner.

En tidsserie av bilder av jord med og uten parafin tatt over et år, viste at
en DPLSR modell basert p̊a data fra den første uka hadde en lav prosentvis
feil for alle bildene. Data fra andre bilder tydet likevel p̊a at tiden kan ha
en større effekt for andre bakgrunner enn jord.

DPLSR var i stand til å skille mellom n-heksan og n-heptan p̊a en bakgrunn
av jord. Dette sannsynliggjør et det er mulig å lage en selektiv modell som
skiller mellom flere ulike hydrokarboner.
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Abstract

Discharges of unwanted chemicals into nature is a large and complex prob-
lem. Easy, fast and reliable methods for detecting these contaminants can
be viewed as a first step towards a solution.

Using a hyperspectral camera operating in the range 923-1665 nm, chemo-
metric methods such as discriminant partial least squares regression (DPLSR)
and k-nearest neighbours (k-NN) as well as various forms of preprocessing,
models for detecting hydrocarbons on surfaces such as soil, sand, stone,
humus and vegetation were developed. These surfaces were chosen as ex-
amples of naturally occurring surfaces where locating hydrocarbons can be
interesting and useful. Paraffin were used as a hydrocarbon.

For some of the DPLSR models, it proved to be of great importance for
the error whether or not the spectra were normalised. This is probably
due to the fact that the surfaces were uneven, and that the penetration
would differ from place to place. As surfaces in nature usually will not be
smooth, it is natural to assume that this will have an even greater impact
on natural backgrounds than in a laboratory environment. Smoothing of
the data also improved many of the models.

A simpler model, where data from only 16 of the 148 available wavelengths
were used, turned out to give surprisingly good results on most surfaces.
This model was less selective than the DPLSR models, and will also de-
tect hydrocarbons other than paraffin. This is probably due to this model
recognising the C-H-bond.

The percentage error of the models varied widely between different surfaces.
The different models have different strengths and weaknesses. Water caused
false positives for some models and surfaces.

A time series of images of soil with and without paraffin taken over a year,
showed that a DPLSR model based on data from the first week had a
low percentage error for all the images. However, data from other images
indicate that time could have a greater impact for other surfaces than soil.

DPLSR were able to distinguish between n-hexane and n-heptane on soil.
This substantiates that it is possible to create a model that distinguishes
between several different hydrocarbons.
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Chapter 1
Introduction

Our society has made itself completely dependent upon a wide variety of
chemicals. Of the tens of thousands of chemicals produced around the
world every year, organic compounds represent the largest portion [29].
Petroleum and natural gas provide cheap starting materials for synthesis-
ing organic molecules [8]. Despite the best of human intentions, in seems
inevitable that some of these chemicals eventually end up in nature. This
will, and does, affect the environment.

Environmental systems are very complex, with a plethora of known and
unknown variables to account for [27]. Large and multivariate data sets are
needed to describe them, and interpreting these data sets are challenging.

Chemometrics can be used to analyse such complex data sets. There are
several definitions of chemometrics. Varmuza [55] defines chemometrics as

Chemometrics concerns the extraction of relevant information
from chemical data by mathematical and statistical tools.

In this thesis, chemometric methods and techniques are used to investigate
data from hyperspectral images of alkane compounds applied to several
different surfaces.

Long term leakage of hydrocarbons into nature will alter the soil composi-
tion. Changes such as formation of new minerals, bleaching, electrochemi-
cal and radiometric alterations of soil are documented long term effects of
petroleum spills [43].
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CHAPTER 1. INTRODUCTION

Most methods for detecting and monitoring organic chemicals in nature,
involves grab sampling methods [29]. Grab sampling techniques are tech-
niques which involves collecting an analyte and removing it from the sur-
roundings before analysing the sample. This introduces several problems,
such as chemical degradation [29]. It is also time consuming and potentially
expensive.

To avoid these problems, non-invasive in situ techniques are needed. Re-
mote sensing is a research field developed for investigating objects at some
distance from the sensor. Research suggests that reduction of ferric iron,
conversion of mixed-layer clay and feldspars to kaolinite and changes to the
spectral reflection of the vegetation, are some of the long term effects of
petroleum spills that can be detected by remote sensing and hyperspectral
imaging [44]. However, other factors such as climate, soil composition and
topography must also be taken into account, as the effect of these factors
can be larger than the effect due to hydrocarbon spills.

With these concerns in mind, this thesis describes an alternative and non-
invasive method for rapid localisation and in situ visualisation of hydro-
carbon spills in nature. The method uses the PryJector [2], a device that
combines a hyperspectral camera operating in the near-infrared area, a
chemometric model, and a projector. Different models are developed, all
of them with a focus on alkanes, but some of them seem to recognise also
other types of hydrocarbons and organic compounds.

While remote sensing hyperspectral imaging generally is used for investi-
gating and classifying large areas, the PryJector is more suitable for human-
size problems. This makes it fitting for detecting small-scale spills of e.g.
petroleum fuel, but it could also be useful for forensic uses such as arson.
However, the models developed in this thesis are general and can also be
used in other hyperspectral investigations, such as those conducted from
aeroplanes and satellites.

The theory chapter starts with a section on hyperspectral imaging, a short
overview of some of the earlier studies on remote sensing of hydrocarbons,
and a brief presentation of the PryJector and a couple of its possible uses.
This is followed by a section on some basic chemometric terms and princi-
ples.

Preprocessing can be a crucial part of data analysis. The focus in section 2.4
is on why and when the different kinds of preprocessing can be of use,
without going into too much algorithmic detail. The same principle is
used in the rest of the theory chapter, where different procedures such as
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CHAPTER 1. INTRODUCTION

principal component analysis, partial least squares regression and k-nearest
neighbours are described.

In the third chapter the underlying hypotheses, which the work is based on,
are emphasised. The apparatus, software and methods used are described
in more detail.

The fourth chapter summarises the results of some of the models developed
in the course of this project, while the fifth chapter compares and to some
extent appraise the models.

In the short concluding chapter, attention is brought to the most important
results, and some of the challenges.
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Chapter 2
Theory

2.1 Hyperspectral cameras and remote sensing

2.1.1 What is hyperspectral imaging?

Hyperspectral imaging is also known as spectroscopic imaging or chemical
imaging, and is an imaging technique where both spectral and spatial in-
formation from an object is obtained [25]. Chemical information on both a
macroscopic and microscopic level is available in a non-destructively way,
without changing the composition of the sample [4].

A digital image is a matrix with intensity information recorded by a de-
tector, often a charge-coupled device (CCD). It is often imagined as a 2-D
function f(x, y) where x and y are the coordinates and the amplitude of f
is called the intensity of the image at that point [23]. An image point is
also called a pixel [19].

A hyperspectral image is an image where each pixel contains not only one
intensity value, but an entire spectrum [21]. This results in a 3-D data set
(section 2.1.2). It is recorded by a hyperspectral camera (section 2.1.3). A
hyperspectral camera can have hundreds of spectral bands, and differs from
a multispectral camera which only have a handful of spectral bands [12].

5



2.1. REMOTE SENSING CHAPTER 2. THEORY

2.1.2 Hyperspectral data

The 3-D data set recorded by a hyperspectral camera is called a data cube,
hypercube or image cube. It has two spatial dimensions (x and y) and one
spectral dimension (λ). This is illustrated in figure 2.1. The data cube is
often large [17].

Figure 2.1: The data cube has two spatial dimensions (x and y) and one
spectral dimension (λ).

By convention, independent variables are denoted X (not to be confused
with the x coordinate above), while dependent variables, or response vari-
ables, are denoted Y [5]. For hyperspectral data, the X data is usually
organised in a matrix with each object or pixel vertically and the different
wavelengths or wavebands horizontally [13]. If there are only one dependent
variable, the Y data will be a vector, whereas otherwise both X and Y will
be matrices. This way of organising the data is ideal for many algorithms
and data analysing tools [5], but destroys the image, that is, the X matrix
normally does not include the spatial information from the data cube in
figure 2.1.

2.1.2.1 Discretisation and digitalisation

An image is an attempt to represent the true world. While the real world (at
least at most practical magnification levels) is continuous, a digital image
is in its nature discrete. It is the discretisation of the image that makes it
possible to store it as a computer file and carry out calculations on it [19].

6
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Digitising the coordinate values is called sampling [23], and results in the
pixels which the image consists of.

In a computer, all numbers (and everything else) is represented by a number
of bits (binary digits). The higher the number of bits, the higher the
resolution. The HySpex SWIR-320i camera used in this thesis, uses a 12-
bit representation [39].

The discretisation limits the both the spatial resolution and the spectral
resolution of the hyperspectral image [19]. This can in some cases cause
unwanted effects.

Aliasing is an effect that causes different signals to become indistinguishable
when sampled. This happens when the sampling rate is too low. In order
to avoid aliasing, the sampling rate must be at least twice the highest
frequency of the signal [46]. For hyperspectral imaging, this concerns both
the spatial digitising of the coordinate values, or the pixels, and the distance
between neighbouring spectral values.

2.1.2.2 Noise

The recorded spectra will always contain some noise. No instruments are
perfect, and the observed signal x can thus be viewed as a sum of the true
signal x̃ and the noise e, as shown in equation 2.1 [5].

x = x̃+ e (2.1)

Noise can lead to loss of resolution, impede interpretation and complicate
extraction of valuable information from the data [11]. Isolating the true
signal from the noise is one of the main tasks of multivariate data analy-
sis [13].

There are two main types of measurement noise: stationary noise and cor-
related noise [5]. For stationary noise, the noise at one point is independent
of the noise at any other points. Stationary noise can be both homoscedas-
tic and heteroscedastic. Homoscedastic noise have the same distribution,
often the normal distribution, on the entire spectra. Heteroscedastic noise,
on the other hand, is dependent on, and often proportional to, the intensity
of the signal. This means that it will be largest around peaks.

When the noise level at a point depends on the noise level of the previ-
ous point, it is called correlated noise. For hyperspectral images, some
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correlation between the noise from neighbouring pixels would be expected.

The signal-to-noise ratio (SNR) can be a useful parameter. It is, as the
name proposes, defined as the signal divided with the noise, see equa-
tion 2.2. A large signal-to-noise ratio is, obviously, preferred.

SNR =
x̃

e
(2.2)

2.1.2.3 Data compression

Data compression is a concentration of information [13]. Observed variables
often contain common information. It is impractical and uneconomic to
store this information twice. Algorithms that are able to operate directly
on the compressed data will also save time [48].

Data compression can be either lossless or lossy. If the data compression are
lossless, it is possible to reconstruct the original data from the compressed
data. After lossy data compression, only an approximation to the original
data can be recreated.

Hyperspectral images generally compress poorly using lossless techniques [17],
although it can be achieved using techniques such as the integer Karhunen-
Loève transform [38]. For lossy data compression, there are several pos-
sible techniques to use: wavelets [11] (section 2.4.1.5), splines, averaging
(section 2.4.1.1) or latent variables such as principal components [48] (sec-
tion 2.5). These lossy compression methods all aim to remove noise and
increase the signal-to-noise ratio, which can give more accurate classifica-
tion results [16]. However, if implemented poorly, lossy data compression
can result in loss of important information.

2.1.3 Hyperspectral cameras

Different hyperspectral cameras, or imaging spectrometers, can be classified
by how they record the hypercube. A whiskbroom scanner records the
spectrum for only one pixel at a time, and can be categorised as a 0-D
scanner [45]. A pushbroom scanner scans one line at a time, and is thus a
1-D scanner. Both whiskbroom and pushbroom scanners will traverse the
scanning area to obtain an image, while a 2-D scanner is able to record an
entire 2-D image simultaneously.
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A whiskbroom or pushbroom scanner records the whole spectrum for each
pixel or line at the same time, but because the detector arrays in image
capture devices are, at most, two dimensional, they can only capture two
dimensions at one time. Any additional spatial dimensions must thus be
captured displaced in time [17]. This could be a source of error if the
mechanical scanning operation is not entirely precise. An advantage with
array devices, which detects light at several points simultaneously, is that
they provide an uniformed background which give a high signal-to-noise
ratio [52] (see section 2.1.2.2).

There are several different types of infrared focal plane arrays (IR FPAs).
InGaAs, InSb, HgCdTe and quantum well infrared photodetectors (QWIPs)
are some of the most widely used. InGaAs focal plane arrays have low
dark current and noise, are able to operate at room temperature and are
primarily used for applications requiring response in the 900-1700 nm near-
infrared (NIR) region [52]. The cut-off wavelength can be extended to
2000 nm by varying the indium content.

Tunable filters (TFs) are common examples of filters used to separate out
one wavelength or waveband at a time for recording in a 2-D detector. The
time the apparatus needs for changing between wavelengths is called the
tunability time. Ideally, this time should be as small as possible for faster
data collection.

There are several different types of tunable filters [17]. Two of the most
common are liquid-crystal tunable filters and acousto-optic tunable filters,
both of which are variants of electronically tunable filters (ETFs). Elec-
tronically tunable filters are smaller, faster and have a larger spectral range
than dispersive devices based on mechanical scanning [52].

Liquid crystal tunable filters (LCTFs) are build from a stack of polarisers
and crystal quartz plates with a birefringent liquid. This makes the LTCF
polarisation sensitive. LTCFs have usually a spectral resolution of several
nanometres. The tunability time is limited by the relaxation time of the
crystal, and is approximately 50 ms, although some devices can have a
faster switching speed (≈ 5 ms) for a short sequence of wavelengths [17].
A NIR LCTF can typically be spectrally tuned from 1000 to 1700 nm,
which coincides well with the InGaAs focal plane arrays cameras for the
NIR region [52].

In an acousto-optic tunable filters (AOTFs), radio frequencies acoustic
waves inside a crystal separates one single wavelength of light from a broad-
band source [17]. The wavelength of the filtered light can be controlled by
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changing the frequency of the radio waves, which is applied to an array of
LiNbO3 piezoelectric transducers bonded inside the crystal [52]. For light
frequencies from the near ultraviolet through the short-wave infrared re-
gion, crystals of tellurium dioxide (TeO2) or mercury(I) chloride (Hg2Cl2)
are used. The spectral resolution depends on the wavelength of the light,
but can be as narrow as 1 nm full-width at half maximum (FWHM) [17].
The scanning speed is of the order of microseconds [52], which is signifi-
cantly faster than for LCTFs.

An advantage with tunable filters is the ability to only record a subset of
the available wavelengths. This can give faster data collection and a more
compact data set [37]. A drawback with tunable filters is the fact that
most of the light intensity is lost. At any given time, only one band of
wavelengths passes through to the camera, while the rest of the emission
spectrum is blocked by the filter [18].

2.1.4 Remote sensing of hydrocarbons

Remote sensing concerns, as the name suggests, investigating objects at
some distance from the sensor without making physical contact with them [11].
Such techniques are much used in e.g. astronomy [15] and geology [54],
where images from satellites or air crafts are used for mapping surfaces.
Several studies have shown that it is possible to detect hydrocarbon oil
seeps [12, 43, 53, 58] and materials containing hydrocarbons [28] by remote
sensing.

Ellis et al. [12] successfully detected onshore oil seeps using an airborne
sensor with a spatial resolution of 25 m2 that recorded light from the vis-
ible through short-wave infrared part of the spectrum, divided into 128
wave bands. For calibration they build a spectral library including oil, tar,
vegetation, soils and rocks, and the results were confirmed using a GPS
and a portable hyperspectral sensor. Asphalt covered roads, plastic roofs
and other hydrocarbon-based surfaces caused some confusion, and had to
be identified and eliminated from the interpretation. This proves the im-
portance of developing more selective models.

Hörig et al. [28] used an abandoned military training area in Berlin as a
test field, with a parking lot, a lawn, trees and a gravel-paved area as ref-
erence objects. Both an airborne high resolution stereo camera (spectral
range 385-2548 nm, 849 wave bands) and a HyMap scanner (spectral range
440-2543 nm, 128 wave bands) were used for recording the area. The hydro-
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carbon bearing reference objects were characterised by absorption maxima
at 1730 and 2310 nm. Plastic objects showed a sharp maximum at 1730 nm.
This peak was less prominent in the spectra of oil bearing soils and rocks,
but still significant enough for the materials to be detected by evaluating
the HyMap spectra.

Based on previous studies showing that hydrocarbons have characteristic
spectral signatures at 1730 and 2310 nm (see also section 2.2), Kühn et
al. [34] developed an algorithm for airborne hyperspectral remote sensing
of hydrocarbons. This Hydrocarbon Index (HI) uses one wavelength on each
side of the 1730 nm absorption feature in addition to the intensity at 1729
nm. To demonstrate the HI, materials common for urban areas (concrete,
grass, sand, plastic etcetera) were used as reference. The most accurate
HI images were obtained for urban areas and bare ground, while the areas
covered by vegetation appeared noisy. Dark-coloured hydrocarbons were
not detected reliably.

Sanches et al. [43] aimed to use hyperspectral remote sensing for assess-
ing the impact on vegetation of hydrocarbon leakages from the Brazilian
pipeline system. Three planting slots were prepared and watered daily,
while forced flows of gasoline and diesel were applied to the soil. Spec-
tral measurements started a week prior to the first contamination, and
were obtained using a portable high-resolution spectroradiometer detecting
electromagnetic radiation in the spectral range 350-2500 nm. The results
showed that contaminated brachiaria plants (Brachiaria brizantha) could
be spectrally distinguished from healthy plants.

Detection of both off shore oil spills and naturally occurring petroleum hy-
drocarbons are of importance for the petroleum industry. Natural petroleum
hydrocarbon seepage in the marine environment occurs where oil and gas
leak from the seabed and rise to the surface, and are important for petroleum
exploration. Both oil type and film thickness influence the reflectance spec-
tra. Wettle et al. [58] used both a HyMap and a Quickbird sensor for de-
tecting naturally occurring oil seeps. While the HyMap sensor was able to
detect oil films with a thickness of 10−5− 10−4m depending on the oil type
and its optical properties, the Quickbird sensor was unable to detect oil
films in naturally occurring thicknesses.
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2.1.5 The PryJector

The PryJector is a device for easy in situ visualisation of the chemical
properties of a surface [2]. By combining a hyperspectral camera with a
computer and an ordinary computer projector, the PryJector aims to make
chemical information visible and easily accessible to humans.

Sample

Hyperspectral
camera

Projector

Chemometric
model

Human
observer

Chemical
information

Data

Visible light

Colours

Figure 2.2: Schematic model of the idea behind the PryJector.

The key elements of the PryJector is shown in figure 2.2. Chemical infor-
mation about a sample is recorded by a hyperspectral camera and sent to
a chemometric model which analyses the data and aims to predict infor-
mation about the composition of the sample. This information is coded to
different colours for the different chemical compounds the PryJector recog-
nises, and sent to a projector that projects the information back onto the
sample as visible light, which can then be observed – and understood – by
a human observer.

The current set up for the PryJector (see also section 3.2 or [2]), uses a
pushbroom scanner (section 2.1.3) with an InGaAs focal plane array, and
has a spectral range of 923-1665 nm.

The possible uses for the PryJector are many and varied. So far, only a
couple of applications have been investigated: separating different kinds
of pharmaceuticals used for pain relief [2] and detecting bones on surfaces
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consisting of wood, sand and stone [3]. This thesis aims to develop a model
for using the PryJector to detect hydrocarbons on surfaces such as soil,
sand, stones and vegetation.

2.2 NIR-spectra of hydrocarbons

The Near-Infrared (NIR) region is the part of the infrared (IR) region of
the electromagnetic spectrum that lies closest to visible light in energy.
The exact definition in terms of wavelengths varies. In this thesis, the
hyperspectral camera used operates in the area 923-1665 nm, and the focus
will be on this part of the spectrum.

The NIR region is largely dominated by overtones of X-H stretching modes
such as O-H, C-H, S-H and N-H, but there is also a large number of combi-
nation bands [6]. The fact that overtones of C-H bonds is so prominent in
the NIR region, makes NIR analysis very useful for analysing hydrocarbons.

Cloutis [9] marks the C-H stretching overtones and combination bands near
1700 nm and the overlapping combination and overtone bands at 2200-
2600 nm as the most promising regions in which to search for organic ab-
sorption bands. Both of these areas are outside the recording interval of
the hyperspectral camera [39] used in this thesis (more in section 3.2), the
first only barely. Kuhn et al. [34] focuses on the 1730 nm area when devel-
oping their Hydrocarbon Index (HI) for detection of hydrocarbons (see also
section 2.1.4).

The C-H stretching vibration at 3500 nm has its first to forth overtone at
1750, 1150, 880, and 700 nm [6]. The only true C-H stretching overtone in
the area of interest is thus the second overtone at 1150 nm. The area has,
however, also several combination bands that might be of interest.

Near-infrared chemical imaging (NIRCI) differs from near-infrared spec-
troscopy in that the sample is spatially heterogeneous. While it can be
argued that – depending on the magnification – no sample is spatially ho-
mogeneous, in NIRCI this heterogeneity is exploited [37]. The chemical
image is a direct consequence of the variation in chemical composition be-
tween the pixels. Instead of a single spectra, the chemical image consists
of one spectrum in each pixel, and the total number of spectra can be very
large.
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2.3 Chemometric principles

2.3.1 Classification and regression

Classification and regression are two main types of problems. A regres-
sion problem relate each independent variable to one or several numbers,
whereas a classification problem relate each independent variable to one of
two or more categories or classes. If there are only two classes, it is called
a Boolean classification problem [42].

Multiple linear regression (MLR) [57], is a linear regression model shown
in equation 2.3. X is here the matrix with independent variables, Y is the
matrix with dependent variables (a vector if there is only one dependent
variable), β is a vector with parameters and ε is a vector of residuals.

Y = Xβ + ε (2.3)

The least squares solution b to this problem is shown in equation 2.4 [20],
where X ′ is the transpose of the matrix X. This solution exists only when
X ′X is assumed to be a nonsingular matrix [57], as it involves calculating
the inverse of this matrix.

b = (X ′X)−1X ′Y (2.4)

However, for hyperspectral data, the X matrix tend to be close to singular,
and therefore other regression methods are needed. Principal component
regression (PCR, section 2.5) and partial least squares regression (PLSR,
section 2.6) tend to perform well on hyperspectral data.

Classification methods creates a decision boundary which divides the vari-
able space into regions belonging to each of the classes. Linear classification
methods use linear decision boundaries, while other classifications methods,
can handle more complex decision boundaries [1]. k-nearest neighbours (k-
NN, section 2.7) is such a technique, where the decision boundary is not
calculated explicitly.

Depending on the labelling of the classes, it will in many cases be possible
to use a regression method for classification. Discriminant partial least
squares regression (DPLSR, section 2.6) is an adjusted version of PLSR
that can be used for classification.
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2.3.2 Calibration and validation

Model development consists usually of two steps: the calibration step and
the validation step [20]. Model parameters are estimated in the calibration
step, while the validation step investigates how the model performs.

In the calibration step, one or more sets of variables are connected to-
gether [5]. Usually, the aim is to connect the independent variables to the
dependent variables (section 2.1.2). To do this, a model is fitted to the
data [13], and the parameters of the model is adjusted in order to describe
the data as good as possible.

The data used in the calibration step is called the calibration data or the
training data [5]. The composition of this data set is of high importance.
If the model are to be used for prediction on new samples later, it is crucial
that the calibration data set is representative of the data in such a way that
it spans all the variations expected in the future samples [13]. There will
always be a trade-off between time and money on one side, and the future
predictability of the model on new data on the other side [5].

After calibration, the variation in the data can be expressed as a sum
of a modelled part and a residual part, which hopefully is dominated by
noise [13] (section 2.1.2.2).

Validation is a tool to estimate the prediction error, which is the expected
error when the model is used for prediction on new samples. The optimal
solution is to validate the model by testing its performance on an indepen-
dent test, or validation set, with new samples not included in the training
set used for development of the model. This is, however, not always possible
due to time, economical or practical concerns.

If the data set is too small to be divided into two independent data set,
cross-validation may be used. Cross-validation is, however, never as good
as independent test set validation [13]. Cross-validation separates a data
segment from the main data set. The main data set is used for creating
a model, while the smaller data segment is used for validation. After the
prediction error has been estimated, the data sets are combined before
extracting a new data segment and repeating the process until all data
segments have been used for validation once [14]. A special case of cross-
validation is leave one out (LOO) cross-validation, where only one data
point is extracted. Also other resampling methods, e.g. bootstrapping [1],
can be used.
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A hyperspectral data set is often large enough to be divided into two in-
dependent data sets: a calibration data set and an independent validation
data set. It is important that both data sets is from the same population,
and that they both span the space of variation where the model will be used
in the future. To ensure that they are similar in this way, randomisation
can be used to decide which data points should be in which data set.

For hyperspectral data, it is worth noting that a sample and a data point
might not be the same thing. Hyperspectral data is a discretisation of
presumed continuous data in two spatial directions (and one spectral di-
rection). Because of this, it is somewhat random where one pixel end and
another begin, and it is not fair to treat the neighbouring pixels as in-
dependent samples. Having one pixel in the calibration data set and its
neighbour in the validation data set will make these data sets very similar
to each other, and it might be better to get calibration and validation data
sets from different images, or different regions in the images.

Regardless of the method used for validation, the percentage error in the
validation step should be similar to the percentage error of the training
set [5]. If the error for the training set is significantly lower than the
validation error, the model is likely overfitting to the data.

2.3.3 Overfitting and underfitting

When creating a model from data, it is usually possible to create a more
complex model with a smaller calibration error. While this might be tempt-
ing, the danger of overfitting is large. Overfitting means that the model
explains too much of the variance in the calibration data set - it includes
phenomena which are not relevant for the entire population, but are rather
unique aspects of the calibration data set [1]. Because the overfitted model
also describes noise present in the calibration data, it will usually fail to
predict new objects with optimal accuracy [13].

Underfitting is the opposite of overfitting, and means that it is possible
to create a better model that explains more of the systematic variance in
the calibration data, and thus have a smaller error. There are interesting
aspects to the data that is not included in the model, and a more sophis-
ticated model would be preferred.

The validation error gives an indication of whether the model overfits or un-
derfits to the data, and validation is a useful tool to prevent overfitting [13].
When choosing between different models, Ockham’s razor provides a useful,
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and in some ways intuitive, principle: the simplest hypothesis consistent
with the data, is preferred [42]. Thus, a more complicated model is only
desirable if it significantly lowers the validation error compared to a simpler
model.

2.4 Preprocessing

Preprocessing is the term used for several different kinds of mathematical
transforms of data. The goal in this part of the data analysis is to remove
irrelevant sources of variation in the data [1], and ensure that all objects
are described in a consistent way [7].

There are different types of preprocessing tools or transformations. Some
are performed separately on each object/pixel, while others use information
from all the objects (the whole population).

2.4.1 Smoothing

Smoothing aims to make the data more continuous by removing high fre-
quency components in the signal, which are assumed to be random noise
(see section 2.1.2.2).

2.4.1.1 Averaging

Averaging removes noise while reducing the total number of variables or
objects in the data set. It is often used for exchanging replicates present in
the data set with one mean value [13]. For sufficiently large populations, the
central limit theorem [57] states that the mean will be normally distributed
with variance equal to the variance of the objects divided by the sample
size. This results in a higher signal-to-noise ratio.

For hyperspectral data, averaging in the spectral direction means that ran-
dom noise will influence the data to a lesser degree, and the spectra will
seem smoother, while the number of variables drastically decreases. Aver-
aging two and two wavelengths will for instance give only half of the original
data size, while averaging three and three data points will return a vector
of a third the length of the original data vector.
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Averaging in one or more spatial directions is also a possibility, and will
increase the pixel size. As with averaging in the spectral direction, it might
make the data look smoother up to a point, but from then on further
averaging will make the individual pixels too large to be interesting.

In a way, hyperspectral data are already a result of averaging in both the
spectral and spatial directions. For the hyperspectral images recorded in
this work, each pixel represents an area of 1 mm × 1 mm in the spatial
direction, and each waveband represents 5 nm in the spectral direction.
Each data point is thus an average value for all the light reflected from a
given area with a wavelength in the given region.

2.4.1.2 Moving average

Moving average (MA) is a rather primitive form for smoothing, where the
resultant smoothed data are a linear function of the raw data, and the only
input given, except from the vector to be smoothed, is a window size. This
window size must be an odd number. The window then moves over the
vector, averaging the data it covers and assigning this value to the middle
data point [5]. This smoothing technique will broaden peaks, which often
is unwanted.

On hyperspectral data, it is possible to perform moving average smooth-
ing both in the spectral and in one or more spatial directions. Smoothing
in one or more spatial direction will make the picture more ”blurry”, and
remove high contrasts and high frequencies. When smoothing the spec-
trum, ”spiky” noise is in some ways restricted, but might still influence
the spectrum (and will influence a broader part of the spectrum). A simi-
lar technique called median filtering uses the median instead of the mean,
and is thus less influenced by ”spiky” noise. This is illustrated in figure 2.3,
which compares the effect of moving average and median smoothing. While
the thin spike (at x = 20) influences a broad part of the moving average
smoothed spectrum, it vanishes completely in the median smoothed spec-
trum.

Moving average is in many ways similar to averaging (section 2.4.1.1 above),
but the size of the data is preserved. The loss of resolution is thus smaller
for moving average. However, for hyperspectral data the amount of data is
often large enough to make a decrease in the amount of data in exchange
for a higher signal-to-noise ratio a good thing.
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(a) Raw data (b) Data smoothed with
moving average

(c) Median smoothed data

Figure 2.3: The effect of moving average and median smoothing with win-
dow size = 5.

2.4.1.3 Savitzky-Golay smoothing

Savitzky-Golay smoothing is a highly popular technique in chemistry [55].
The method is based on performing a convolution of the input signal by a
suitable vector which controls the amount of smoothing. This vector can
also be modified to perform differentiation by choosing other coefficients.
Coefficients for smoothing and differentiation can either be calculated, or
found in literature [5].

Equation 2.5 [55] gives the transformation of a vector component xj where
x∗j is the new value, N is a normalisation constant, ch are the coefficients
and k is the number of neighbouring values at each side of j. The window
size is thus 2k + 1.

x∗j =
1

N

k∑
h=−k

chxj+h (2.5)

The Savitzky-Golay method smooths the data by locally fitting the data
to a polynomial. This will in many cases give a better fit than averag-
ing (section 2.4.1.1) or moving average (section 2.4.1.2), especially around
peaks [5].

Performing regression for each moving window in Savitzky-Golay smooth-
ing would be a computationally intense and time consuming operation [5].
Fortunately, the solution can be reformulated as a convolution [55], which
considerably speeds up the process. This alternative and simplified strat-
egy is one of the main advantages of the Savitzky-Golay method, and gives
an exact solution to the problem.
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As for moving average, an odd window size must be defined. A larger
window size gives a smoother signal and removes more noise, but at a
higher risk of blurring the signal [5]. Because the Savitzky-Golay method
smooths the data by fitting the data to a polynomial, the degree of the
polynomial must also be predefined. This degree must be lower than the
window size.

2.4.1.4 Fourier transformation and low pass filtering

The Fourier transformation changes the domain of the data from the spec-
tral domain to a frequency domain. This makes it possible to filter out
unwanted frequencies. A low pass filter will keep only the low frequencies
of the signal, while a high pass filter will keep the high frequencies.

For spectral data, the unsystematic noise is usually dominated by compo-
nents with a higher frequency than the signal [11]. Because of this, a low
pass filter will remove noise from the spectra, and the resulting spectrum
will appear smoother. It is, however, important to keep in mind that if the
signal has thin spikes, they will also be removed by this procedure.

Different kinds of low pass filters exist. The simplest, box filters, remove all
frequencies above a cut-off frequency. This is also called hard thresholding.
Other filters, such as gaussian filters, let different frequencies influence the
result to different degrees. This is called soft thresholding [11]. Figure 2.4
illustrates the difference between these filters.

Figure 2.4: Examples of box filter (bold) and gaussian filter (dashed line).
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2.4.1.5 Wavelets

Wavelet transforms involve fitting a spectrum to a series of functions based
upon a basic shape called a wavelet [5]. In contrast to the smooth, periodic
sinusoids of the Fourier transform, the wavelet functions are non-smooth
and non-periodic [11]. This gives wavelets the advantage of being able
to represent both smooth and locally bumpy functions with spikes in an
efficient way [26].

A wavelet, g(t), is usually a function of frequency and time, that add to
zero [5]. First generation wavelets are translated or dilated versions of a
single basic wavelet called the mother wavelet [11]. The choice of mother
wavelet depend upon the problem at hand. Second generation wavelets,
first introduced by Sweldens [49], uses the lifting scheme to create new
custom designed wavelets. Second generation wavelets differ from first gen-
eration wavelets in that they not necessarily are translates or dilates of one
fixed wavelet function [11].

There are several examples of wavelet transforms in literature. Wavelet
transforms may make it possible to represent the entire spectra as a sum
of only a few significant wavelets without loosing too much information [5].
This can result in both data decompression (section 2.1.2.3) and denoising.
Denoising can be achieved by using thresholding (see section 2.4.1.4 above)
to remove the wavelet coefficients that corresponds to high frequencies [11].

2.4.2 Multiplicative scatter correction

Multiplicative scatter correction (MSC), also known as multiplicative signal
correction, is a method developed to reduce the disturbing effect caused
by light scattering for NIR data obtained by reflectance or transmission
measurements of diffuse samples [55]. The difference in scattering between
samples can be large, and represent a challenge for comparing different
spectra [30].

MSC aims to simultaneously correct for two undesired scatter effects: mul-
tiplicative scatter effects (amplification) and additive scatter effects (off-
set) [13].

In the MSC method, a linear regression of the spectral variables against a
reference spectrum is performed [33]. The mean spectrum is often used as
a reference spectrum. The regression model is shown in equation 2.6 [30]
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where the spectrum xk is fitted to the reference or mean spectrum x̄k, and
ek is the error.

xk = a+ bx̄k + ek (2.6)

a represents the additive effect and b the multiplicative effect [55]. The
corrected spectrum xMSC

k is calculated from the original spectrum xk and
the regression parameters a and b, as shown in equation 2.7 [30].

xMSC
k =

xk − a

b
(2.7)

It is also possible to adjust for only the multiplicative or the additive ef-
fect [55].

MSC traditionally uses the full spectral range for the regression [33]. Before
any future prediction, all new samples must be corrected using the same
reference spectrum as used for the calibration data set [13].

2.4.3 Centering, scaling and autoscaling

To center the data is to translate the coordinate system in such a way
that the origin coincides with the mean of the data (also called the mean
center [13]). This is done by subtracting the mean of each variable, x̄j ,
from the data xij , as shown in equation 2.8 [5].

xcenteredij = xij − x̄j (2.8)

It is common to center the data before further analysis. Principal compo-
nent analysis (section 2.5) and partial least squares regression (section 2.6)
almost always starts with automatically centering the data [5].

Scaling, or weighting, adjust the scale of the variables, and can be used
to put the variables on a similar scale [5]. A particular common scaling
factor is the inverse of the standard deviation of the variable. This is
shown in equation 2.9 [13], where sj is the standard deviation of variable j.
Scaling by the standard deviation is also called standardisation or variance
scaling [20]. Standardisation is most useful when the magnitude of the
variables differ significantly [5].
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xstandardisedij =
xij
sj

(2.9)

Scaling can also be used to control to which extent different variables should
be able to influence the model. Certain variables could be scaled up or down
in order to make a larger or smaller contribution to the model [20].

Autoscaling gives all variables equal importance by both centering the data
and dividing by the standard deviation [5], thus combining equations 2.8
and 2.9.

2.4.4 Normalisation

Normalisation is a much used preprocessing procedure which tries to re-
duce systematic differences between the observations [7]. Normalisation is
performed separately on each object, and re-scales each object by dividing
with a scaling factor. This scaling factor is often a common sum, usually
1 or 100 % [13]. To normalise the data, the sum of all the variables for a
given object is calculated, and the variables is then divided by this sum.
This is called total sum normalisation [7] to differentiate it from other nor-
malisation techniques such as total area normalisation or normalising to
the vector norm.

Some refer to normalisation to a vector sum, as described above, as row
scaling, while normalisation is reserved for vectors whose sum of squares of
the elements equal one [5].

Normalisation ensures that all observations in the data set is represented
in an adequate and consistent way, which is a crucial step in preprocessing
of data [7]. In hyperspectral imaging, normalisation can help adjust for
uneven surfaces. An uneven surface will impact how much of the light is
reflected, and normalisation can remove this difference between the indi-
vidual pixels.

2.4.5 Logarithm

A logarithmic transformation may remove the skewness in the distribution
of data [13]. For hyperspectral data, logarithmic transformations are often
useful when there are large variations in intensities [5]. Logarithms with
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different bases may be used, and both X and Y data may be logarithmi-
cally transformed. A logarithmic transformation is a commonly employed
strategy for eliminating heteroscedastic noise (see also section 2.1.2.2), but
the success of this procedure depends on certain characteristics of the het-
eroscedastic noise [35].

Due to the definition of the logarithm, it is impossible to take the loga-
rithm of zeros or negative numbers. This can be dealt with by setting such
numbers to a small, but positive number [5].

2.4.6 Numerical differentiation

Differentiation will often prove useful for removing systematic variance in
the data. The first derivative of the data will be without any constant
terms from the original data, while any linear terms will be removed from
in the second derivative.

Differentiation might extract important information from the data, but will
increase the noise [55]. As the noise increase for each diffentiation, it is rare
that derivatives above the second are used.

As mentioned in section 2.4.1.3 above, the Savitzky-Golay method can also
be used for numerical differentiation.

2.5 Principal component analysis

Principal component analysis (PCA) is a method used for multivariate data.
It is especially useful if there are more variables than samples, as multiple
linear regression (section 2.3.1) cannot be used in those cases [20]. The prin-
cipal components (PCs) are latent variables, which are linear combinations
of the original variables [1].

In PCA, the independent data matrix X with rank a is written as a sum of
a matrices, each with rank 1. These matrices can also be written as outer
products of two vectors, a score vector ti and a loadings vector p′i. This is
shown in equation 2.10, where the matrix X is written as a sum of a such
vector products [20].

X = t1p
′
1 + t2p

′
2 + ...+ tap

′
a (2.10)
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The NIPALS algorithm (Nonlinear Iterative Partial Least Squares [20]) for
PCA often starts by centering the data, and then iteratively extracting one
principal component at the time [13]. The principal components are chosen
in such a way that that the first principal component explains as much of
the variance in the data set as possible, the second principal component
explains as much of the variance left in the data set as possible while being
orthogonal to the first principal component [20], and so on.

PCA can be viewed as creating a new coordinate system with the origin
in the center of the data, and the coordinate axes in the direction of the
maximum variation in the data set [13]. It is apparent that a crucial part
of PCA is to determine the number of principal components, or coordinate
axes, to investigate. To explain all the variance in the data set, it will
be necessary to calculate a principal components where a is the rank of
the X data matrix, which could be as many as there are original variables
(provided there are as least as many samples as variables in the data set).

The rank of a matrix is a mathematical concept related to the number of
independent sources of variation in the data set [13]. Ideally, this should
be equal to the number of chemical compounds present in a mixture [5],
but the noise present in the data set will usually cause the mathematical
rank to appear larger than the chemical rank.

For this reason, the last principal components will mainly describe random
error present in the data set, and it is neither necessary nor advantageous to
calculate all the principal components. Figure 2.5 shows an example of how
the explained variance can depend on the number of principal components.
Four principal components explains 99.6 % of the variance in the data set,
and would seem a sensible number of components to choose.

The variance left in the data set, not described by the principal components,
is called the error of the model. This is shown in equation 2.11, where the
data X is written as a product of a score matrix T and the transpose of a
loadings matrix P [13]. These matrices are composed of the a first score
and loadings vectors from equation 2.10. E is the error not explained by
the a first principal components.

X = TP ′ + E (2.11)

The score matrix T , gives the coordinates of the objects projected onto
the new coordinate system . The loading matrix P contain information
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(a) Explained variance (%) as a func-
tion of the number of principal com-
ponents

(b) Variance not explained (%) as a
function of the number of principal
components

Figure 2.5: Choosing the number of principal components.

about relationships between the variables, and which variables are the most
important for explaining the variance in the data set [13].

PCA can give valuable information about the underlying structure in the
data, but in order to be useful for prediction, principal component regres-
sion (PCR) [13] is needed. Equation 2.12 shows how regression on the
principal components can be done in an analogous way to equation 2.3 for
multiple linear regression, but using the score matrix T instead of the data
matrix X [20].

Y = TB + E (2.12)

One of the main disadvantages with the MLR method (section 2.3.1), is the
colinearity problem. If the matrix X ′X is singular, its inverse cannot be
calculated, and no least squares solution (equation 2.4) may be found [57].
PCR avoids this problem by requiring the score vectors to be orthogonal
to each other [20]. Equation 2.13 will thus always have a solution B̂.

B̂ = (T ′T )−1T ′Y (2.13)

If the principal components are to be used for regression, the number of
principal components chosen is crucial for the validity of the model, and
must be chosen with care to avoid both over- and underfitting (see section
2.3.3). The optimal number of principal components for PCR will generally
differ from the optimal number for PCA, because PCR lets the prediction
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ability of the model determine the number of components [13]. Validation
(section 2.3.2) is used to determine the number of principal components
that maximises the prediction ability of the model. In some circumstances,
the relevant variation is described by the last few, and not the first few,
principal components [32]. This is, however, a rare case, and will not be
discussed further.

PCA is a technique used in several areas under different names, such as
Karhunen–Loève expansion, eigenvector analysis, the Hotelling transform
or correspondence analysis [1]. It is closely related to singular value de-
composition (SVD), which can be viewed as PCA where all the principal
components are calculated.

2.6 Partial least squares regression

Partial least squares regression (PLS regression or PLSR) [20] is a much
used technique in multivariate data analysis and chemometrics, and in par-
ticular for data from near-infrared spectroscopy [5]. It is in many ways
similar to PCA (section 2.5), in that new latent variables are created as
linear combinations of the original variables.

The main difference between PCA and PLSR lies in how the latent variables
are chosen. PCA only uses information from the X matrix, and creates
latent variables (or principal components) in such a way that they maximise
the variance in the X matrix (independent variables) explained by the
principal component. PLSR, on the other hand, also uses the information
provided by the Y matrix (the variables dependent on X) and creates
latent variables in such a way that it maximises the X-Y covariance and
minimises the prediction error [13]. For this reason, PLSR usually needs less
components than PCR for describing the structure in the X data relevant
for predicting Y .

PLSR can be considered as consisting of two independent PCA decompo-
sitions, one for each of the X and Y block, and an inner relation linking
the blocks together [20]. As shown in equation 2.14, the outer relation for
the X block is similar as for PCA (see 2.11).

X = TP ′ + E (2.14)

Y = UQ′ + F (2.15)
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The Y block is decomposed in a similar way (equation 2.15), with U corre-
sponding to T , Q corresponding to P and the resulting error after a factors
denoted F [13]. However, these matrices must not be confused with the
score and loading matrices from PCA. Methods such as MLR (section 2.3.1)
and PCR assumes that the all error is in the X data, but PLSR takes into
account that there can be errors in the Y data as well [5].

The key point of PLSR is link between the decompositions of X and Y .
Instead of creating independent PCA models, the score from the decompo-
sition of Y is used as a starting point for the decomposition of X – and vice
versa. By letting U and T change places in this way, the decompositions
gain information about and influence each other [20].

PLSR creates latent variables that both has a high variance and a high
covariance with the response, in contrast to PCR which only maximises the
variance in X [26]. Because the measured data never will be completely
noise-free, only a subset of the principal components are used [20].

Two different PLSR routines exist: PLS1 and PLS2. The conceptual differ-
ence between them is minor, but PLS2 allows for more than one dependent
variable [5], that is, for a Y matrix and not just a y vector (section 2.1.2).

In much the same way that choosing the number of principal components is
a crucial step when performing PCR, the number of PLS components is a
very important property of the PLSR model and must be chosen with great
care [20]. The number must be large enough to explain most of the relevant
variation in the data set, but low enough to avoid overfitting to the data
(see section 2.3.3). This can e.g. be done by inspecting a plot of how the
error changes for different number of components. Both visual inspection
and more mathematically stringent methods, such as an F -test [57], can be
employed.

One of the advantages with PLSR is the ability to calculate which of the
objects and variables contribute mainly to the model, and which contribute
mainly to the residual [20]. This can be visualised by plots of scores or
loadings, and utilized to detect anomalies and outliers [13].

For classification problems, a version of PLSR called discriminant partial
least squares regression (DPLSR) is much used in chemometrics [5]. In
DPLSR, the Y-matrix have discrete values. For example, the elements can
be coded as 1 if the object is a member of the class, and 0 otherwise. If there
are k classes and n objects, this will result in a boolean n × k matrix for
the calibration data. When performing prediction by DPLSR, an object is
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more likely to belong to a class the closer the estimated y value is to 1 [5].

2.7 k-nearest neighbours

k -nearest neighbours (k -NN) classification [42] is a prototype method. In
a prototype method, the training data are represented by a set of points
which may not be examples from the training data set. The main challenge
with the k-NN method is to determine how many and which prototypes to
use [26].

Nearest neighbour methods is based on the assumption that an object is
likely to be of the same class as the objects in the neighbourhood, that
is, with similar x values [42]. In k -nearest neighbours, this neighbourhood
consists of k points.

To decide a neighbourhood, some kind of distance metric is needed. The
Euclidean distance d between points A and B in i dimensions is shown in
equation 2.16 (generalised from [56]).

d(A,B) =

√∑
i

(xBi − xAi )2 (2.16)

The Euclidean distance is ill-suited when the variables have different scales.
One solution to this problem is to standardise the variables (section 2.4.3) [42].
It is also possible to use another metric such as the Mahalanobis distance [5],
which is similar to Euclidean distance but includes the covariance of the
features as a scaling factor. If the variables are discrete features, the Ham-
ming distance defines the distance to be the number of features on which
the objects differ [42].

Each point is assigned to the class that the majority of its k nearest neigh-
bours belong to. In the case of a tie, the class is usually chosen randomly
between the tied classes [26]. When there are only two classes, ties can be
avoided by choosing k to be an odd number. For large data sets an efficient
way of finding the nearest neighbours are necessary, as calculating the dis-
tances between all points take far too long. Preprocessing of the training
data may make this step more efficient [42].

Different values of k will give different results. Performing k-NN for a
number of values of k can be used to spot anomalies or artefacts [5]. The
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best value for k can be chosen using validation [42]. Cross-validation (sec-
tion 2.3.2) is often used for this.

The k-nearest neighbours algorithm has been proved successful for a large
number of classification problems. Because it is a prototype method, it
handles irregular decision boundaries well [26]. The method is conceptually
very simple [5], and easy to implement [42]. High-dimensional spaces may
pose a problem, because the nearest neighbours sometimes are too far away
for the method to be trusted.

The composition of the training set is essential for the performance of the
model. If the number of objects in each class are not approximately equal,
the model will be biased towards the class with the most representatives in
the training set [5].

The k-NN method assumes that all variables are of the same importance.
This is usually not true for spectroscopic data. Taking correlation between
wavelengths into account by using the Mahalanobis distance metric will to
some extent avert this problem [5].
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Chapter 3
Experimental

3.1 Hypotheses

The main hypothesis of this thesis is that the near-infrared spectrum of
hydrocarbons (e.g. paraffin) differs from the spectra of surfaces common
in nature, e.g. soil, sand and vegetation. This difference is detectable by
hyperspectral cameras, and as a consequence of this, chemometric methods
can be used on hyperspectral images to create a model that discriminates
between areas with hydrocarbons and areas without hydrocarbons.

Assuming that the main hypothesis holds, five additional hypotheses will
be investigated:

1. Because water has a very strong absorption spectrum [59], presence
of water will affect the model. For this reason, both wet and dry
samples should be included in the data set.

2. Over time, chemical and biological reactions will occur [44]. This will
cause the accuracy of the model to depend on how much time has
passed after the hydrocarbons were added to the surface.

3. The amount of hydrocarbon present will influence the spectrum. On
the same background, it should be possible to separate areas with
different amounts of hydrocarbons.

4. Naturally occurring hydrocarbons or similar compounds (e.g. organic
matter such as dead plants and animals) will give false positives. In a
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more sophisticated model, this error should be minimised, but there
is likely to be a trade-off between a high degree of detection and a
high number of false positives.

5. Different hydrocarbons have different spectra. This means that it
should be possible to create a selective model for target hydrocarbons.
It should also be possible to create a model that discriminates between
similar alkanes of different chain lengths, such as n-hexane and n-
heptane, on some surfaces.

3.2 The set up

Figure 3.1 shows the current set up of the PryJector [2]. It consists of a
sample table, a NIR source, a filter for blocking out visible light, a hy-
perspectral camera and a projector. The camera and the light source are
mounted on a translator moving parallel to the sample table.

Figure 3.1: The PryJector. Illustration by Alsberg [2].
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The light source used to illuminate the samples is a 150 W lamp which
has a light intensity in both the visible and infrared region (400-2500 nm).
To help enhance contrast when performing projection, the visible light is
blocked out by a long wave pass filter with a cut-on at 850 nm, which
almost completely blocks out all wavelengths below 800 nm [2].

The hyperspectral camera is a HySpex SWIR-320i from Norsk Elektro Op-
tikk AS [39]. It is a pushbroom scanner with 320 pixels across and an
InGaAs focal plane array [2]. The spectral range is 923-1665 nm with 148
different wavelengths approximately 5 nm apart. The wavelengths are given
in appendix A. The camera is mounted at a distance of 100 cm from the
sample table, giving a pixel size of 0.75 mm. The scan rate is 100 fps and
the translation device moves at a speed of 7.5 cm/s.

The projector is an ordinary colour computer projector (Hewlett-Packard
MP3222 with XGA, 1024 × 768 and 2000 lumens; Hewlett-Packard Co.,
Palo Alto, CA). When the PryJector is used in projection mode, the pro-
jector will project a chemical image with false colour onto the sample. This
chemical image is updated continuously as the camera records new lines of
the image [2].

In this thesis, the PryJector is used mainly for recording images. Although
the projection feature were used to demonstrate and explore the limitations
of an early model, this is not described further here.

3.3 Hyperspectral images recorded

Several hyperspectral images were recorded, in five phases. In the first
phase (section 3.3.1), the main goal was to investigate the validity of the
main hypothesis, that is, whether or not it was at all possible to create
a model with the ability to distinguish paraffin and soil from soil without
paraffin. Samples of water and soil were added to adjust for the effect
of water (additional hypothesis 1). In addition to this, scans of the same
samples were taken over the period of a year in order to test the time
dependence of the model (additional hypothesis 2).

In the second phase (section 3.3.2), soil with different concentrations of
paraffin were prepared to investigate additional hypothesis 3.

The third phase (section 3.3.3) includes a number of different surfaces,
both inorganic and organic. This is both to make the model more robust,
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and to test whether organic matter will result in false positives (additional
hypothesis 4).

The images in the forth phase (section 3.3.4) both includes different back-
grounds (additional hypothesis 4) and explores the time dependence of the
model further (additional hypothesis 2).

The last phase (section 3.3.5) introduces different hydrocarbons (additional
hypothesis 5). Hexane and heptane were applied to soil, and attempts are
made at distinguishing between them.

Two types of soil were used: Soil bought from Plantasjen, and compost soil
from a private garden in Trondheim. In addition to this, leaves, plants,
lichen, cones and moss from the area around Kyvannet, sand and humus
from near Lianvannet and stones and grass from near Gløshaugen were
used. These samples were gathered during the fall of 2012.

3.3.1 The effect of time

Eight Petri dishes were prepared in this first phase of the experimental
work: three with pure soil (from Plantasjen, about 6 g soil/dish), two with
a mix of soil and water (0.8 ml water/g soil, about 9 g soil/dish) and
three with a mixture of soil and paraffin (0.8 ml paraffin/g soil, about 9 g
soil/dish). Scans were taken over the period of a year, to investigate the
possible effect of time (additional hypothesis 2). Table 3.1 gives an overview
over the hyperspectral images recorded in this phase of the experiments.
Water and soil were added in accordance with additional hypothesis 1 in
section 3.1.

Soil and paraffin were mixed in a beaker by using a spoon. This resulted
in a heterogeneous mixture. Soil and water were mixed in the same way.

The Petri dishes were placed in room temperature between the scans, and
had lids on. In spite of this, the two dishes with soil and water (middle
row in the mean images) would visibly dry out and crack over time. The
samples with only soil (bottom row) would also crack, as can be seen in the
last mean image.

These scans were used both to create models for locating hydrocarbons (in
this case paraffin), and also to investigate the possible effect of time on the
model (additional hypothesis 2).
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Table 3.1: Hyperspectral images recorded in the first phase. Only the first
and last mean image is shown.

Number
Days after first

scan
Mean image

1 0

2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 14
10 21
11 28
12 35
13 42
14 49
15 56
16 84
17 112
18 280
19 308
20 322
21 336
22 350

23 365

3.3.2 Different concentrations

To investigate whether or not additional hypothesis 3 is correct in assuming
that the amount of hydrocarbon present might influence the validity of the
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model, scans of soil and paraffin in various proportions were recorded, as
shown in table 3.2. Soil and paraffin were mixed in a similar way as for the
images in table 3.1.

Table 3.2: Hyperspectral images recorded in the second phase.

Soil [g] Paraffin [ml] Comment Mean image

0 0
Empty plast

petri dishes and
lids

12.4 0 Soil, uncrushed

0 20

Pure paraffin,
scans taken

after time = 0
h, 4 h, 1 day, 2
days, 3 days, 1
week, 2 weeks

0 0
Pure water
(2 × 10ml)

15.04 1.00
After time = 0

and 4 days

15.08 2.50
After time = 0

and 4 days

15.11 5.00
After time = 0

and 4 days
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Soil [g] Paraffin [ml] Comment Mean image

15.12 10.00
After time = 0

and 4 days

15.11 15.00
After time = 0

and 4 days

14.98 0 Soil, crushed

3.3.3 Different surfaces

One of the main goals were to develop a model that could be used on several
different surfaces. To achieve this, data from more backgrounds than soil
were needed. Table 3.3 shows the hyperspectral images recorded in this
phase. They span a range of surfaces, including both organic and inorganic
matter. The paraffin were applied by immersing the samples in paraffin.
This gave an uneven amount of paraffin on the samples.

To help correct for the effect of water (additional hypothesis 1 in sec-
tion 3.1), water was added to some of the samples.

3.3.4 Time dependence, different backgrounds

Although the images in tables 3.1 and 3.2 above is recorded over time and
thus can be used to detect changes over time (see additional hypothesis 2 in
section 3.1), an additional time series of images were wanted for two reasons.
Firstly, the recorded scans in tables 3.1 and 3.2 are all with a background of
soil. Other backgrounds, like stones and humus, could give different results
with respect to the time effect, as it is probable that different reactions
would occur in a different environment.
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Table 3.3: Hyperspectral images recorded in the third phase.

Description Mean image Description Mean image

Yellow-green
leaf, a bit wet

Yellow-green
leaf, with
paraffin

Two different
kinds of lichen

Lichen with
paraffin

Cones from
Scots Pine and
Norway Spruce,
some wet, some

dry

Cones with
paraffin

Moss
Moss with

paraffin

Assorted leaves
and plants, a

bit wet

Assorted leaves
and plants,

with paraffin

Grass, a bit wet
Grass with

paraffin

Stones, dry
Stones with

paraffin

Stones, wet
Wet sand and

stones

Sand, dry
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Secondly, and more importantly, the previously recorded samples were pre-
pared by mixing paraffin and soil. It was reasoned that unwanted dis-
charges of hydrocarbon into nature would result in a significantly different
hydrocarbon concentration profile, where the hydrocarbon would migrate
through the background over time. This would likely result in a high con-
centration at the surface at first, which would then decrease over time. The
composition of the background would probably affect how fast and to what
extent this would happen.

The images in table 3.4 contain five areas: humus, sand, stones and two
different types of soil (from Plantasjen and compost soil). The height of
the box caused some shadows. To control this effect, two pictures were
taken at the same time, with the container rotated by 180◦ between the
scans. Only one of these images is shown in the table.

Table 3.4: Hyperspectral images recorded in the fourth phase. Only the
first and last mean image is shown.

Number
Time after

added paraffin
Mean image

1
Taken before

added paraffin

2
As soon as

possible
3 5 min
4 30 min
5 4 hours
6 23 hours
7 2 days

8 3 days
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3.3.5 Different hydrocarbons

Additional hypothesis 5 claims that different hydrocarbons will have dif-
ferent spectra, and that is should be possible to create a model that dis-
tinguishes between them. To investigate this, it was necessary to record
images of different hydrocarbons.

n-hexane and n-heptane were chosen as two different alkanes with similar,
but not identical, spectra. In addition, images of soil with paraffin were
added.

Nine Petri dishes were used, and the soil in each Petri dish were weighted.
To each dish, 5.00 ml of n-hexane, n-heptane or paraffin were added by
slowly pouring the liquid over the soil. See table 3.5.

Table 3.5: Samples prepared in the 5th phase.

Number Mass soil [g]
Hydrocarbon

added

1 5.72 Paraffin
2 6.64 Hexane
3 6.56 Heptane
4 6.41 Heptane
5 6.58 Paraffin
6 6.44 Hexane
7 7.31 Hexane
8 6.19 Heptane
9 8.02 Paraffin

The hyperspectral image were recorded ten minutes after the last sample
were prepared. The mean image of this hyperspectral image is shown in
figure 3.2.

3.4 Data sets

Only a subset of the pixels from each hyperspectral image were included in
the data sets used for developing models. Rectangular areas were chosen
from the mean images, and the pixels from these areas were assembled in
the data set.
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Figure 3.2: Mean image of samples with hexane, heptane and paraffin.

Table 3.6 gives an overview over the different data sets used and their
composition.

Table 3.6: Data sets.

Id Size Images used

1a 109369 Images 1-8 from table 3.1
1b 376587 All images from table 3.1
2 126606 Images 2, 3, 5-10 from table 3.2
3a 268388 Images 1-8 from table 3.1, images 2-4 and 7-10 from ta-

ble 3.2, and all images from table 3.3
3b 27536 A selection of the data from images 1 and 2 from table 3.1,

images 8 and 9 from table 3.2, all images except dry sand
from table 3.3, and images 1-4 from table 3.4

4 3263 The image shown in figure 3.2

Data set 3b were an attempt to create a smaller data set with a more equal
number of positives and negatives, but with an even greater variation than
data set 3a. This was deemed necessary because the size of data set 3a
gave unwanted ramifications (see also section 5.1).

For data sets 1a-3b, the data were split into calibration and validation data
sets randomly. For data set 4, the calibration and validation data sets were
chosen from different Petri dishes (see figure 3.2).
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3.5 Calculations

The calculations were performed using MATLAB R2011b [50] on an ASUS
laptop with 6 GB ram and an Intel Core i5 processor. In addition to some
functions from the Image Processing and Statistics toolboxes in MATLAB,
in-house developed software were used for many procedures, including read-
ing in data, data preparation, some preprocessing routines and PLSR/D-
PLSR.

Figure 3.3 illustrates the process from the sample preparation to a finished
model. After the samples were prepared and the hyperspectral images
recorded by the PryJector, certain interesting regions in the images were
selected for further analysis.

Several different preprocessing algorithms, as described in section 2.4, were
performed on the data, which were split into a calibration data set and a
validation data set.

After choosing which method to use (PLSR/DPLSR, k-NN or other), the
model is created using the calibration data, and then validated using the
validation data. For k-NN, the calibration data were used as a training
data set, while the validation data were used as a test set.

The result is a model, which (hopefully) can be used by the PryJector for
prediction on future data.
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Sample
preparation

Record hyper-
spectral images

Data prepa-
ration

Preprocessing

Split the
data set

Choosing
method

Calibration Validation Model

Calibration data

PLSR, k-NN or other

Validation data

Figure 3.3: Creating a model
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Chapter 4
Results

4.1 Detecting hydrocarbons

4.1.1 DPLSR models

Several DPLSR models were developed. Table 4.1 shows some of the
DPLSR models and their percentage of error on data set 3a (see table 3.6).
The DPLSR models were all generated in the same way, but the data were
preprocessed in a number of different ways.

The preprocessing method which showed the most promise, proved to be
normalisation (model number 3). This is assumed to be because normali-
sation removes some of the variance in intensity due to an uneven surface.
Multiplicative scatter correction (section 2.4.2), which is a method devel-
oped to adjust for this scatter effect, also lowers the error significantly
(model 13).

As shown in figure 4.1, the raw data have a saw tooth structure which is
probably due to instrument error from the mechanical scanning operation
(see also section 2.1.3 about the pushbroom scanner). This saw tooth struc-
ture is thought to be the reason median smoothing of the normalised data
improves the models somewhat (compare models 3 and 5).

The plot of raw data suggests that there could be some heteroscedastic noise
(section 2.1.2.2) that dominates the spectrum around its peaks. This is
confirmed by figure 4.2, showing an approximately proportional relationship
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Table 4.1: Overview over DPLSR models

Model No. of comp. Error (%) Comment

1 12 9.3 Original data
2 3 23.6 Only selected wavelengths (1171-

1246 nm)
3 7 4.3 Normalised data
4 7 5.0 1st derivatives of normalised data
5 7 4.1 Median smoothed normalised data

(window = 7)
6 12 10.6 Savitzky-Golay smoothed data
7 12 10.7 Moving average-smoothed data (win-

dow = 3)
8 5 4.3 1st derivatives of moving average-

smoothed, normalised data
9 15 9.4 1st derivatives of data
10 20 13.9 2nd derivatives of data
11 15 8.5 Centered data
12 17 9.0 Autoscaled data
13 6 4.6 Multiplicative scatter correction of

data
14 7 9.2 Logarithm of data
15 6 8.5 Normalisation of log(data)

Figure 4.1: A typical raw data spectrum of soil.
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between the mean values and the standard deviation of the recorded data.
This plot is based on data from dry soil without paraffin from image 1
in table 3.1. If the noise were homoscedastic, no relationship between the
mean and the standard deviation would be expected.

Figure 4.2: Plot of the mean versus the standard deviation for pure soil.
Data taken from image 1, table 3.1.

Despite the logarithm transform (section 2.4.5) being commonly employed
to remove hetereoscedastic noise, the improvement in the error for the
DPLSR model of the data after the logarithm transform (model 14) is
negligible. Kvalheim et al. [35] recommends using a logarithmic transform
before normalisation of data with heteroscedastic noise. This gave an only
slightly better (model 15).

As described in section 2.6, the error will depend on the number of PLS
components included in the model. The error profile for DPLSR of the
original data (model 1), is shown in figure 4.3. As shown in table 4.1, 12
components are used in the model, giving an error of 9.3 %. Even though
a higher number of components would give a smaller error, the addition of
a 13th component is considered to not make enough of a difference in the
error to justify adding the complexity of another component. This is in
accordance with Ockham’s razor (section 2.3.3).

Ockham’s razor could also be employed when reasoning which kinds of
preprocessing to use. For instance, with two digits after the decimal point
the error of model 8 is 4.28 % while the error of model 3 is 4.33 %. Despite

47



4.1. DETECTING HYDROCARBONS CHAPTER 4. RESULTS

Figure 4.3: Percentage of error plotted against the number of PLS compo-
nents.

this, model 3 is the model used for further analysis and comparison to other
models. This is because this minor lowering of error is considered too small
to justify both MA-smoothing and differentiating the spectra.

4.1.2 k-NN models

A procedure for k-NN (see section 2.7) were developed and used on data
from the 8 first scans from table 3.1 (data set 1a from table 3.6). Two
groups were used: with and without hydrocarbons (in this case paraffin),
and each pixel in the validation data set were assigned to the group of
which the majority of the k nearest neighbours in the calibration data set
belonged.

Table 4.2 shows how the error changes for different (odd) values of k. No
preprocessing were performed on the data. The percentage of false positives
given in the table, is calculated with respect to the error, not the total
number of spectra.

The lowest error is achieved by k = 1. This could imply a nice and clear
separation between the classes. Figure 4.4 is a score plot from principal
component analysis (section 2.5) of these data, and substantiate further
that the classes are separated. Although there are some overlap between
the groups, the data seems to form three clusters: dry soil (shown in black),
soil with water (blue) and soil with paraffin (red). The latter is, to some
extent, sandwiched between the other groups.
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Table 4.2: k-NN models

k Error (%) False positives (%)

1 0.74 0.57
3 0.91 0.72
5 1.0 0.82
7 1.1 0.89

Figure 4.4: Score plot of the two first principal components from PCA of
data set 1a from table 3.6. Dry soil is black, wet soil is blue and soil with
paraffin is shown in red.
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The low percentage of false positives means that a great majority of the
errors were from the plastic dishes containing soil with paraffin. It is likely
that the paraffin was unevenly mixed with the soil, which would cause some
of the pixels to have more in common with soil without paraffin. Another
reason for the low percentage of false positives, could be the fact that most
of the data points are negatives, i.e. without hydrocarbons present. This
could bias the model towards false negatives [5].

The corresponding DPLSR model based on raw data from the 8 first scans
from table 3.1, had an error of 0.5 % with 4 PLS components. Attempts
were made on performing k-NN on the data set used in the other models
for detecting hydrocarbons (data set 3a from table 3.6), but the attempt
was aborted when the script was still running after more than 46 hours.
Attempts to use k-NN on data set 3b is described in section 5.1 in the
discussion chapter.

4.1.3 Waveband models

A simpler model, using only some of the wavelengths, was also developed.
This was inspired by the fact that the 1150 nm stretching overtone of the
C-H bond was inside the 930-1670 nm range of the recorded wavelengths
(see appendix A), and this could provide an area of wavelengths with char-
acteristics specific for compounds with such bonds.

By inspecting plots of raw data, such as the one shown in figure 4.5, it
was discovered that somewhere around 1200 nm the spectra of paraffin
had a minimum, and that other samples with hydrocarbons present had a
lower slope in this area than the corresponding sample without hydrocar-
bons present. This area was thought to correspond to the 1150 nm second
overtone of the C-H stretching band (section 2.2), although it is, in fact, at
a somewhat higher wavelength.

A couple of possible methods of creating a model were investigated. A
smoothed spectrum was compared to the straight line through the 50th
and 65th wavelength (1171-1246 nm), but because of the low slope of most
spectra in this area, this strategy gave a high error with a large amount
of false positives. Another and even simpler model normalised the spectra
from the 50th to the 65th wavelength, and compared the intensity of the
56th or 57th wavelength of this normalised spectrum with a value chosen
by trial and error. The best of these models used the 57th wavelength
(1206 nm) and had an error of 6.4 %. Other attempts were made by using
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Figure 4.5: Means of raw data of soil (black), soil with water (blue) and
soil with paraffin (green). The data is smoothed with a moving average
filter, window size = 5.

the 2nd derivative or an algorithm similar to the HI-index described by
Kuhn et al. [34].

The best results were obtained by a model that, using smoothed data,
calculates the average of the 50th and 65th wavelength (see appendix A)
and compares this average value with the intensity for each of the values in
between. If the number of wavelengths with an intensity higher than the
average value calculated is larger than 10, the pixel is marked as containing
hydrocarbons. The MATLAB script is shown below.

f i r s t = 50 ; % Wavelength = 1171 nm
l a s t = 65 ; % Wavelength = 1246 nm
compare = 10 ;
n = size (X, 1 ) ;
y e s t = ones (n , 1 ) ; % Class 1 : no hydrocarbons
for i = 1 : n

m1 = X( i , f i r s t ) ;
m2 = X( i , l a s t ) ;
m = (m1 + m2) /2 ;
counter = 1 ;
for j = f i r s t + 1 : l a s t − 1

if (X( i , j ) < m)
counter = counter + 1 ;

end
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end

if ( counter > compare )
y e s t ( i , 1 ) = 2 ; % Class 2 : hydrocarbons

end

end

Different smoothing techniques (section 2.4.1) were investigated in an at-
tempt to minimise the prediction error. An overview of some of these, and
their error percentages, can be seen in table 4.3. All smoothing techniques
improved the model compared to no smoothing (model 7). The procedure
gave remarkably good results regardless of smoothing, with the percentage
of error almost as low as for the best DPLSR models (see table 4.1). Nor-
malising the data improved the model slightly. Scans of plastic and other
hydrocarbons showed that these models did not discriminate between dif-
ferent kinds of hydrocarbons.

Table 4.3: Overview over models

Model Wavelengths
Smoothing technique Error (%)

False
number used positives (%)

1 50-65 Savitzky-Golay 7.4 57.8
2 50-65, 125 Savitzky-Golay 4.9 36.2
3 50-65, 125 Moving average 4.5 20.4
4 50-65, 125 Median smoothing 5.0 55.1
5 49-64 Averaging 6.1 20.4
6 50-65, 125 Fourier, low pass filter 5.1 47.4
7 50-65 No smoothing 10.2 52.3

Raw data plots of image 4 from table 3.2, figure 4.6c, shows that water has
the same characteristic low slope as the hydrocarbons around 1200 nm. For
this reason, water gave false positives in the first waveband model (model
1). To remove these false positives, model 2 (and subsequent models) were
given an additional condition, and would not mark the pixel as containing
hydrocarbons if the intensity of the 50th wavelength (1171 nm) were lower
than three times the intensity of the 125th wavelength (1549 nm). This
additional condition quantitatively removed the error resulting from water
registering as false positives.

It should, however, be noted that the water spectra used above were from
water in a plastic Petri dish. Raw data plots of water in a glass beaker
shows another profile, as shown in figure 4.6d. As for the spectra of water
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(a) Mean spectrum of a dry plastic
Petri dish.

(b) Mean spectrum a dry pyrex glass
beaker.

(c) Mean spectrum of water in a plastic
Petri dish.

(d) Mean spectrum of water in a pyrex
glass beaker.

Figure 4.6: Raw data plots of water in different containers, and the different
containers without water.
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shown above, the spectra approaches zero for high wavelengths, but instead
of this happening slightly before 1400 nm, it happens around 1150 nm. This
made the previously described test for removal of false positives from water
useless for these new data.

It also raises the question of whether the reason water in a plastic Petri
dish gave false positives might stem from the plastic and not, in fact, from
the water. If this is the case, it might not be desirable to treat these as false
positives, as they actually should be treated as hydrocarbons. The mean
spectrum of the plastic container (figure 4.6a) does have a minimum around
the wavelength area used by the waveband model, which is not present in
the mean spectrum of the class beaker (figure 4.6b).

The parameters used for the models described in table 4.3 were chosen by
trial and error. A more throughout way of choosing parameters would be to
find the calibration error for several models, and validate the models using
a validation data set. Table 4.4 shows the 10 best models chosen by such
a procedure. The percentage error is the validation error on data set 3a.
All models use moving average-smoothed data, but with the window size
varying from 3 to 9. The other variables were which wavelength area (see
appendix A for wavelengths in nm) and what value to use for the compare
parameter. Note that the additional test for removing false positives from
water is not included here.

Table 4.4: Varying the parameters

Model
Error False positives Window Wavelength

Compare
(%) (%) size area

1 6.49 62.6 7 50-64 9
2 6.87 56.2 5 51-63 8
3 6.88 72.8 3 50-64 9
4 6.88 53.0 7 49-64 10
5 6.90 60.7 9 52-65 8
6 6.96 56.3 5 51-65 9
7 6.97 67.1 3 49-64 10
8 6.99 51.2 9 51-62 7
9 7.01 48.8 7 50-65 10
10 7.06 51.9 7 50-62 8
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4.2 Estimating the amount of hydrocarbons

In accordance with additional hypothesis 3, attempts were made to estimate
the amount of hydrocarbons.

As this is a regression problem, only PLSR have been used. Although k-
NN, which is a classification method, can also be used for regression, this
works best for low-dimensional problems [26], and has not been attempted
here.

Figure 4.7 shows the result of an PLS regression on data set 2 from table 3.6.
While there seems to be some correlation between the estimated amount
of hydrocarbons and the experimental amount of hydrocarbons, it is clear
that the predictability is not very good.

Figure 4.7: Estimated (black) and experimental (red) values. No paraffin
= 0, pure paraffin = 6. Other values given as ml paraffin / g soil.

There are several possible ways for increasing the predictability of the
model. So far, no preprocessing has been performed on the data. Nor-
malisation, MSC and smoothing is likely to improve the model. If a model
for estimating the amount of hydrocarbons were to be used with the back-
projecting feature of the PryJector, it might be more interesting to use an
average of several neighbouring pixels than to assess every pixel separately.
This might very well give a much better estimate. An extreme case of how
averaging can increase the predictability, is shown in table 4.5. The average

55



4.3. IDENTIFYING HYDROCARBONS CHAPTER 4. RESULTS

spectrum of all the data with the same experimental amount of hydrocar-
bons, is here used for prediction, and the error is very low. The model used
is the same PLSR model as in figure 4.7.

Table 4.5: Estimated values, average spectra

Experimental value Estimated value Error Error (%)

0 0.12 0.12 -
0.07 0.09 0.03 39.7
0.17 0.19 0.03 15.2
0.33 0.32 -0.01 -4.0
0.66 0.65 -0.01 -1.6
1.01 0.94 -0.06 -6.3

6 5.99 -0.01 -0.2

One of the challenges with creating this model, was how to choose the y
data. For mixed soil and paraffin, the amount of paraffin in ml were divided
with the mass of soil in g. Pure soil were thus given as 0. Pure paraffin
were given as 6. This value were chosen because a similar PLSR model
made without pure paraffin in the calibration data set, returned values
around 6 for pure paraffin. The recorded spectrum for paraffin will have
been affected by the background, which was a plastic dish.

It is also worth noting that the true amount of hydrocarbons is, due to the
way samples were prepared, likely to vary between individual pixels from
the same Petri dish. For this reason, the estimated amount of hydrocarbons
might in some cases in fact be closer to the true amount for that pixel, than
the experimental value is, but this is purely speculation and impossible to
neither confirm nor falsify by the data. A model using the average spectra
over four or nine neighbouring spectra, might for this reason give more
stable results.

4.3 Identifying hydrocarbons

It was also investigated whether or not it was possible to identify alkanes of
different chain-lengths. Scans of n-hexane and n-heptane, as described in
section 3.3.5, were compared. The data set used is number 4 from table 3.6.

The models described below are not trained to detect hydrocarbons, but
can be used in collaboration with one of the models presented in section 4.1.
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For the same hyperspectral image, one model can detect areas with hydro-
carbons present while another can identify the detected hydrocarbons.

4.3.1 DPLSR models

Table 4.6 shows the error for three DPLSR models for distinguishing hexane
and soil from heptane and soil. In contrast to the results in section 4.1.1, the
lowest error was achieved by DPLSR on raw data. Neither normalisation
nor MSC improved the model.

Table 4.6: DPLSR models for distinguishing hexane from heptane

Model No. of comp. Error (%) Comment

1 6 12.1 DPLSR of raw data
2 5 18.9 DPLSR of normalised data
3 4 16.1 DPLSR of data after MSC

The size of the error seems to suggest that it is possible to distinguish
between different hydrocarbons by using DPLSR. A more optimal model
with a lower error can probably be developed. n-hexane and n-heptane is,
of course, very similar. It is reasonable to assume that hydrocarbons with
more structural differences between them will be easier to distinguish.

4.3.2 k-NN models

Distinguishing between different hydrocarbons is a classification problem,
which makes a classification method like k-NN an obvious choice. Despite
this, the error for k-NN is large. This is shown in table 4.7, which gives
the percentage error for different values of k. The results also shows that
there are more heptane marked as hexane (about 20 % of the error), than
hexane marked as heptane (about 80 % of the error).

The size of the error might be due to the fact that the calibration and
validation data sets were chosen from different Petri dishes, and that no
preprocessing was performed on the data prior to k-NN.
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Table 4.7: k-NN models for distinguishing hexane from heptane

k Error (%) Hexane marked as heptane (%)

1 40.9 19.1
3 39.7 23.8
5 38.4 17.6
7 36.6 18.9
9 37.2 17.7
11 37.7 18.4

4.4 Time dependence of the models

One of the hypotheses in part 3.1, was that the accuracy of the model
would depend on how much time had passed. To test this, scans of the
same samples were performed during the course of one year (see table 3.1).
This is data set 1b from table 3.6.

Mean images of the first and last scan in this time series is shown in figure
4.8. There are visible cracks in the Petri dishes with soil (bottom) and soil
with water (middle). There are less cracks in the Petri dishes with soil and
paraffin (top row).

(a) The first day (b) After one year

Figure 4.8: Mean image of data, after 0 and 365 days.

Figure 4.9 shows how the error of detection changes over time. The DPLSR
model is made from data set 1a in table 3.6, and uses only data recorded
during the first week. Although the error seems to be somewhat higher after
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a year, the error stays low during the whole year. Some of the increase in the
error is probably due to the fact that, as can be seen from the mean images
(figure 4.8), cracks in the soil have been introduced over time, causing the
plastic to be visible, which might produce false positives.

Figure 4.9: Plot showing how the percentage error of detection changes
over time. The time is given in days.

The results suggest that time is a less important variable than hypothesis
2 assumes. It is, however, possible that time will have a greater effect on
other surfaces than soil. The samples used here are prepared by mixing
paraffin and soil. Other ways of preparing the samples might have a larger
error. The data from table 3.4, where paraffin is poured over the surfaces,
seems to be more time dependent.

4.4.1 Can the time be estimated?

Figure 4.10 illustrates the results of a PLS regression of the data from data
set 1b in table 3.6, using time after first scan as the y data. Only the pixels
with with paraffin and soil are used.

There is some relationship between estimated and measured time, but the
error is large. As with the concentration regression (section 4.2), it is likely
that a higher accuracy might be achieved by spatially smoothing of the
data. A smaller error is also achieved when the logarithm of the time is
used.

It should be noted that these samples were prepared by mixing paraffin
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(a) PLSR with y as the number of days
after applying paraffin

(b) PLSR with y as the logarithm
of the number of days after applying
paraffin

Figure 4.10: Estimated (black) and experimental (red) values. PLSR of
normalised data.

and soil. A higher time dependence is expected for data from samples
where paraffin is poured over the soil, such as the images in table 3.4.
For samples such as these, it is expected that the paraffin over time will
migrate downwards through the sample, and to some extent disappear from
the surface.

One problem with time series such as this, is that interesting long-term
trends often are buried within short-term random fluctuations [5]. It is
apparent from figure 4.10 that while there seems to be a certain trend in
the data, using this model for prediction would not give good results for
individual pixels. A routine using the mean or median value for a larger
area might give better results.
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Chapter 5
Discussion

5.1 Choosing calibration and validation data sets

How to choose the optimum size of the calibration and validation data sets,
is an important problem with no easy answer [5]. It might be tempting to
include as much data as possible in the calibration data set, but a larger
data set will not always give better results. The data set must be large
enough to span the relevant spectral variation for prediction on future data,
but if the data set is too large, the relevant information might ”disappear”
in noise and irrelevant information.

It could be desirable to use the smallest data set possible, to save processing
time (and money). For the PryJector, it is important that the processing
time is short enough to make the PryJector able to operate ”on the fly”.
However, the PryJector will generally use a pre-calibrated model, and the
size of the data set used for calibration and validation will not necessarily
influence the processing time of the final model, except for k-NN, where
the number of prototypes in the training data set is essential.

The data set used for most of the calculations and testing/comparison of
methods described in chapter 4, is data set 3a from table 3.6, which consists
of almost 270 000 pixels, each with 148 wavelength bands. This turned out
to be impractically large. Some procedures, like MSC (section 2.4.2) took
hours to finish (although a more efficient implementation of MSC might be
faster), while k-NN (sections 2.7 and 4.1.2) had to be aborted after nearly
two days. To use this technique, a smaller data set would be necessary.

61



5.1. DATA SETS CHAPTER 5. DISCUSSION

This is elaborated further in section 5.4.

It should be noted that the calculations were performed on an ordinary
laptop (see section 3.5 for specifications). On a more powerful computer,
the size of the data set would have been a lesser problem.

One of the other reasons that a larger data set might, in fact, be a bad
thing, is the importance of the data set being ”balanced”. To illustrate
this point, an extreme case would be a data set with 1000 data points, of
which only 10 data point is of class 2, and the resulting 990 data points are
all class 1. A model which automatically labels all data as class 1, would,
of course, give a low error (1 %), but be completely useless for prediction.
A data set with a smaller number of data points belonging to class 1, would
in many cases result in a better model.

Data set 3a from table 3.6, which is the data set used for comparison
between the models e.g. in table 4.1, has approximately 66 % of the pixels
belonging to the background class (negatives), and only one third of the
pixels containing hydrocarbons (positives). This must be taken into account
when the different models are compared to each other. This was one of the
motivations for calculating the percentage of false positives for the different
models.

Even though the need for reducing the size of the data set were the catalyst
for creating data set 3b, a more balanced data set were one of the deter-
mining factors for choosing how many pixels from each image to include in
the data set. As a result of this 49.4 % of the pixels in data set 3b are neg-
atives (no hydrocarbons present), and 50.6 % are positives (hydrocarbons
present).

One way of reducing the size of the data set without removing any of the
samples, is to use data compression (section 2.1.2.3). Data compression
can give a more compact data set with a higher signal-to-noise ratio, and
algorithms that can operate directly on the compressed data saves time [48].

There are several possible methods that could have been used, amongst
them averaging (section 2.4.1.1), latent variables (section 2.5) and wavelets
(section 2.4.1.5).
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5.2 Comparing models

There are several things to keep in mind when comparing different models.
One obvious way of comparing them, is to use the percentage of error, and
then use the model with the lowest error. This will, however, not always
give the best model.

To decide which model is the best model, one needs to answer the question:
what are a the characteristics of a good model? As explained in section
2.3.3, a good model neither overfits nor underfits to the data. In other
words, the ideal model is sophisticated enough to describe all the relevant
variation in the data set while neglecting the variation present due to noise.
Most of the time, it is possible to create a more complicated model with a
lower error, but such a model might describe the noise in the data instead
of the relevant information. Ockham’s razor should be kept in mind at all
times, both while creating and comparing models.

For the models developed in this thesis, three aspects of the models are
assumed to be especially important: the predictive ability, the robustness,
and the simplicity of the model. The predictive ability is easily quantified
as the percentage error for a given data set, and comparing models based on
their error is the main principle for comparing models used in the results
chapter. However, the ability to predict correctly also on new samples
and previously unknown surfaces, is very important. A robust model can
be applied to many different samples, and has a low and stable error on
a variety of surfaces. Because of the spatial continuity of the data, the
interpretation of the chemical image is not dependant upon every single
pixel being classified correctly.

The models for detecting hydrocarbons can perform two types of errors: it
can detect hydrocarbons where there in fact are none (type I error, also
known as false positives), or it can fail to detect hydrocarbons (type II
error, or false negatives) [57]. In most cases, type I errors are assumed to
be worse than type II errors. This is not necessarily the case here. The
severity of the different types of error will depend upon the purpose of the
study. If the aim is to efficiently detect areas with hydrocarbon discharges
into nature that will later be put through a more throughout investigation
using different methods, some false positives may be a lesser problem.

When comparing the DPLSR models from table 4.1, it is important to
compare both the error and the number of components. The ideal model
would have a low error with a minimal number of components. Figure 5.1
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shows the error plotted against the number of PLS components for both the
original data (model 1) and the normalised data (model 3). It is apparent
that the model using the normalised data is better, as it has an lower error
for all number of components.

Figure 5.1: Error (%) as a function of the number of PLS components for
original (solid) and normalised (dashed) data.

Another question that should be considered, is: Why is this model better
than the others? The answer is, unfortunately, rarely self-evident. In this
instance, however, an explanation may be given. Section 2.4.4 describes
how normalisation will improve the prediction for hyperspectral data by
removing the variation due to an uneven surface.

When comparing DPLSR models from table 4.1 with other models as the
waveband models from table 4.3, it might be tempting to use only the total
error. The information gained in such a way, is, however, rather restricted.
Errors for different surfaces and images may be calculated, as well as the
percentage of false positives versus false negatives, and all this information
can give a better background for choosing which model to use. An example
of this is given in section 5.3, where the percentage error of two models is
given for each of the images from table 3.3.

There is also other techniques available. One of the main features of the
PryJector is the ability to visually expose where the detected hydrocar-
bons are. This ability can easily be imitated by a computer. Figure 5.2
shows where two of the models with the overall lowest error, DPLSR of
the normalised data set with 7 PLS components (model 3 from table 4.1)
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and waveband model on MA-smoothed data with window size = 7 (model
3 from table 4.3), detects hydrocarbons. These models are applied on an
image including water in a plastic dish, wet soil, an empty plastic dish,
paraffin in a plastic dish, and paraffin and soil. The detected hydrocarbons
are shown in red.

(a) Hydrocarbons detected by
DPLSR model 3

(b) Hydrocarbons detected by wave-
band model 3

Figure 5.2: DPLSR model 3 and waveband model 3 applied on (left to right)
water, soil with water, plastic, paraffin and soil with paraffin. Hydrocarbons
detected by the models are shown in red.

The difference between the models are easy to grasp. The DPLSR model
– which has only been trained to recognise paraffin – gives a negative for
plastic, while the simple model – which probably recognises the C-H-bond
in hydrocarbons – treats plastics and paraffin the same. This model seems
to have a lower overall error on this image, while the DPLSR model has a
number of false positives for the wet soil. Both models, however, recognises
both paraffin and soil with paraffin quantitatively.

A visual inspection like the one shown above, gives a lot of information in
a short time, but is of course not always viable. The percentage of error
calculated for the different models, is calculated using data from more than
thirty different scans. To compare all these images visually for all the
models developed, would have been time consuming. For that reason, only
the percentage of error is calculated for most of the models. For the models
with the lowest percentage of error, the percentage of error on some specific
backgrounds were calculated, and visual inspections were performed.

Table 5.1, compares the percentage error of DPLSR, k -NN and waveband
model for a smaller data set (data set 3b from table 3.6). The parameters
for the waveband model is adjusted to minimise the prediction error on this
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Table 5.1: Comparing different models

Model Error (%) False positives (%)

DPLSR of raw data, 11 components 12.5 64.2
k -NN, k = 5 9.3 4.6
Waveband model 16.3 24.0

data set (see also appendix B). Data from table 3.4 is the largest part of this
data set (19766 of 27536 pixels). This set of surfaces proved challenging to
create a good model for (see also section 5.3). This is probably the reason
the prediction error is larger than for the models developed from data set
3a.

5.2.1 Hard and soft modelling

Unlike hard modelling, where a mathematical model is developed based on
first principles, soft modelling aims to describe the variation in the data by
application of general criteria and constraints [10]. In other words, while
hard modelling starts with some physical, chemical or mathematical law,
soft modelling both begins and ends with the data.

The DPLSR, PLSR and k-NN models presented in chapter 4 are all ex-
amples of soft modelling. The waveband model (section 4.1.3), utilizes in-
formation about the NIR-spectrum and wavelengths of vibration overtone
bands of hydrocarbons (section 2.2), and is thus an example of hard mod-
elling, even though some parameters were chosen to fit the data through
calibration.

5.3 Different surfaces

For a model to be useful, several criteria must be met (see section 5.2). One
of the criteria is that the model should be applicable to several different
surfaces. Ideally, it should be possible to use the same model on new
surfaces not already investigated (not included in the calibration data).
The surfaces of interest in this thesis are surfaces occurring in nature, such
as soil, sand, stones, humus and vegetation.

Environmental systems are complex, and in order to create a model that
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covers this complexity, a large number of samples are needed [27]. For this
reason, a variety in surfaces were collected, both organic and inorganic. It
proved challenging to create a model which gave good results on all surfaces.
Some of the DPLSR models gave very good results on some surfaces, and
poor results on others. The waveband model gave good or average results
on most surfaces, while k-NN models typically gave good results on familiar
surfaces, which does not necessary mean that it is useful for prediction on
new samples.

Table 5.2 gives the image specific error for the DPLSR model 3 (from
table 4.1) and waveband model 3 (table 4.3) on images from table 3.3.

Table 5.2: Percentage error on images from table 3.3

Description DPLSR model Waveband model

Leaf, a bit wet 0 0
Leaf, with paraffin 0.05 0
Lichen 7.1 0.4
Lichen with paraffin 33.5 12.5
Cones 1.5 0.6
Cones with paraffin 39.6 11.2
Moss 0 6.2
Moss with paraffin 1.7 1.1
Plants and leaves 0.01 0
Plants with paraffin 2.8 0.1
Grass, a bit wet 0 1.2
Grass with paraffin 18.1 0.3
Stones, dry 0 0.3
Stones with paraffin 96.1 28.7
Stones, wet 0.4 0.7
Wet sand and stones 2.4 5.5
Sand, dry 0 0.2

Both models have difficulties with the images of lichen with paraffin, cones
with paraffin and stones with paraffin, but the waveband model is signif-
icantly better than the DPLSR model on all these images. The largest
difference is for stones with paraffin, where the DPLSR model has an error
of 96.1 % and the waveband model has an error of 28.7 %. This is also the
image where both the models have the largest error.

In addition to these images where both models struggle, the DPLSR model
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performs poorly for grass with paraffin (18.1 %) and to some extent lichen
without paraffin (7.1 %). The waveband model performs significantly worse
than the DPLSR model for moss without paraffin (6.2 % versus 0 % for
the DPLSR model) and wet sand and stones without paraffin (5.5 % versus
2.4 %).

The other errors are small for both models. When the error is given as 0,
all pixels in the data set were labelled correctly.

The percentage error varies greatly between the different surfaces. Addi-
tional hypothesis 4 expect false positives from vegetation. This seems not
to be the case here, as the majority of the error stems from the model
failing to detect paraffin, and the amount of false positives are small.

Stones seems to be a difficult surface for detecting paraffin, especially for
DPLSR models. This was to some extent confirmed by applying DPLSR
models from table 4.1 on the scans of humus, sand, stones and soil from
table 3.4.

However, DPLSR models based on data set 3b from table 3.6, performed
considerably better on stones. Appendix B shows the percentage error
for a DPLSR model, a k-NN model and a waveband model for each of
the different images and surfaces included this data set (this is the same
models as in table 5.1). The error for detecting paraffin on stones varies for
the different images and models (7.0-64.4 %). It is unsurprising that sand
also have an error with about the same range (5.2-69.1 %). For sand and
stone the error increases with time. This is unsurprising, as the paraffin
is expected to flow downwards with time, and thus disappear from the
surface. This effect is larger for sand than for stones.

What is surprising, however, is that it was the waveband model that per-
formed the worst for both sand and stones with paraffin. While the DPLSR
and k-NN models had errors from 5.2 % to 15.8 %, the waveband model
failed to detect paraffin on 56.7 %-69.1 % of the pixels.

The error for detecting paraffin on humus, on the other hand, is lower for
the waveband model (13.9-19.9 %) than for DPLSR (21.0-22.8 %) or k-NN
(25.0-28.2 %). Table B.1 confirms that the waveband model generally has
a low prediction error on vegetation also in this slightly modified form from
the model used in table 5.3. Cones without paraffin (11.1 %), moss without
paraffin (53.0 %) and grass without paraffin (18.2 %) are the only organic
surface from table 3.3 with a prediction error higher than 10 % for this
model.

68



CHAPTER 5. DISCUSSION 5.4. IMPROVING THE K-NN MODELS

From this, it would seem desirable to use the waveband model on veg-
etation, and the DPLSR or k-NN model on inorganic surfaces. For the
PryJector, this could be chosen by the human operating it. However, it
should also be possible to create a model that determines whether a sur-
face is organic or inorganic. This model could then choose which of the
models for detecting paraffin that should be used.

It is a challenge to construct realistic surfaces in a laboratory environment.
Vegetation was particularly challenging in this regard, and the images in
table 3.3 are not necessary good approximations to what similar samples
would look like in nature. Ideally, the hyperspectral images should have
been recorded outside in a more realistic and natural environment. For
practical reasons, this was not possible, and instead the samples had to be
collected and brought to the laboratory.

Different strategies for adding hydrocarbons were also used. Paraffin were
mixed with the soil (images in tables 3.1 and 3.2), the samples were im-
mersed in paraffin (images in table 3.3), or paraffin, hexane or heptane were
poured over the surface (images in tables 3.4 and 3.5). The last of these
strategies is considered the most realistic, at least with regard to using the
models for detecting hydrocarbon fuel discharges.

Because the near-infrared radiation has a limited ability to penetrate mat-
ter [36], the background behind the sample will only be of importance for
some of the samples. This is discussed briefly for water in section 4.1.3.
Scans of different amounts of water showed that, as expected, the influence
of the background on the spectra was diminished when the height of the
water increased.

5.4 Improving the k-NN models

There are several problems with the k-NN approach currently used. As
mentioned in section 5.1, the data set used for creating and validating
most of the models, data set 3a from table 3.6, were too huge to perform
k-NN, and k-NN were performed on some of the smaller data sets (1a and
3b) instead.

These data sets have a different composition from data set 3a, which makes
direct comparison with models based on data set 3a difficult. It is also
possible to create a smaller version of data set 3a. One possibility is to
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only use some of the pixels from the original data sets. Attempts at using
only pixel 1, 1001, 2001 and so forth were performed, but with poor results.

Another, and perhaps better, solution would have been to randomise which
pixels to use. This is one of the principles used for assembling data set 3b.
Randomisation would have been preferred because of the ordered nature
of the data sets. Even though the calibration and validation data sets are
chosen randomly, the data is collected sequentially, meaning that the 1001st
data point from the calibration data set is likely to be spatially close to the
1001st data point from the validation data set. This means that it probably
will also be spectrally more similar to the 1001st data point than e.g. the
1020th data point from the validation data set.

For k-NN, this means that it is a high probability that the 2nd data point in
this new validation data set (the 1001st data point in the original validation
data set), is a close neighbour to the 2nd data point in the new calibration
data set. Thus, sequentially selecting pixels might cause the error for the
validation data set to be lower than it realistically should be.

For large data sets, calculating the distance between all points is expen-
sive [42]. Instead of performing k-NN in 148 dimensions, attempts were
made at using only a small number of dimensions, where the dimensions
chosen were the first principal components from PCA (section 2.5). Unfor-
tunately, the error increased significantly, while the processing time stayed
impractically long due to the number of objects being the same.

Another possibility for reducing the size of the data set is to perform spa-
tially averaging (see section 2.4.1.1) over neighbouring pixels, and thus
combining 4, 9, 16 or more data points. This has two advantages: the
data set becomes smaller, and the signal-to-noise ratio will increase due to
the fact that errors, statistically, will cancel and the variance will decrease
as 1 divided by the number of pixels averaged (see also section 2.4.1.1).
Removing noise and lowering the resolution in this way could also prove
favourable for other methods than k-NN.

Images segmentation [23] is a field that concerns dividing an image into
its constituent regions or objects, and is a way of extracting or isolating
elements that belong together. It is a non-trivial problem, but image seg-
mentation methods are in use in remote sensing. Segmentation methods
could also be applied the problem here, to determine groups of neighbouring
pixels with similar properties, which could be further processed together.

Cluster analysis [5] could have been used to create groups of similar pixels
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not necessarily spatially connected. This could have provided useful for
choosing prototypes for k-NN. Different kinds of cluster analysis exists.

Agglomerative clustering display the level of similarity between all objects
by creating a tree of clusters (a dendrogram [5]) where the leaf nodes are
individual objects [42], in this case pixels. Clusters of varying levels can
be selected from the final result. Agglomerative clustering were attempted
on data set 1a from table 3.6, but resulted in an out of memory error in
MATLAB.

K-means clustering [42] divides the data into exactly k categories by iter-
atively assigning each object to the closest cluster. Closeness is calculated
as the distance from the mean of the cluster. The result will depend upon
the value for k, which can be chosen by cross-validation [1].

5.5 A cheaper set up

One of the key challenges with the PryJector, is to make it cheap enough to
be commercially viable. The present set up is quite expensive, which clearly
restricts its usefulness. Generally, hyperspectral cameras that operates in
the NIR region are expensive.

It might, however, be possible to use a different, and cheaper, set up. The
waveband model described in part 4.1.3 predicts the presence of hydro-
carbons using only 16 or 17 preselected wavelengths. The idea for this
procedure, came from the fact that the wavelengths of the stretching over-
tones of the C-H band is known, and that these wavelengths should have a
certain characteristic profile for hydrocarbons.

As mentioned in part 2.2, the fourth stretching overtone of the C-H band is
at 700 nm, and thus inside the visible part of the electromagnetic spectrum.
If it is possible to create a model for this area similar to the waveband model
described above, a regular camera might be used since the range of visible
light is 400-780 nm [51]. The cost of producing the PryJector would in that
case be considerably lower. The fourth stretching overtone might, however,
be too weak for selective prediction. If that is the case, it would also be
possible to use the third stretching overtone at 880 nm. This is outside the
area of visible light, but might be inside the area a regular (or semi-regular)
CCD in a digital camera might capture.

Water gave false positives in the first simple model, and an additional
wavelength outside the region first selected was included in the model to
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remove false positives from water. This might complicate things. When
using a hyperspectral camera such as the one used in the work on this
thesis, this is no problem, but if one were to use a simpler and cheaper set-
up, it might be a challenge to find a range of wavelengths that is selective
for hydrocarbons.

While investigating scans of water on backgrounds other than soil/plastic,
it became apparent that the spectrum were shifted, and that the waveband
model thus gave false positives (see figure 4.6). For the PryJector, this
might not be a problem, as the main goal is to identify hydrocarbons that
are not detectable by the human eye. The model must thus be able to
separate a mixture of hydrocarbons and soil from a mixture of water and
soil, but if a lake gives a false positive, it is a smaller problem, as it would
be quite obvious to the human using the instrument that this is, indeed, a
false positive.

5.6 Other methods

There are a plethora of different methods that could be applied to the prob-
lem presented in this thesis. To present all of them would be impossible.
This section aims merely to mention some possibilities that could result in
a better and more robust model (see also sections 5.2 and 5.4).

Linear discriminant analysis (LDA) is a supervised classification method [24].
The method uses linear hyperplanes as decision boundaries [1] , and max-
imises the between class/within class variation ratio [22]. Unlike k-NN, it
can not handle complex decision boundaries, but it can be faster and more
effective.

Human brains are remarkably good at recognising patterns. Neural net-
works are models for pattern recognition on complex data, that aims to
simulate the human pattern recognition system [27]. The method uses
complex non-linear functions with many parameters, which can be learned
from noisy data [42]. Different kinds of neural networks exist, and they will
often give better results than regression methods such as PLSR [47].

Support vector machines (SVMs) [40] is a kernel method, which similarly
to neural networks can represent complex, non-linear functions. The main
idea behind kernel methods is that data will always be linearly separable if
they are mapped into a space of sufficiently high dimension [42]. SVMs use
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an efficient training algorithm, and can reach a high accuracy with only a
few training pixels [40].

Different models will generally have different strengths and weaknesses (see
also section 5.3). For this reason, it can be tempting to not choose only one
model, but rather use a handful of them. This is the idea behind ensemble
based systems [41], where several different models work together, and the
final decision is based on the results from all the models. It is crucial that
the individual models do not all err on the same objects, but as long as this
prerequisite holds, ensemble methods may perform close to perfect even if
the individual models each have a large error [42]. Ensemble based systems
have been demonstrated to perform better than one single model for many
different applications [41].

Random forests (RFs) [31] is one such ensemble method for classification
or regression that uses several decision trees and base the decision on a
majority voting of the trees. Decision trees is one of the simplest learning
algorithms, and reaches its decision by performing a sequence of tests [42].
Which test to perform depend upon the result from the previous test. It has
been shown that random forests in combination with morphological feature
extraction (MFE) performs better than PCA and MFE for extracting and
classifying regions in aerial images taken of urban areas [31].

None of the models developed in this thesis truly utilizes the fact that
the data are spatially continuous. There are many ways to exploit this
important property of hyperspectral images. One of the possibilities is
image segmentation, as mentioned in section 5.4.

Another rather simple possibility is to use the spatial continuity to reduce
the error by removing lonely pixels, that is, pixels that are classified as
belonging to another class than its neighbours. This is demonstrated in
figure 5.3 where waveband model 3 is applied on image 1 from table 3.1
(the images are upside down compared to the mean images in table 3.1).
In figure 5.3b, a procedure marking pixels as negatives if none of its closest
neighbours, using a four-connected neighbourhood, are classified as con-
taining hydrocarbons is conducted. The model generally performs well on
these data, but there are a few false positives in the Petri dishes in the
middle row (containing soil and water). In image 5.3b, most of these lonely
pixels are removed.

Because the procedure sketched above uses information about the four near-
est neighbours of each pixel, the spectra of the neighbouring pixels must be
known before prediction. For the PryJector, this would cause the projected
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(a) Before removing lonely pixels. (b) After removing lonely pixels. Most
of the false positives are eliminated.

Figure 5.3: Hydrocarbons detected by waveband model 3 before and after
removing lonely pixels. Hydrocarbons detected by the models are shown
in red. The size of these pixels is exaggerated.

image to be lagging one line behind, as it will need to wait until the next
line is recorded.
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Chapter 6
Conclusion

Models for rapid localisation of hydrocarbon compounds on several surfaces
including soil, sand, stones, humus and vegetation were developed with
promising results. Discriminant partial least squares regression (DPLSR)
proved a useful method, while the size of the data set proved challenging for
the k-nearest neighbours method (k-NN). A fast and simple model using
only a preselected area of the wavelengths available gave remarkably good
results for most surfaces. Cones, humus and wet sand and stones proved
challenging surfaces to model.

Selectivity were achieved through a DPLSR model able to discriminate
between hexane and heptane on soil. This substantiates that it is possible to
distinguish between different hydrocarbon compounds on the same surface.
Introducing different surfaces might complicate this.
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Appendix A
Wavelengths for the hyperspectral
camera

Table A.1 shows the wavelengths for the hyperspectral camera used in this
thesis. The wavelengths span 923-1665 nm.

Table A.1: Wavebands for the PryJector.

No. Wavelength (nm) No. Wavelength (nm) No. Wavelength (nm)

1 923.071532 2 928.121589 3 933.171646
4 938.221703 5 943.271759 6 948.321816
7 953.371873 8 958.421930 9 963.471987
10 968.522043 11 973.572100 12 978.622157
13 983.672214 14 988.722271 15 993.772328
16 998.822384 17 1003.872441 18 1008.922498
19 1013.972555 20 1019.022612 21 1024.072668
22 1029.122725 23 1034.172782 24 1039.222839
25 1044.272896 26 1049.322953 27 1054.373009
28 1059.423066 29 1064.473123 30 1069.523180
31 1074.573237 32 1079.623293 33 1084.673350
34 1089.723407 35 1094.773464 36 1099.823521
37 1104.873577 38 1109.923634 39 1114.973691
40 1120.023748 41 1125.073805 42 1130.123862
43 1135.173918 44 1140.223975 45 1145.274032
46 1150.324089 47 1155.374146 48 1160.424202
49 1165.474259 50 1170.524316 51 1175.574373
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CAMERA

No. Wavelength (nm) No. Wavelength (nm) No. Wavelength (nm)

52 1180.624430 53 1185.674487 54 1190.724543
55 1195.774600 56 1200.824657 57 1205.874714
58 1210.924771 59 1215.974827 60 1221.024884
61 1226.074941 62 1231.124998 63 1236.175055
64 1241.225112 65 1246.275168 66 1251.325225
67 1256.375282 68 1261.425339 69 1266.475396
70 1271.525452 71 1276.575509 72 1281.625566
73 1286.675623 74 1291.725680 75 1296.775736
76 1301.825793 77 1306.875850 78 1311.925907
79 1316.975964 80 1322.026021 81 1327.076077
82 1332.126134 83 1337.176191 84 1342.226248
85 1347.276305 86 1352.326361 87 1357.376418
88 1362.426475 89 1367.476532 90 1372.526589
91 1377.576646 92 1382.626702 93 1387.676759
94 1392.726816 95 1397.776873 96 1402.826930
97 1407.876986 98 1412.927043 99 1417.977100
100 1423.027157 101 1428.077214 102 1433.127270
103 1438.177327 104 1443.227384 105 1448.277441
106 1453.327498 107 1458.377555 108 1463.427611
109 1468.477668 110 1473.527725 111 1478.577782
112 1483.627839 113 1488.677895 114 1493.727952
115 1498.778009 116 1503.828066 117 1508.878123
118 1513.928180 119 1518.978236 120 1524.028293
121 1529.078350 122 1534.128407 123 1539.178464
124 1544.228520 125 1549.278577 126 1554.328634
127 1559.378691 128 1564.428748 129 1569.478805
130 1574.528861 131 1579.578918 132 1584.628975
133 1589.679032 134 1594.729089 135 1599.779145
136 1604.829202 137 1609.879259 138 1614.929316
139 1619.979373 140 1625.029429 141 1630.079486
142 1635.129543 143 1640.179600 144 1645.229657
145 1650.279714 146 1655.329770 147 1660.379827
148 1665.429884

The waveband models from section 4.1.3 use wavelength number 50-65,
that is 1170.5 nm through 1246.3 nm. Some models also use wavelength
number 125, at 1549.3 nm.
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Appendix B
Surface specific error, data set 3b

Table B.1 shows the percentage error for all images and surfaces included
in data set 3b (table 3.6). The models are the same as in table 5.1.

The DPLSR model have 11 PLS components. The k-NN model uses k = 5.
Both these models uses raw data. The waveband model uses data smoothed
by moving average, window size = 9 and wavelengths from 1186 nm to
1246 nm (number 53-65 in appendix A).

Table B.1: Percentage error for the images and surfaces included in data
set 3b (table 3.6).

Description Table DPLSR k-NN Waveband

Dry soil, image 1 3.1 0 6.3 0
Wet soil, image 1 3.1 19.0 3.2 7.1
Soil with paraffin, image 1 3.1 1.0 1.0 1.0
Dry soil, image 2 3.1 1.8 3.5 0.9
Wet soil, image 2 3.1 16.8 6.6 3.6
Soil with paraffin, image 2 3.1 0.5 4.7 1.0
10 ml paraffin / 15 g soil, after 0 days 3.2 1.6 8.1 5.6
10 ml paraffin / 15 g soil, after 4 days 3.2 0 0 6.2
15 ml paraffin / 15 g soil, after 0 days 3.2 0.7 4.4 0
15 ml paraffin / 15 g soil, after 4 days 3.2 0 0.7 1.5
Leaf, a bit wet 3.3 0 0 0.9
Leaf, with paraffin 3.3 0 2.8 0
Lichen 3.3 16.3 36.7 5.1
Lichen with paraffin 3.3 13.1 23.2 2.0
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Description Table DPLSR k-NN Waveband

Cones 3.3 2.0 17.2 11.1
Cones with paraffin 3.3 57.6 37.4 3.0
Moss 3.3 1.0 1.0 53.0
Moss with paraffin 3.3 8.9 0 0
Plants and leaves 3.3 0 2.5 2.0
Plants with paraffin 3.3 2.0 0 0
Grass, a bit wet 3.3 0 2.5 18.2
Grass with paraffin 3.3 12.5 9.4 0
Stones, dry 3.3 3.6 0.5 1.5
Stones with paraffin 3.3 15.5 7.0 9.1
Stones, wet 3.3 30.5 6.1 5.6
Wet sand and stones 3.3 83.4 7.8 15.5
Humus, image 1 3.4 15.1 22.3 10.3
Stones, image 1 3.4 24.9 8.9 9.4
Sand, image 1 3.4 5.4 4.1 6.8
Soil from Plantasjen, image 1 3.4 12.6 7.1 4.5
Compost soil, image 1 3.4 1.8 3.5 1.0
Humus, image 2 3.4 21.0 27.6 13.9
Stones, image 2 3.4 9.8 7.0 59.2
Sand, image 2 3.4 5.2 5.8 66.5
Soil from Plantasjen, image 2 3.4 0.4 3.8 3.4
Compost soil, image 2 3.4 5.1 6.6 11.4
Humus, image 3 3.4 22.8 25.0 19.9
Stones, image 3 3.4 9.0 7.1 56.7
Sand, image 3 3.4 10.9 8.2 69.1
Soil from Plantasjen, image 3 3.4 0.8 3.0 3.4
Compost soil, image 3 3.4 2.9 5.8 13.8
Humus, image 4 3.4 22.2 28.2 16.2
Stones, image 4 3.4 9.8 12.8 64.4
Sand, image 4 3.4 15.8 12.0 65.8
Soil from Plantasjen, image 4 3.4 0.7 0.3 3.5
Compost soil, image 4 3.4 2.0 5.3 14.9

Total error 12.5 9.3 16.3
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