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ABSTRACT: We develop a new method combining replica exchange
transition interface sampling with two distinct potential energy surfaces.
The method can be used to combine different levels of theory in a
simulation of a molecular process (e.g., a chemical reaction), and it can
serve as a dynamical version of QM-MM, connecting classical dynamics
with Ab Initio dynamics in the time domain. This new method, which we
coin QuanTIS, could be applied to use accurate but expensive density
functional theory based molecular dynamics for the breaking and making
of chemical bonds, while the diffusion of reactants in the solvent are
treated with classical force fields. We exemplify the method by applying it
to two simple model systems (an ion dissociation reaction and a classical
hydrogen model), and we discuss a possible extension of the method in
which classical force field parameters for chemical reactions can be
optimized on the fly.

1. INTRODUCTION

Many processes in nature arise from the spontaneous transition
between stable states separated by an activation barrier. If the
activation barrier is sufficiently high, a transition between the
stable states can be considered a rare event as the probability of a
fluctuation driving the transition decreases exponentially with
the activation barrier. The time scale for the overall transition
(e.g., milliseconds) can be many orders of magnitude larger than
the molecular time scale (e.g., femtoseconds), and this poses a
challenge for simulation techniques which aim to accurately
model rare events.
In principle, molecular dynamics (MD) could be used as a

computational tool to investigate such transitions, but for rare
events this is not feasible: The time scale required to accurately
simulate the transition is far greater than what is currently
attainable by MD simulations. A brute-force MD simulation
becomes inefficient as the trajectory mainly samples the stable
states, and only a tiny fraction of it corresponds to the transition
itself. Further, in order to correctly model the reactive event, an
accurate description of the energy landscape is needed. For this
purpose, one could make use of a reactive force field; but this is
often not accurate enough, and calculations using amore detailed
description, e.g. on the quantum mechanical (QM) level, are
required. This would significantly increase the cost of a MD-
based approach, and we are thus faced with two interconnected
challenges: reaching the relevant time scale while maintaining an
acceptable accuracy.
In order to tackle these challenges, several methods have been

proposed over the last decades. Hyperdynamics1 aims at
lowering the energy difference between the top of the barrier
and the initial basin, the parallel replica method2 exploits the
power of parallel processing to extend the molecular simulation
time, and temperature-accelerated dynamics3 speeds up the
event by raising the temperature. The idea of driving energy into

the system to escape the basin of the energy minimum in which
the system is initially prepared is also at the basis of
conformational flooding4 and the metadynamics method.5

Other important methods are thermodynamic integration6 and
umbrella sampling,7 eigenvector following,8 the activation-
relaxation technique,9 nudged elastic band,10 string method,11

and discrete path sampling.12 These methods have in common
that they enhance reactive events by perturbing the actual
dynamics. Using reweighting schemes, based on the laws of
statistical physics, one can usually get exact results on (static)
statistics such as free energy barriers, but important information
on the spontaneous dynamical process is usually lost. Moreover,
free energies expressed as a low dimensional function of a set of
reaction coordinates can be very misleading. The height of free
energy barriers depend sensitively on the set of reaction
coordinates that is chosen. As a result, Transition State Theory
(TST) is insufficient to make predictions about reaction rates in
complex systems. The reactive flux method13 is the standard
approach to correct the TST expression. It complements the free
energy calculation along a single reaction coordinate with the
calculation of a dynamical transmission coefficient, by starting
short trajectories from the maximum of the free energy barrier.
However, in complex systems the correct reaction coordinate can
be exceedingly difficult to find. If the reaction coordinate does
not capture the molecular mechanism, the biased sampling
methods will suffer from substantial hysteresis when following
the system over the barrier. Moreover, even if the free energy
profile is obtained correctly for this particular (but wrong)
reaction coordinate, the corresponding transmission coefficient
will be very low, making an accurate evaluation problematic.
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In order to overcome these difficulties, Chandler and co-
workers14−16 developed the transition path sampling (TPS)17,18

method which does not require detailed knowledge of the
transition state (or the reaction coordinate/mechanism). In fact,
the transition state and the reaction mechanism can be inferred
from the results of a TPS simulation. The TPS method uses a
Monte Carlo (MC) approach to sample reactive trajectories
connecting an initial and final state. This is combined with the
probability of reaching the final state from the initial state
(obtained by an umbrella sampling approach) in order to
estimate the rate constant for the transition. Transition interface
sampling (TIS)19 builds on the TPS approach and improves the
efficiency by allowing flexible path lengths, it is less sensitive to
recrossings, and the umbrella sampling technique is replaced by
interface ensemble averages.19 In addition, the MC technique in
the TIS method is simpler since it only involves the so-called
shooting move and not both shooting and shif ting moves as in the
TPS method. The TIS method has been further developed into
the replica exchange TIS (RETIS)20 approach, where replica
exchange moves are carried out between the different path
simulations. This represents a significant improvement in
efficiency compared with the standard TIS method. The
RETIS method is also better suited to tackle complex reaction
mechanisms with many degrees of freedom andmultiple reaction
channels.21,22 For completeness, we also mention the recent
combined methods in which TPS/TIS is combined with
thermodynamic integration type of approaches23−25 or metady-
namics.26

Both the TIS and the RETIS methods introduce a set of
interfaces between the reactant and the product state and recasts
the overall crossing probability as a product of crossing
probabilities for the intermediate interfaces. In order to estimate
the rate constant for the transition, the TIS method combines
this probability with a MD-simulation where the escape flux
through the first interface is calculated. In the RETIS approach,
the escape flux is calculated using the average path lengths in the
two ensembles associated with the first interface. These two
ensembles can be interpreted as corresponding to different
processes: nonreactive exploration of the stable reactant state
and the initial progress of the reactive event. It is this
interpretation that forms the basis of the new method we
introduce in this article.
Even though the path-ensemble methods can be many times

more efficient than a MD-based approach, they are still
dependent on an accurate description of the energy landscape.
This will often require expensive calculations (e.g., on the QM
level). One way to reduce the cost is to limit the QM treatment to
certain spatial regions of the system and treat the rest with a
classical method. Such quantummechanics-molecular mechanics
(QM-MM)27,28 methods have successfully been used together
with TPS29−32 to boost the accuracy and attainable length scale
of the system under consideration. This requires that one can, a
priori, select which regions require a QM or MM treatment. In
this context, the interpretation of the two ensembles associated
with the first interface in the RETIS approach points to an
alternative strategy for decreasing the computational cost: The
ensemble corresponding to nonreactive exploration can be
treated with a less detailed theory (e.g., MM) than the other
ensembles (e.g., QM). Effectively, this corresponds to a
dynamical QM-MM approach, where different accuracies are
used in different path ensembles and the choice of employing
QM or MM is based on the temporal rather than the spatial
coordinate. In this new approach, which we coin QuanTIS, the

system is either treated fully with QM or fully with MM at a given
time. This is advantageous since the path lengths corresponding
to the nonreactive exploration can be made considerably longer
than the path lengths in the other ensembles by positioning the
first interface at the barrier region. A significant reduction in the
computational cost can be attained by applying the more
(computationally) expensive theory only to the reaction itself.
The aim of this article is to introduce this new QuanTIS

method, exemplify it, and discuss the prospects of the approach.
We begin by discussing the RETIS approach in more detail since
this is the theoretical basis of the QuanTIS method. As a proof of
concept, we investigate two different systems: (I) a model of a
hypothetical ion transfer system where a solvent may reduce the
transfer barrier and (II) a realistic model for the dissociation of
hydrogen molecules. These models are defined before we discuss
the computational details in section 4 and our results in section 5.
We provide a perspective on the outlook for the new QuanTIS
approach, and we propose further applications before we end
with the final conclusion.

2. THEORY
The RETIS method is a very efficient strategy for performing
path simulations. In this section, we give a brief summary of the
approach, before we discuss the new strategy of applying
different levels of theory for the path ensembles connected to the
first interface. We then discuss the two systems we consider for
testing the QuanTIS method.

2.1. Replica Exchange Transition Interface Sampling.
For the discussion of the RETIS approach, we consider a
transition between two stable states, labeled A (the reactant) and
B (the product), and we assume that the transition is a rare event.
In the RETIS approach we first select a reaction coordinate,
λ(RN, pN), which in general depends on the positions (RN) and
momenta (pN) of all the N particles, and we define a set of
interfaces λ0, λ1, ..., λn, such that the first interface is the boundary
of state A (i.e., the system is in state A for λ≤ λ0 = λA) and the last
interface is the boundary of the product (i.e., the system is in state
B for λ ≥ λn = λB). The other interfaces are positioned to
maximize the efficiency of the method and the rate constant for
the transition from A to B, kAB, can be obtained by

λ λ= |k f ( )AB A A B A (1)

where fA is the flux through the first interface and A(λB|λA) is the
probability of crossing λB before λA given that λA was crossed in
the past. In practice, it is more convenient to estimate the rate
constant by expanding the probability as

∏λ λ λ λ= | = |
=

−

+k f f( ) ( )
i

n

i iAB A A B A A
0

1

A 1
(2)

where A(λi+1|λi) is the probability of a path crossing λi+1 given
that it originated in λA, ended in λA or λB, and had at least one
crossing with λi. In order to calculate these probabilities, we
define [i+] as the collection of paths that start at λA and has at least
one crossing with λi before revisiting λA or ending at λB. The
probability A(λi+1|λi) can then be obtained as the fraction of
paths in the [i+] ensemble that cross λi+1 as well.
The approach discussed so far corresponds to the conven-

tional TIS method,19 and fA is then obtained by performing aMD
simulation. For the RETIS approach, replica exchange moves, or
swapping moves, are attempted between paths corresponding to
different path ensembles. In order to have full flexibility in the
swapping moves the MD simulation in the TIS method is
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replaced by another path ensemble [0−] which corresponds to all
paths that start at λA, then go in the negative direction, and end
back at λA. Defining ⟨tpath

[k] ⟩ as the average path length in the [k]
path ensemble, the flux through the first interface is then
obtained from

= ⟨ ⟩ + ⟨ ⟩
−− +( )f t tA path

[0 ]
path
[0 ] 1

(3)

The algorithm for the RETISmethod is as follows:20 At each step
it is (with equal probability) decided whether to perform shooting
or swapping moves. In the first case, all the path simulations are
updated sequentially with a shooting move. In the latter case,
swaps will be attempted between the different path simulations,
and it is again decided with equal probability if swaps between the
ensembles [0−]↔[0+], [1+]↔[2+], etc. or between the
ensembles [0+]↔[1+], [2+]↔[3+], etc. are attempted. If the
swapped paths are not valid, the move is rejected, and the old
paths are recounted in the two ensembles involved in the swap.
For the swapping between ensembles [0−] and [0+] new
trajectories are generated in the following way: The last step of
the old path in [0−] is used as the initial point for generating a
new trajectory for [0+] by integrating forward in time, while the
initial point in the old path in [0+] is used to generate a new path
for [0−] by integrating backward in time.
The description so far corresponds to the case where we treat

all path ensembles with the same level of theory. In the new
QuanTIS approach, we will use an approximate theory in the
[0−] ensemble and a higher level of theory in [0+] and all other
ensembles. In order to ensure detailed balance in the MC
sampling within the two levels of theories the following
acceptance rule must be fulfilled before the swap [0−]↔[0+] is
accepted

= − −

+ −

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥

P r r
k T

V r V r

V r V r

( , ) MIN 1, exp
1

[ ( ) ( )

( ) ( )]

acc lo hi
B

hi lo lo lo

lo hi hi hi
(4)

where Vhi and Vlo denote the potential energy calculated with the
higher level of theory and with the more approximate theory,
respectively. We note that a similar expression appears in Li and
Yang33 where it is used to enhance configurational sampling in
QM space using a MM force field.
These energies are evaluated at the λA interface using rlo, the

last point from the path in [0−], and rhi, the initial point from the
path in [0+]. Another technicality is that, in the QuanTIS
method, one needs to ensure that the interface is still crossed in a
single time step for the phase points that are being swapped. In
practice, this is done by swapping the very first phase point of the
[0+] ensemble which is at the left side of λA and the one but last
phase point of the [0−] ensemble that is also still at the left side of
this interface. Then, in addition of the acceptance rule 4 we
require that the next forward MD step starting from these points
based on the new potentials will both create a point that is at the
right side of λA. Otherwise, the move is rejected. The acceptance
rule ensures that the crossing probability remains exact at the
high level description of theory. However, since the acceptance
rule 4 depends exponentially on the energy differences between
potentials Vlo and Vhi for configuration points at the first
interface, the acceptance can be low and the swapping move
becomes inefficient if the two levels of theory are too different.
This point is further discussed in section 6.

The flux factor fA, on the other hand, becomes an average of the
low and high level fluxes via eq 3. In practice, the interfaces will be

chosen such that tpath
[0−] ≫ tpath

[0+] implying that the flux factor in the
QuanTIS approach will be mostly resembling the flux of the low
level system. This is not necessarily affecting the accuracy of the
result in a negative manner. Classical force fields have been fitted
extensively to reproduce solvent dynamics and are, therefore,
often more accurate for that aspect than Ab Initio MD.34

2.2. Models. In order to exemplify our new method and as a
proof of concept, we consider two model reactions: (I) A
hypothetical ion transfer between two identical particles where
solvent particles may reduce the barrier to the transfer (i.e., a
cooperative effect); (II) the spontaneous dissociation of
hydrogen using force field from literature.35

For the first example, the high level of theory corresponds to
the full interaction potential, while the approximate theory
ignores the cooperative effect. For the second example, a many-
body effect is included in the high level of theory (via a three-
body interaction) which is neglected in the approximate theory.
This three-body term effectively forbids the formation of
hydrogen clusters, Hn with n > 2, and this behavior is preserved
by adding a simple repulsive term to the approximate potential.
We will in the following describe these models in more detail.
2.2.1. Cooperative Ion Potential. The cooperative ion

potential models an ion transfer according to Ax + A → A +
Ax, where the presence of a solvent (particles of type B) may
reduce the barrier for the transfer. All particles, A, B, and x, are
treated as two-dimensional point particles with identical mass. In
the following, we will assume that we only have one particle of
type x and two particles of type A.
The total interaction energy, Vtot, is given by

∑ ∑= +
=

−

= +

V V r Vr r r r r r( , , ..., ) ( ) ( , , ..., )n
i

N

j i

N

ij ij ntot 1 2
1

1

1
coop 1 2

(5)

whereVij describes the pair interaction between atom i and j, rij = |
ri−rj|, and Vcoop describes the cooperative effect. The pair
interaction Vij is based on the Lennard-Jones potential with
parameters ϵij, σij, and cutoff rij

c. Interactions between particles of
type A and x are modeled by a shifted Lennard-Jones potential,
while all other interactions are modeled by the Weeks−
Chandler−Andersen (WCA) potential with cut-offs given by rij

c

= 21/6σij (see eqs 20− 22 in the Appendix). The parameters for
the pair interactions are given in Table 1 where we also show the
potential energies for the different pairs as a function of the
distance in the inset figure.
The cooperative part of the potential is modeled as

= − × + ϵV F n V( ) ( )coop cluster xA (6)

where F(n) is a function of the coordination number (n, defined
below) for particles of type B around x, and Vcluster is the total pair
interaction energy of the x and A particles (see eq 23 in the
Appendix). Here, ϵxA is the Lennard-Jones parameter for the x−A
pair. The coordination number for solvent particles of type B
around x is

∑=
∈

n H r R N( ; , )
j

xj
{type B}

coop d
(7)

where Rcoop and Nd are parameters, and H is a smooth step
function defined by
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=
+ −

H r R M
M r R

( ; , )
1

1 exp[ ( )] (8)

Finally, the function F is the defined as

= × −F n f H n N N( ) [1 ( ; , )]c c n (9)

where fc ≥ 0, and Nc and Nn are parameters. The function H(n;
Nc, Nn) interpolates smoothly between 0 for large coordination
numbers and 1 for small coordination numbers corresponding to
Vcoop = −fc × (Vcluster+ϵxA) ≤ 0 and Vcoop = 0, respectively. In the
ground state, where x is bound to one A and the other A particle
is at a distance where it is only interacting with B particles, Vcluster
≈ −ϵxA, which also implies that Vcoop ≈ 0; the cooperative effect
lowers the potential energy of the barrier without effecting the
ground state energy (see Figure 4 in the Appendix), effectively
reducing the barrier for ion transport. For the cooperative part of
the potential, we set Nd = 20, Nn = 20, and Nc = 1.1. The
remaining two parameters, Rc and fc, can be used to tune the
strength of the cooperative effect, and we will consider these two
parameters in more detail when we describe our test cases in
section 3.
2.2.2. Dissociation of Hydrogen. The hydrogen interaction is

modeled using the potential described by Kohen et al.,35 which
consists of two- and three-body interactions. For a collection of
hydrogen atoms, the potential energy is given by

∑ ∑= +
> > >

V V r Vr r r r r r( , , ..., ) ( ) ( , , )n
i j

ij ij
i j k

ijk i j k1 2
(10)

where ri is the position of hydrogen atom i, andVij andVijk denote
the interaction between pairs (ij) and triplets (ijk) of hydrogen
atoms, respectively. The two-body term is here completely
determined by the relative distance, rij = |ri−rj|, and it is given by

α β γ= − −−V r r r r( ) ( 1) exp[ /( )]ij ij ij ij
4

2 c (11)

when rij < rc, and it is zero otherwise. The parameters are
35,36 α =

804.959233 kcal/mol, β = 0.044067 Å4, γ2 = 3.902767 Å, and rc =
2.8 Å, and the minimum of the pair interaction for this set of
parameters is approximately at a distance 0.74 Å, corresponding
to the bond distance of H2.
The three-body term is given by

θ θ

θ

= +

+

V h r r h r r

h r r

r r r( , , ) ( , , ) ( , , )

( , , )

ijk i j k ij kj ijk ji ki jik

ik jk ikj (12)

where the function h (rij, rkj, θijk) = hijk is

ξ μ θ ν θ γ

γ

= + + × −

+ −

h r r

r r

(1 cos( ) cos ( )) exp( /( )

/( ))

ijk ijk ijk ij c

kj c

2
3

3 (13)

if both rij < rc and rkj < rc, and zero otherwise. The middle index
for each triplet refers to the center atoms for the angle (see also
Figure 5 in the Appendix)

θ =
·

r r

r r
cos ijk

ij kj

ij kj (14)

and the parameters are35,36 ξ = 403.005 kcal/mol, μ = 0.132587,
ν = −0.2997, and γ3 = 1.5 Å. The three-body term is always non-
negative and prevents the formation of hydrogen clusters Hn for n
> 2. For the study of the hydrogen dissociation reaction, all
hydrogen atoms are initially bound in H2 molecules, and the final
state is reached when at least one bond is broken. A simple two-
body repulsive potential can then be used to mimic the repulsive
contribution from the three-body term, and, in the approximate
model, the interaction consists of an intramolecular part (which
is identical to the two-body term given in eq 11) and an
intermolecular part, Vij

inter(ri, rj), which is evaluated between
atoms in different molecules andmodeled as a repulsive potential

ξ γ= − −V r r r( ) [exp( ( )) 1]ij ij ij
inter

2 4 c (15)

if rij < rc, and zero otherwise. We have obtained parameters (γ4 =
8.3826 Å and ξ2 = 0.26239 kcal/mol) for this potential by fitting
the forces obtained in the approximate description to the
corresponding forces from the more detailed potential as
described in the Appendix.

3. TEST CASES
We have considered several test cases for the two models
presented in the previous section. In this section we briefly
describe these cases, and we present results from RETIS
simulations we carried out in order to select them. We postpone
the description of the computational details to the next section
where we present the results from using the new method on the
test cases presented here.
As previously described, the strength of the solvent effect in

the ion transfer potential can be tuned by changing fc and Rcoop. A
larger fc gives a stronger effect by increasing the contribution
from the cooperative potential (see eqs 6 and 9), and a larger
Rcoop increases the coordination number which leads to a
reduction in H(n; Nc, Nn) and gives a stronger effect as well. We
carried out RETIS simulations (without gluing) for a
combination of parameters (Rcoop and fc), and the obtained
rate constants are given (together with the parameters) in Table
2. These results show that the rate constant obtained by not
including the cooperative effect can be several orders of
magnitude lower than the rate constants obtained when the

Table 1. Parameters (in Reduced Units) for the Pair
Interactions in the Ion Potentiala

pair (ij) ϵij σij rij
c potential

AB, AA, BB 1 1 21/6 WCA
xA 6 0.35 21/6 Shifted LJ
xB 6 0.35 0.35 × 21/6 WCA

aThe interactions are modeled using the Weeks−Chandler−Andersen
(WCA) potential or a shifted 6-12 Lennard-Jones potential (Shifted
LJ) as described in the text. In the inset figure, the pair interaction
potential energies are shown as a function of the particle−particle
distance (rij) in reduced units. The solid line is the x−A pair
interaction, the dashed line is the x−B pair interaction, and the dash-
dotted line is the A−B, A−A, and B−B pair interactions. The two
vertical dotted lines are the cut-offs, 0.35 × 21/6 and 21/6, and as the
figure shows, only the x−A pair interaction has an attractive part.
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cooperative effect is included. Based on these RETIS simulations,
cases 1−3 were selected for further investigation. The last case, 4,
was not included as the rate constant here is relatively high.
For each of these cases we consider the following five

variations which we label a)−e): a) “No gluing”, corresponding
to the usual RETIS approach; b) “Gluing”, corresponding to the
new QuanTIS method; c) RETIS with a swap frequency set to
zero (which approximately corresponds to the TIS method); d)
“Fewer interfaces” which corresponds to method b) with a
reduced number of interfaces; and finally e) “Accept all”,
corresponding to artificially ignoring the detailed balance
condition in eq 4 and accepting all swapping moves
[0−]↔[0+]. In case d), the first interface was removed which
implies that the new first interface λ0 is shifted more into the
barrier region so that the average path length of the low-level
[0−] system becomes even longer with respect to the high-level
description [0+] trajectories. These variations will allow us to
discuss the new method and compare it with the RETIS and TIS
approaches.
For the hydrogen potential, we carried out RETIS simulations

for the dissociation at temperatures 1500, 2000, and 2500 K and a
density of 0.07 g/cm3. For these conditions, the stable phase of
hydrogen is a molecular liquid and the dissociation is low.37 At
1500 K, we estimate the thermal de Broglie wavelength to be
approximately 0.45 Å which is comparable to the hydrogen bond
length (0.74 Å) used in the model. To assess the impact of
possible quantum mechanical effects, we have compared the
radial distribution function for hydrogen at 600, 1000, and 1500
K using both the classical model and path integral simulations
(see Figure 7 and the description in the Appendix), and we find
that we can neglect such effect for the temperatures we consider.
The rate constants we obtain by RETIS simulations are given in
Table 3. For an efficiency analysis it is required to have well

converged results for all methods, including the less efficient
ones. We therefore focus on the 2000 and 2500 K cases which are
more accessible than the 1500 K case. For this potential, we also
consider the same variations a)−e) as for the ion exchange
potential, and, in addition, we consider a sixth case: f) No gluing
and using the approximate potential everywhere.

4. COMPUTATIONAL DETAILS

The equations of motion were propagated in time under NVE
dynamics using the Velocity Verlet integrator38 with periodic
boundaries (in two dimensions for the ion potential and three
dimensions for the hydrogen potential). In the RETIS
simulations, 1 × 106 cycles were performed and the swapping
probability was set to 50%, while the probabilities of performing
time reversal moves or shooting moves were both set to 25%.We
applied the simplified version20 of aimless shooting39 which
implies that the velocities at the shooting point were generated
from a Maxwellian distribution at the given temperature (0.1 in
reduced units for the ion transfer; 2000 or 2500 K for the
hydrogen dissociation), and the shooting points were picked
with an equal probability along the path. The positions of the
interfaces used in the RETIS calculation were placed to increase
the efficiency of the method.20,21

For the ion potential, the time step was δt = 0.002 in reduced
units, and the particles were assumed to have identical masses (of
1). Initially the ion, x, is bound to one of the A particles (labeled
A1), and it is transferred to the other A particle (labeled A2) over
the course of the reaction. The order parameter, λ, is defined
using the distance between x and A2 (rxA2

), as

λ = −rxA 2 (16)

where the minus sign is included just for convenience: The order
parameters changes from a low value to a high value over the
course of the ion transfer. The two stable states were defined as
corresponding to λ < −0.7 and λ > 0.4, respectively, and
interfaces were placed at positions −0.7, −0.64, −0.62, −0.60,
−0.59, −0.58, −0.57, −0.56, −0.55, −0.54, −0.53, −0.52, −0.51,
−0.50, and−0.45. Initially, the A and B particles were positioned
on a regular 2D grid such that each particle was surrounded by 4
neighbors, all at a distance of 1.2 from each other. The unit cell
was quadratic with a side length of 3.873 reduced units.
For the hydrogen potential, we define reduced units by the

mass of the hydrogen atom, a length equal to 1 Å, and the binding
energy of hydrogen (103.266 kcal/mol). The time unit is then τ
= 4.81 fs, and the NVE simulations were performed with a time
step of 0.1 τ. We considered 4 H2 molecules in a cubic box with
an edge length equal to 5.786 Å (corresponding to a density of
0.07 g/cm3). Initially, we placed the molecules (i.e., their center
of mass) on sites corresponding to a face-centered cubic lattice
and oriented the molecules randomly. The initial velocities of the
molecules were drawn from a Maxwellian distribution
corresponding to the target temperature for the simulation
(2000 or 2500 K).
The order parameter for the hydrogen reaction was obtained

in the following way: For each pair of hydrogen atoms that were
initially bound together in a H2 molecule, we calculated the
distance between the atoms. We then defined the order
parameter as the maximum of these bond lengths. This
unconventional reaction coordinate is one of the advantages of
the TIS-based algorithms: It is much more flexible than for
instance thermodynamic integration with respect to the range of
reaction coordinates that can be chosen. Taking the maximum
value of all intramolecular distances allows for dissociation of any
H2 molecule in the system which ensures a faster decorrelation
than for the case that a single target molecule has to be selected
beforehand. Since the method now calculates the rate constant
that any H2 molecules dissociates, the calculated rate constants
for the hydrogen potential have been normalized with the
number of hydrogen molecules to obtain the dissociation rate

Table 2. Rate Constant for the Ion Transfer Reactiona

case Rcoop fc kAB

0 (without cooperativity) (1.00 ± 0.06)
1 1.1 1/3 (1.92 ± 0.07) × 101

2 1.3 1/3 (4.89 ± 0.16) × 102

3 1.3 2/3 (9.47 ± 0.16) × 105

4 1.3 19/20 (3.40 ± 0.04) × 109

aAll the rate constants are calculated relative to the rate constant for
the case where the cooperative effect is ignored, kAB = (2.6 ± 0.16) ×
10−11.

Table 3. Rate Constant for the Hydrogen Dissociation
Reactiona

case temp/K kAB

0 1500 (2.91 ± 0.15) × 10−4

1 2000 (1.00 ± 0.03)
2 2500 (1.84 ± 0.04) × 102

aAll rate constants are relative to the rate constant at 2000 K, kAB =
(2.96 ± 0.09) × 10−6 ns−1. Simulation details are given in the next
section.
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constant for a single molecule. The initial and final states for the
hydrogen reaction corresponds to λ < 0.9 Å and λ > 2.4 Å,
respectively. We considered interfaces placed at positions (in
units of Å): 0.95, 1.05, 1.15, 1.25, 1.30, 1.35, 1.40, 1.50, 1.60, 1.75,
1.90, 2.10, 2.20, 2.30, and 2.40.

5. RESULTS AND DISCUSSION
We have calculated the initial flux ( fA), the overall crossing
probability ( A (λB|λA)), the rate constant (kAB), and the ratio of

the average path lengths in the [0−] and [0+] ensembles (⟨tpath
[0−]⟩/

⟨tpath
[ 0+]⟩) for the different cases we considered for the two

potentials. The results for the ion transfer are presented in Table
4 and for the hydrogen dissociation in Table 5. The individual
crossing probabilities are shown for case 3 of the ion potential in
Figure 1 and for the hydrogen dissociation at 2500 K in Figure 2.

Overall we find good agreement for the obtained rate
constants when we compare the results for the RETIS method
with and without gluing. The results from the RETIS simulations
where the swapping frequency is set to zero are in close
agreement with the simulations where the swapping frequency is
50%, as expected.
We do find variations up to about 50% in the rate constant for

the ion potential when we compare RETIS withQuanTIS, see for
instance case 2a) and b) and case 3a) and b) in Table 4. This is
caused by an increased initial flux when we apply the approximate
potential in the [0−] ensemble. The conditional crossing
probabilities (see Figure 1) remain unchanged within the
uncertainty, as long as the positions of the interfaces are
unchanged, and as long as the detailed balance condition is
respected. Ignoring the detailed balance condition, eq 4, and

Table 4. Initial Flux ( fA), Crossing Probability ( A(λB|λA)), Rate Constant (kAB), and Ratio of Path Lengths (⟨tpath[0−] ⟩/⟨ tpath
[0+] ⟩) for

the Three Cases of the Ion Transfer Reaction: Case 1 with Rcoop = 1.1 and fc = 1/3; Case 2 with Rcoop = 1.3 and fc = 1/3; and Case 3
with Rcoop = 1.3 and fc = 2/3a

case 1 fA A(λB|λA) × 109 kAB × 1010 ⟨tpath
[0−]⟩/⟨tpath

[0+]⟩ acceptance (%)

a) 0.476 ± 0.003 1.05 ± 0.04 5.0 ± 0.2 7.46 ± 0.05
b) 0.497 ± 0.003 1.17 ± 0.04 5.8 ± 0.2 7.09 ± 0.05 97.6
c) 0.495 ± 0.004 1.15 ± 0.06 5.7 ± 0.3 7.18 ± 0.07
d) 0.165 ± 0.001 3.4 ± 0.2 5.6 ± 0.3 84.2 ± 0.4 88.2

case 2 fA A(λB|λA) × 108 kAB × 108 ⟨tpath
[0−]⟩/⟨tpath

[0+]⟩ acceptance (%)

a) 0.371 ± 0.002 3.41 ± 0.11 1.26 ± 0.04 9.46 ± 0.06
b) 0.506 ± 0.004 3.33 ± 0.11 1.68 ± 0.06 6.67 ± 0.05 82.6
c) 0.501 ± 0.011 3.3 ± 0.2 1.69 ± 0.13 6.73 ± 0.16
d) 0.0946 ± 0.0004 13.9 ± 0.4 1.31 ± 0.03 132.6 ± 0.6 87.6
e) 0.483 ± 0.003 4.35 ± 0.14 2.10 ± 0.07 6.91 ± 0.05 100

case 3 fA A(λB|λA) × 104 kAB × 105 ⟨tpath
[0−]⟩/⟨tpath

[0+]⟩ acceptance (%)

a) 0.352 ± 0.002 0.700 ± 0.011 2.46 ± 0.04 9.45 ± 0.06
b) 0.553 ± 0.004 0.725 ± 0.012 4.01 ± 0.07 5.66 ± 0.05 67.7
c) 0.555 ± 0.005 0.725 ± 0.019 4.02 ± 0.11 5.64 ± 0.06
d) 0.165 ± 0.001 2.48 ± 0.03 4.11 ± 0.06 59.9 ± 0.2 66.1
e) 0.516 ± 0.003 1.041 ± 0.017 5.37 ± 0.09 5.85 ± 0.04 100

aThe different variations of the simulation methods are a) the usual RETIS approach; b) the new QuanTIS method; c) RETIS with a swap
frequency set to zero; d) QuanTIS with the first interface removed; e) RETIS where all swapping moves are artificially accepted (the detailed balance
condition in eq 4 is ignored). Since the acceptance is relatively high in case 1b), we did not perform the “accept all” simulations case 1e) here. In
each column, we have italicized the different quantities that should be identical within statistical uncertainties. All quantities are given in reduced
units based on the ion transfer potential.

Table 5. Initial Flux fA, Crossing Probability A(λB|λA), Rate Constant kAB, and Ratio of Path Lengths ⟨tpath
[0−]⟩/⟨tpath

[0+]⟩ for the
Hydrogen Dissociation at 2000 and 2500 Ka

2000 K fA × 10−4/ns−1 A (λB|λA) × 1010 kAB × 106/ns−1 ⟨tpath
[0−]⟩/⟨tpath

[0+]⟩ acceptance (%)

a) 1.082 ± 0.008 2.74 ± 0.08 2.96 ± 0.09 9.45 ± 0.07
b) 1.086 ± 0.009 2.70 ± 0.08 2.93 ± 0.09 9.42 ± 0.09 83.2
c) 1.120 ± 0.010 2.50 ± 0.06 2.79 ± 0.07 9.15 ± 0.09
d) 0.183 ± 0.003 20 ± 1 3.65 ± 0.13 70 ± 1 82.9
e) 1.064 ± 0.010 2.76 ± 0.09 2.94 ± 0.11 9.58 ± 0.10 100
f) 1.090 ± 0.011 1.97 ± 0.07 2.14 ± 0.08 9.41 ± 0.10

2500 K fA × 10−4/ns−1 A(λB|λA) × 108 kAB × 104/ns−1 ⟨tpath
[0−]⟩/⟨tpath

[0+]⟩ acceptance (%)

a) 1.667 ± 0.010 3.26 ± 0.07 5.44 ± 0.13 4.82 ± 0.03
b) 1.670 ± 0.011 3.03 ± 0.07 5.06 ± 0.12 4.81 ± 0.04 85.6
c) 1.684 ± 0.013 3.03 ± 0.06 5.09 ± 0.11 4.78 ± 0.04
d) 0.415 ± 0.004 14.0 ± 0.3 5.8 ± 0.2 26.6 ± 0.3 85.3
e) 1.655 ± 0.011 3.29 ± 0.08 5.45 ± 0.13 4.82 ± 0.04 100
f) 1.680 ± 0.012 2.24 ± 0.06 3.7 ± 0.10 4.80 ± 0.04

aThe different variations of the simulation methods a)−e) are the same as defined in Table 4, while the additional case f) corresponds to RETIS
where the approximate potential is used everywhere. In each column, we have italicized the different quantities that should be identical within
statistical uncertainties.
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accepting all swapping moves [0−]↔[0+] leads to an over-
estimation of the crossing probability (and rate constant): see
cases 2e) and 3e) in Table 4. Inspection of Figure 1 shows,
however, that for i ≥ 3 all conditional crossing probabilities

A(λi+1|λi) of the accept-all approach give the correct values as
follows from the total crossing probability which is essentially
running parallel to the other results in the logarithmic plot after
λ3 = −0.6.
We note that although the initial flux and the overall crossing

probability seems to differ significantly when we change the
positions of the interfaces, the rate constants should still be
identical. This is due to the fact that a rate constant is obtained as
the product of the initial flux and the overall crossing probability.

This can for instance be seen in Table 4 for case 3b) and 3d)
where the smaller initial flux in case 3d) gives a proportionally
larger crossing probability and the rate constant remains
approximately constant. Case 3d) also show that we can modify
the ratio of the path lengths by placing the interfaces differently.
Here, it is simply done by removing the first interface. This is
beneficial for two reasons: (1) the number of interfaces is
decreased, and (2) the path lengths in the [0−] ensemble are
increased, which in turn will increase the gain of using the
QuanTIS method.
For the hydrogen dissociation, we do not see a large effect on

the initial flux when using the approximate potential, compare
cases a) and b) in Table 5. All the path lengths in the first two
ensembles are relatively short in cases a) and b) (on average
approximately 50 steps) for the conditions we have considered,
and there is not much room for variation. By removing the first
interface, we obtain longer path lengths, and we see a decrease in
the initial flux and a corresponding increase in the crossing
probability.
However, in this case we see a larger discrepancy when

comparing the d) cases with cases b) and c): The rate constant
for the d) cases appear to be overestimated. In the current
implementation of the method, we store all timeslices of the
paths, and we restrict the length of these paths to a fixed value
(20000 timeslices). When we remove the first interface, the path
lengths become larger on average andmaymore often exceed the
preset maximum length. This will effectively lead to an
overestimation of the initial flux fA and subsequently of kAB,
since very long paths in the [0−] ensemble may artificially be
rejected. For case d) at 2000 K, the maximum allowed path
lengths were increased to 80000 timeslices in order to increase
the accuracy. We are currently developing a method to
circumvent this potential problem.
To further investigate the efficiency of the new method, we

have also calculated the efficiency times, τeff
[i+], given by21

τ ξ=
−+ p

p
L N

1i i

i
i i ieff

[ ]

(17)

where pi = A(λi+1|λi), Li = ⟨tpath
[i+] ⟩/δt, Ni is the effective

correlation between trajectories, and ξi is the ratio between the
average cost of the simulation cycle and Li. The efficiency times
can be interpreted as the minimum computational cost (e.g.,
force calculations needed) to obtain an overall relative error
equal to 1.40 For the ion potential, setting the swap frequency to
zero has a dramatic effect on the efficiency times, see Figure 3.
The overall efficiency time for case 3c) is approximately 135360/
276005 ≈ 5 times the overall efficiency time for case 3b). This is
caused by amuch faster decorrelation (as measured byNi) for the
case when the swapping moves are used. It is also reflected in ξi
which is consistently larger for case 3c). The improved efficiency
of QuanTIS compared to RETIS is not reflected in these data
since efficiency times are expressed in the number of force
evaluations. Hence, this analysis does not take into account that
the force evaluations in the lower level description can in practice
be a few thousand times faster than in the higher level
description, as in the combination of classical MD with DFT-
based MD.
For the hydrogen potential, the effect of setting the swapping

frequency to zero is not so pronounced. In this case ξi is larger for
the case with a zero swapping frequency; however, the effective
correlation between the trajectories is relatively low, and the all

Figure 1. Crossing probabilities as a function of the order parameter for
case 3 of the ion potential (Rcoop = 1.3 and fc = 2/3). The positions of the
interfaces are indicated with vertical dotted lines. The different cases
included here are a) the RETIS approach without gluing (circles, color
red); b) the QuanTIS method (squares, color blue); c) RETIS with a
swap frequency set to zero (triangles, color green); d) QuanTIS with the
first interface removed (diamonds, color purple); e) RETIS where all
swapping moves are artificially accepted (down-pointing triangle, color
orange).

Figure 2. Crossing probabilities as a function of the order parameter for
the hydrogen dissociation at 2500 K. The positions of the interfaces are
indicated with vertical dotted lines. The different cases included here are
a) the RETIS approach without gluing (circles, color red); b) the new
QuanTIS method (squares, color blue); c) RETIS with a swap
frequency set to zero (triangles, color green); d) QuanTIS with the first
interface removed (diamonds, color purple); e) RETIS where all
swapping moves are artificially accepted (down-pointing triangle, color
orange); f) RETIS where the approximate potential is used everywhere
(crosses, color cyan).
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path lengths are short, giving a smaller effect. In fact, the ratio of
the efficiency times is approximately 6780/5496 ≈ 1.23 when
comparing the case with swap frequency zero to the case with a
swap frequency equal to 50%. This difference is mainly caused by
the larger ξi in the former case.

6. PROSPECTS
Since the energy is an extensive quantity we can expect that the
acceptance in eq 4 will drop for large systems. There are several
possibilities to circumvent this problem. One possibility is to mix
the two potentials using e.g. an alternative potential Vlo′ at the
lower level

λ λ λ′ = Λ Λ + − Λ ΛV H V H V( ) ( , , ) ((1 ( , , ))c n c nlo lo hi
(18)

where H is the smooth step function that goes from 1 to 0 as
previously defined in eq 8, and Λc and Λn are parameters
determining the position and the steepness of this inflection,
respectively. Λc should be placed somewhere around the first
interface. For λ values far lower thanΛc the potential is simply Vlo
and expensive quantum calculations are not needed, but each
time that λ approaches the first interface some force field
evaluations at the Vhi will be required. However, once the
exchange move is attempted, the acceptance probability should
be much higher. The gradual increase of the high level
description could in principle also be extended to the other
path ensembles, or the QuanTIS method could be combined
with standard QM-MM which reduces the region in which there
is a mismatch.
An exciting idea that we plan to investigate is to adapt

parameters of a classical potential during the simulation in a
similar fashion as force-matching41 or learning-on-the-fly.42

Since the acceptance probability of eq 4 is maximized when Vlo
and Vhi are similar at the first interface, the average acceptance

probability provides a natural cost function that can be
optimized. This approach has two benefits: first of all it will
enhance the efficiency of the QuanTIS method, and, second, it
will provide an accurate force field which could be used in a
multiscale scheme. The algorithm that we plan to test is to update
a database of configurations {rlo, rhi} each time that the replica
exchange move is attempted. Then, after a certain number of
replica exchange moves, the force field parameters are adjusted in
order to maximize following cost function

≡
∑

∑
Q

w P r r

N w

( , )j k
j j k

j
j

, acc lo hi

swaps (19)

where Nswaps are the number of replica exchange moves
performed so far, and j, k are indexes of the different
configuration points generated via Vlo and Vhi, respectively. wj
are weights corresponding to the {rlo} points which we will
discuss later on. As Pacc depends on Vlo, Q depends on force field
parameters which determine this potential, and optimization
routines in parameter space can be applied to maximize Q. The
optimization of this cost function has specific advantages
compared to standard parameter fitting schemes. One advantage
already mentioned is that it is directly linked to the efficiency of
the QuanTIS method. Another advantage is that it is well-
defined; there is no need to tune predefined required accuracies
of dissimilar properties like bond distances, energies, angles, etc.
Moreover, the configurations that are sampled are relevant for
the reaction under study.Manually created benchmark data using
quantum calculations often focus too strongly on minimum
energy configurations and transition states which might not be
relevant for the temperature that is considered in the actual
simulation. Finally, the Q function tests the accuracy of the Vlo
force field from both perspectives; not only should the force field
mimic the energies of the geometries from the quantum data, the
points generated by Vlo are also analyzed. Reactive force fields,
fitted on high level quantum mechanical data, can simulate
spurious reactions which naturally were never considered during
the design of the Ab Initio database. In this scheme such
unphysical behavior would directly be penalized. However,
suppose the classical force field generates a point rlo

j with a
corresponding unrealistically high energy Vhi(rlo

j ). In that case, it
would be sufficient to change the parameters of Vlo such that this
point will never be generated again. Requiring that Vlo(rlo

j ) ≈
Vhi(rlo

j ) would put a too strong restriction on the parameter set
since this point rlo

j has become irrelevant in the next update of the
Vlo potential. It is therefore that we put a weight wj in the
expression which should be proportional to the relevance of the
rlo points. There are several practical solutions how to define
appropriate weights, but it is yet far from trivial to predict what is
the most effective way to do so. One natural requirement is that
the weights should not change, at least not relatively, when
adding a trivial constant to the potential Vlo. We shall report on
these technicalities in forth-coming publications.

7. CONCLUSION
We have introduced the new method QuanTIS that glues
different potential energy surfaces in order to model rare
transitions such as chemical reactions. In this way, QuanTIS
allows using different levels of theory to describe distinct
subprocesses of this transition. One interesting application is to
use QuanTIS to study chemical reactions in a solvent in which
the breaking and making of chemical bonds is done by accurate
Ab Initio MD, while the diffusion of reactants is treated by

Figure 3. Calculated efficiencies for the RETIS/QuanTIS simulations
for case 3 of the ion transfer potential (Rcoop = 1.3 and fc = 2/3). From
top to bottom: The conditional crossing probability pi = A(λi+1|λi),
with the average path length being Li, the ratio between the average cost
of the simulation cycle and the average path length being ξi, the effective
correlation between trajectories being Ni, and the efficiency times being

τeff
[i+]. The efficiency times were calculated as described in the text. The
different cases included here are a) the RETIS approach without gluing
(color red); b) the new QuanTIS method (color blue); c) RETIS with a
swap frequency set to zero (color green); d) QuanTIS with the first
interface removed (color purple); e) RETIS where all swapping moves
are artificially accepted (color orange).
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classical force fields. The new method is based on the previously
developed RETIS20 method which already gives a dramatic
increase in efficiency compared to brute-force MD. By adjusting
the acceptance rule of the replica exchange move between the
different path simulations, we can maintain detailed balance and
increase the efficiency even further in the QuanTIS method.
Both in the RETIS and in the QuanTIS scheme the rate

constant of the transition is calculated from a flux factor fA times
the overall crossing probability A(λB|λA). In the QuanTIS
scheme the flux factor will be mainly determined by the potential
energy surface Vlo that is based on the lower level theory. The
crossing probability will be purely determined on the higher level
potential Vhi. Hence, A(λB|λA) is not affected by Vlo, but the
efficiency of its computation certainly will. The replica exchange
moves between the two systems reduce significantly the
correlation between trajectories in all path ensembles. By
positioning the first interface far into the barrier region, the
path on the cheap Vlo potential can be made very long, and an
exchange move to the Vhi potential, if accepted, is likely to
generate a path that is completely uncorrelated to the previous
path in that ensemble.
In this article we give the first proof-of-concept of this new

approach by applying it on two model systems. The first system
describes a hypothetical ion transport model in which we exclude
or include cooperative effects in the Vlo and Vhi potentials,
respectively. In a second stage, we also applied it to the
dissociation of hydrogen based on a reactive force field from the
literature.35 In this model we ignored the three-body term of the
hydrogen potential in the lower description but added a simple
repulsive steep potential to obstruct trimer formations. Our
results show that the crossing probability A(λB|λA) is indeed
converging to the same results as in the RETIS simulations using
the high-level description on all path ensembles.
We note that the acceptance of the swapping between the two

levels of theory can drop for large systems, and we have discussed
possible solutions to this problem (see e.g. eq 18). For the
systems that we studied this was not the case. The realistic
hydrogen model even showed acceptance close to 100% after a
simple optimizing procedure for positioning the repulsive
potential. The results for the detailed-balance violating “accept-
all” approach shows that only the very first crossing probabilities
are affected. This suggests that the “accept-all” approachmight be
a practical method if an approximate value for the reaction rate
(within 1 order of magnitude) is sufficient.
In conclusion, we believe that the QuanTIS method is a

promising method to connect different levels of theory for
studying rare transitions. In addition, it also provides interesting
prospectives regarding force field optimization which are
presently under investigation.

A. APPENDIX

A.1. Detailed Description of the Interaction Potentials. In
the ion potential, the pair interaction is based on the Lennard-
Jones potential, VLJ

ij
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where ϵij and σij are the parameters for the potential. The form of
the pair interaction between particles of type A and x is given by a
shifted Lennard-Jones potential
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and the other interactions are modeled by the Weeks−
Chandler−Andersen (WCA) potential
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with cut-offs given by rij
c = 21/6σij. The cluster energy is given by

the interactions between the two A particles labeled A1 and A2
and the x particle

= + +V V r V r V r( ) ( ) ( )cluster xA xA xA xA A A
WCA

A A1 1 2 2 1 2 1 2 (23)

Here, VxA1
and VxA2

are modeled with the shifted Lennard-Jones

potential, while VA1 A2
is given by the WCA potential. In Figure 4

we illustrate the effect of cooperation on the interaction.

In Figure 5 we illustrate the hydrogen potential and elaborate
the triplet notation we have used in the main text.

A.2. Parameters for the Approximate Hydrogen Potential.
The two parameters for the approximate hydrogen potential
were obtained by fitting the simplified potential to the more
detailed potential in the following way: First, the more detailed
potential was used to run a short simulation (106 steps with a
time step of 0.1 in reduced units) of 32 particles in a cubic box
(box length 9.1843 Å) with NVT dynamics and a temperature
corresponding to 1500, 2000, and 2500 K. The positions (ri) and
forces (fi) on all the atoms in the system were stored every 10th
step. We then re-evaluated the forces using the approximate
potential and used the Levenberg−Marquardt algorithm43,44 to
optimize the parameters γ4 and ξ2. This was done by minimizing
the function g defined as

Figure 4. Illustration of the cooperative effect on the x−A interaction.
The figure shows the potential energy as a function of the distance (both
in reduced units) between the x particle and one A particle (labeled A1)
in the presence of B particles. The second A particle is assumed to be at a
distance where the interaction with x can be neglected. The solid line
corresponds to the case where the coordination number is zero, the
dashed line to a case where the coordination number is intermediate
(here: equal to Nc), and the dotted line corresponds to the case where
the coordination number is high. The inset shows the variation of F(n)
with respect to the coordination number for Nc = 1.1, Nn = 20, and fc =
1/3.
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where the first sum is over the recorded time steps, the second
sum is over theN particles, and fi′ = fi′(ri(tk); γ4, ξ2) represents the
force on particle i evaluated using the approximate potential. As a
simple comparison of the approximate and full potentials, we

have evaluated the radial distribution functions at 1500, 2000,
and 2500 K in Figure 6.

A.3. Path Integral Simulations of Molecular Hydrogen. In
order to investigate the impact of possible quantum mechanical
effects for the hydrogen potential, we have carried out path
integral simulations of molecular hydrogen and obtained the one
particle distribution function. We adopted the quantum-classical
isomorphism introduced by Feynman and Hibbs45 where the

Figure 5. Illustration of the two- and three-body potential energy. (Top-left) The pair interaction scaled (Vij′(r)) with the bond energy of hydrogen,
103.266 kcal/mol.35 Theminimum of the pair interaction occurs at a distance of r≈ 0.74 Å (vertical dotted line) which corresponds to the bond distance
in H2. (Top-right) The notation for the triplet interactions and angles. (Bottom-left) The angle term of the three-body interaction. (Bottom-right) The
angle-independent part of the three-body term (i.e., λ exp[γ3/(rij−rc) + γ3/(rkj−rc)] ≥ 0).

Figure 6. Radial distribution function g(r) for the full (solid line) and approximate (dashed line) potential for temperatures (from top to bottom) 1500,
2000, and 2500 K. The insets are closeups of the peaks around 0.74 Å.

Figure 7. Radial distribution function g(r) for the full (solid line) and approximate (dashed line) potential for temperatures (from top to bottom) 600,
1000, and 1500 K. The insets are close-ups of the peaks around 0.74 Å.
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original quantum system is replaced by an auxiliary system in
which each hydrogen atom is represented by a ring polymer
made of P beads. We considered three temperatures, 600, 1000,
and 1500 K, where P was set equal to 16, 8, and 4, respectively.
These values of P are certainly below the values that ensure strict
convergence of the quantum-classical correspondence, but by
doubling P at 1000 K we verified that the simulations were
converged to within a few percent. These simulations were
carried out with 864 hydrogen atoms in a cubic box at a density of
0.07 g/cm3, and we used a classical molecular dynamics method
to sample the phase space.46 The time step was 0.12 fs, and after
equilibration (approximately 1.2 ns) statistics were accumulated
over 1.8 ns.
The obtained distribution functions for the different temper-

atures are shown in Figure 7 and compared with the two classical
models. The results show that the one particle density of each
proton spreads over a Gaussian whose width is well described by
the de Broglie thermal length. Comparison with the classical
simulation shows that the intramolecular peak of the radial
distribution function is significantly affected by quantum effects,
since, with decreasing temperature, its height does not grow
indefinitely as in the classical case but remains constant below
1000 K. More importantly, quantum effects on the intermo-
lecular peaks are limited and of comparable size from 1500 K
down to 600 K. Our conclusion, therefore, is that quantum
effects are modest and could not change the results of the
previous sections in any significant way; however, for temper-
atures below 600 K we expect that quantum effects may be
important.
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(32) Graẗer, F.; Li, W. InMolecular Modeling of Proteins; Kukol, A., Ed.;
Methods in Molecular Biology; Springer: New York, 2015; Vol. 1215;
pp 27−45.
(33) Li, H., Yang, W. J. Chem. Phys. 2007126.
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