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ABSTRACT 

This study was part of  the WAFOW project “Can waste emission from fish farms change the 

structure of marine food webs?” whose objective was to perform  mesocosms experiment to 

simulate the ammonium enriched environment, caused by salmon aquaculture. In order to  

assess how changes in the stoichiometry of  major elements (nitrogen) in the sea affect the 

distribution  of bioactive trace metals, and its effects on the base of the pelagic food web,  the 

distribution  and variation in time  of the trace metal  iron in the water  and  within the 

plankton community was studied  along a 22 day experiment.  It involved  2 types of water 

(surface and marine systems) each one, with 1 control and 4 NH4
+ concentrations. Additional 

samples collected in a river transect and in depth provided the general Fe distribution in the 

environment. The iron concentration in the water was determine for three fractions as: Chelex 

labile  (Total: TFeCh and dissolved: DFeCH), DGT labile (FeDGT) and  direct (Total: TFe and 

dissolved: DFe), whereas the particulate  concentration  iron in the plankton community was 

determined both per fraction (PFeSF) and total content (PFe>0.2). 

Total average per treatments showed higher  concentrations for  both TfeCh and DFeCh  in the 

marine systems compare to the surface. TFeCh  showed general increasing trend  in time and 

with increase NH4
+ concentration, with  a sharp decrease towards the end of the experiment in 

both systems. DFeCh pattern was inverse  to TFeCh, with general decrease over time but lower 

in magnitude. FeDGT  showed an average lower concentration  compare to DFeCh with no 

define trend over time. Final FeDGT  concentrations were significantly lower in treatments 

with  artificial NH4
+ addition.  PFe>0.2 showed an increasing trend in time and with increased 

NH4
+ in both systems. However when  normalized to Chlorophyll-a (Chl-a) or particulate 

organic carbon (POC) the trend inverted, showing that at higher NH4
+ influx the iron per Chl-

a or POC decreases. PFeSF major changes occurred in the marine system where a estimation 

of the ratio between the  20-140 µm and the 2-20 µm fractions, indicative of the dominant 

phytoplankton size class, was significantly higher in 2 of the 3 treatments with artificial NH4
+ 

addition. This point that the microphytoplankton increased  significantly with higher NH4
+. 

The variation over time of the concentration of Fe in the water as in the plankton community, 

indicate that the concentration of NH4
+ can have  positive or negative relation depending on 

the iron form. Whether  via increasing the PFeCh, or by reducing the uptake by phytoplankton, 

a modified  C:N:P  can affect the cycling of iron, which in turn can have negative or positive 

feedbacks over the major biogeochemical cycles. 
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1. INTRODUCTION 
 

According to the FAO, Norway and Chile are the world’s two major cultured salmon 

producers (FAO, 2010). This industry has seen and increased expansion in the last two 

decades, causing growing concern over the environmental impact this intensive activity can 

cause into the ecosystems it takes place. Salmon farming releases nutrients as dissolved 

inorganic  species through excretion (Ammonium (NH4
+) and phosphate (PO4

3-)), particulate 

organic nitrogen  (PON) and  phosphorus (POP) through defecation, and its dissolved  

components (DON and DOP) through resuspension from the particulate fractions (Olsen and 

Olsen, 2008). Oxygen depletion, decreased biodiversity among others, are well documented 

effects for the marine sediments and benthic fauna. However, current knowledge of how 

waste release affects the structure and function of the pelagic ecosystems is still scarce 

(Cloern 2001; Olsen et al. 2006). It has been proposed that this waste release  alter nutrient 

stoichiometry in the seawater determining to some extent how the marine environment, 

responds to increasing anthropogenic inputs of limiting nutrients (Arrigo 2005).  

Major biogeochemical cycles (carbon, nitrogen and phosphorus) in the marine environment, 

are strongly dependent  on marine microbes  as this group is directly responsible  for 

approximately half of the earth’s primary production (Arrigo 2005). Nutrient uptake by 

phytoplankton varies among groups and depends on several factors such as kinetics, 

availability and redox state. In marine ecosystems nitrogen (N), assumed to be the limiting 

macro-nutrient for biological production (Hecky and Kilham 1988), can be  assimilated by 

phytoplankton as nitrate (NO3
-), nitrite (NO2

-), and NH4
+, occurring at different 

concentrations in the  regions of world oceans. In the open ocean, ecosystems of low 

productivity, the main source of N is though recycled NH4+, whereas in coastal areas like 

fjord regions, N is mainly contributed as nitrate NO3
- with the incoming deep water (nutrient-

rich) or in the surface layers through the run-off of in land fertilizers. As this N is in its 

oxidized form, after phytoplankton uptake a series of metabolic process occur in order to be 

finally be assimilated as NH4
+.  In this way, NO3

- undergoes through sequential reduction to 

nitrite and ammonium, each step involving the assimilatory nitrate reductase and assimilatory 

nitrite reductase enzymes respectively (Zehr and Ward 2002) Nitrogen incorporated to 

organic matter is then recycled by biological process (cell lysis, microbial decomposition, 

excretion,) which liberate N in the organic forms or NH4
+.   



9 

 

At the same time, these major biogeochemical cycles, involved metabolic process that are 

dependent on the availability of certain “micro-nutrients”. Trace metals such as Mn, Fe, Co, 

Ni, Cu, Zn and Cd are involved in several biological process influencing carbon cycling in 

aquatic systems, both directly (e.g. carbon-concentrating mechanism involves the Zn 

metalloenzyme carbonic anhydrase) and indirectly (e.g. Fe requirements for metalloenzymes  

in Nitrogen cycle) (Morel and Price 2003). As most of these elements are continuously  

exported out the photic zone to depth as  settling organic biomass, these biological processes 

(uptake, trophic transfer, regeneration, excretion and decomposition) are critical in 

controlling the fate of these bioactive metals in the ocean (Wang et al. 2001),  thus making  a 

cycle of complex feedback control.  Moreover, most of trace metals form complex ligands 

making them nonreactive and with limited solubility (Morel and Price 2003). Because of the 

above and due to and effective removal from the water column, concentrations of these 

elements fall precipitously within short distance of the continental margins making it’s 

recycling even more difficult (Johnson et al. 1997). 

 Iron specifically, plays a key role in several processes, having effect on major biochemical 

cycles in the marine environment (Martin 1991; Martin et al. 1991; Morel et al. 1991) .   It 

exists in the ocean mostly in its oxidized form Fe3+ (ferric iron) which is virtually insoluble, 

while the reduced state Fe2+(ferrous ion), the bioavailable form, is less abundant. For 

instance, Fe is involved in the nutrient uptake by diatoms as it is required as cofactor in the in 

the reductases  in the reduction of  NO3
– to NH4

+ and thus affecting the nitrogen cycling 

(Price et al. 1994).  The low productivity in Fe-depleted regions of the oceans attributed  to 

low efficiency of the light reaction of photosynthesis, requires a host of Fe-containing 

electron transfer intermediates. Likewise, electron transfer in respiration also becomes 

inefficient at low Fe concentrations, affecting carbon conversion into biomass by 

heterotrophic bacteria (Morel and Price 2003).Fe has been regarded as limiting nutrient for 

primary production in most regions in open ocean (absence of land based iron supply) and  in 

the so called high-nutrient-low-chlorophyll (HNLC) regions (Boyd et al. 2007). Not being the 

case in coastal areas, there exist some evidences however that even in  coastal systems,  

phytoplankton production might be iron limited at some extent (Hutchins et al. 1998; 

Hutchins et al. 2002; Öztürk et al. 2002).  

Through this feedback control  mechanism between  the  so called “macro” and ”micro” 

nutrients, it can be expected that enhancement of macronutrient loads (e.g. nitrogen) in a 
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given environment, may affect in the long term the cycling of trace elements. The 

biologically “New” versus “Regenerated”  production, based on the NO3
- : NH4

+ ratio in the 

water column, is a determinant factor favoring growth rates of certain groups of primary 

producers (Thompson et al. 1989). Therefore, increased input of dissolved inorganic nutrients 

(NH4
+ and PO4

3-) by aquaculture may have a direct effect on the  phytoplankton community 

structure (Olsen and Olsen 2008). The general response from  marine pelagic ecosystems to 

nutrient enrichment,  is reflected in increase nutrient uptake by phytoplankton and bacteria as 

well as  growth rate, with the  consequent  increased autotrophic biomass transfer to higher 

trophic levels (Olsen and Olsen 2008). However, knowledge on the capacity for 

phytoplankton to biologically uptake and metabolize these surplus of  nutrients, strongly link 

to the bioavailability of  some trace metals, is still scarce. Changes in N supply (e.g. NH4
+), 

could potentially affect  the cycling or Fe, perhaps by turning coastal waters into Fe limited 

zones or by changing Fe requirements of phytoplankton community. Thus,  understanding 

how concentration and speciation of certain trace elements  in the marine environment are 

affected by the surplus input of  macro nutrients,  is fundamental to  understand how 

biological systems (in terms of nutrient uptake, biomass growth, biodiversity, etc…) respond 

to  human  induced changes in the environment. 

Mesocosm experiments are design to maintain  large close environments for periods of 

weeks, giving the opportunity to simulate natural conditions that otherwise would not be 

possible, and thus enabling to  study from ecological interactions (Granéli and Turner 2002; 

Dearman et al. 2003; Havskum et al. 2003; Stibor et al. 2004) to  pelagic communities 

responses to environmental perturbations (Olsen et al. 2006) in more realistic perspectives. In 

this way, the baseline of WAFOW project, consisted in creating the conditions to simulate the 

nutrient enrichment occurring in fjords ecosystems product of salmon aquaculture in Norway 

and Chile, to assess the capacity of the pelagic marine planktonic communities to assimilate  

the incoming nutrient wastes and how it affects the major and minor biogeochemical cycles 

in fjord ecosystems. Further implications  of the outcome research would be to generate the 

scientific knowledge required to contribute to mitigate possible environmental impacts in 

these ecosystems. 
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2. HYPOTHESIS  AND  OBJECTIVES  
 

2.2 Hypothesis 
Environment nutrient enrichment through  NH4

+ and PO4
3- may modify N cycling and the 

stoichiometry of trace elements  linked to it. Therefore, is expected that the NO3
- to NH4

+ 

shift  achieved through  progressive artificial addition of nutrients imply in the long term, 

changes in iron requirements by  phytoplankton, with a consequent effect on  trophic transfer 

to zooplankton and higher trophic levels. 

 

2.1 Objectives 

2.1.1. General objective 
Determine the concentration and variation in time  of different fractions of  the  trace element 

iron in the marine water and the plankton community under experimental conditions of  

different  NH4
+ concentration, in order  to asses  positive or negative  feedbacks between the 

nitrogen and iron marine cycles and the possible biological implications in the base of the 

pelagic marine food web in a fjord ecosystem.     

 2.1.2. Specifics objectives 
Determine the concentration and variation in time of the total and dissolved chelex labile  and 

DGT labile fractions of iron in two types of seawater  under experimental conditions  with 

different concentrations of NH4
+. 

Determine the variations in the distribution of trace metal iron within different size  fractions 

of the particulate organic matter, representing the main size classes of the  plankton 

community, under experimental conditions  with different concentrations of NH4
+. 
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3. THEORY 

3.1. Salmon aquaculture and  the environment 
According to the Food and Agriculture Organization (FAO), the global production of fish, 

crustaceans and mollusks has reached 144.6 million tons in 2009. While capture production 

has stayed around 90 million tonnes since 2001, aquaculture production has displayed a 

substantial growth increasing from 34.6 million tonnes in 2001 to 55.7 million tonnes in 

2009, (i.e.  average annual growth rate of 6.1 percent)  (FAO 2010).  The Salmon industry  

dominates the production of diadromous fish with  1.5 million tonnes (44%), being Norway 

and Chile the world’s leading aquaculture producers of salmonids, with 36 and 28 percent of 

world production respectively (FAO 2010).  Despite the small share (0.8%) of the global 

aquaculture tonnage  production, salmon aquaculture is classified as intensive, which means 

that fish depend on a diet of artificial feed in pellet form. Because not all the feed is eaten, a 

significant fraction of  these external nutrient inputs can reach the sea bottom where it is 

eaten by the  benthos or decomposed by microorganisms, leading to events of oxygen 

depletion. This alteration of the natural food web structure can significantly impact the local 

environment (Soto and Norambuena 2004). Because of the above among other factors, 

general concern has been expressed about the environmental impacts of salmon farming 

worldwide. Other impacts include modification of benthic communities, increased nutrient 

loads in coastal waters and the associated problem of harmful algal blooms, increased 

harvests of wild fish populations for the production of fish feed, use of different types of 

chemicals, and escapes of farmed salmon into the wild (Buschmann et al. 2006).  

3.1.1. Eutrophication 
Salmon farming, among other human activities  such as land clearing, production and 

applications of fertilizers, discharge of human waste, animal production,  combustion of 

fossil fuels, mobilize  nutrient elements, mainly nitrogen and phosphorus, to coastal areas 

(Table 1).  As a result fertilization of coastal ecosystems is now a serious environmental 

problem because it stimulates plant growth and disrupts the balance between the production 

and metabolism of organic matter in the coastal zone (Cloern 2001). Ecosystem response to 

the increase nutrient loading (eutrophication) in coastal areas can  be seen both in the water 

(pelagic) quality or in the  state of the sea bottom (benthic), though both environments are 

affected in  different ways.  
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Table 1) Estimated loading rates of organic C and specified nutrient components from a hypothetical salmon 
CAS producing 1000 tonnes of fish per year  (Olsen and Olsen 2008). 
 

        

Pelagic loading rates Tonnes farm–1 year–1 g m–3 year–1 mg m–3 day–1 (June–Sept) 

  OC-loading 20 26 100 
  NH4-loading 28 36 140 
  PO4-loading 2.1 2.7 11 
  Total N-loading  30 39 150 
  Total P-loading  3 3.9 15 
  DON + PON loading  17 22 86 

  DOP + POP loading  6.1 7.9 31 

3.1.1.1. Effects on marine sediments 
The oxygen concentration at any point in the sediment is dependent on the rate of its uptake, 

either to fuel aerobic metabolism or to re-oxidise reduced products released from deeper in 

the sediment. When the oxygen demand caused by input of organic matter exceeds the 

oxygen diffusion rate from overlying waters, sediments become anoxic and anaerobic 

processes dominate (Black et al. 2008). Unaltered benthic macrofaunal communities in 

sediments are highly diverse however, where wastes do accumulate on the sea bottom, 

oxygen levels are depleted, release noxious gasses in decomposition, ultimately smothering 

benthic organisms. In some cases, this has led to dramatic changes in the community of 

animals that live beneath salmon pens, including the reduction of species diversity, leaving 

only a few species that thrive in polluted conditions (Weber 1997).  

 

As wastes from salmon pens fall directly  in the sea bottom, effects on these ecosystem are 

relatively easy to  detect and quantify. Due to this fact, the literature on impacts on sediments 

and benthic ecosystems is very comprehensive (Black et al., 2008), and there is a general 

scientific understanding on the requirements to base assessments of state and dynamics, 

management, and monitoring measures. (Olsen and Olsen 2008). 

 

3.1.1.2. Effects on  the water column 
Potential impacts of wastes from aquaculture on water column ecosystems is far less studied 

(Olsen and  Olsen  2008).   Pelagic ecosystems are primarily affected by  inorganic nutrients 

(NH4
+ and PO4

3-),  one of the main fractions  (apart from particulate organic nutrients, and 

dissolved organic nutrients) released by  salmon aquaculture.  While the majority  of the P is 
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accumulated in sediments (63%),  the majority N wastes is released to open waters (68% of 

total), prompting plant growth in  the pelagic ecosystem (Olsen and  Olsen 2008). 

 

One of the most known effect on pelagic ecosystems caused by nutrient enrichment are  

micro algal blooms (Buschmann et al. 2006). Whether caused by nutrients from salmon farms 

or from other sources, micro algal blooms can affect both the environment and salmon 

production  mainly by 1.) depleting waters of oxygen,  product of remineralization of  excess 

algal biomass post bloom and 2.) accumulation of  toxic substances produced by  the 

microalgae (Weber 1997). Pelagic ecosystems have an inherent capacity of persistence, and 

smaller changes in nutrient input can be mitigated through adaptive responses (Olsen and  

Olsen 2008). Nevertheless, there is an upper assimilation capacity above which pelagic 

ecosystems may lose integrity, leading to  changes or complete shift of the dominant type of 

microalgae present in the environment. Knowledge of  how these species shift may alter the 

complete structure of the pelagic food web up to higher trophic levels, or down to the  

biogeochemical cycling of  minor elements, is still scarce. 

 

3.2.   The marine  nitrogen cycle 
The nitrogen biogeochemical cycle  in the marine environment  is strongly dependent  on 

marine microorganisms as it is composed of multiple transformations of nitrogenous 

compounds, catalyzed primarily by bacteria and  phytoplankton  (Zehr and Ward  2002), that 

ultimately controls the availability of nitrogenous nutrients and thus affecting biological 

productivity in marine systems.  The cycle is  “balanced” by   biological (metabolic activity) 

and physical (water masses transport) process that mediate the gains (nitrification, N2 

fixation)  and  loses (denitrification, Anamox,)  occurring at different rates  and relevance in 

the  regions of world oceans (Fig. 1). 
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Fig. 1) Diagram of major features of the nitrogen cycle in coastal shelf and upwelling (I), OMZs (II), surface 

waters of the open ocean (III), and deep water (IV). PON, particulate organic nitrogen. A, DIN assimilation; B, 

ammonium regeneration; C, nitrogen fixation; D, nitrate diffusion/advection from deep water; E, nitrification; F, 

nitrification; G, denitrification (Zehr and Ward 2002). 

3.2.1.  NO3
-  versus NH4

+   uptake in phytoplankton 
NO3

-, NO2
- , and NH4

+, collectively termed dissolved inorganic nitrogen (DIN), can be taken 

up (via membrane transporters) and assimilated by phytoplankton. However, for  NO3
-  to be 

assimilated, it has to follow sequential reduction to nitrite and ammonium implying  

additional steps in reduction with an extra energy cost (Zehr and Ward 2002). The 

preferential uptake by phytoplankton (both eukaryotes and cyanobacteria) of NH4
+ is 

normally assumed to represent an adaptation resulting in energetic savings to avoid  the  

necessary to extra steps in reduction of NO3
-  (Thompson et al. 1989; Dortch 1990; Zehr and 

Ward 2002). However,  it has been demonstrated that growth on NO3
-  results in a 

measurably greater photosynthetic quotient compared to growth on NH4
+ (Dugdale and 

Goering 1967), and that the reductant requirement for nitrate does not necessarily result in 

decreased growth rate (Thompson et al. 1989).  So it has  become clear that this preference  

for NH4
+ is not universal and that not all phytoplankton use nitrate (Zehr and Ward 2002). 
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Among the numerous sources of nitrogen present in seawater, NH4
+  and  NO3

-  are generally 

considered to be the most important for regenerated and new production respectively. 

(Thompson et al. 1989).  In most open ocean region, regenerated production is dominated by  

nanoplankton (including mostly small diatoms and flagellates) (Chavez et al. 1991; Muggli 

and Harrison 1996), where higher ammonium assimilation rates are generally associated with 

the smaller (<10 µm) fraction (Le Corre et al. 1996). On the other hand, in coastal areas 

where upwelling and river runoff generate  high input of NO3
-, new production  dominates  

associated to  bloom  forming phytoplankton,  mainly  large diatoms that optimally allocate  

resources toward production of growth machinery (Arrigo 2005).  

 

3.2.2. NO3
-  and NH4

+  interactions with Fe 
As essential for NO3

-  reduction, the biochemical basis for the relationship for iron and  

nitrogen it is clear (Morel et al. 1991).  It has suggested  partially  to explain the paradox  of 

HNLC zones as dominant  phytoplankton in these regions to adapted very low Fe 

concentration  thus unavailable to use effectively NO3
-  for growth (Martin et al. 1991; Morel 

et al. 1991). When NO3
-  rather than NH4

+  is used as the nitrogen source the demands for iron 

increase,  requiring  40% to 60 more iron (Raven 1988; Whitfield 2001). Then is thus 

expected  that oceanic phytoplankton  has evolved to  achieve a lower iron quota  (Q) (Brand 

et al. 1983). This has been  confirmed through several cultures experiments  (Sunda and 

Huntsman, 1995).  In addition, it has been suggested that the energetic cost for the actual 

transport of nitrate across the cell membrane is higher than that for ammonium (Turpin and 

Bruce 1990). Therefore, regardless of the Fe conditions, cells utilizing ammonium should 

have a theoretical advantage based on energy considerations over cells utilizing nitrate 

(Muggli and Harrison  1996). Some studies have suggested that under iron replete conditions  

higher growth rates occurred with NH4
+ than NO3

-  (Thompson et al. 1989; Levasseur et al. 

1993) while other have come out with opposite results (Muggli and Harrison 1996). 
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3.3. Trace metals 

3.3.1. Categorization 
Metals exist in a wide variety of forms in natural waters, being   present as free / hydrated 

metal ions, inorganic complexes,  organic complexes, attached to colloids or larger particles 

(Stumm and Morgan 1996). The simplest, most common categorization of metals in water is 

separation into “dissolved” and “particulate” metal fractions by filtration. 

3.3.1.1. “Dissolved” and “particulate”  metal species 
The fraction that passes through a 0.45 μm filter is typically defined as “dissolved”, while the 

fraction collected by the filter is termed “particulate”. "Dissolved" is thus operationally 

defined, and in a strict sense is incorrect, as small particulates (i.e., <0.45μm) will pass 

through the filter membrane. Rather, the term "filterable" is a more correct term. In practice, 

the “dissolved” component includes metal species that are truly dissolved, including 

inorganic species (free metal ions and inorganic metal complexes) and organically complexed 

metals, but also includes “colloidal” metal species. Metals may be hosted in particulate 

phases either as part of a mineral lattice, sorbed onto particle surfaces, or as assimilated 

components in aquatic biota. In general, particulate metal phases tend to be less available, to 

organisms in comparison to their dissolved counterparts (INAP 2002). 

3.3.2. Speciation  
According to the International Union of Pure and Applied Chemistry (IUPAC) speciation is 

defined as “the process yielding evidence of the atomic or molecular form of an analyte” 

(Hill 1997).  It refers to the chemical form or compound for which a element is present, both 

in living and non-living systems. It can also refer to the quantitative distribution of an 

element in the environment (Stumm and Morgan 1996). To describe the chemical speciation 

of an element means to identify  its oxidation state, and all the forms of the elements (or 

cluster of atoms of different elements) has in  given solution matrix.  

3.3.2.1. Variables affection speciation 
The nature of metal speciation is a function of several variables, including the metal of 

consideration,  types and concentrations of metal complexing agents present. Other water 

quality variables including pH, pE (redox potential), hardness (Ca and/or Mg concentration), 

alkalinity and salinity are known to influence the speciation of metals to aquatic biota (INAP 

2002). 
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3.3.2.1.1. Complexing  agents 
Complexation of metals in aquatic systems may occur via reaction with soluble inorganic  

and organic ligands.  The inorganic speciation  of the essential trace metals with inorganic 

ligands (e.g., F-, Cl-,HCO3
-, SO4

2-, HPO4
2-, etc.)  is quite well characterized, producing 

complexes (e.g., carbonates), that dissociate rapidly to the free metal form. In the other hand,  

organic speciation mediated through organic ligands (e.g., humic substances) present in the 

DOM, is still poorly understood (Maranger and Pullin 2003). Humic and fulvic acids that 

have highly reactive aliphatic and aromatic carboxyl and hydroxyl groups that complex with 

other elements in the water column. They have great relevance as a major component of the 

DOM pool in coastal and  freshwater ecosystems. Organic ligands are also produced by 

marine microorganisms to complex metal ions to both facilitate uptake of specific ones that 

occurred in very low concentrations (e.g. Fe) and to mitigate  potential toxic effects of others 

(e.g. Cu) (Vraspir and Butler 2009). 

 

In most cases, complexation with organic ligands reduces metal bioavailability, because most 

organic-metal complexes are not readily transported across cell membranes. For instance, the 

bioavailability of several metals (e.g., Cd, Cu, Zn) is reduced in the presence of organic 

chelators (Zamuda et al. 1985).  Yet, further evidence has established two general but 

opposing  views of organic ligands as chelators of  metals, one  in which binding metals 

enhances the availability of these elements to planktonic organisms (Sunda and Huntsman 

1995) an  other stating that chelation actually reduces the availability of these elements. In 

this way, the presence of organic complexes is a mixed blessing, since can suppress the 

concentration of potential  toxic metals, but they can also reduce the available concentrations 

of essentials in biological metabolism. (Whitfield  2001). 

3.3.2.1.2. pH   
Some works have demonstrated an increase in metal toxicity with decreasing pH, due to the 

increase in free metal-ion activity at lower pH (INAP 2002). Conversely, other studies have 

shown a decrease in metal toxicity with decreasing pH (Franklin et al. 2000). The latter 

observations have been attributed to the increased competition of H+ with trace metals at the 

cell surface. 
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3.3.2.1.3. Others 
The toxicity of metals to aquatic organisms, for example, generally decreases with increasing 

water hardness  (Di Toro et al. 2001). Two processes have been suggested to account for 

these observations: 1) Ca and Mg successfully compete with trace metals for membrane 

transport sites on cellular surfaces; and 2) the complexation of metals with carbonate (CO3 -) 

decreases the free metal ion concentration and thus metal bioavailability (INAP 2002).  

3.3.3. Bioavailability 
Biological availability  (bioavailability) is defined as the fraction of total amount of an 

element that is available for an organism metabolism or that can be absorbed and used or 

stored in an organism. Bioavailable fraction of metals includes both free metal ions and 

kinetically–labile metal complexes (i.e., those with rapid dissociation kinetics), the biological 

response is proportional to the free-metal concentration only (Whitfield 2001). Thus. 

bioavailability, as well as toxicity, of metals in aquatic systems is strongly dependent on the 

nature of the metal species present. For this reason, determining the chemical form, or 

speciation, of metals in the environment is fundamental to predicting impacts to aquatic biota.  

3.3.2. Role of trace metals in biology 
In living organisms, metal ions regulate an array of physiological mechanisms with 

considerable specificity and selectivity, as components of enzymes and other molecular 

complexes. The reactivities of the complexes depend both on the specific properties of the 

organic molecule to which the metals are joined (e.g., protein), and on the variety and 

flexibility of the metal’s own specific chemical properties (Lippard 1993). The d-block 

transition metals play a particularly prominent part in enzyme activities of living organisms. 

Their wide variety of oxidation states, extensive bonding patterns and chemical flexibility 

allow them to participate extensively in catalysis. The facility with which iron, copper and 

molybdenum, can undertake one or two electron changes accounts for their importance in the 

oxidoreductase enzymes (Reilly 2004). 

In natural marine environments and freshwaters,  trace metals as  Fe, Cu, Zn, Ni, Mn, Co, Cd, 

Mo, Se, Sn, and V are micronutrients that constitute essential dietary components of aquatic 

organisms (Florence 1982). Such metals are typically present in trace quantities (<10 nM) 

and are passively and/or actively assimilated by organisms to satisfy physiological 

requirements.   
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3.3.3. Biological uptake   
As seen, chemical speciation of the elements in sea water have a controlling influence on 

their biological availability. Generally, for essential trace metals, it is the free metal ion that is 

most readily assimilated. (Whitfield 2001), whereas particulate and strongly complexed 

metals are not. Dissolved metals are typically incorporated passively into the cells of 

organisms via specialized pumps, channels and carriers which operate across the membrane 

surface (INAP 2002). The regulation of this  process in the cell is facilitated by the cell 

membrane, where globular proteins, dispersed throughout the lipid bilayer, act as conduits for 

the transport of materials to the cell interior. 

Within this process, Whitfield (Whitfield 2001) identify three stages key stages that 

determine the effectiveness  metal uptake, as 1.) Transport of metal species to cell surface 

(diffusion), 2.) Binding to a biologically-produced ligand (sequestration or capture) and 3. 

Transfer of complex across cell membrane (internalization) (Whitfield 2001) (Fig. 2) Overall, 

the uptake process generally follows Michaelis-Menten kinetics, typical for enzyme-mediated 

reactions of  (Hudson and Morel 1990): 

ρ = ρmax [M’]  /  K ρ + [M’] 

 

Where ρ is the uptake rate, K ρ is the half-saturation constant and ρmax corresponds to the 

maximum uptake rate. [M’] is essentially the concentration of free metal ion and kinetically 

labile complexes adjacent to the cell surface. From K ρ  two other parameters that can be 

derived that are essential in regulating uptake, the ligand exchange rate constant (KL) and the 

maximum attainable cell surface ligand concentration  [L1]max 

 

The development of speciation models (Campbell 1995) has shown an excellent guide to the 

availability of the trace metals in solution It  assumes that the uptake of trace metals by the 

cell during internalization  (3), (Fig. 2) is sufficiently slow that it is rate limiting and the 

reactions in diffusion (1) and sequestration (2) can reach equilibrium. The free metal ion at 

the cell surface therefore represents the metal available for uptake, and the concentration of 

ML1 at the surface is at equilibrium with this concentration (Whitfield 2001). 
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Fig. 2)  Uptake of trace metals at the cell surface. (1) Bulk solution where the metal (M) is complexed by 
inorganic and organic ligands (Ln). (2) Diffusion zone where complexes interact with ligands that are either 
attached to the cell surface (L1) or released into the bulk solution (L2). (3) Transport zone where the metal—
ligand complex is taken into the interior of the cell. Ligands are recycled and returned to the cell surface (dashed 
lines) (Whitfield 2001). 

3.4. Iron  
Iron is the second most abundant metal, and the fourth most abundant element in the earth’s 

crust. (Reilly 2004) Belongs to the d-block transition elements and can exist in oxidation 

states ranging from -2 to +6. However, in biological systems, these are limited to the ferrous 

(+2), ferric (+3) and ferryl (+4). Three oxides are known, FeO, Fe2O3 and Fe3O4, representing 

the Fe(II) and the Fe(III), as well as the mixed Fe(II)–Fe(III) oxide which occurs in nature as 

the mineral magnetite. With non-oxidising acids, in the absence of air, ferrous salts are 

formed. Many iron salts, as well as hydroxides, are insoluble in water (Reilly 2004). 

 

Virtually all microorganisms require iron for their respiratory pigments, proteins and many 

enzymes. Like the other transition metals, with their labile d-electron systems, iron has a rich  

redox chemistry, which allows it to play a role in a variety of oxido-reductase enzyme 

activities as well as in electron transfers (Reilly 2004).  In the same way,  the bioavailability of 

iron is critically dependent on its redox state. Reduced iron (Fe 2+) is highly soluble in water, 

whereas, its oxidized form (Fe3+) is virtually insoluble (Haese 2005).  Iron can also, due to of its 

unoccupied d-orbitals, bind reversibly to different ligands. This ability to form coordination 

complexes constitute  important chemical property, from  biological perspective (Reilly 

2004).  
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3.4.1. Iron marine cycle  
 
Iron is transported to the ocean by four major regimes: fluvial, aeolian, submarine 

hydrothermal, and glacial, being the fluvial the most important in coastal areas.  Iron 

concentrations in average, show less solubility in marine relative to river water  (Haese 

2005). Concentrations of both particulate and dissolved Fe species can decrease > 90% at the 

estuarine mixing zones (Sañudo-Wilhelmy et al. 1996; Öztürk et al. 2002). Dissolved iron is 

mainly present as Fe (III) oxyhydroxide, which is stabilized in colloidal dispersion by high-

molecular-weight humic acids (Hunter 1983). Due to increasing salinity colloids ten to 

coagulate, resulting in an exponential decreasing gradient between river, estuarine an 

seawater (Haese 2005). 

 
Most waters are in a fairly oxidized state because of biological activity. Through 

photosynthesis, autotrophs produce free oxygen and on the other  hand organic matter, 

affecting the redox state of natural waters, therefore iron speciation. Being  an essential 

micronutrient,  dissolved iron concentration shows a similar vertical profile in the water 

column as nitrate being reduced to near zero within the surface layer where PP takes place 

(Haese 2005).  The proximity to iron sources in coastal regions led to the assumption that 

iron generally is in abundance, occurring 100 to 1000 times higher concentrations in coastal 

waters (Sunda and Huntsman 1995),  decreasing abruptly off continental margins (Johnson et 

al. 1997) to the extent  to become limiting in certain region in the open ocean,  reaching 

concentrations 20 – 30 pM in the  High Nutrient  Low Chlorophyll  (HNLC) zones  (Martin 

1991; Martin et al. 1991; Morel et al. 1991).     

 

Below the photic zone, where light intensity  is not enough to sustain photosynthesis, biologic 

activity and respiration, thus oxygen consumption  sustained by falling organic matter from 

the photic zone. Product of decomposition and mineralization, dissolve iron concentration 

increases resembling a nutrient type profile (Johnson et al. 1997). Yet chemistry dictates that 

iron should adopts a scavenged element profile (lead type), decreasing in concentration  with  

depth due to particle adsorption (Whitfield 2001). If the rate of respiration exceeds downward 

advection of oxygenated surface water, respiration depletes all available oxygen,  suboxic or 

anoxic conditions are achieved. Under these conditions iron increase due to the 

mineralization of iron bearing organic matter (Haese 2005). 
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In  sediments, once oxygen is consumed, a variety of microbial activity continue utilizing 

other oxidants as other than oxygen. We would expect to see oxygen consumed first, 

followed by reduction of nitrate (denitrification), manganese, iron (ferric iron is reduced to 

soluble ferrous iron), sulphur, and finally nitrogen (nitrogen fixation).  Under these suboxic 

and anoxic circumstances Fe occurs in its soluble form and concentrations are much higher 

compared to normal oxic environments. The metal then diffuse upward to the oxic-anoxic 

boundary in water bodies where they again are oxidized and precipitate (Haese 2005). 

3.4.2. Relevance of Iron in  biological productivity 
 
Iron is fundamental to the physiology of prokaryotic and eukaryotic cells (Whitfield 2001). 

Its pivotal role in marine as  biological production was tested first  in the late 1980s (Martin 

and Gordon 1988; Martin et al. 1989; Martin 1990; Martin et al. 1990)  and have been 

supported by a series of extensive mass fertilization experiments through the  1990s and 

during the past decade (Martin et al. 1994; de Baar et al. 2005) and cites there in. 

 
The oxidation-reduction properties of iron make it ideally suited to catalyze electron transfer 

reactions. In the course of evolution microorganisms have exploited iron for photosynthetic 

and respiratory functions as well as for the reduction of inorganic nitrogen species, nitrate, 

nitrite, and nitrogen gas (Morel et al. 1991).  It also acts as an acid catalyst in hydrolytic 

enzymes (Whitfield 2001). Iron is undoubtedly the most versatile and important trace element 

for biochemical catalysis  (Morel et al. 1991) (Table 2). 

 

3.4.3. Iron  speciation  and uptake by phytoplankton 
Iron has a solution chemistry that is dominated (at pH 8) by extensive hydrolysis, which 

makes it prone to rapid removal by oxyhydroxide colloid formation and effective scavenging 

onto falling particles (Whitfield 2001). Between 10 and 50% passes through 0.4 µm filter 

(Martin and Gordon 1988; Martin et al. 1989), and some of this may be colloidal rather than 

truly dissolved. The particulate and colloidal fraction comprises oxides and aluminosilicates 

and possibly organic forms. Direct measurements in sea water using electrochemical 

techniques indicate that a large proportion (usually >97%) of the total dissolved fraction is 

held in strong organic complexes (Rue and Bruland 1995). The colloidal iron also  can be 

slowly resolubilized by photochemical action in the near-surface layers (Barbeau and Moffett 
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2000). Concentration of Fe3+ is <10-22 M or just a handful of molecules per litre (Rue and 

Bruland 1995). Therefore very little may be in the reduced Fe (II) form rather than the stable 

Fe(IIl) in oxygenated water.  

 
Table 2)  Metabolic and  enzymatic roles  of Fe in marine organisms. 

Enzyme & proteins Function 
Cythochrome f Photosynthetic electron transport 
Cythochromes b and c Electron transport in respiration and photosynthesis 
Cythochrome oxidase Mitochondrial electron transport, O2 + 4e- + 4H+  2H2O 

  Fe-sulphur proteins Photosynthetic and respiratory electron transport 
Ferrodoxine Electron transport in photosynthesis and nitrogen fixation 

  Nitrogenase Nitrogen fixation 
Nitrate and nitrite reductase Nitrate and nitrite reduction to ammonia 

  Ribonucleotide reductase Transforms ribose to deoxyribose (DNA repl. and cell div.) 

  Fe-superoxide dismutase Disproportion of O2 - radicals to H2O2 and O2 
Catalase H2O2 breakdown to O2 and H2O 
Peroxidase H2O2 reduction to H2O 

  Chelatase Porphyrin and phycobiliprotein synthesis 
Succinate dehydrogenase Fumarate synthesis 
Aconitase Isomerization of citrate 
Coprporphyrinogen oxidase Oxidative decarboxylation of Mg-protoporphrine 
Lipooxygenase Fatty acid oxidation, carotenoid degradation 
Glutamate synthetase Glutamate synthesis 
Xantine oxidase Oxidation xanthine to uric acid 

  Ferritin Iron storage 
Methane monooxygenase Methane oxidation 
Purple acid phosphatase Unknown 

  Alkaline Phosphatase Formation of phosphate ester 
 

From culture studies it appears that only the dissolved inorganic forms of iron, chiefly the 

dominant hydrolysis species Fe(OH)2
+, are taken up by marine phytoplankton, therefore the 

necessity for the iron to be in dissolved inorganic form in order to be available to algae 

underscores the importance of iron chemistry in surface seawater (Morel et al. 1991).  Direct 

uptake of inorganic iron must involve these soluble hydroxide complexes (Whitfield 2001). 

Some early studies have claimed that colloidal Fe colloidal  might be a usable source of iron 

for algae (Barbeau and Moffett 2000), while others no (Rich and Morel 1990). 
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Since iron uptake in marine phytoplankton involves a complexation reaction between iron in 

the water and  an uptake molecule at the cell surface, followed by internalization of the 

membrane-bound iron (Hudson and Morel 1990),  the production of organic ligands to  

complex iron as  bacteria (e.g., siderophore) improve the accessibility to iron. For instance It 

has been observed that phytoplankton may produce excess ligand in response to an influx of 

iron (Witter et al. 2000). 

 

In this sense, organic complexes can play key role for phytoplankton  by increasing the 

solubility of iron (Kuma et al. 1996), making it accessible for longer periods, thus greatly 

reduce the opportunity for removal of the iron by particle scavenging.  Moreover, the organic 

complexes also provide a potential site for the photo reduction of Fe (III) to Fe (II) that is 

more readily assimilated, provided that it can be accessed in a timescale that is short 

compared with the oxidation rate (Whitfield 2001). 
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4. MATERIALS  AND METHODS 
 

4.1. Fieldwork 

4.1.1. Study Area 
The fieldwork took place in Chile as part of the WAFOW project (Can waste emission from 

fish farms change the structure of marine food webs? A comparative study of coastal 

ecosystems), between Norway and Chile.  Experiments were carried out during the austral 

summer season between January and  February 2011 at the facilities of the Huinay Scientific 

Field Station (42°22’46”S – 72°25’12”W) in the Comau fjord, Northern Patagonia (Fig. 3). 

 

Fig. 3) Study area presenting main freshwater inputs (Loncochaiga and Vodudahue rivers) and the sampling site 

(Huinay Stn) for the mesocosm experiments in the Comau Fjord, Chile during January-February 2011 (Sanchez 

et al. 2011).  
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The study area in Chile corresponds to the fjords region (Patagonia 41 – 55°S), classified as 

part of the sub Antarctic region and characterized by a marked seasonality with strong 

climatic changes (Pickard 1971). Scientific knowledge on marine biology and the 

biogeochemical cycles occurring in the area comes from several oceanographic studies 

conducted within the last two decades  (Pizarro et al. 2000; Palma and Silva 2004; Iriarte et 

al. 2007; González et al. 2010; González et al. 2011).  

4.1.1.1. Hydrography 
The  Comau fjord hydrography  features a two layer system with the presence of a permanent 

low salinity layer (LSL) between the surface and ~5 m. The mixing of freshwater from 

precipitation and river runoff (Loncochaigua and Vodudahue)  with oceanic water results in a 

strong halocline, where the salinity regulates the formation of the pycnocline (Fig. 4). This  

LSL in turn has an effect on the physical characteristics of the water column (e.g., light 

penetration and nutrient exchange with deeper nutrient-rich water),  that exert an important 

effect on the composition of the planktonic community (Sanchez et al. 2011). 
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Fig. 4) Typical  vertical distribution of  a) temperature (°C)  and  b.) salinity (psu) for three different periods 
(January, September and December) in the Comau Fjord, Chile (modified from Sanchez et al. 2011). 
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4.1.2. Mesocosms set up 
A mesocosm defines an enclosed space (i.e. body of water) during a  period of time for 

experimental purposes.  In the field of aquatic sciences,  mesocosm studies have the 

advantage over standard laboratory tests in that it maintains a natural community under close 

to natural, self-sustaining conditions. Therefore, the mesocosm approach is often considered 

the experimental ecosystem closest to the real world, without losing the advantage of reliable 

reference conditions and replication (Riebesell et al. 2010). 

The definitions of  size and time duration varied widely  among mesocosms experiments and 

are determined according to the subject of research. Mesocosms range from 1 up to 1000 

cubic meters in volume and can be extended over periods of days to a year. For the research 

considered here and according to Riebesell et al. (2010),   our experiment was scaled into a 

category I-II,  that is with multiple units, volume of 1-10 m3 and days to weeks duration. A 

total of 10 units  (1000 L tanks) were filled half with surface and half  with  marine water 

collected at depths of 3 and 10 meters respectively from the fjord constituting five units per  

water system (without replicates), each one representing one treatment (Fig. 5). Sampling 

period involved from the 23rd of January until the 14th of February, comprising a total 

duration of 22 days.  

Water pumped into the tanks was collected with a peristaltic pump (Multifix type M80), 

placed in a peer and using  plastic hose  (35 mm diameter) projected 30 m offshore. Flowing 

water were pumped into a 33 L plastic tank (main collector) where afterwards it was equally 

distributed to each of the five tanks (Fig. 5). Mesocosms where kept as natural as possible 

without prescreening incoming  water, in order to  contain different taxonomic groups at the 

various trophic levels of the natural plankton assemblage. 

4.1.3. Nutrient additions 
 In order to simulate nutrient enrichment occurring in the water column  product of  salmon 

aquaculture waste, tanks were supplied with four different concentration (treatments) of 

macronutrients  (nitrogen, phosphorus and silicon) as  ammonium chloride (NH4Cl), sodium 

dihydrogen  phosphate monohydrate (NaH2PO4
.H2O) and sodium metasilicate enneahydrate 

(Na2SiO39.H2O) every third day at a fix ratio. Although salmon aquaculture does not add 

Silicon into the marine environment, it was supplied  due to  fjords ecosystem  in southern 

Chile has continuous and in excess natural input of it, thus preventing potential nutrient 
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limiting specifically for diatoms. The five units used per system, were  denominated as 

Control, Natural. Conc1, Conc2 and Conc 3, where “Control” corresponded to the unit with 

no addition of nutrients, whereas “Natural”, received a nutrient input at the average  ratio for 

N:P:Si, occurring in the natural environment (González et al. 2010). (The three other units 

received the experimental nutrient concentrations (Table 3). 

 

 

Fig. 5) Tanks and deployment  of the surface and marine systems   in the  mesocosms experiment  in the  

Comau fjord during January-February 2011. 

4.1.4. River and fjord sampling  
Additional  to the mesocosms, river and seawater samples were collected to have a general 

background on the concentration and distribution of iron within the study area. The river 

samples corresponded to the Loncochaigua river, adjacent to the marine station (~ 1 km) (Fig. 

3) and involved a  three point river to sea transect starting at the  location of  entirely river 

water (0 psu), ending at the river sea mix zone. Seawater samples were collected  in front of 

the marine station (~ 2 km offshore),  using an acid clean Teflon coated GO-FLO bottle. 

Samples were  collected at 0, 5, 10, 30, 50 and 70 m. 
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Table 3.)  Rate supply (µmol.m-3. d-1)  and ratio for the different macronutrients added  as NH4Cl  for Nitrogen 

(N), NaH2PO4.H2O for Phosphorus (P) and  Na2SiO3.9H2O for Silicon (Si)  in the different treatments  for the 

surface (6-10) and marine  systems (1-5), during mesocosms experiment in Comau fjord during January-

February 2011. Control units had no nutrient addition representing the base line. 

              
Treatment Mesocosm    N P Si N:P N:Si 

Control 1 - 6  
     Natural 2 - 7 296.0 19.4 146.8 15.3 2 

Conc 1 3 - 8 1199.7 49.7 594.7 24.2 2 
Conc 2 4 - 9 2991.3 123.8 1483.0 24.2 2 
Conc 3 5 - 10 4674.0 193.5 2317.2 24.2 2 

 

4.1.5. Samples collection  
Water samples were collected every 3rd day from each tank, according to a specific sampling 

scheme (Table 4). A total of four different methodological  approaches for sea water  analysis 

were employed: chelex-100, DGT, fractionated and direct sampling. Samples for dissolved 

matter, filtered through 0.2 µm acid washed filters (0.45 + 0.2 µm Sartorious Sartobran 300), 

were collected by direct sampling  and with Chelex-100. All samples processing in the field, 

were carried out in a closed room under clean air in a Class-100 laminar flow hood (Air 

Clean Systems 400 Workstation) to avoid contamination.  Parallel with the seawater for trace 

metal analysis, samples to study other chemical (nutrients, (N and P), POC,  PON and pH) 

and biological  variables (Chl-a, phytoplankton, zooplankton bacterioplankton) were 

collected. Further laboratory processing of the samples were done under constant laminar air 

flow, in the class 100 clean laboratory at the Department of Chemistry at NTNU. All plastic 

material used both during field and laboratory  work, were acid washed  according to 

standard procedures. A total of 6 six  extra tubes were run for  methodological blanks 

analysis for Chelex, DGT and direct samples, while 3 filters, per pore size used were set apart 

for UC-digestion  for blank analysis. After laboratory processing, all samples were sent to be  

analyzed in High Resolution  Inductive Coupled Plasma Mass Spectrometry (HR-ICP-MS) 

Element 2 (Thermo-Finnigan) with PFA-Schott type spray chamber and nebulizer. 
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Table 4.)   Date, sampling day (sday), system sampled and  technique used,  in the different treatments  for  the 
surface and marine  systems in the mesocosms experiment in the Comau fjord during January-February 2011.  

Date  Sday System  Technique 

23.01.2011 
1 

Marine 
chelex - DGT - fractionation - direct   

24.01.2011 Surface 
26.01.2011 

2 
Marine 

chelex - DGT - fractionation - direct   
27.01.2011 Surface 
29.01.2011 

3 
Marine 

chelex - DGT - fractionation - direct   
30.01.2011 Surface 
01.02.2011 

4 
Marine 

fractionation - direct 
02.02.2011 Surface 
04.02.2011 

5 
Marine 

chelex - DGT - fractionation - direct   
05.02.2011 Surface 
07.02.2011 

6 
Marine 

fractionation - direct 
08.02.2011 Surface 
10.02.2011 

7 
Marine 

fractionation - direct 
11.02.2011 Surface 
13.02.2011 

8 
Marine 

chelex - DGT - fractionation - direct   
14.02.2011 Surface 

 

4.2. Techniques  

4.2.1. Chelex-100  
Chellex constitute an ion exchange resin of styrene divinylbenzene copolymers containing 

paired iminodiacetate ions which act as chelating groups. It has wide applicability among 

analytical procedures, including those of interest here, the analysis of trace metals in natural 

waters. The resin exhibits high preference for copper, iron, and other heavy metals over 

monovalent cations such as sodium and potassium. Also has a very strong attraction for 

transition metals, even in highly concentrated salt solution. It differs from ordinary 

exchangers because of its high selectivity for metal ions and its much higher bond strength 

(Bio-Rad Laboratories). 

The selectivity of Chelex-100 for metal cations corresponds to that of iminodiacetic acid, and  

it is dependent on the pH, ionic strength, and the presence of other complex-forming species.  

Particularly, the pH affects the quantity of cations exchanged, being very low below pH 2, 

while it reaches its  maximum above pH 4. For the purposes here, pH was not variable 

affecting the results as the experiments were carried out in natural waters (Bio-Rad 

Laboratories). 
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4.2.2.  Diffusive gradients in thin-films (DGT) 
 Diffusive gradients in thin-films constitute a simple, but precision plastic device capable of 

accumulate dissolved substances in a controlled way. For trace metals analysis, the technique 

of provides an in situ means of quantitatively measuring labile species in aqueous systems 

(Zhang and Davison 1995). Since both the mechanism of metal assimilation in aquatic 

organisms and the mode of metal uptake by DGT are governed by labile metal concentrations 

in solution, a correlation between DGT metal concentrations and  the bioavailable fraction 

would be expected.  

The DGT technique principle is based on Fick’s first law of diffusion. Each DGT unit  

consists of  1.) a layer of polyacrylamide hydrogel of known thickness ∆g (cm), is backed by 

2.) a layer of ion-exchange resin (Chelex-100) of thickness ∆r (cm). Between the diffusive 

gel and the bulk solution there is 3.) a diffusive boundary layer (DBL), of thickness δ, where 

transport of ions is solely by molecular diffusion  (Zhang and Davison 1995) (Fig. 6).     

 

(Fig. 6)  Schematic representation of the free concentration of ionic species in a hydrogel assembly in contact 
with aqueous solution, where the concentration is Ct, (DBL is diffusive boundary layer). The rate of diffusion is 
assumed to be the same in the gel and solution (Zhang and Davison 1995) 

 

The δ here was assumed  negligibly compared to ∆g due to  effective stirring of the solution 

in the shaker. Then, the flux F (mol. cm-2 s-1)  of metal ions  diffusing through the gel layer to 

the resin can be expressed by  X-1 

  

F = D (Cb – C’) / ∆g                                                    X-1 
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Where D is the diffusion coefficient (E-6 cm-2.s-1) of the element in the gel, Cb the free 

concentration of a metal ion in bulk solution, and C’ the free concentration of the metal ion in 

the resin gel layer. If the free metal ions are in rapid equilibrium with the resin, with a large 

binding constant, C’ is effectively zero providing the resin is not saturated. Therefore X-1 can 

be simplified to X-2 

F = D Cb  / ∆g                                                             X-2 

According to the definition of flux (F = M/At), the mass diffused through an area  A  (cm2), 

after given time t (sec) should be 

M = D Cbt A / ∆g                                                            X-2 

The mass of the diffused ion M (ng), can be obtained by X-3 

M = ( Ce (Vg + Ve) / fe                                                                                  X-3 

Where  Ce  is the concentration (µgr L-1) of ions in the acid eluent obtained from the results 

on HR-ICP-MS analysis,  Vg the is the volume (L) of gel in the resin gel layer,  Ve  the is the elution 

volume (L) of acid and fe the  ratio of the eluted to bound metal, known as the elution factor  

and here assumed 0.9 as  extraction proceeded with 2M UP  HNO3  (Ardelan pers. comm.). 

Obtaining M, the concentration of the ion in the bulk solution can be quantified by rewriting  

      Cb = M∆g / Dt A g                                                        X-2 

4.2.3. Size fraction filtration 
Constitute a separation method based on predefined (pore size) criteria. In the field of aquatic 

sciences, it has applicability on the study mainly on biological and certain chemical variables. 

Separation  by size range are defined “artificially”, usually based on the biological feature of  

the size distribution of the living organisms comprised in the plankton size spectrum. 

Determining the  distribution of  trace metals within different size fractions in water and 

plankton in aquatic ecosystems, can be obtained from the dissolved matter (<0.2 µm), 

separation living from nonliving matter, passing through Picoplankton (e.g., Bacteria) up to 

the  macroplankton (e.g., fish larvae). The size fractions are associated to  specific groups  of 

organisms (e.g., taxonomically related) or different trophic levels within the food web. 
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Size fraction filtration can  be performed either by independent simple filtration or sequential  

fractionation. In the first case, different  samples of water of the same  volume are filtered 

through a determined pore size  filter. Assuming that each filter size retain all particles bigger 

than the pore size, and let through the smaller ones, values obtained (e.g., trace metal 

concentration)  in each filter size are subtracted from the previous (bigger pore) filter size 

(e.g., value in 20 µm filter – value in 60 µm filter) to obtain  the specific amount present in 

each fraction (e.g., < 60 µm > 20 µm). For  the second case, the sample water sample   is  

filtered sequentially through an in-line system of filters, starting from the bigger pore size to 

the  smaller one. Though water is the same, the volume filtered  may not be strictly the same 

as bigger  pore size  can  filter higher volume at high speed, while smaller fraction tend to get  

clogged. In that way,  volume of  filtered water may follow a decreasing fashion towards the 

smaller pore size filters. Having sequential filters in an in-line holder rather than performing 

independent filtrations through each filter vastly simplifies field operations in which many 

such samples must be collected while minimizing handling and potential contamination of 

individual filters (Cullen and Sherrell 1999).  

4.3. Laboratory work 

4.3.1.  Chelex samples 
Sample for dissolved Chelex labile (DFeCh) and Total Chelex labile (TFeCh) iron   were 

collected in acid washed plastic bottles. A volume  (90 – 150 ml) of water sample is 

transferred, were  0.8 mL (shaken beforehand) of the Chelex-100 solution (Ammonium 

Acetate buffer (C2H4O2.NH3)) is transferred to the sample using an automatic pipette. For the 

DFeCh, 0.2 µm acid washed filters (0.45 + 0.2 µm Sartorious Sartobran 300)  and syringe 

were used to filter the water sample. Afterwards,  each sampling  bottle  was placed in a 

plastic bag to ensure a clean environment and then in a shaker (65 - 80rpm) for 48 – 72 hours. 

After this period,  each sample was transferred to an acid-washed plastic PE column (Bio-

Rad Laboratories), where the water was washed out through the column, and the Chelex-100 

containing the material was restrained by a resin  present at the end of the column.  Remains  

of samples, were first washed with Milli-Q water and secondly with ̴ 10mL of 0.1M 

C2H4O2.NH3 to remove the residue of seawater matrix. After washing out the water, columns 

were locked and stored at low temperature (4˚C) until transport. 
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In the laboratory, columns containing the sample were placed in grid, and extraction of trace 

metals were done in a two-step acidifying process: 1 mL  of  2M UP HNO3  was added, wait 

for 5 minutes and then gently shaken  to re-suspend the Chelex-100. After 15 more minutes, 

content of the column was poured into  acid-washed PE tubes and 4 mL of 0.25M UP HNO3 

was added again to the columns. After 10 minutes, final content was poured into the PE 

tubes, obtaining a total 5 mL sample (Öztürk et al. 2002; Ardelan et al. 2010). 

4.3.2.  DGT samples 
DGT unit consists of a 0.4 μm pore-size cellulose acetate filter, a polyacrylamide hydrogel 

diffusion layer, and a Chelex-100 impregnated binding phase. Samples for the DGT labile 

iron (FeDGT), were collected placing three DGT samplers where placed in acid washed  plastic 

containers with a volume (1500 – 2000 mL) of water. Afterwards,  each plastic container was 

placed in a plastic bag to ensure a clean environment and then  in a shaker (60 - 80rpm) for 

48 – 72 hours. After completing the time period,  DGT samplers were taken out of the sample 

water and stored in a freezer until transport (Ardelan et al. 2009).  

 
In the laboratory, all DGT samplers processing were done over a Teflon sheet, where for each  

sampler was opened and first two layers (filter and gel) were removed.  The third layer, 

corresponding to the gel holding the resin was transferred to an acid washed PE tube and 4 

mL 3M UP HNO3 was added. PE tubes containing  the resin were put on a shaker at (60 - 

80rpm) for a 12 hour period. Afterwards, HNO3 in the PE tubes were transferred to new acid-

washed PE tubes, keeping the resin  in the old one. To assured total transfer of all material,  4 

mL (1 – 3 ml) of Milli-Q water  were added  to old tubes  and then poured into the new ones, 

thus obtaining  5 mL samples final volume.  

 

4.3.3.  Size fraction filtration  
To determine concentration and  distribution of the particulate total  (PFe>0.2) and in different 

size fractions (PFeSF)   iron content within  the plankton community  present in the 

mesocosms, filtration with sequential fractionation was  performed encompassing  a range  of 

six size classes: 0.2 – 2 μm (picoplankton), 2 - 10 μm (nanoplankton), 10 – 20 μm (larger 

nanoplankton), 20 – 140 μm (microplankton), >140 μm  (mesozooplankton) and > 220 μm  

(larger mesozooplankton) (Fig. 7). Filtration  up to the 10 μm  was performed with a simple 

filtration system fitted to a peristaltic pump and using  acid washed polycarbonate filters (25 
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and 54 mm diameter), whereas filtration from 20, 140 and 220 μm fractions were performed 

with acid washed plastic sieves with different pore size Nitex meshes with the retained 

material then afterwards  washed into 0.2 μm filters. Filtration volumes ranged from ≥ 2000 

mL for bigger fractions to a 100 mL for the smaller ones. Samples were kept frozen  and sent 

back to Trondheim.  

In  NTNU laboratory, samples were defrosted  to perform  UC-digestion. The filters with the 

organic material were placed into Teflon tubes adding 5 mL of UP  (50%) HNO3. The rack 

with tubes was placed into the UC to follow  digestion process (APPENDIX 1.) After  two  

hours  process, samples were set to final dilution by pouring  the remnant  on the Teflon tubes 

into a dilution bottle and filled it up to 61 ± 0.3  mg.  Subsample volume was recalculated 

(density of ultra-pure water 0.998 gr.cm-3 at room temperature), then divided by total  original 

volume filtered to obtain final concentration. 

4.3.4.  Direct samples 
Direct samples for dissolved (DFe)  and total iron (TFe) were collected,  transferring ~10 mL 

of water to an acid-washed   PE tubes and one drop of  1M UP HNO3 (Optima Grade, Sigma) 

was added to the sample to make pH lower than 1.5  and then stored. For dissolved matter 

samples, 0.2 µm acid washed  filters (0.45 + 0.2 µm Sartorious Sartobran 300) and syringe 

were used to filter the water sample.  In the laboratory,  samples were diluted  ten  times by 

adding  1 ml of  each sample in  new  PE tube, then adding  9 ml of  ultra-pure water (Milli-

Q) and  concentrated UP HNO3 was added to bring final concentration to 0.1 M HNO3.   A 

total of six  tubes were run for blank analysis. 

4.3.5.  Blanks and detection limits  
The limit of detection is a part of the quality control of an analytical method, and is defined 

as the lowest concentration that is statistically different from the instrumental blank value 

(Grasshoff et al. 1999), The detection limit used here is three times the standard deviation 

calculated from the measured method blank values, which correspond to the random errors 

associated to methodological procedures. All values reported here,  lie above the blank value 

determined, first subtracted from the blanks obtained  from  HR-ICP-MS  values and then 

calculated to the appropriate concentration. Blanks  and detection limits  of the analysis 

performed in  HR-ICP-MS  for each of the technique are presented in  Table 6. For accuracy 

and precision of techniques, refer to Ardelan et al. (2010). Extended tables (APPENDIX 2). 
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Fig. 7) Schematic representation of  the  sequential filtration system with filters sizes  used and the  type of 
microorganisms that are retained  in the  FeSF samples. 

 

4.3.6.  Statistical analysis  
Statistical analysis were performed using the software  package  Microsoft Excel 2010 and 

SYSTAT Sigma Plot V. 11. When Normality and Equal Variance tests requirements were 

met,  Parametric tests (1- way ANOVA with Holm-Sidak test) and correlation analysis 

between the final concentrations of  the different treatments  or between the mean 

concentration and the NH4
++  loading, were performed. Otherwise non-parametric  approach 

were used (Rank ANOVA (Kruskall- Wallis)  (APPENDIX 3). 
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Table 6). Concentration (nmol.L-1) and  relative standard deviation (RSD %), for the blanks analyzed   in HR-
ICP-MS for the  direct, chelex, DGT and fractionation samples in the mesocosms experiment in  the Comau 
fjord,  Chile during January-February 2011. Filter: Filter  pore size. Std: Standard deviation.  C. Int 95%: 
Confidence interval 95 %. C. Int. 95% (%): Confidence interval 95 % percentage. 

 

Technique   Direct   Chelex   DGT   Fractionation 

 Replicate   nmol.L-

1 RSD   nmol.L-

1 RSD   nmol.L-

1 RSD   nmol.L-

1 RSD Filter  

1 
 

0.08 0.07 
 

0.02 0.01 
 

0.04 0.05 
 

0.02 0.15 0.8 
2 

 
0.10 0.04 

 
0.01 0.10 

 
0.02 0.08 

 
0.01 0.06 0.8 

3 
 

0.06 0.04 
 

0.02 0.01 
 

0.02 0.03 
 

0.02 0.14 0.8 
4 

 
0.14 0.14 

 
0.03 0.09 

 
0.03 0.05 

 
0.01 0.02 2 

5 
 

0.07 0.13 
 

0.04 0.05 
 

0.03 0.08 
 

0.02 0.12 2 
6 

 
0.06 0.08 

    
0.04 0.08 

 
0.01 0.01 2 

7 
       

0.03 0.05 
 

0.01 0.03 10 
8 

       
0.03 0.09 

 
0.02 0.01 10 

9                     0.01 0.08 10 
Average 

 
0.08 0.08 

 
0.02 0.05 

 
0.03 0.06 

 
0.02 0.07 

 Std 
 

0.03 0.04 
 

0.01 0.04 
 

0.01 0.02 
 

0.00 0.06 
 Rsd (%)  

 
35.91 52.31 

 
39.07 80.89 

 
23.79 34.52 

 
30.86 80.44 

 C. Int. 95% 
 

0.03 0.04 
 

0.01 0.04 
 

0.01 0.02 
 

0.00 0.04 
 C. Int.95% (%)  

 
32.12 

  
39.07 

  
17.98 

  
21.82 

  Number   6 6   5 5   8 8   9 9   
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5. RESULTS 

5.1. Iron  distribution in the natural environment  
Concentrations of   TFeCh, DFeCh  and FeDGT in  a river to sea transect and in a depth profile 

are presented  to  describe the general distribution pattern of these three fractions of iron in 

natural waters in the Comau fjord during the mesocosms experiments (Fig. 8).       
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Fig. 8) Distribution of the  TFeCh, DFeCh and FeDGT  (nmol.L-1) for a.)  river to sea transect (psu) and b.) vertical 

profile (0 - 70m)  in  the Comau fjord,  Chile during January-February 2011.  Error bars: standard deviation 

(n=3). 

Concentration for these  three fractions  of  iron measured  show that riverine  constituted a 

main source, presenting the highest values at the most inland point sampled with salinity 0 

psu (river water), while decreasing exponentially towards higher salinity and the sampling 

point.  Concentrations ranged 122.8 to  42.2 nmol.L-1, 36.7 to 16.5 nmol.L-1 and  5.0 to 1.0 

nmol.L-1  for TFeCh, DFeCh  and FeDGT fractions respectively. FeDGT  presented the  highest 

variation  with a  sharp decrease (79. 3 % reduction) at the  mix zone  (7 psu) in the fjord. 

FeDGT values represented  13.5, 10.3 and 6% of the DFeCh fraction for the upper, mid and 

down river  respectively. TFeCh and DFeCh showed less steep gradient with concentrations  

65.6 and 55.1 %  lower  relative to upper river values (Fig. 8a).     
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The vertical profile down to 70 meters, showed similar pattern to the river for all three 

variables (PFeCh > DFeCh > FeDGT), with the highest values at  surface and lowest in depth 

(Fig. 8b).   TFeCh presented the highest decrease in concentration (77.2 %) from 13,3 nmol.L-1 

at the surface to  2.99 nmol.L-1 at 70 m. DFeCh presented a different pattern with an slightly 

increase  from 0 to 10 m (2.01 nmol.L-1 to 3.15 nmol.L-1), then after  remaining  without 

major changes until 70 m. The FeDGT fraction at the surface  presented higher values  (2.04 ± 

1.4 nmol.L-1) than the mean concentration at the river-sea mix point (1.0 ± 0.1 nmol.L-1)   and 

the DFeCh concentration at the surface (2.01 nmol.L-1).  At 10m,  concentration increased 

(3.82 ± 2.1 nmol.L-1), followed by a decrease until 50m (0.36 ± 0.4 nmol.L-1). At 70m 

presented a final increase (1.2 ± 0.4 nmol.L-1). 

5.2. Iron variability in the water in the mesocosms 
Measurements for TFeCh, DFeCh  and FeDGT  collected at 3 and 10 m that represented the 

initial conditions (sday 1)  of the mesocosm experiments (Fig. 9). TFeCh  fraction presented  

higher values in the  marine layer (13.06 nmol.L-1) compared to surface (8.34 nmol.L-1), 

whereas DFeCh  presented higher values in the surface layer (8.24 nmol.L-1 versus 6.11 

nmol.L-1).  FeDGT fraction  showed similar concentrations with values of  4.7 ± 1.9 nmol.L-1 

and  4.1 ± 1.4 nmol.L-1  for the marine and the surface layer respectively. 

nmol.L-1

1 3 5 7 9 11 13 15

Surface
M

arine

TFeCh

DFeCh

FeDGT 

DGT: 0.0000 
DGT: 4.6645 

 

Fig. 9)  Distribution of the  TFeCh, DFeCh and FeDGT  (n.mol.L-1)  at two depths representing  the  surface and 
marine layer  initial conditions for  all treatments in the mesocosms experiment in  the Comau fjord,  Chile 
during January-February 2011. Error bars: standard deviation (n=3). 
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5.2.1. Chelex Labile Iron (FeCh) 
Along the 22 days of the experiment,  TFeCh and  DFeCh  fractions  presented overall higher  

concentrations on the marine system compared to the surface. The  great means for all five 

treatments  were  13.10 ± 6.3 and  16.80 ± 6.5 nmol.L-1   for  TFeCh and  5.13 ± 2.3 and 5.67 ± 

1.4 nmol.L-1   for  DFeCh in the marine and surface systems respectively (Fig. 10 and Fig. 11).   

5.2.1.1. Surface system  

TFeCh 
TFeCh trends for all treatments (except  Conc 2) resembled a “bell shape” distribution with an 

initial increase, followed by a maximum and a posterior decrease (Fig. 10). Total mean 

TFeCh  concentration for the Control and  Natural treatments presented the lowest values 

with 7.69 ± 2.9 nmol.L-1 and  11.88 ± 2.8 nmol.L-1 respectively. All treatments with 

artificially  NH4
+ addition  (Conc 1, Conc 2 and Conc 3) reached maximum concentrations 

between sampling 3 and 5, to then after decrease. The highest NH4
+  supply  treatment (Conc 

3) reached its maximum concentration earlier (sday 3) than others, yet the  highest 

concentration in time  (25.6 nmol.L-1) and the highest mean of all treatments (16.03 ± 8.8 

nmol.L-1 ) occurred in  Conc 2.  

DFeCh 
DFeCh distribution in the surface system,  exhibited lower range in concentrations between 

treatments compared to the marine  (range: 2.03 nmol.L-1 to 8.24 nmol.L-1) (Fig. 10). Final  

concentrations for all treatments  presented lower  values  compared to the initial conditions 

(8.24 nmol.L-1), reflected in a decreasing trend showed by all (except Natural)  treatments. 

Natural presented a temporal upward trend (sday 2 to 5), then decreasing until the end. 

5.2.1.2. Marine system  

TFeCh 
Very high concentration in Conc 3 treatment  in sday 2 (isolated point), was attributed to 

some contamination, given that such high variation in short  time is unlikely to occur (Fig. 

11). All treatments (except Control) resembled the bell shape distribution showed by TFeCh in 

the surface layer. The control,  followed an  initial increase to then decrease steadily. Highest 

concentrations (>30 nmol.L-1)  were reached by treatments Conc 1  (31.6 nmol.L-1) and Conc 

2  (30.3 nmol.L-1) in sday 5. Final concentrations for Control, Natural and Conc 3 treatments 

were lower than initial conditions (13.07 nmol.L-1).  
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Fig. 10)  Distribution of  TFeCh  and DFeCh (nmol.L-1),  per sampling day (sday),  for all treatments in the  
surface system in the mesocosms experiment in the Comau fjord,  Chile during January-February 2011.  Note 
different scale. 

DFeCh 
As occurred  in sday 2 for TFeCh, very high concentrations in  treatments Conc 1, Conc 2 

and Conc 3, appeared to be product of contamination, likely to happened during sample 

manipulation (Fig. 11). Disregarding these outliers  on sday 2, DFeCh distribution for all 

treatments followed an overall decreasing trend along time as occurred with the same fraction 

in the surface system, yet with narrower range (~ 2.5 to 8 nmol.L-1) in concentration. At the 

end, all  treatments (except Control) showed significant decrease compare to initial 

concentrations. 
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Fig. 11) Distribution of TFeCh and DFeCh (nmol.L-1), per sampling day (sday), for all treatments in the marine 
system in the mesocosms experiment in the Comau fjord, Chile during January-February 2011. Dash line: 
estimated value. 

 

5.2.1.3. TFeCh versus DFeCh and NH4
+ loading 

Relation between TFeCh and  DFeCh   per treatment, appeared to be not significant neither  for 

the surface nor in the marine system (Fig. 12).  Yet, when coupling together  TFeCh and  

DFeCh  only for treatments with artificial nutrient  addition (Conc 1, Conc 2 and Conc 3), a 

negative  correlation (R2 = 0.535) appears for the surface system, suggesting an inverse 

relation for these variables. TFeCh and  DFeCh for the marine treatments, pictured as well a 

negative correlation, however this one was weak (R2 =0.266) (Fig. 13).   
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Fig. 12) TFeCh versus DFeCh for  a.) surface and b.) marine  systems, for all treatments in the mesocosms 

experiment in  the Comau fjord,  Chile during January-February 2011. 
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Fig. 13) TFeCh versus DFeCh for  treatments with artificial nutrient addition (Conc 1, Conc 2 and Conc 3), in the 

mesocosms experiment in  the Comau fjord,  Chile during January-February 2011. 

Concentrations of  TFeCh  relative the NH4
+ loading  presented  positive linear correlation for 

both the surface (R2 = 0.606) and marine (R2 = 0.839) systems, reflecting the increasing trend 

time observed with increasing NH4
+  concentration. Contrary to TFeCh, the DFeCh was poorly 

correlated  in both  systems (Fig. 14). 
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Fig. 14) TFeCh  and DFeCh versus NH4
+ loading  for  a.) surface and b.) marine  systems, for all treatments in  the 

mesocosms experiment in the Comau fjord,  Chile during January-February 2011. Error bars: standard deviation 

(n=5). 

5.2.2. DGT labile (FeDGT) 
Different from TFeCh, the DFeCh, FeDGT  average concentration for all treatments showed no 

appreciable difference between the surface (4.02 ± 2.4 nmol.L-1) and  marine   (3.94 ± 2.3 

nmol.L-1) system (Fig. 15).  

5.2.2.1. Surface system  
Values in the surface system ranged from  0.27 ± 0.1 nmol.L-1 to 6.6 ± 2.2 nmol.L-1.  The 

overall temporal pattern for all treatments in the surface system, shows  a decrease in 

concentration from initial conditions  (until sday 2),  followed by an increase (until  sday 5), 

and a final decrease. The lowest  final concentration  occurred in  treatment Conc 3 (0.93 ± 

0.8 nmol.L-1 ), while the highest occurred in Natural treatment (4.34 ± 1.9 nmol.L-1). A 

comparison between treatment’s final concentrations showed significant differences between 

the Natural  and  the three artificial nutrient addition treatments (Conc 1, Conc 2 and Conc 3)   

(1-way ANOVA;  DF: 14, Holm-Sidak test).  Moreover, lower concentrations in a gradient   

(Conc 1: 2.40 ± 0.4 nmol.L-1 > Conc 2: 2.37 ± 0.78 nmol.L-1 > Conc 3: 0.93 ± 0.8 nmol.L-1)  

relative to NH4
+ concentration,  depict a negative  relation  between the  NH4

+  and  FeDGT 

concentrations. 
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Fig. 15)  Distribution of the FeDGT in surface (top) and marine (bottom) system, for all treatments in the 
mesocosms experiment in  the Comau fjord,  Chile during January-February 2011. Error bars: standard 
deviation (n=3). Conc  2 and Conc 3 have  extra samples  in sday 3 Note different scale. Dash line: estimated 
value. 

5.2.2.2. Marine system  
In the  marine layer FeDGT presented very  the high concentrations in the Control, Natural and 

Conc 3 treatments  for sday 2 (isolated points) (Fig. 15).  This values were attributed to some 

sort of contamination during sample manipulation, given that such values correspond to 

discrete points in time  and way off the range expected  to be found  determined in  the FeDGT 

fraction. Therefore concentration  for this period is assumed here  is the average 

concentrations between sday 1 and  5 for Control and Natural and between sday 1 and sday 3 

for Conc 3 (dash line). 
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Despite the above, FeDGT  presented values in a broader range compare to the surface layer 

(up to 9.52 ± 2 nmol.L-1). From  sday 5, concentrations for Control and Natural treatments  

showed an increase  until the end of the experiment. As occurred  for the surface system, a 

comparison between treatment’s final concentrations showed significant differences between 

the Natural and the three artificial nutrient addition treatments (Conc 1, Conc 2 and Conc 3) 

(1-way ANOVA;  DF:14, Holm-Sidak method), suggesting same negative relation  showed in 

the surface system, between the  concentration of nutrient  and  of  this fraction of iron. 

5.2.1.3. Direct  
Concentrations for DFe and TFe measured  along the mesocosm experiments for both the 

surface and marine systems presented data without  trend  or reliable values, compared to 

data obtained  by the other techniques (APPENDIX 4).  Data from direct samples  was not 

used for further analysis. 

5.3. Iron variability in  the plankton community in the mesocosms 

5.3.1.  Particulate iron per size fraction (PFeSF)  

5.3.1.1. Surface system  
PFeSF (all fractions included)  in the Control treatment showed  decreasing  with an initial 

total concentration of  95.9 nmol.L-1 and a final of  32.9 nmol.L-1  (65.7% reduction). Natural 

treatment present no trend. All treatments  with artificial nutrient addition, showed higher 

total mean concentration than  Control and Natural treatments. Mean total PFeSF 

concentrations of 168.8 ± 54.4,  176.0 ± 40.9 and 183.0 ± 116.4 nmol.L-1 for Conc 1, Conc 2 

and Conc 3 respectively (mean ± SD), exhibited an  increasing trend  with increased NH4
+ 

loading (Fig.16).    

PFeSF percentage in the  0.2 - 2µm fraction remained in the same range for most treatments. 

Only Conc 2 showed lower average (12%) compare to  Control and Natural (27.5 %),  but 

with no significant differences (1-way ANOVA, P: 0.497). PFeSF in the fraction >140 µm 

showed increase proportion in all treatments with artificial nutrient addition  (Conc 1: 24.9%   

Conc 2: 46.7 %  and Conc 3:  16.7 %) compare to  Control (11.6 %) and Natural (14.9 %), 

yet  not significant.  
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Fig. 16) Distribution of the  FeSF, representing  the size structure (µm) of the plankton community (see Fig.7),  
in  the surface (top) and marine (bottom) systems for all treatments in the mesocosms experiment in  the Comau 
fjord,  Chile during January-February 2011. 

5.3.1.2. Marine system  
PFeSF (all fractions included)  in  Control and Natural  treatments, resembled the pattern  

exhibited in the surface system i. e.  decrease trend in time for   Control (79.4% reduction)  

and no trend for  Natural treatment (Fig. 16).  Different  to the surface system,  PFeSF 

contained  in the 0.2 - 2µm  fraction in all treatments with artificial nutrient addition   showed  

a lower proportion  (Conc 1: 24.9 %   Conc 2: 46.7 %  and Conc 3:  16.7 %)  compare to  

Control (34.8 % ) and Natural (35.3 %) treatments.  As in the surface system, PFeSF  in the > 

140 µm fraction, showed an  increased proportion for Con1, Con 2 and Con 3, but proven not 

statistically meaningful. 

5.3.1.3. PFeSF in  the 20-140 µm and 2-20 µm fraction  
To compare PFeSF contained in plankton community in the size  range  2 - 140 µm, the 

fractions 2-10 µm and 10–20 µm  (containing the nanoplankton) were added and then 
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compare to 20 – 140 µm fraction (containing the microplankton) (Fig. 17). In the surface 

system, the  microplankton – nanoplankton ratio (µ/n ratio) presented no significant 

differences between  treatments (1-way ANOVA, DF: 14 P: 0.589).  
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Fig. 17) Distribution of  PFeSF in three fractions (2 – 10 µm, 10 – 2 µm and 20 - 140 µm),  representing  the size 
structure of the plankton community (Left axis). Ratio between PFeSF in the  20 – 140 µm and  2 – 10  + 10 – 20 
µm fractions, representing the ratio between microplankton and nanoplankton (Right axis), in the surface  and 
marine systems,  for all treatments in the mesocosms experiment in  the Comau fjord,  Chile during January-
February 2011. Error bars: standard deviation (n=3). 

In the  marine system, the  Control  and Natural treatments, presented  mean ratios of  (0.78 

±0.2  and 0.84 ± 0.4 respectively),  while  Conc 1, Conc and Conc 3  mean ratios values were  

2.36 ± 0.4, 1.90 ± 0.3 and 0.93 ± 0.4 respectively.  Mean  ratio for  Conc 1 and Conc 2 

presented significant differences  respect to the Control and Natural (1-way ANOVA, DF: 14 

P: < 0.002; Holm-Sidak method).  Significant higher ratios  imply that the PFeSF in the 20 – 

140 µm fraction increased its proportion relative to the 2-20 µm thus reflecting possible 

increase of  microplankton over the nanoplankton at certain NH4
+ loading.  
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5.3.2. Particulate total iron (PFe>0.2) 

PFe>0.2 in all treatments presented  a higher mean value  (116.25 ± 75.1 nmol.L-1) in the 

marine  compare to  the  surface system (80.63 ± 44.6 nmol.L-1) Likewise the  total values of  

PFeSF,  PFe>0.2  exhibited and confirmed, through increased number of sampling points,   the 

same trend of  increased absolute  content of   iron in the  plankton biomass  along time  and 

with increased NH4
+ loading for both surface and marine  systems  (Fig. 18a and Fig. 19a). 

However, when PFe>0.2  standardized   by the total Chlorophyll (Chl-a) content, reflected an 

inverse trend with a  decrease in the PFe>0.2  per Chl-a within time  and increase NH4
+ loading 

in both  systems (Fig. 18b and Fig. 19b). Same change in trend  occurred when PFe>0.2  is 

standardized  by the particulate  organic  carbon (POC)  (Fig. 18c and Fig. 19c).  This trend is 

further  supported  by the relation  of the  PFe>0.2 standardized  and plotted either against the 

Chl-a  or POC (Fig. 20). The three artificial addition treatments showed well fitted (R2: 0.507 

to 0.960) negative exponential correlation with the two variables. The latter, would imply that 

iron content  per organism (phytoplankton cell) or at least within certain groups in  the 

plankton community  in both systems would  tend to reduce  the iron uptake  with increased 

NH4
+   concentration. 
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Fig. 18) Distribution of the  PFe>0.2 for a.)  absolute values (nmol.L-1), b.) standardized by  Chlorophyll a (Chl-
a) (nmol.ugr-1 Chl-a) and c.)  standardized by  the Particulate Organic Carbon (POC) (nmol.ugr-1 POC), for all 
treatments in the surface system in the mesocosms experiment in  the Comau fjord,  Chile during January-
February 2011. 
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Fig. 19) Distribution of   PFe>0.2 for a.)  absolute values (nmol.L-1), b.) standardized by Chlorophyll a (Chl-a) 
(nmol.ugr-1 Chl-a) and c.) standardized by particulate organic carbon (POC) (nmol.ugr-1 POC), for all treatments 
in the  marine system in the mesocosms experiment in  the Comau fjord,  Chile during January-February 2011. 
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Fig. 20) Chlorophyll concentration  (Chl-a) (ugr.L-1)  and  Particulate Organic Carbon (POC) (ugr.L-1) versus 
the PFe>0.2 in  a.- b.) the surface and  c. – d.) the marine systems, for  treatments with artificial nutrient addition 
(Conc 1, Conc 2 and Conc 3), in the mesocosms experiment in  the Comau fjord,  Chile during January-
February 2011. 
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6. DISCUSSION 

6.1. Iron  in the natural environment  
As  for all coastal areas, riverine input can be regarded as a  main  source of iron in the  

Comau fjord. Whereas aeolian input of iron in coastal areas is regularly considered  

negligible compared to fluvial (Haese 2005). Yet, some measurements in the Norwegian 

coastal area, aeolian Fe flux estimation about 33.6±16 μmol m-2 day-1, constituted a rather 

high level of atmospheric iron flux (Öztürk et al. 2003). The river concentrations, although  

higher relative to the marine water,  presented low values compare to other data from river 

discharges or low salinity portions of estuarine zones.  Values  for dissolved (filterable) iron 

from 254 – 344 nmol.L-1  nearby San Francisco bay,  U.S.A. (Sañudo-Wilhelmy et al. 1996), 

260  - 470 nmol.L-1  in the  Congo river, Congo (Haese 2005),  400 - 1100 nmol.L-1 in 

Galveston bay, U.S.A.   and 900 – 1500 nmol.L-1 in the Nidelva river, Norway (Öztürk et al. 

2002),  are far above the highest value measured for the Loncochaigua river in the Comau 

fjord (36.7 nmol.L-1). 

The exponential decrease in concentration described for iron and  most bioactive metals 

within estuarine conditions  with increasing salinity (Sañudo-Wilhelmy et al. 1996; Wen et 

al. 1999; Wells et al. 2000), was also a feature of  iron in the study area (Fig. 3). Although the 

concentration gradient could not be followed up to  marine waters (32-33 psu) in the surface, 

only reaching a ~15 psu at the sampling point in front of the marine station, it was clear the 

sharp decline in concentration up to one order of magnitude  for some of the fractions of iron 

measured. The mechanism modulating this pattern acts within the colloidal fraction  and  its 

interaction with the dissolved organic matter (DOM), both variables which were not part of 

main objectives to achieve in this study. Yet, the colloidal  constitute an essential fraction that 

can  account for > 90 % of the dissolved fraction (Wen et al. 1999).  Iron is mainly present as 

Fe(III) oxyhydroxide, which is stabilized in this colloidal phase by high-molecular-weight 

humic acids. Also evidence indicates that some fraction of metal complexing organic ligands 

reside in the marine colloidal phase (Muller 1996). On the other hand, due to increasing 

salinity and thus increasing ionic strength the colloidal dispersion destabilized, which results 

in the coagulation of the fluvial colloids (Haese, 2005).  In  this way, the relevance of the 

colloidal iron is highlighted, as a dual role it can accomplish by enhancing the  metal 

availability over extended time periods, but also facilitating rapid metal removal from surface 

waters by aggregating  (Wells et al. 2000). 



53 

 

The FeDGT   fraction considered to  represent the readily bioavailable one, averaged  9.9% of 

the DFeCh.  Assuming that DFeCh represent the total amount of dissolved fraction, FeDGT 

values fit within in the range reported in literature where,  more than 90 % of the dissolved 

fraction might be strongly complexed in colloids (Kuma et al 1998, Wells et al., 2000), 

therefore probably not bioavailable. Besides, the  percentages of  DFeCh showed a decreasing 

trend from river to seawater suggesting decreasing trend of the bioavailable fraction with 

increased salinity. In contrast to the river sea mix zone, in the sampling point FeDGT   showed 

twofold  increase, accounting  for the entire  dissolved fraction at 10 m. A change in the 

dissolved fraction could be attributed  to biological action through  the interaction with  

organic ligands released eventually increasing solubility of the dissolved fraction, thus having 

a positive feedback on phytoplankton (Whitfield 2001).  

 

6.2. Iron variability in  the plankton community in the mesocosms 

6.2.1. Chelex and DGT labile fractions 
The  FeCh  pattern  exhibited in time both in the surface layer and the marine layer are  

directly related to biological control, through the  trends follow  by POC and Chl-a (Fig. 21).  

The biological production reflected in these two variables, increased proportionally to the  

NH4
+  input (i.e. Conc 3, > Conc 2, > Conc 1)  in which basically  the control and natural 

treatments didn’t showed drastic changes on time,  whereas the treatments  with artificial 

nutrient addition did.  This general increase was followed  by drastic reduction in the second 

half of the experiment  probably due to nutrient exhaustion, in which case  preliminary 

analysis point  to PO4
3-.  

TFeCh and DFeCh followed this pattern with opposite trends.  The TFeCh showed   

remarkable trend that followed the POC particularly with the correspondence increase and 

decay, while the  DFeCh  showed a decreasing trend.  Compared to the natural levels of  Chl-

a and POC  in the region (Gonzalez et al. 2010; Gonzalez et al. 2011), the concentrations 

observed in the treatments, determined a high  rate formation of particulate material, (that 

could be  appreciated at simple observation). These type of aggregation would have enhanced  

the adsorption of colloidal iron into particles, therefore removing portion of the soluble 

fraction and transforming into particulate. 
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Fig. 21) Total Chelex labile iron (TFeCh), dissolved Chelex labile iron (DFeCh),  DGT labile iron (FeDGT) 
(nmol.L-1),  Chlorophyll   (Chl-a)  and  Particulate Organic Carbon (POC) (mg.m-3)  concentrations in  a.)  
surface and  b.)  marine systems, for  all treatments in the mesocosms experiment in   Comau fjord,  Chile 
during January-February 2011.  Isolated points: contamination outliers. Dash line: Estimated values. Error bars: 
standard deviation (n=3). 
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Wong et al. (2006) in a mesoscale experiment reported a quick transformation of  the 

dissolved iron to particulate forms, with as much as 70% of the added iron transformed in the  

non-dissolved form after less than 24 h. The trend described lower colloidal iron percentages 

as the experiment progressed while the particulate fractions increased. The mechanism 

alleged to be involved, could be a combination of biological uptake (Nodwell and Price 2001; 

Chen et al. 2003) or simply adsorption of colloidal iron to the plankton cell surfaces as well 

as aggregation of oxyhydroxides (Wong et al. 2006).  In our case, the second mechanism 

seems to be the likely  driver for  changes in the distribution of dissolved and total forms of 

iron.  The colloidal iron although not measured here could account  for the  reduction within 

the DFeCh. 

Probably related to this,  was the observed decoupled increase of PFeCh  relative  DFeCh, when 

it could be expected that the increase  of  the former would have correspond to an equal 

decrease in the concentration of the latter, involving a change in the physical phase.  Several 

factors  could account for the poor correlation  between these two variables, certainly 

mechanical artifact could be referred as an important one. It is known that the colloids, 

encompasses a size range from 1 to 1000 nm in diameter (Wells 1998), lying within the 

boundaries of the dissolved and particulate matter,  thus subjected  possible bias via artificial 

manipulation. At the same time, the colloid production rates can be enhance by biological 

action, presumably through a combination of cell exudation and lysis, microbial degradation 

of particulate organic matter, and ’sloppy’ feeding and excretion by zooplankton (Wells and 

Goldberg 1994).  

 Taking into account the above, the fact  of the TFeCh increase could be due to colloidal Fe  

large enough to be retained in the filter invoking the technical artifact.  The formation rate of 

this colloid could be  increased   by  enhanced aggregation of  particulate material in the 

system, thus progressively increasing the amount transformed into the particulate labile pool, 

matching  the  trend observed in the POC in time and with NH4
+ concentration. In the other 

hand, biological activity within time  might have induced changes in the speciation in a 

fraction of iron previously not accounted for chelex (not soluble or complexed), then 

afterwards progressively transformed in the PFeCh. 

 This factors coupled or independently could reflect the uncoupled increase of TFeCh relative 

to the small decrease in the dissolved fraction, while at the same time, accounting for the 
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positive good  linear correlation with NH4
+ input and  TFeCh, but the poor one  for DFeCh. 

Finally, the decrease observed in  TFeCh might  represent  the settlement of the dying 

phytoplankton and without observing a  any increases in the  dissolved fraction, could 

suggest that the iron transformed to “particulate”  fraction was eventually exported to the 

bottom of the mesocosms, thus prevented from being recycled back into the system. 

The average concentration for FeDGT were lower both in the surface and in the marine systems 

for all treatments compare to the DFeCh,. In broad terms  would indicate that all the dissolve 

fraction in this case, the chelex labile, was probably not readily bioavailable.  Nevertheless, 

when looking at the trends in time between FeDGT and DFeCh, it can be noticed  high 

variation, exhibiting at some points opposite trends,  even  with FeDGT values  higher than the 

DFeCh (Fig. 21). If a ratio between DFeCh and FeDGT  is  estimated to look for possible a  gross 

pattern, it  results in higher ratio  for the marine (1.44)  compared to the surface (1.27), 

indicating  there was a lower  proportion  of  the bioavailable fraction in the marine system. 

But  again, given the high variability  the latter  cannot be determine significant. Observing 

the trends in time,  it can be appreciated that the DFeCh and  in particular FeDGT high 

variability,  might the response to a dynamic system in which  biological (release of organic 

ligands) and chemical (kinetics and equilibrium) forcing  determine changes in the iron 

speciation in short periods of time. Nonetheless, and regardless all the variation in time, at the 

end of the experiment,  the significant lower  FeDGT concentrations for all the treatments with 

NH4
+  compared to Natural one  reflected the decrease of the bioavailable fraction of  iron, 

therefore reflected in  increase  uptake by the growing phytoplankton biomass.  

Different to river, the DFeCh:FeDGT ratio in both systems was not constant.  Disregarding 

possible biological effects, may be still difficult to make compare between the concentrations 

obtained in  river and seawater, as DGT exhibit different performance in each type of water 

(INAP 2002). Ionic strength, and pH are an important variables that can affect the  rates of 

diffusion of elements and the structure of the polyacrylamide hydrogel structure among 

others. In pristine rivers waters with low ionic strength,  compare to seawater, the effect of 

variables mentioned  would be different over DGT performance  (INAP 2002). 

Several other factors could  have led to source of error or possible wrong interpretations. 

Although  cautiously  planned and carefully performed, the  fieldwork carried  out  was not 

under  ultra clean conditions,  leaving more room form possible contamination. In fact, what 
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high peaks obtained for both TDeCh and DFeCh samples of appeared to be clear sample 

artifact.  On the other hand,  provided no methodological error are involved, a source of high 

variation  can constitute the enclosed system by itself. Mesocosms experiment, although a 

good approach to study trends in time at ecosystem level, they do not resemble  the natural 

pattern,  thus interpretations or drawn from results,  must be taken with caution for further 

extrapolation. An  example of this,  constitute the NH4
+  rate supply (4.6 µmol.L-1.d-1) applied 

in treatment Conc 3. A significant high  concentration (Olsen et al. 2006) was applied to 

expect for possible toxic effects, in that way exposing  the plankton community to drastic 

changes in short periods of time that would rather not occurred  in natural environment.  

6.2.2.  Iron content in planktonic organisms 
Determination of the iron content within the planktonic organisms, through size fractionation 

PFeSF  and total  content  PFe>0.2 revealed changes of the distribution of the particulate 

content of iron within the  plankton community in time.  PFeSF, although not standardized  

neither by POC  nor Chl- a due to  lack  of fractionated data for these variables, showed for 

the marine system a  significant change in time of the ratio of absolute iron content between 

two fractions of the  plankton community,  representing the microplankton and the 

nanoplankton. Complementary to PFeSF , was the data provided by the PFe>0.2.  The total 

content of  iron within the particulate fraction in the plankton community  standardized  both 

by POC and Chl-a provided and insight over the content of iron relative to  the carbon pool in 

the system. In the absence of  information on composition and abundance of the planktonic 

community (temporary unavailable),  both variables can  relate to a rough estimate of  the 

iron content per  organism or cell (iron quota Q).  The two fractions of iron analyzed indicate 

that the plankton community, and it could be infer in particular phytoplankton, faced  changes 

both in terms of  composition  and iron uptake (thus Q) with an increased NH4
+ over time.   

While Chl-a only account for the autotrophic component of the plankton community (i.e. 

diatoms, dinoflagellates and flagellates), the POC render the complete amount of  carbon in 

the whole community (i.e. including bacteria and  protists).  Accordingly, to make inferences 

about   the nutrient uptake by phytoplankton, chlorophyll  rather than carbon content  should 

be the parameter to  compare with for possible effects over iron uptake in presence of excess 

NH4
+.  However  estimation for  an iron to carbon ratio cannot be made based on Chl-a.  

Given that both parameters related to the  iron content showing same trend (exponential 

decrease),  Fe:C ratio estimation was obtain based on POC. 
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Further assumptions must be made when  attempting to estimate the Fe:C ratio. The values 

used  are from the POC  and  particulate Fe  concentrations obtained in field experiments. Is 

clear that determination of POC include al organic carbon present even if  it might imply 

allochthonous particulate  material. This is  of  particular consideration in the  surface system, 

as the surface  layer  in fjords  generally  receive constant  input of river origin (Vargas et al. 

2011). Moreover, contrast to relatively constant "Redfield" ratios of C: N: P, the cellular Fe: 

C ratios vary markedly (by a factor of 30) as a function of the iron available (Bruland et al. 

2001). Hence, most of the data available on estimation of trace element quotas come from  

laboratory cultures (e.g., Sunda and Huntsman 1995), with still few data from natural 

environments. 

Both differences and similarities observed in the surface and marine systems are  related to a 

great extent to  biological attributes  characteristic of the  surface and marine layer present in 

the Comau fjord.  In turn, the biology is  profoundly influenced  by  constant physical forcing 

i.e. presence of the permanent LSL, in addition to others  hydrographic parameters  proper of 

fjord ecosystems (Pickard 1971). This LSL can exert considerable effect on both the physical 

and biological features of the water column, reducing light penetration,  nutrient exchange 

and limiting wind-induced mixing, during period of strong water column stratification (Gibbs 

2001). The  results of these  environmental  partitioning, is often  less productive (primary 

productivity) surface layer  based on nutrient recycling, dominated regularly by the 

nanoplankton size class, whereas   below the halocline, a  marine layer with peak productivity 

in (10-15m) based more on constant nutrient input (oceanic nutrient-rich waters) and with  

microphytoplankton as the dominant component (Sánchez et al. 2011). 

Base on the above,  a plankton community  dominated by big diatoms and  dinoflagellates, 

was expected to be resembled  in  the marine system in the mesocosms. The  increase in the 

µ/n ratio  provided  evidence that microphytoplankton, diatoms in particular,  might be taking 

advantage of the NH4
+ input at less energy expense, outweighing the growth of the 

nanoplankton fraction.  Studies with the diatom Thalassiosira pseudonana showed  8%  

increase in growth based  on  NH4
+ compared to NO3

-, under saturating light and Fe-replete 

conditions. (Thompson  et al. 1989.)  Similarly  Levasseur et al. (1993) found higher growth 

rates for ammonium-grown cells than for nitrate-grown cells of several species under the 

same conditions.  In the other hand, an oceanic diatom isolated from the subarctic Pacific was 

found to have no difference in the growth rates of nitrate- and ammonium- grown cells under 
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Fe-replete conditions (Muggli et al. 1996). It is worth noting that  NO3
-, even though not  

added (not objective of the study), concentrations in the marine system showed a decreasing 

trend in the Control and Natural, while treatments with artificial addition showed higher NO3
-  

content at high NH4
+ input (data not shown), thus supporting the idea of preferential 

ammonium uptake. An alternate scenario in which the  diatoms would not be growing, but  

rather increasing the iron Q seems unlikely as literature reports that in presence of exceed 

NH4
+ diatoms would require less  iron.  Nevertheless, Price et al. (2005), found contrasting 

results growing when diatoms  with NO3
- and NH4

+ under high and  low  Fe-mediums.  While  

the iron quota  was higher for NO3- under low Fe,  at high Fe,  was higher for NH4
+ grow 

cells (Price 2005). The author referenced to a number of experiments performed in 

laboratory, pointing mainly that growth conditions  and species differences may be 

responsible for the contrasting results. 

The decrease total iron content observed in Fe>0.2  was for  both the surface and marine 

systems. Furthermore this reduction uptake appeared to be exponential   with the lowest ratio 

at maximum NH4
+  in both systems. Nevertheless,  if composition and  abundance of 

planktonic community  was different, or at least the proportion of dominant groups   between 

the surface and marine systems, it could be  expected differences in the rate of decrease in 

iron uptake. In this way  looking into the average Fe:C ratio per treatment in both systems, 

we obtain a relation that in fact differs for each  system (Fig. 22).  It can be observed that the 

reduction of  Fe:C was  larger in the surface system. Given that the average was obtained 

from all measurements in time for each treatment, the spread of the data increase  

considerably due to the fact that  initial conditions were  equal in all treatments. So the  

standard deviation  here is likely to resemble the  differentiation  achieved in time within each 

treatment according to the NH4
+ addition. Despite this, a  consistent trend can be observed 

pointing that the dominant group of phytoplankton within the surface system exhibited a 

higher rate of decrease  of iron uptake. If nanophytoplankton were to be dominant in this 

system, it  would seem plausible to draw a connection between this two. Nano- or pico-

plankton, with higher surface to volume ratios, are more efficient exploiting at low nutrient 

concentrations (Chisholm 1992; Price et al. 1994), therefore thriving in environments were 

the main source of nitrogen is recycled, like the NH4
+ uptake conditions reflected here. In a 

scenario where  NH4
+ is supplied in excess, the phytoplankton could have less requirement 

for iron, therefore reducing its uptake  (Sunda and Huntsman 1995).  Though,  reports on 
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Emiliana Huxleyi, a flagellate type of oceanic phytoplankton more adapted to thrive in 

nutrient recycle environment, therefore  resembling more the  type expected to dominate in 

the SLS of the Comau fjord, showed that Fe quotas normalized to Carbon, where no 

significant different between nitrate- and ammonium-grown cells neither at  high Fe nor a Fe-

stressed conditions (Muggli and Harrison 1996). 
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Fig. 22) Iron to Carbon ratio (nmol Fe; µmol C) and  Fe:C  reduction (%), assuming  the ratio in  the Natural 
treatment as 100%,  measured in the  PFe>0.2 in  the  surface and   marine systems, for  all treatments in the 
mesocosms experiment in  the Comau fjord,  Chile during January-February 2011. Error bars: standard 
deviation (n=8). 

On the other hand, the  less pronounce decrease in Fe:C ratio in the marine system could be 

linked to dominance of microphytoplankton. The success of diatoms growing  on NH4
+ basis 

reports on literature, and  here assumed  in the  increased µ/n ratio observed, could  be 

translated  into less preference over nitrate uptake, and  therefore reduced  iron requirements  

for this group.   Yet, diatoms  in general have a higher requirement on iron to satisfy certain 

metabolic demands (Bruland et al. 2001). Mostly, coastal diatoms have been shown to have 

an order-of-magnitude higher iron requirement (on an Fe: C basis) than oceanic diatoms 

(Sunda and Huntsman l995).  This could thus accounting for the rather smoothly decrease in 

Fe:C ratio observed.  

In other words, in a scenario observed of  sustained  supply of  NH4
+ at high concentration 

the Q reduction  the dominant group in the surface layer reached up to 60 % while on the 
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marine only a maximum reduction of  20 % was observed.  In despite the higher percentage 

reduction on Fe:C ratio in the surface system, both ratios estimated for the plankton 

community in  Comau fjord  during the experiment accounted very low values (0.5 to 6.2 

µmol:mol-1) compared to what is reported on the literature for coastal phytoplankton 

resembling more the ratio of oceanic species (Sunda and Huntsman 1995; Ho et al. 2003; 

Sarthou et al. 2005). Range of Fe:C ratio from oceanic to coastal phytoplankton span 2.3 to 

370 µmol:mol-1, positioning our values in the lowest range possible.   To give further  support 

or contrast  our findings, values from the literature of Chl-a to C ratio were used to estimate a 

range of values of  Fe:C (Table. 7). Values for natural and Conc 3 treatments (more divergent 

estimations) showed higher values than the  Fe: C  based on POC, but still in the low range  

for coastal phytoplankton. Despite this,  the trend  is consistent, thus seeing a markedly 

decrease in the  iron Q with increased NH4
+, giving further support to the initial findings. 

Table 7)  Chl-a to C ratio (nmol:mol-1) for a range of values for  T. weissfloggi (Sunda and Huntsmann, 1995),  
Fe to Chl-a ratio (nmol:µg-1) and  estimated  Fe to C ratio (µmol:mol-1) for the control  and the highest NH4

+ 
system in both  the surface and marine system,  in the mesocosms experiment  in the Comau fjord, Chile during 
Jauary-February 2011. 

System 
    Control     Conc 3   

Chl:C-1  Fe:Chl-a-1 Fe:C  Fe:Chl-a-1 Fe:C 
mmol:mol-1  nmol:µg-1 µmol:mol-1   nmol:µg-1 µmol:mol-1 

Surface 0.127 - 0.431  135.9 
15.4  10.7 

1.2 

 52.3  4.1 

Marine 0.127 - 0.431  112.8 
12.8  11.4 

1.3 
  43.4   4.4 

 

Determination of Q  is important to infer over the  physiological state, adaptation to 

environment or possible growth limitation in phytoplankton (Whitfield 2005 and cites 

therein). In the same way,  any iron induced changes in the Redfield proportions of 

phytoplankton should affect in a similar way the biogeochemical cycling of C, N, and P 

(Price 2005). In this context the a relation between carbon and  iron can be establish through 

the Fe use efficiency (1/Q), which can relate how efficient can be the export of carbon from 

surface to deep water.  On example of this, are the  differences observed over artificial 

enrichment of iron versus the natural enrichment in polar regions, where it has been claimed 

that the latter  present higher sequestration efficiency (Blain et al. 2007; Pollard et al. 2009).  
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6.3. Implications for higher trophic levels 
The most visible  effect  iron variability in the mesocosms regarding  higher trophic levels, 

was    the accumulation of PFe iron in the  fraction > 140 um. Until this size fraction is fair to 

consider the top limit size for phytoplankton, as major diatoms and dinoflagellates such  be 

contained in the previous fraction (20-140µm). Nonetheless,  the possibility for a high the 

occurrence of large chain forming diatoms  that could have been retained in the > 140 µm 

mesh size could no excluded.   Despite not been significant, due to  high variability,  PFeSF > 

140 um was more than 50 % of total PFe  at the end of the experiment (see Fig. 16 Conc 1 

and Conc 2 marine). The accumulation followed the large increase in phytoplankton and  thus 

food availability, as it was expected.  

Among  factors regulating the  metal uptake  in zooplankton,  food concentration  is one 

regarded as determinant. Previous studies has demonstrated that food quantity did not affect 

the assimilation of several trace elements by copepods (Wang et al. 1996). But more recent 

ones on copepods (Xu and Wang 2001), clearly showed that assimilation of metals increased 

with a decrease in food abundance, while in cladocerans  (Yu and Wang 2002)  has  been 

proposed as factor. This factor in turn may affect  the  rate at which a metal  passed through 

the digestive tract (Wang 2002). Accordingly,  we could expect to see effects on  the 

ingestion and assimilation efficiency by the zooplankton community present in both the 

surface and marine systems do to an increase food availability. 

Zooplankton grazing can strongly influence the fate of trace metals associated with 

phytoplankton biomass (Fowler and Knauer 1986). However the effect exert over the 

plankton community, trace metals and major biogeochemical cycles,  is strongly dependent 

on the type dominant group. In  the case of  the zooplankton community structure  in the 

Comau fjord, dominance occur  both  the  more brackish  cladocerans and the more copepods, 

both groups with different ecological role  and thus effects over biogeochemical cycles 

(Sánchez et al. 2011). Whether the cycling of iron, already modified by NH4
+ induced 

changes in phytoplankton, would be further affected by the zooplankton, depends on factors 

as assimilation efficiency (Wang and Fisher 1998),  export through pellet formation 

(Hutchins et al. 1995; Sarthou et al. 2005), regeneration (Hutchins et al. 1993), complexation 

capacity (Hutchins et al. 1999; Sato et al. 2007) all of which needs to assessed in the study 

area. 
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7. CONCLUSIONS 
 

The addition of  NH4
+  in our experimental set up showed there was an effect in  the 

distribution of the different forms of iron measured, in the water as well as in  the particulate 

matter representing the content of iron in the  plankton community, for  both  the surface  and 

marine systems. And that this effect  depending on the iron form, was correlated either 

positively or negatively  in time and with increased  NH4
+ concentration.  

The addition of  NH4
+  effect over the iron content in the plankton  proved to be significant 

and complementary by both fractions measured. The evidence provided suggest  that  in a 

system normally NO3
- based, if  NH4

+ is provided in excess is readily taken as the main 

source for phytoplankton. Moreover, that a lower energy cost nitrogen source  as ammonium  

can account for  high growth rate, here reflected in the  Chl-a  values reached. In the same 

way, high NH4
+ concentration could be regarded as the main factor for the  low estimations of 

Fe: C ratio, in a phytoplankton community that appeared to have already natural low Fe:C for 

coastal phytoplankton.  

Despite being mesocosms, results here obtained after all are product  of enclosed systems 

manipulated and thus interpretations  must follow careful screening.  Natural systems are 

complex, and this could be seeing from the differences observed  in the surface and  marine 

systems. Effects  of  NH4
+ were for  both systems significant but different in magnitude. In 

presence of excess nutrients similar responses could be expected, but in fact Fe:C ratio and 

others parameters like Chl-a and POC were considerably different. This suggests that  

biological component is key factor within each system and therefore in the natural 

environment.  A  phytoplankton community with a  low Fe:C but  rather high Chl-a yield, as 

seeing here, would result in  higher efficiency in carbon export, something that might be 

considered as beneficial from several perspectives. However, to fully understand the 

consequences  and spinoffs that the increase input of NH4
+   by salmon aquaculture, can cause 

to the pelagic ecosystem in the fjords of Chile, more emphasis need to be allocated to study 

the links between  macro and micro-nutrients cycles and  the role of biota within it. 

Here by, the hypothesis proposed  in this study is supported  empirically up to phytoplankton 

level, but  further assumptions can  be drawn for possible  implications for  zooplankton  and 

higher trophic levels. 
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APPENDIX  1.   UltraCLAVE digestion 
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APPENDIX  2.   Detection limits and results for  iron samples 
 

  Chelex blank values and concentrations corrected by blank      
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DGT blanks values and concentrations corrected by blank   
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Filtration blank values and concentrations corrected by blank         
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APPENDIX  3.    Statistical Analysis 
 

 

Nonlinear Regression   Fig. 14.) Surface system TFeCh regression 
 
Data Source: Data in Results (4nd) 
Equation: Polynomial, Linear 
f = y0+a*x 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9164 0.8399 0.7865  2.2345  
 
  Coefficient Std. Error t P  
 
y0 10.1870 1.4413 7.0677 0.0058  
a 0.0022 0.0006 3.9665 0.0286  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 2 1101.9857 550.9928  
Residual 3 14.9792 4.9931  
Total 5 1116.9649 223.3930  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 1 78.5546 78.5546 15.7328 0.0286  
Residual 3 14.9792 4.9931  
Total 4 93.5338 23.3835  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.5705) 
 
W Statistic= 0.9262 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0160) 
 

 

Nonlinear Regression   Fig. 14.) Surface system DFeCh regression 
 
Data Source: Data in Results (4nd) 
Equation: Polynomial, Linear 
f = y0+a*x 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.2124 0.0451 0.0000  0.6969  
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  Coefficient Std. Error t P  
 
y0 4.4775 0.4495 9.9604 0.0022  
a -6.6573E-005 0.0002 -0.3765 0.7316  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 2 94.9230 47.4615  
Residual 3 1.4571 0.4857  
Total 5 96.3801 19.2760  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 1 0.0689 0.0689 0.1418 0.7316  
Residual 3 1.4571 0.4857  
Total 4 1.5259 0.3815  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.0544) 
 
W Statistic= 0.7794 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0500) 
 
 
Nonlinear Regression   Fig. 14.) Marine system TFeCh regression 
 
Data Source: Data in Results (4nd) 
Equation: Polynomial, Linear 
f = y0+a*x 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.7785 0.6061 0.4748  3.7992  
 
  Coefficient Std. Error t P  
 
y0 15.0494 2.4506 6.1410 0.0087  
a 0.0021 0.0010 2.1484 0.1209  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 2 1842.0217 921.0109  
Residual 3 43.3019 14.4340  
Total 5 1885.3236 377.0647  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 1 66.6234 66.6234 4.6157 0.1209  
Residual 3 43.3019 14.4340  
Total 4 109.9253 27.4813  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.0946) 
 
W Statistic= 0.8083 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0500) 
 

 
Nonlinear Regression       Fig. 14.) Marine system DFeCh regression 
 
Data Source: Data in Results (4nd) 
Equation: Polynomial, Linear 
f = y0+a*x 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.7724 0.5966 0.4621  0.6626  
 
  Coefficient Std. Error t P  
 
y0 6.0320 0.4274 14.1133 0.0008  
a -0.0004 0.0002 -2.1062 0.1258  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 2 146.8470 73.4235  
Residual 3 1.3171 0.4390  
Total 5 148.1641 29.6328  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 1 1.9476 1.9476 4.4361 0.1258  
Residual 3 1.3171 0.4390  
Total 4 3.2647 0.8162  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.7524) 
 
W Statistic= 0.9521 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0500) 
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One Way Analysis of Variance FeDGT  Surface system 1 way - ANOVA 
 
Data source: Data 2 in Results (4nd) 
 
Normality Test: Passed (P = 0.582) 
 
Equal Variance Test: Passed (P = 0.665) 
 
Group Name  N  Missing Mean Std Dev SEM  
Control  3 0 4.677 1.608 0.929  
Natural  3 0 6.343 0.484 0.280  
Conc. 1  3 0 2.404 0.439 0.254  
Conc. 2  3 0 2.374 0.784 0.453  
Conc. 3  3 0 0.930 0.844 0.487  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 55.262 13.815 15.913 <0.001  
Residual 10 8.682 0.868    
Total 14 63.944     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
Multiple Comparisons versus Control Group (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t Unadjusted P Critical Level Significant?
  
Natural  vs. Conc. 3  5.412 7.114 <0.001 0.013 Yes  
Natural  vs. Conc. 2  3.969 5.217 <0.001 0.017 Yes  
Natural  vs. Conc. 1  3.939 5.177 <0.001 0.025 Yes  
Natural  vs. Control  1.665 2.189 0.053 0.050 No  
 
 
One Way Analysis of Variance FeDGT  Marine system 1 way - ANOVA 
 
Data source: Data 2 in Results (4nd) 
 
Normality Test: Passed (P = 0.213) 
 
Equal Variance Test: Passed (P = 0.633) 
 
Group Name  N  Missing Mean Std Dev SEM  
Control  3 0 10.213 1.905 1.100  
Natural  3 0 6.294 2.639 1.524  
Conc. 1  3 0 2.918 0.487 0.281  
Conc. 2  3 0 2.782 0.933 0.539  
Conc. 3  3 0 2.133 0.437 0.252  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 138.694 34.673 14.577 <0.001  
Residual 10 23.786 2.379    
Total 14 162.480     
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The differences in the mean values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 0.999 
 
Multiple Comparisons versus Control Group (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor:  
Comparison Diff of Means t Unadjusted P Critical Level Significant?
  
Natural  vs. Conc. 3  4.160 3.304 0.008 0.013 Yes  
Natural  vs. Control  3.919 3.112 0.011 0.017 Yes  
Natural  vs. Conc. 2  3.512 2.789 0.019 0.025 Yes  
Natural  vs. Conc. 1  3.376 2.681 0.023 0.050 Yes  
 
 
One Way Analysis of Variance Fig 17.)  u/ n plankton ratio 1-way ANOVA 
 
Data source: Data 3 in Results (4nd) 
 
Dependent Variable: Mar Mi/Na  
 
Normality Test: Passed (P = 0.216) 
 
Equal Variance Test: Passed (P = 0.992) 
 
Group Name  N  Missing Mean Std Dev SEM  
Control 3 0 0.788 0.225 0.130  
Natural 3 0 0.842 0.356 0.206  
Conc 1 3 0 2.366 0.355 0.205  
Conc 2 3 0 1.900 0.305 0.176  
Conc 3 3 0 0.931 0.363 0.209  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 6.245 1.561 14.776 <0.001  
Residual 10 1.057 0.106    
Total 14 7.302     
 
The differences in the mean values among the treatment groups are greater than would be expected by chance; 
there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 0.999 
 
Multiple Comparisons versus Control Group (Holm-Sidak method): 
Overall significance level = 0.05 
 
Comparisons for factor: Treatment 
Comparison Diff of Means t Unadjusted P Critical Level Significant?
  
Control vs. Conc 1 1.577 5.943 <0.001 0.013 Yes  
Control vs. Conc 2 1.112 4.189 0.002 0.017 Yes  
Control vs. Conc 3 0.143 0.538 0.602 0.025 No  
Control vs. Natural 0.0538 0.203 0.844 0.050 No 
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APPENDIX  4.    Direct samples           
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