
Tactile-sensitive robotic grasping of food
compliant objects with deep learning as a
learning policy

Alexander Martin Olofsson

Master of Science in Computer Science

Supervisor: Agnar Aamodt, IDI
Co-supervisor: Ekrem Misimi, SINTEF Ocean

Department of Computer Science

Submission date: July 2017

Norwegian University of Science and Technology



 



Abstract
This thesis outlines work done in generating models used to control a ro-
botic arm and tactile sensitive gripper for successfully grasping compliant
food objects, using colour and depth images as input. The compliant food
object used were salads, as they are both easy to work with and require
delicate handling. The focus is to determine if it is possible to achieve signi-
ficant results using just images as input, as well as comparing two different
approaches for generating models.

Two different approaches were utilised when generating the models. The first
model, Support Vector Regression, required features to be extracted from
the images before being input into the model. The second model, Convo-
lutional Neural Networks, accepts an image as input. Both models were
taught how to respond to various salad positioning through learning-from-
demonstration, using a dataset of successful grasps previously gathered.
Once the models had been generated, they were compared by tasked with
grasping a set of new salads.

i





Preface
This thesis is written as the final part of my master’s degree in computer
science at the Department of Computer Science at the Norwegian University
of Science an Technology. It was carried out during the Spring of 2017 in
collaboration with SINTEF Ocean as a continuation of work done during
the previous Autumn.

I would like to thank my supervisor at NTNU, Agnar Aamodt, as well as my
supervisor at SINTEf, Ekrem Misimi for all their help during the project.
A special thanks to Aleksander Børresen Eilertsen, Elling Rud Øye and
Jonatan Sjølund Dyrstad for their help when things did not want to work
as expected, or when I needed a break. Their projects were varied and
interesting, and having something else to think about for a few minutes was
helpful before returning to my own work. I would also like to mention the
MARO lab at SINTEF Ocean, where I spent many hours grasping, dropping
and moving salad.

Alexander Martin Olofsson

Trondheim, 2017

iii



Table of Contents

List of Figures vii

List of Tables ix

Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Theory and Background 5
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . 9
2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Methodology 19
3.1 Software and Hardware . . . . . . . . . . . . . . . . . . . . . 19
3.2 Object-in-hand Calibration . . . . . . . . . . . . . . . . . . . 21
3.3 Data-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Support Vector Regression (SVR) . . . . . . . . . . . . . . . 31
3.6 Convolutional Neural Network (CNN) . . . . . . . . . . . . . 33

Chapter 4 Experimentation and Results 37
4.1 Support Vector Regression (SVR) . . . . . . . . . . . . . . . 37
4.2 Convolutional Neural Network (CNN) . . . . . . . . . . . . . 40
4.3 Comparing the best models . . . . . . . . . . . . . . . . . . . 43
4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 5 Conclusion 53

iv



Table of Contents

5.1 Conclusions in regard to hypotheses . . . . . . . . . . . . . . 53
5.2 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Acronyms 57

Bibliography 59

Appendix A Video 61

Appendix B Salad Grasp Dataset 63
B.1 Salad-1 dataset, generated 06.12.2016 . . . . . . . . . . . . . 63
B.2 Salad-2 dataset, generated 28.03.2017 . . . . . . . . . . . . . 64
B.3 Merged dataset . . . . . . . . . . . . . . . . . . . . . . . . . 65

Appendix C Transformation Matrices for Calibration 67
C.1 Calibration - 20161205 . . . . . . . . . . . . . . . . . . . . . 68
C.2 Calibration - 20170328 . . . . . . . . . . . . . . . . . . . . . 68
C.3 Calibration - 20170620 . . . . . . . . . . . . . . . . . . . . . 69

Appendix D Tool-points 71
D.1 Calibration Tool-point . . . . . . . . . . . . . . . . . . . . . . 71
D.2 Gripper Tool-point . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix E Code 73
E.1 LabView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
E.2 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
E.3 PyCharm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v





List of Figures

2.1 Photographs of prototype evolved antennas. (a) the best evolved
antenna for the initial gain pattern, (b) the best evolved an-
tenna for revised specifications. . . . . . . . . . . . . . . . . . 7

2.2 Figure showing hyper-planes in 2D. H1 does not separate the
classes, H2 separates with small margin, while H3 separates
with maximum margin . . . . . . . . . . . . . . . . . . . . . 10

2.3 A fully connected neural network. Blue nodes represent input
neurons, green nodes represent hidden neurons and red nodes
represent the output neurons. . . . . . . . . . . . . . . . . . . 11

2.4 The three most common activation functions within Deep
Learning. From left to right, Sigmoid, Tanh and ReLU . . . . 12

2.5 A figure depicting the activation map I ∗K calculated using
equation 2.7. I is the input matrix, while K is the current
filter.[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 A Figure showing 2× 2 MaxPooling with stride 2, on a 4× 4
matrix.[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 This figure shows the current setup. The gripper is attached
to the robot, with the camera attached to the ceiling, aimed
perpendicularly towards a grasping area. . . . . . . . . . . . 17

3.1 A figure showing the main hardware components of the sys-
tem. a) Denso VS-087, b) Kinect 2, c) ReFlex Takktile hand,
d) STEM system . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The program used to gather calibration images, it uses po-
sitions from a previous calibration in order to speed up the
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Figure showing a cropped depth image, as well as its corres-
ponding column height map. . . . . . . . . . . . . . . . . . . 28

vii



List of Figures

3.4 A set of images showing the original and combined images
when mapping colour to a depth image . . . . . . . . . . . . 29

3.5 This figure contains an example of a cropped coloured depth
image, as well as a graph of the highest RGB data point in
each column. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 A figure showing the locations of features on a salad . . . . . 30
3.7 This figure contains both the depth and coloured depth of a

salad in preparation of it used as input in a CNN model. . . 33

4.1 Figure showing regression plots on validation data for a CNN
model. In each plot the correct value is along the x-axis, while
the prediction is along the y-axis. . . . . . . . . . . . . . . . 43

4.2 A Figure depicting the program used to compare models in vir-
tual 3D. Green gripper for actual grasp in the dataset, Blue for
grasp prediction using an SVR method, Red for a prediction
using a CNN method. . . . . . . . . . . . . . . . . . . . . . . 45

4.3 This figure depicts four different salads from the example data,
and how the gripper is positioned using a SVR model (blue),
a CNN model (red), as well as the original grasp (green). . . 46

4.4 Example of successful grasp made using prediction from SVR. 48
4.5 Example of failed grasp made using prediction from SVR. The

salad was not grasped properly and slipped out during transit. 48
4.6 Figure showing the program used to predict using SVR. . . . 49
4.7 Figure showing the program used to predict using CNN. . . . 50
4.8 Example of successful grasp made using prediction from CNN. 51

B.1 Position and orientation of grasps when generating the Salad-1
dataset, colours differentiate between salads . . . . . . . . . . 64

B.2 Position and orientation of grasps when generating the Salad-2
dataset, colours differentiate between salads . . . . . . . . . . 65

B.3 Position and orientation of grasps in merged dataset, colours
differentiate between salads . . . . . . . . . . . . . . . . . . . 66

C.1 The calibration board used when performing object-in-hand
calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



List of Tables

3.1 Table showing the training-validation split using a 75-25 ratio 35

4.1 A table showing the SVR regression results using highest point
flip feature extraction . . . . . . . . . . . . . . . . . . . . . . 38

4.2 A table showing the SVR regression results using the RGB-D
flip feature extraction . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Table showing whether a grasp was a success or fail during a
SVR test the 31st of March . . . . . . . . . . . . . . . . . . . 40

4.4 A table showing the explanation for grasp failures during the
first SVR test. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 A table showing the average regression results for CNN models
trained on various augmentation and image combinations. . . 42

4.6 Table showing individual regression results for the same mod-
els as in 4.5, the best result in each category has been put in
bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 A table showing the success or failure of 50 grasps when pre-
dicting using the best SVR model. 10 salads were grasped 5
times each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 A Table showing the success or failure of 50 grasps when pre-
dicting using the best CNN model. 10 salads were grasped 5
times each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.1 Table showing the weight and length of each salad used during
the generation of the Salad-1 dataset. . . . . . . . . . . . . . 63

B.2 Table showing the weight and length of each salad used during
the generation of the Salad-2 dataset. . . . . . . . . . . . . . 64

C.1 Transformation matrix for Camera-Robot coordinate mapping.
Calibration performed 2016.12.05 . . . . . . . . . . . . . . . . 68

ix



List of Tables

C.2 Transformation matrix for Camera-Robot coordinate mapping.
Calibration performed 2017.03.28 . . . . . . . . . . . . . . . . 68

C.3 Transformation matrix for camera-robot coordinate mapping.
Calibration performed 2017.06.20 . . . . . . . . . . . . . . . . 69

D.1 Two tables describing the tool-points used for (a) calibration,
and (b) grasping . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



1. Introduction

1.1. Motivation

In the summer of 2016, I had a summer internship at SINTEF Ocean,
formerly SINTEF Fisheries and Aquaculture. During this internship, I was
given the opportunity of combining machine learning, with robotics, ma-
chine vision and automation. Having previously only worked in simulated
environments and the on software, it was an exciting new experience to be
able to use some hardware.

iProcess Projcet: WP3 Flexible Processing Automation
This task for the summer was part of a work-package within the iProcess
project, http://iprocessproject.com/.

iProcess’s main objective is to develop novel concepts and
methods for flexible and sustainable food processing in Nor-
way – that are to cope with small volume series and high
biological variation of the existing raw materials – to enable
increased raw material utilisation for food products and to
increase profitability.[14]

The work-package I was to be apart of was called WP3 Flexible Processing
Automation. With the focus being on 3D vision for localisation, recognition
of raw material and dense visual servoing based on depth maps and 3D
point clouds. Along with another student, I was set the task of building
a system that would combine a robotic arm and manipulator, a RGB-D
camera, and a teleoperation controller. This system would then be used
to grasp objects through teleoperation, recording each successful grasp as
a combination of images and robotic sensory data. These examples would
then be use to generate machine learning models, where vision data from
the RGB-D images would be used to make grasp predictions.

1

http://iprocessproject.com/


Chapter 1. Introduction

This work was continued upon during the autumn, in a project assignment.
During this time alterations were made to the camera placement in order
to improve upon camera-robot object-in-hand calibration accuracy. This
meant that a new dataset had to be generated, as well as prediction models.
This Master thesis is an even further continuation on this work, focusing on
generating prediction models that are to be used with the aforementioned
system.

2



Chapter 1. Introduction

1.2. Hypotheses

Hypothesis 1 Given data gathered from a RGB-Depth (RGB-D) image
it is possible to estimate a 6-degree of freedom (DOF) gripper pose for
grasping.

In Hypothesis 1 the aim is to prove that using RGB-D images, it is possible
to estimate a 6-DOF grasp. Various features are therefore extracted from
the images, and used as input in a machine learning model. This model will
then output an estimated 6-DOF. Once this has been estimated, and the
gripper re-positioned, it should be possible to activate the gripper, closing
it around the object. Once the object is securely held in place, it should be
possible to move the gripper to another location, while maintaining a secure
grip on the object, releasing the object once it has arrived.

Hypothesis 2 A 6-degree of freedom (DOF) gripper estimation is more
accurate with RGB-Depth (RGB-D) images as input to a Convolutional
Neural Network (CNN) architecture then a Support Vector Regression
(SVR).

In Hypothesis 2 we attempt to prove that it is possible to achieve greater
accuracy when using images as an input to a CNN, as opposed to first ex-
tracting features before feeding them through a SVR model. The reasoning
behind this is that a CNN model is better able to determine what features it
requires, instead of being told to use a pre-determined set of features.

3



Chapter 1. Introduction

1.3. The system

Using different models of prediction, the goal of the system is to success-
fully grasp salad using a tactile gripper. The system relies on RGB-Depth
(RGB-D) images from a camera overlooking the grasp area as well as tactile
feedback from the gripper once the salad has been found.

In order to estimate where the gripper should be positioned in order to grasp
the salad, each model has to output a 6-degree of freedom (DOF). This is a
combination of positional and orientational vectors that tell the robot where
it should position the gripper, and how it should be rotated. The models
should also attempt to predict how the gripper should close onto the salad.
This is possible due to the tactile sensitivity of each gripper finger. Being
sensitive enough to measure the slightest contact, they ensure that the salad
is not crushed when being picked up, only gripped tightly enough to ensure
a secure grasp.

The models being used to generate these parameters either accept data
extracted from depth and/or colour images, or the images themselves. In
cases where the images themselves are not acceptable input, features have to
be extracted from the images by another system. These features include the
position of the salad, its orientation, as well as length, width and height at
predefined points. With a robust system capable of repeatedly locating and
extracting such features, a model is able to predict corresponding grips.

The first models to be attempted were generated using Support Vector Re-
gression (SVR). These models accepted extracted features as input, and in
return predicted a 6-DOF. Various variations of this model were generated,
in an attempt to its optimum.

Once successful grasps had been achieved using SVR it was time train CNN
models. These models are the more complex, as they do not use the extrac-
ted features, instead they make use of actual images. The model itself is
responsible for figuring out what features in the images it finds important,
learning what filters are needed in order to generate accurate predictions.
Various variations were built, depending on input and parameters.

Due to the hardware required to run the system, a description and link to
a video showing several of the main features has been included in appendix
A. An explanation of the zipped code file is available in appendix E.

4



2. Theory and
Background

This chapter is an meant to be an introduction for readers that have not
fully grasped what machine learning is, as well as introducing them to con-
cepts such as Support Vector Regression (SVR), Neural Network (NN) and
Convolutional Neural Network (CNN).

2.1. Machine Learning

Machine Learning: Field of study that gives computers the
ability to learn without being explicitly programmed.

- Arthur Samuel, 1959[16]
In 1959 Arthur Samuel defined the term Machine Learning as the field of
study that gives computers the ability to learn without being explicitly pro-
grammed. Samuel was one of the early pioneers within this field, being the
first to write a program that learned how to play checkers. Each players
positioning of pieces was given a score, and simulations were run on possible
valid moves. A mini-max search strategy was then used to determine what
move would maximise the its own score, while at the same time minimising
its opponents. The program would also remember previous moves, utilising
this knowledge in its decision making, allowing past experiences and plays
to influence its games.

5



Chapter 2. Theory and Background

Well posed Learning Problem: A computer program is said
to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as
measured by P, improves with experience E.

- Tom M. Mitchell, 1997[15]

Checkers was just the beginning, the use of Machine Learning in solving
problems has increased over the past decades, becoming more and more
instrumental in our digital lives. In some tasks such as email filtering, image
classification or Optical Character Recognition(OCR) it has proved difficult
for humans to design and program optimal algorithms. Instead Machine
Learning is applied, along with a large amount of training data, to allow
an optimal algorithm to be generated. If we refer to the definition by Tom
M. Mitchell, and use email filtering as an example. The task T would be
determining if an email is SPAM or not. Performance P would be how often
it correctly classifies emails, an increase meaning the system is learning
correctly. Experience E would be a set of previously categorised emails,
and any correctly classified email can later be included into this set, further
increasing the success of the system.

These models will work well for the task specified, but trying to understand
how they work is not always clear. The Machine Learning algorithms will
often make associations and choices that are not obvious to a human, but
to a machine and its system they will make perfect sense. Two unconven-
tional solutions can be seen in NASAs attempt at designing a spaceship
antenna[13], and Adrian Thompson in his attempt at microchip design[17].
Here they made use of evolutionary algorithms. Each generation would pro-
duce a set of designs, which would be ranked according to performance,
the best being chosen for "reproduction". A new generation was thereafter
generated as a combination of two "parents" as well as a certain amount of
mutation. Initially designs were random, but subsequent generations would
slowly optimise according to performance measures. In NASAs case, this
resulted in an antenna that looks nothing like what you would expect an
antenna to look like. Instead it resembles a spider on its back, with its legs
pointing in random directions as seen in figure 2.1. The optimal microchip
would make use of only thirty-seven of its one-hundred logic gates, some
not physically connected to anything at all, others connected in feedback
loops. The disconnected logic gates were still crucial in the chips design, in-
fluencing performance through electromagnetic fields in neighbouring gates.

6



Chapter 2. Theory and Background

These are two examples were machine learning has been used, and the res-
ulting solutions while performing optimally, are vastly different to what a
human would produce.

(a) (b)

Figure 2.1: Photographs of prototype evolved antennas. (a) the best evolved
antenna for the initial gain pattern, (b) the best evolved antenna
for revised specifications.

2.1.1. Unsupervised, Supervised and
Reinforcement Learning

Machine Learning tasks are often separated into three learning categories.
This depends on what the goal of the system is and what kind of data is
being worked on, whether it is labelled or not.

Unsupervised Learning
In unsupervised learning the data is not labelled. The goal is to discover
patterns or relationships within the data. This allows for the data to be
clustered into groups, with the possibility of placing new data within existing
groups.

Supervised Learning
In supervised learning the model is trained on data with labels. This means
that it is possible for the model to approximate a label for similar label-

7



Chapter 2. Theory and Background

less data. There are two kinds of supervised learning, either Classification
or Regression. Classification problems are problems where the goal is to
classify the input into one of a finite number of classes. While in regression
problems, there are no classes, instead the goal is a continuous value.

Reinforcement Learning
Reinforcement Learning is somewhat different to supervised learning, as
there is no optimal solution. Instead the machine decides what action to
take in order to maximise its performance. If the decision is good, it is
positively reinforced, while a bad decision will be penalised. As such the
system will learn to make correct choices, in order to achieve the goal.

2.1.2. Data Splitting

When generating supervised training models, it is important to be aware of
the fact that such models can focus to much on the trained data, becoming
Overfit. This means that the model has not learned general concepts in
order to make predictions, instead it has learned specifics to the training
data. Although it achieves high accuracy when predicting on the training
data, new and previously unseen data, will not achieve the same accuracy.
This can be compared to remembering a solution in mathematics, you know
that 2×3 = 6, as you have seen it before. But when asked to what 2×7 = ?
is, you have no idea, as you only remember question-solution pairs, having
no idea how multiplication is done.

In order to combat this overfitting, data is often split into a training set
and validation set. When doing this split, it is important that both sets
are representative of the original data. The ratio for this split is not set in
stone, and depending on your data, training-validation splits of 90-10, 80-20
or 75-25 are all commonly used.

Training Set The training set will be used to train the model, and is
therefore the largest. This data is labelled, with the optimal output. By
sending this data through the model, and comparing the models predicted
output with the optimal one, it is possible to calculate an error. This is then
used to refine the model, and minimise said error.

Validation Set Once the model has had some training, it is possible to
test how it responds to unknown data. The validation set is sent through

8



Chapter 2. Theory and Background

the model as during training, although now the error is not used to refine
the model. Instead it is used to indicate the models accuracy, signalising
if it is general enough to produce accurate predictions, or has overfit on
the training data. By tracking the validation accuracy through training,
it is possible to determine when the model has reached its peak, as it will
start to decline, indicating that the model is beginning to overfit. Once the
accuracy has started to decline, it is time to end training, as the model is
at its best.

2.1.3. Data Augmentation

In some instances, it is not feasible or possible to gather a massive data-set.
In cases such as this, it is possible to make use of various methods in order
to increase the size of the original data. This can either be done before
training, at the cost of extra disk-space being used, or simultaneously as the
data is being loaded. When augmenting data, most common methods focus
on augmenting in ways that increase the robustness of the model. If the size
of an object has no implication on the output, it is possible to augment the
data, by adding copies where the same object has been re-sized.

2.2. Support Vector Machines

The Support Vector Machine is a form of supervised learning algorithm,
developed by Vladimir N. Vapnic and his colleagues in 1995[12], capable of
both classification and regression. Mainly when referring to a classification
problem, Support Vector Machine is used, while regression tasks make use
of Support Vector Regression.

The Support Vector Machine algorithm works by plotting each data instance
within a n-dimensional space, n being the number of variables or features
of the data. Now that the data has been plotted within the n-dimensional
space, it is time to locate the hyper-plane that best divides the data. This
can be seen in figure 2.2 where H3 is the hyper-plane with the larges margin
between classes.

9



Chapter 2. Theory and Background

Figure 2.2: Figure showing hyper-planes in 2D. H1 does not separate the
classes, H2 separates with small margin, while H3 separates with
maximum margin

2.3. Deep Learning

Deep Learning is a field within Machine Learning that makes use of models
inspired by the structure of the brain. These models are therefore often
referred to as neural networks, where artificial neurons take on the roll of
axons, and weighted connections take on the roll of synapses between them.
Each neuron is capable of transmitting a signal, the signal strength depend-
ant on both activation function and the combined incoming signal to it.
Neurons are often organised into layers, with the outputs of one layer, be-
coming the inputs of subsequent layers as seen in figure 2.3. This means
that signals can traverse through the layers, activating neurons, eventually
generating an output.

For classification problems, an example will activate certain neurons in the
first layer, referred to as the input layer. This will cause signals to propag-
ate through the network, eventually activating a single neuron in the final
layer. In this final layer, referred to as the output layer, every neuron would
represent a unique class, signifying that the example should be classified as
such.

With faster and better hardware being constantly developed and released,

10



Chapter 2. Theory and Background

Figure 2.3: A fully connected neural network. Blue nodes represent input
neurons, green nodes represent hidden neurons and red nodes
represent the output neurons.

Deep Learning has been steadily increasing in popularity and success. With
more powerful components, the size of networks can be increased, as well
as the time spent training models decreased. This means Deep Learning is
being applied to more and more problems. As long as the data is digitised,
be it sound, images, text or weather data, to name a few, it is possible
to classify it, or make predictions from it. With the performance of such
systems only increasing in quality over time.

2.3.1. Neural Networks

As mentioned earlier Neural Networks are models formed through a graph
of neurons. These neurons are connected to each other through learnable
weights w. In addition to these weights, each neuron has a learnable bias b.
When a neuron receives a set of inputs x, it calculates its output y as shown
in equation 2.1. f is the activation function, it makes sure that all outputs
from neurons are kept within specific ranges, depending on what function is
chosen.

11



Chapter 2. Theory and Background

Figure 2.4: The three most common activation functions within Deep Learn-
ing. From left to right, Sigmoid, Tanh and ReLU

y = f(
∑

i

wi • xi + b) (2.1)

Activation Functions

The activation functions job is to take an input, and with the help of a
mathematical expression, make sure that the output is within a certain
range. Presently the three most common activation functions can be seen
in equations 2.2, 2.3 and 2.4.

Sigmoid f(x) = 1
1 + e−1 (2.2)

Tanh f(x) = 2
1 + e−2x

− 1 (2.3)

ReLU f(x) = max(x, 0) (2.4)

The Sigmoid activation function ensures that the output is somewhere between
(0, 1). The Tanh activation function allows for a negative output, keeping
it within the range (−1, 1). The ReLU activation function sets the output
as any positive number, [0, inf). These functions are also visible in figure
2.4

12



Chapter 2. Theory and Background

Training a Neural Network

There are several steps involved when training a Neural Network. First
the network is given some training data, resulting in a prediction y. This
prediction is then used along with the correct output y’ to calculate an error
E as seen in equation 2.5. The error is calculated by taking half the square
of the Euclidean distance between the prediction and goal. The reason for
halving it is to cancel the exponent when differentiating in equation 2.6.

E = 1
2 |y − y

′|2 (2.5)
∂E

∂y′
= (y′ − y) (2.6)

The goal of training is to minimise this error value. This is achieved through
a method called back-propagation. E is therefore partially derived as seen in
equation 2.6 in regard to each neuron. The resulting error is then propagated
back through the network, updating the models weights. This causes the
models performance to slowly increase after each weight update, as well as
lowering the error value.

Epochs and Batches
When training a network the same data is often repeatedly fed through the
model. For every time the all the training data is fed through once, an epoch
is completed, and the next one can begin.

Each epoch is usually split into several batches as the training data is usually
to large to be able to fed through the model at the same time. After each
batch, back-propagation is performed, increasing the performance of the
model. It is important to shuffle the training data after each epoch, before
splitting into batches, in order to reduce the chance of batch overfitting.

2.3.2. Convolutional Neural Networks

Convolutional Neural Networks are a subclass of Neural Networks relying on
many of the same mechanisms to function. One notable difference between
the two kinds, is that a Convolutional Neural Network accepts a matrix of

13



Chapter 2. Theory and Background

Figure 2.5: A figure depicting the activation map I∗K calculated using equa-
tion 2.7. I is the input matrix, while K is the current filter.[19]

numbers as its input, instead of a list. This means it is possible for the
network to accept an image as its input, as images are just values in a
matrix. When dealing with Convolutional Neural Networks, there are three
main kinds of layers to be aware of, the Convolutional Layer, the Pooling
layer, and the Fully Connected layer.

Convolutional Layer

The Convolutional Layer is the strength behind Convolutional Neural Net-
works. These layers are made up of multiple learnable filters. Filters are
smaller sets of weights that can learn how to detect different features with-
ing the image. Figure 2.5 shows us how a single filter K is convolved over
the input matrix I to produce the 2D activation map I ∗K, using equation
2.7.

(I ∗K)xy =
h∑

i=1

w∑
j=1

Kij · Ix+i−1,y+j−1 (2.7)

Since a Convolutional Layer is made up of multiple filters, it produces mul-
tiple activation maps that are stacked along the depth dimension. This also
means that different filters can learn different features. Some might become
edge detectors, while others detect colour. This way, the network is itself in

14



Chapter 2. Theory and Background

Figure 2.6: A Figure showing 2 × 2 MaxPooling with stride 2, on a 4 × 4
matrix.[19]

charge of determining what is needed in order to make accurate predictions
depending on the required output.

Pooling Layer

Pooling layers are used in order to reduce the size of layers, thus reducing the
number of parameters in the network. The most common pooling method is
MaxPooling with a filter size of 2× 2 and a stride of 2. This can bee seen in
figure 2.6. The resulting matrix has been reduced to a quarter of its original
size, halving in height and width.

Fully Connected Layer

The Fully Connected Layer is as the name implies a layer where each node
is connected to every node in the previous layer. This is the same as in a
normal Neural Network. In order for a Pooling or Convolutional layer to
be connected to a Fully Connected Layer, it has to be flattened into one
dimension.

15



Chapter 2. Theory and Background

2.4. Previous Work

2.4.1. Rig setup and system

In order to gather the required images as well as robotic and hand data, a
custom rig setup was constructed during a summer internship in 2016 with
the help of Linn Danielsen Evjemo. The rig that was constructed during
the summer has since then been improved upon during the autumn, while
writing a project assignment. Improvements include re-positioning of the
camera in order to capture better images, as well as improved calibration
procedures for increased precision.

The rig consists of a Denso VS-087 on a fixed platform, with attached card-
board grasping area. 1 meter above the grasping area, a Microsoft Kinect2
RGB-D camera is positioned to capture both depth and colour images of
any object placed within its field of view. A RaspberryPi-3 (rPi-3) single
board computer is also attached to the aforementioned rig, this computer is
used solely to interface the robotic gripper with the windows machine over
a custom TCP/IP connection. The robotic gripper is a ReFlex TakkTile
hand from RightHand robotics. In order to remotely control the robotic
arm and gripper the STEM system from Sixense was utilised, it makes use
of magnetic fields to track controllers in relation to a base station.

During the summer internship in 2016, a program written in LabVIEW
was created for controlling the different parts. LabVIEW was chosen as
libraries for controlling both the robot, camera and STEM controller were
already available. Unfortunately attempts to connect the gripper using the
Robotic Operating System (ROS) directly to LabVIEW were not successful,
instead a rPi-3 was set up as a server with custom TCP/IP commands
being sent over wifi. Feedback from the tactile sensors in the gripper are
numerically displayed on the screen while no haptic feedback is provided to
the operator.

The program allowed for either manual commands to be issued through the
computer, or for an individual to control both robot and gripper using a
STEM controller. The controller method was utilised when gathering ex-
amples by having the robot shadow any movements made by the controller.
The operator is therefore able to easily position the gripper correctly for

16



Chapter 2. Theory and Background

Figure 2.7: This figure shows the current setup. The gripper is attached
to the robot, with the camera attached to the ceiling, aimed
perpendicularly towards a grasping area.

17



Chapter 2. Theory and Background

grasping of an object, as any movement of the controller was directly trans-
lated to the gripper in near real time. The buttons on the controller are also
programmed to allow procedures to be run. This reduces the need for mouse
interaction with the program, as commands like save images and open/close
gripper can be activated remotely.

18



3. Methodology
This chapter explains the in a bit more detail how the system for grasping
objects works, including what parts were used. It also describes calibration
and how the dataset used in generating models is made up. The chapter
finally explains how features are extracted from the images, as well as how
both SVR and CNN models are built.

3.1. Software and Hardware

3.1.1. Software

The system for connecting together the different hardware was written in
LabView, as libraries were readily available for all but one piece of equip-
ment. The models on the other hand were generated using either Matlab
or Python. In order for the programs to transfer data between them, the
data was either written to .csv spreadsheets, a .txt file, or custom TCP/IP
connections.

Labview
LabVIEW[3] is a system-design platform and development environment de-
veloped by National Instruments. LabVIEW uses a graphical dataflow lan-
guage called G for visual programming. Its editor has both a block diagram
and front panel window. The front panel works as the programs GUI, while
the block diagram is where everything is connected.

Matlab and Python
Matlab[4] and Python[5] are two programming languages, while Matlab is
a proprietary language and requires a license to use, Python is open-source.
Matlab is also the name of the development environment used for its pro-
gramming. Python on the other hand can be programmed in any text editor,

19



Chapter 3. Methodology

although an IDE will simplify programming. Python supports moduels and
packages, encouraging code reuse.

Tensorflow
Tensorflow[11] is Googles response to Deep Learning, and made open-source
in 2015. It was developed by the Google Brain Team within Google’s Ma-
chine Intelligence research organisation for the purposes of conducting ma-
chine learning and deep neural networks research. Tensorflow is able to run
on both CPU and GPU chips, runs on both CPU and GPUs, allowing for
parallelization to increase computational power. Tensorflow is available as
a module that can be imported into python.

3.1.2. Hardware

Main Workstation
Almost all programming was written and executed from a workstation run-
ning Windows 8.1. This machine was equipped with a Intel i7-4790K
@4.00GHz CPU, and a Nvidia GeForce GTX 970 GPU, as well as 16GB of
RAM.

Denso VS-087
The robotic arm used for grasping the salad, as well as holding the calibra-
tion board is a Denso VS-087 robotic arm[1]. This robot has 6-axis, and a
reach of 905mm from its centre. The arm is mounted on a base station pla-
cing it, 1.2meters above the floor. In order to control the robot, a teaching
pendant can be used, or commands can be sent from a connected computer
over ethernet.

Kinect 2 RGB-D camera
Images are recorded using the Microsoft Kinect 2.0[2] camera. The Kinect
2.0 camera boasts a 1080p colour camera, as well as an active IR camera
with a resolution of 512x424. The Kinect 2.0 is able to generate a depth
image using the Time of Flight principle on the IR images. With the help
of a built in IR projector, it can measure the time it takes the light to
travel to an object and bounce back. This is then used to produce a depth
image.

RHand Robotics: ReFlex TakkTile gripper
The gripper utilised for picking up the salad was built by RightHand Robotics[8].

20



Chapter 3. Methodology

The ReFlex TakkTile[7] gripper has three fingers, one fixed, and two that
can be rotated to alter their pose. Each finger is equipped with nine tactile
sensors and is able to bend at a finger joint. It is controlled over ethernet
using theRobotic Operating System (ROS).

Raspberry Pi 3
The Raspberry Pi 3[6] is a small cheap microcomputer, running a Linux dis-
tribution. The reason for making use of this device is that we were unable
to connect the gripper to LabView using ROS[9]. Therefore a workaround
had to be found, a simple server on the RPI3 therefore controls the grip-
per, with commands being transmitted over TCP/IP from a client on the
windows computer.

Sixense, STEM System
In order to easily control the robot and gripper, the STEM system[10] from
Sixense is used. This system makes use of an A/C electromagnetic field in
order to track its controllers. Each controller is equipped with a joystick and
several buttons. This allows for wireless feedback of not only the controllers
position and orientation, but can also be used to trigger various events.

3.2. Object-in-hand Calibration

In order to be able to make use of data extracted from the Kinect cam-
era, it is important to be able to transform between the camera and robot
coordinate spaces. The method used to achieve such a transform is called
object-in-hand calibration[18]. This calibration is done by attaching a planar
calibration board fitted with a printed chessboard pattern to the robot as
seen in figure C.1. This chessboard pattern is used to define a coordinate
system, where the Z-axis is perpendicular to the board, while the X- and
Y-axis run along the chequered squares. A toolpoint is defined with its point
in the intersection between the two top left black squares, as seen in table
D.2a. By gathering a set of images and corresponding robot positions, it
is possible to calculate a transformation matrix. This is because both the
image and robot position contain enough information to allow for the same
spacial plane to be located. This can then be used to extrapolate where the
camera is positioned in relation to the robot.

21



Chapter 3. Methodology

(a) Denso VS-087 (b) Kinect 2

(c) ReFlex TakkTile hand (d) STEM system

Figure 3.1: A figure showing the main hardware components of the sys-
tem. a) Denso VS-087, b) Kinect 2, c) ReFlex Takktile hand, d)
STEM system

22



Chapter 3. Methodology

Fi
gu

re
3.
2:

T
he

pr
og

ra
m

us
ed

to
ga

th
er

ca
lib

ra
tio

n
im

ag
es
,i
tu

se
s
po

sit
io
ns

fro
m

a
pr
ev
io
us

ca
lib

ra
tio

n
in

or
de

r
to

sp
ee
d
up

th
e
pr
oc
es
s.

23



Chapter 3. Methodology

3.3. Data-set

In order to generate models that would allow for grasp prediction, a set
of examples have to be produced. For each example, there exists a set
of images, and data gathered from the grasp. As well as gathering and
generating the example set, it is important to be able to convert between
the robots and the images coordinates. A calibration is therefore performed
ahead of gathering any examples, or making any predictions. It is important
for the calibration to be accurate as a low accuracy in calibration, will extend
to the accuracy of the models.

Due to the capabilities of the Kinect2 camera, it is possible to save col-
our, depth and IR images, referred to as IRGB, ID and IIR. For every
example gathered, all three types of images are saved at different states of
the grasp:

• Ibackground, taken before gathering any other images, used for normal-
isation of subsequent images.

• I init, first image with an object, the gripper is in its home position.

• Igrasp, the gripper has grasped the object.

• Irelease, the gripper has moved the object to its goal area, and is about
to release object.

• Ihome, the gripper is back in its home position, the object is in the
home area.

Simultaneously as the Igrasp images are saved, various parameters for both
the robot and hand are saved. They are recorded to a pos.txt file, and
include the position of the gripper, as well as its orientation. In addition to
data gathered from the robotic arm, tactile data from the hand is recorded,
as well as the pose and position of fingers are saved.

3.3.1. Gathering

Generating data-sets was done at two separate instances, once during the
project assignment, and a once during the writing of this thesis. The initial
data set consists of 325 examples from 6 salads, evenly spread around the

24



Chapter 3. Methodology

grasping area, as seen in figure B.1 in the appendix. After having used the
first dataset to train SVR models and attempt to generate CNN models, it
was decided that having a larger set of data could be beneficial. Therefore a
second set of data was gathered. This dataset was not as large as the initial
one, only making use of 4 salads, and supplying 200 distinct examples.
Their distribution can be seen in figure B.2. Combining these two sets of
data, allowed for a example pool of 525, whose distribution is seen in figure
B.3.

Quality of the data Since the models were going to be trained on the
data, it is important to make sure that all grasps were successful. This is
because it would be detrimental to train a model on bad examples, causing
it to learn that unsuccessful grasp are also good.

3.3.2. Data Augmentation

When working with machine learning the data used for training is sometimes
not enough for the task, this can be rectified by augmenting with computer
generated data, based on the original.

Translating Coordinate Space
By translating both the extracted data and the recorded data by the same
vector it is possible to augment the current data. This is possible because
both the extracted data, and recorded gripper data contain one set of co-
ordinates that tell where the object and gripper are respectively.

gripper = GX,Y,Z extracted = EX,Y,Z random = RX,Y,Z

new_gripper = GX,Y,Z +RX,Y,Z (3.1)
new_extracted = EX,Y,Z +RX,Y,Z (3.2)

By generating a random 3D vector, and translating both coordinates, but
keeping all the other data, a new example is created. This example will have
the same orientation for both gripper and object as the original, but will be
in a new position.

Flipping the Gripper
By rotating the gripper 180 degrees it is still possible to grasp objects due to

25



Chapter 3. Methodology

the grippers semi-symmetrical build. Although the gripper has two fingers
on one side, and one on the other, as long as the two fingers stay parallel,
there is nothing that dictates which way to pick up the object.

In order to achieve this rotation of the gripper, the output values have
to be altered in such a way to realign the gripper correctly. The gripper
is positioned using a 6-DOF vector. Equation 3.3 shows how a 6-DOF is
rotated 180 degrees, while still maintaining the same position.

original =
[
x y z Rx Ry Rz

]
flipped =

[
x y z −Rx Ry Rz + 180

]
(3.3)

Rotating relative data
The models generated with the CNN only make use of a cropped image of
the object, predicting a relative 6-DOF. This means that the prediction is
relative to the centre of the image, and does not have to take into account
where the object is located within the grasping area. Since the relative data
is oriented around the centre of the image, it is possible to rotate both image
and relative data to create new examples.

original =
[
x y z Rx Ry Rz

]
rot90 =

[
−y x z Rx Ry Rz − 90

]
(3.4)

By rotating the data in increments of 90 it is possible to quadruple the
number of examples. Since all the cropped images have the same height
and width, rotating them by 90 degrees does not pose any issues with the
input to the CNN. The relative 6-DOF can be rotated by 90 degrees as
shown in equation 3.4. Repeating up to three times for a 90, 180 and 270
rotation.

3.4. Feature Extraction

Due to how Support Vector Regression (SVR) work, using the raw image
data as an input would not an option. This meant an algorithm for locating

26



Chapter 3. Methodology

and extracting certain features from the images had to be implemented.
This algorithm had to be robust enough to allow for the biological diversity
of salad while still getting accurate readings.

3.4.1. Locating the Object

There are many methods for detecting and locating objects within an image,
one method is to look for discrepancies between two images. By subtracting
one image from another, as seen in 3.5, any pixel value that is very similar
in both images will approach zero. In colour images this means black, while
in depth images this means there is zero change in perceived height between
the images.

Inorm
D = I init

D − Ibackground
D (3.5)

It is therefore possible, using a pair of depth images and normalisation, to
locate any objects introduced into one of the images. Although there will
always be some minor discrepancies between images, the bigger the object,
the easier it is to locate. The pixel values will now represent the height of the
object perceived from the camera, instead of its distance from the camera. It
is also possible to calculate the centre of the object, using only values greater
than zero. Any pixels within the image, have to be transformed from camera
to robot coordinates if they are to be located with the robot.

3.4.2. Determining Rotation

Due to the varying shape and dimension of the salad, creating a algorithm
that could robustly align objects proved difficult. In order to calculate the
orientation, the line with the lowest moment of inertia through the Center of
Mass was calculated. This angle can be calculated using equation 3.6.

θ = 1
2 arctan

 2Ixy

Ixx − Iyy

 (3.6)

This allowed for all the objects to be rotated so that they were horizontal,
allowing length, width and height measurements to be taken in a robust and

27



Chapter 3. Methodology

controlled manner. No models where trained using this method as the angle
was, 0 ≤ θ ≤ 180, and therefore could not determine whether what way the
salad was facing.

3.4.3. Highest Point Rotation

Early versions of the Support Vector Regression (SVR) system only made use
of the depth images. Experimentation into different methods for determining
orientation based on shape or curves did not give satisfactory results, due
to the irregular shape of salads. The most promising solution basically
determined what side of the salad had the highest point, rotating the salad
an additional 180 degrees if this point was not to the left.

The Highest Point Rotation method had an accuracy of 88% on the initial
data of 325 salads. 288 were correctly oriented, while the remaining 37 were
rotated incorrectly.

(a) Cropped depth image (b) Maximum pixel values in each column
of figure 3.3a

Figure 3.3: Figure showing a cropped depth image, as well as its correspond-
ing column height map.

3.4.4. RGB-D Rotation

By utilising the colour images alongside the depth images, it is possible to
create a more robust algorithm for determining the orientation of a rotated
object. Due to the different resolutions of the colour and depth images, as

28



Chapter 3. Methodology

well as the position of both lenses, a look-up table is needed to correctly as-
sign a colour to a depth pixel. In figure 3.4, the colour image 3.4a and depth
image 3.4b are combined to produce the coloured depth image 3.4c.

(a) Colour image (b) Depth image
(c) Coloured depth im-

age

Figure 3.4: A set of images showing the original and combined images when
mapping colour to a depth image

With this new colour image, any pixel in the depth image, can be assigned
a colour. This means that by extracting a colour channel, calculating the
mean of each column, and plotting a graph, the intensity of the colour can
be seen. These values can then be used in the same way that the height
data was used, locating the highest value and determining what side it is
on.

Since the salad is mostly green and white, the blue colour channel seemed to
produce the most distinct results, although both green and red could have
been used.

3.4.5. Data Extracted

Knowing what features to gather when converting an image to a set of values
is not easy. Depending on what task is being solved, it is up to the user to
know what is needed, and figure out how to robustly extract this data. This
differs from a Convolutional Neural Network, where it is the model that
figures out how and what features it needs, in order to solve the task.

As seen in Figure 3.6, the salad has been rotated so that it is horizontal,
with the leaves to the left, and its roots to the right. The centre of the salad
is denoted a, its location calculated through centre of mass. The points b,

29



Chapter 3. Methodology

(a) Cropped masked depth image with
colours

(b) Channels extracted from colour image

Figure 3.5: This figure contains an example of a cropped coloured depth
image, as well as a graph of the highest RGB data point in each
column.

Figure 3.6: A figure showing the locations of features on a salad

c are calculated to be midway between a, and either side of the salad, on
the same horizontal line.

pos =
(
Xa Ya Za

)
rot =

(
cos θ sin θ

)
Features =

(
pos Ha La Wa rot Hb Wb Hc Wc

)
(3.7)

In equation 3.7 we can see what features are recorded for each example. Za

is the pixel value of I init
D (Xa, Ya). H,L and W stand for Height, Length and

30



Chapter 3. Methodology

Width. Height is the pixel value of a normalised depth image, Inorm
D (X, Y ).

Length and Width is the sum of non-zero pixels along a row or column, re-
spectively. The rotation is recorded as the cosine and sine of the orientation,
calculated using equation 3.6.

3.4.6. Transforming Features to robot coordinate

It is important to remember to transform the extracted features coordin-
ates from the cameras coordinate space, and into the robots. If this step
is overlooked, a new camera placement will cause the whole model to stop
producing useful results, as they are dependant on a specific camera posi-
tion. This is why a calibration was performed before gathering any data, as
well as before making any predictions, to ensure that any error is not from
movement in camera or robot.

3.5. Support Vector Regression (SVR)

The code for generating the SVR modell is written in Matlab, but the model
it self can be exported and saved as a parameter file. This allows for other
programs to make use of the model, and run predictions given the correct
input.

A program for LabView was acquired that is able to accept the parameter
file as input as well as a set of input values. This program is then able to
output the correct prediction according to the model. It is also possible
to make predictions using Matlab, but due to the rest of the robot control
being in LabView, it is simpler to predict by importing the model.

The input values are the extracted features from the images, as seen in
equation 3.7. In each example, the dataset has had its features extracted,
and saved to a spreadsheet, that in turn can be imported into Matlab for
training.

31



Chapter 3. Methodology

pos =
(
Xa Ya Za

)
rot =

(
cos θ sin θ

)
Features =

(
pos Ha La Wa rot Hb Wb Hc Wc

)
(3.7)

The goal of the model is to make predictions that allow for a 6DOF as well
as the correct pose and finger pressure for the gripper. This means that
the model has to know that it is these values it should predict. A second
spreadsheet is therefore constructed, containing this relevant data.

pos =
(
X Y Z

)
rot =

(
O1x O1y O1z Ax Ay Az O2x O2y O2z

)
pressure =

(
finger1 finger2 finger3

)
Prediction =

(
pos rot figure pose pressure

)
(3.8)

The model should therefore take the features as seen in equation 3.7 as input,
and after mapping them into a high dimensional space, make a prediction
in the form of equation 3.8.

Feature Augmentation
In order to increase the size of the dataset, augmentation for the SVR models
only used augmentation through translation. Both inputs and labels for
training data had their coordinates translated with the same amount.

32



Chapter 3. Methodology

3.6. Convolutional Neural Network (CNN)

3.6.1. Preparing the images

In order for the model not become overly complex, it is possible to simplify
what it has to predict. Instead of letting the model take in the whole image
as its input, either depth (figure 3.4b), or coloured depth (figure 3.4c), it is
possible to crop the image.

By locating the the salad using many of the same functions as in feature
extraction from section 3.4, it is possible to crop the image to only this.
The salad is then placed within a square of equal height and width, with
the background set to 0. This results in images as seen in figure 3.7. By
also recording the coordinates of the centre of this image, it is possible to
calculate a relative 6-DOF to the salad, instead of a 6-DOF in relation to
the robot.

(a) Cropped depth image of salad used in
CNN models

(b) Cropped coloured depth image of
salad used in CNN models

Figure 3.7: This figure contains both the depth and coloured depth of a salad
in preparation of it used as input in a CNN model.

33



Chapter 3. Methodology

3.6.2. Training a model

The code for generating a CNN model is written in python using Tensorflow.
In order to make loading and working with the data easier several helper
classes were written. In addition to these classes, code was written that
allowed the trained model to be saved to file, as well as loading these files
back into the system when only predicting.

Loading Data for training

In order to train any models the labelled training data has to be fetched
and loaded into the program. This is done using a class CNNData. This
class makes use of two other classes, RelativeData and CSVData. Together,
they are able to load the images and labels into memory. By basing all
data manipulation around one class, it is possible to keep the main program
simple.

Input Images When loading the data it is possible to decide what set of
images the model is to rely on, this can either be only the depth images,
only the colour images, or a combination of both. The depth images are
only one channel, while the colour images are three channels. By combining
these two, it is possible to produce an image with four channels, containing
information from both types.

Removing inconsistencies
The CNNData class checks for inconsistencies in the dataset when loading.
These are examples where the relative gripper is much further away from
the salad than it should be.

Splitting into training and validation sets
The CNNData class splits the remaining data into two classes, one contain-
ing training data, and one for validation. This split can be seen in table 3.1.
The split is also able to make sure that both Salad-1 and Salad-2 have their
examples evenly spread between them.

Augmenting the data
Once the data as been split, it is possible to augment it in order to increase
the number of examples. This can either be by rotating the gripper in
the relative data 180 degrees, while keeping the same image. Or it can be

34



Chapter 3. Methodology

Table 3.1: Table showing the training-validation split using a 75-25 ratio
Total Salad-1 Salad-2

Total 521 321 200
Train 390 240 150
Validation 131 82 49

rotating both image and relative data by 90 degrees. Using both methods
it is possible for the dataset to become 8 times the original size.

Training
Now that the data has been loaded, it is run through the model in smaller
batches. This is because it is mostly impossible to fit both the CNN graph
and all the training data in the GPU memory at the same time. Instead the
training data is randomised and divided into batches. After each batch has
been run through the model, a loss is calculated, and the model updated in
order to become better.

3.6.3. Saving and Restoring CNN models

Since some models might take several hours or even days before they have
any success is is important to be able to save these models, so that they
can be restored and utilised later. This is possible as Tensorflow has imple-
mented a method where the graph along with its weights are stored. This
data can then be used to restore the graph along with the trained weights,
allowing it to make new predictions.

35





4. Experimentation and
Results

This chapter focuses on the results gathered when comparing different SVR
and CNN models, as well as how they measure up against each-other.
The chapter also includes a analysis of the results in regards to the hy-
potheses.

4.1. Support Vector Regression (SVR)

Here we have the regression results when training SVR models on the Salad-
1 dataset. Each model is trained on the complete data, as well as on data
that has been augmented. When augmenting, each example has its position
moved 15 times, allowing the dataset to grow to sixteen times its original
size. The augmentation is done by translating the position of both object
and grip by the same vector. This was done with two different standard
deviations, 50 and 200mm, giving a close augmentation, as well as an aug-
mentation with examples better spread around. Models were also trained on
examples where inconsistent examples was removed, reducing the number
of total examples from 325 to 303.

Highest Point Orientation

The features used in this model have been extracted using the highest point
flip method. As was mentioned earlier, this method did not correctly flip all
salads, but still has a high accuracy when it comes to determining what is
the head and what is the root of the salad.

37



Chapter 4. Experimentation and Results

Table 4.1: A table showing the SVR regression results using highest point
flip feature extraction

Augment Aug_STD Consistent Average STD
0 False 0.555478 0.312140
0 True 0.535396 0.319572
15 200 False 0.329148 0.374905
15 200 True 0.409707 0.340042
15 50 False 0.379686 0.368258
15 50 True 0.414064 0.339041

In Table 4.1 we can see some results from running different combinations
of augmentation with data gathered using the highest point flip method.
Results show that augmenting the data does not increase the accuracy of
the models, this might be due to the small example size and how all it
does is overfit the model to some examples. It is also worth noting that
removing inconsistent examples does seem to mean that this model performs
better.

RGB-D Flipped

Since the highest point flip method did not manage to correctly rotate all
salads with as high an accuracy as hoped, a different method was found.
This method uses the colour image, mapping it to the depth image. This
allows the program to distinguish between head and root of the salad as
there is more green in the head than in the root.

Models were again generated for with and without augmentation, this time
using features extracted using the new rotation method. As we can see, this
managed to increase the average accuracy when not removing inconsistent
data, while lowering the accuracy when also only using consistent data, in
a weird contradiction to the previous models.

38



Chapter 4. Experimentation and Results

Table 4.2: A table showing the SVR regression results using the RGB-D flip
feature extraction

Augment Aug_STD Consistent Average STD
0 False 0.599968 0.310034
0 True 0.545194 0.337891
15 200 False 0.384907 0.348562
15 200 True 0.353944 0.375388
15 50 False 0.428394 0.345957
15 50 True 0.391338 0.368840

SVR test 1, 31.03.2017

In order to gauge the accuracy of the SVR, the 4 salads used for expanding
the dataset the 28. march were grasped using the best RGB-D flip method
from Table 4.2. This was the un-augmented model, without removing any
inconsistent values. Since these salads had not been used in any way when
generating the model, this would be an indicator of whether or not the model
would work or if it had become to saturated on the 6 salads used to train
it.

6 grasps were performed on each salad, using the SVR model mentioned
above. The salad was placed randomly within the grasping area. As it
turned out, the pressure predicted by the model was not useful when grasp-
ing the salads. Its predicted pressure was not high enough to allow for a
successful grasp and therefore a pressure of 20 on all sensors on all fingers was
used. This value was chosen as it had had repeated success when practicing
on an American footbal.

The results from the test can be seen int table 4.3, with an explanation as
to what caused the grasp to fail in table 4.4. Each row of the table is a new
salad, the order of the salad chosen does not coincide with the order used
when generating the data-set on the 28. march.

Some of the grasps did not go as expected, therefore reasons for their failure
were noted. The number indicates what grasp has been commented on, the
asterisk indicates that the salad slipped out of the grasp while it was being
moved to the goal area.

39



Chapter 4. Experimentation and Results

Table 4.3: Table showing whether a grasp was a success or fail during a SVR
test the 31st of March

1 2 3 4 5 5
1 T T T T F T 5
2 T T T F T F 4
3 T T T T F T 5
4 F T T T F F 3

18
0.75

Table 4.4: A table showing the explanation for grasp failures during the first
SVR test.

Grasp Reasoning
5 Bad orientation
10 Bad orientation
*12 Good orientation, Bad grip
*17 Good orientation, Bad grip
*19 Good orientation, Bad grip
23 Bad orientation
24 Bad orientation

4.2. Convolutional Neural Network (CNN)

When generating CNNmodels there are many parameter that can be tweaked.
From the size of the input, to the shape of the model, with layers having
many different parameters each. After having minor success with predict-
ing the tactile pressure with the SVR model, this was not included in the
labels to train. Instead only the relative positioning of the gripper was to
be predicted as seen in equation 4.1.

(
X Y Z cos(Rx) sin(Rx) cos(Ry) sin(Ry) cos(Rz) sin(Rz)

)
(4.1)

The reason behind splitting each rotation into both cosine and sine values

40



Chapter 4. Experimentation and Results

is due to the fact that angles are measured around a circle, and two values
can therefore be the same, like 0 and 360, or -180 and 180. By splitting
the angle into its cosine and sine values, this problem is negated. Once a
prediction is made, the angles are unconverted and the relative grip is added
to the salad. This produces a 6DOF that a robot can then use to move the
arm.

4.2.1. The CNN model

The graph that was used for training and testing was generated to accept
an image of 128 by 128 pixels. This image would be processed by four con-
volutional layers, the first two having 32 filters, the third 64, while the final
convolutional layer made use of 128 filters. Following the second, third and
fourth convolutional layer a max pooling layer was added. This caused the
input dimensions to shrink, going from 128 to 32 pixels in both directions.
When flattened this produced a staggering 32768 nodes, that were all fully
connected to 4096 nodes that again were connected to the final 9 output
nodes.

4.2.2. Training data

In order to find out what was the best model, different combinations of un-
agumented and augmented models were generated. The augmentation was
either flipping the gripper 180 degrees, or rotating both image and gripper
by 90 degree increments.

As we can see in table 4.5, the un-augmented training data performs the best
using a four channel RGB-D image. The reason for the standard deviation
within the data being so high is also discovered when we look at table 4.6.
This table shows the regression results for each part of the 6-DOF, for the
same runs as in table 4.5. Here we see that the X and Y coordinates are
very accurate, with Rz having moderate success.

In figure 4.1 we see the regression plots for one of the runs. The y-axis
represents the predication, while the x-axis represents the examples label.
In the plots it is possible to see how the results are spread round. The
coordinates are the top row, with the bottom row being rotation. The aim

41



Chapter 4. Experimentation and Results

Table 4.5: A table showing the average regression results for CNN models
trained on various augmentation and image combinations.

# Image Aug90 Aug180 Normalise Epochs Average STD
1 RGB-D False False False 10 0.547127 0.418405
2 RGB-D False False False 10 0.575091 0.408996
3 RGB-D False False False 10 0.560633 0.423185
4 RGB-D False False True 10 0.609176 0.384432
5 RGB-D False False True 10 0.501289 0.516242
6 RGB-D False False True 10 0.554905 0.435091
7 RGB False True False 10 0.403782 0.461314
8 RGB False True True 10 0.357368 0.513892
9 Depth True False False 10 0.436706 0.450869
10 Depth True False True 10 0.514106 0.389266

Table 4.6: Table showing individual regression results for the same models
as in 4.5, the best result in each category has been put in bold.

# X Y Z Rx Ry Rz
1 0.985395 0.991102 0.114043 0.241104 0.163577 0.787539
2 0.988921 0.992169 0.186544 0.397383 0.072893 0.812636
3 0.987894 0.995102 0.278466 0.345484 -0.028885 0.785739
4 0.976146 0.990856 0.248980 0.464929 0.114093 0.860049
5 0.979298 0.992551 -0.116591 0.401335 -0.093109 0.844250
6 0.987487 0.991815 0.282702 0.260258 -0.021736 0.828906
7 0.989539 0.995787 0.142755 0.059172 0.217516 0.017923
8 0.988976 0.995254 0.315264 -0.091795 0.032511 -0.096002
9 0.976673 0.989702 0.117371 0.040516 0.037187 0.458784
10 0.980378 0.988186 0.201988 0.196007 0.173589 0.544490

42



Chapter 4. Experimentation and Results

Figure 4.1: Figure showing regression plots on validation data for a CNN
model. In each plot the correct value is along the x-axis, while
the prediction is along the y-axis.

of the plots are to give a visual representation of how well a model can
predict. If all models show plots as seen in X and Y, where the points are
placed on a diagonal line, this indicates that prediction and correct label are
very similar. Similarly if the points are scattered around, it means that the
model does not predict very well.

4.3. Comparing the best models

Once the models had been trained for both SVR and CNN it was time to
see how the two types of models compared to each other. A program that
simulated multiple gripper positions at the same time in a 3D environment
using the same example was written. In figure 4.2 we see the main screen
of the program. The green gripper shows the position gathered when gen-
erating the example, while blue and red show predictions based on the best

43



Chapter 4. Experimentation and Results

models. The depth mesh showing the salad is also included, showing where
it is placed prior to being grasped.

4.3.1. Virtual Comparison

Figure 4.3 shows various different grasp predictions. In figure 4.3b it is
possible to see that the red gripper is flipped in relation to the green gripper,
but still produces a working grasp. In 4.3d the green grasp from the dataset
does not fit with the other grasps. This is because one or two mishaps
were made during the gathering of examples, where the image and grasp
are for two different salad positions, but saved as the same. Still the models
managed to predict grips that allow for grasping, and although the models
were based on different inputs and principles, both predictions are similar
to each other.

4.3.2. Practical Test

It is also important to test the accuracy of models using real salads. There-
fore 10 new salads were bought, these being used to make 5 predictions each,
for both the best SVR model, and the best CNN model. This resulted in
the tables 4.7 and 4.8, each describing the success of failure on the same 50
salad. The salad was randomly placed within the grasping area, with ran-
dom orientation. Since only the SVR model predicted finger pressure, and
this pressure was not useful for grasping salad, each finger was set to close
until 20N as this was what had previously worked for grasping salad.

44



Chapter 4. Experimentation and Results

Fi
gu

re
4.
2:

A
Fi
gu

re
de

pi
ct
in
g
th
e
pr
og

ra
m

us
ed

to
co
m
pa

re
m
od

el
si
n
vi
rt
ua

l3
D
.G

re
en

gr
ip
pe

rf
or

ac
tu
al

gr
as
p
in

th
e
da

ta
se
t,
Bl
ue

fo
rg

ra
sp

pr
ed

ic
tio

n
us
in
g
an

SV
R

m
et
ho

d,
R
ed

fo
ra

pr
ed

ic
tio

n
us
in
g

a
C
N
N

m
et
ho

d.

45



Chapter 4. Experimentation and Results

(a) (b)

(c) (d)

Figure 4.3: This figure depicts four different salads from the example data,
and how the gripper is positioned using a SVR model (blue), a
CNN model (red), as well as the original grasp (green).

46



Chapter 4. Experimentation and Results

Table 4.7: A table showing the success or failure of 50 grasps when predicting
using the best SVR model. 10 salads were grasped 5 times each.

1 2 3 4 5
1 T T F T F 3
2 T T T F T 4
3 F T F T T 3
4 T T T F T 4
5 T T F T T 4
6 T T T F F 3
7 T F T F T 3
8 T T T F T 4
9 F T T T T 4
10 T F T F T 3

35
0.70

Table 4.8: A Table showing the success or failure of 50 grasps when predict-
ing using the best CNN model. 10 salads were grasped 5 times
each.

1 2 3 4 5
1 T T F T T 4
2 F T T T T 4
3 T T F T T 4
4 T T F F T 2
5 T T T T T 5
6 T F T T T 4
7 F T T T F 3
8 F F T T T 3
9 T T T T F 4
10 T T T T T 5

39
0.78

47



Chapter 4. Experimentation and Results

(a) Initial image (b) Grasping image (c) Release image

Figure 4.4: Example of successful grasp made using prediction from SVR.

(a) Initial image (b) Grasping image (c) Release image

Figure 4.5: Example of failed grasp made using prediction from SVR. The
salad was not grasped properly and slipped out during transit.

4.4. Analysis

As we can see in the 3D visualiser in figure 4.3 both methods are able to
generate 6DOF pose predictions for grasping salad. When comparing the
results gathered from grasping the same salads using both methods, we are
able to see that they both manage to locate and pick up salads between 70%
and 80% of the time. The SVR prediction managed to pick up and move
35 of the 50 salads to the goal. The CNN prediction method managed to
move 39. With some of the failures being the result of sub-optimal gripping
when the fingers did not close enough. Since each finger has several sensors
along itself, there were some instances where one sensor pushed against the
salad, causing the finger to halt. Once all fingers had stopped moving the
resulting grip was weak, since it only had a loose grasp of the salad.

4.4.1. Hypothesis

In Hypothesis 1 we stated that, Given data gathered from a RGB-Depth
(RGB-D) image it is possible to estimate a 6-degree of freedom (DOF) grip-

48



Chapter 4. Experimentation and Results

Fi
gu

re
4.
6:

Fi
gu

re
sh
ow

in
g
th
e
pr
og

ra
m

us
ed

to
pr
ed

ic
t
us
in
g
SV

R
.

49



Chapter 4. Experimentation and Results

Figure
4.7:Figure

show
ing

the
program

used
to

predict
using

C
N
N
.

50



Chapter 4. Experimentation and Results

(a) Initial image (b) Grasping image (c) Release image

Figure 4.8: Example of successful grasp made using prediction from CNN.

per pose for grasping. This can now be confirmed as we were able to generate
models that took data from both colour and depth image, with colour being
mainly used for robustness. The features extracted from the images were
able to be used in order to generate an SVR model, and using this model,
it was possible to generate successful grasps.

Continuing with Hypothesis 2, A 6-degree of freedom (DOF) gripper es-
timation is more accurate with RGB-Depth (RGB-D) images as input to
a Convolutional Neural Network (CNN) architecture then a Support Vector
Regression (SVR). Once satisfied with the methods were the depth and col-
our images were analysed and various feature extracted from them it was
time to make things a bit harder. After some testing it was determined that
using the whole depth or coloured depth image would be more work than
it was worth, as it included allot of excess and useless information. When
instead the model only received the specific area surrounding the salad, and
was set to predict a relative 6-DOF, the model could be made smaller, and
therefore work faster.

By deciding to make use of only the cropped are area of the salad, the model
did not have to first locate the salad, instead it was able to only focus on
the main task, generating a 6-DOF.

4.4.2. Data augmentation

The best models for both SVR and CNN versions were the ones that were
not augmented in any way, this is interesting and might be due to the fact
that with such a small dataset, the augmentation does more damage then
good. The goal of data augmentation is to increase the number of examples
when generating a model in order for it to be able to predict any form of

51



Chapter 4. Experimentation and Results

input within the given parameters. Therefore, since the sample size was so
small, only 500 images, as opposed to the several tens of thousands that are
used in some networks. Augmentation can have given to many theoretical
inputs, that forced the model to train on stuff that would not occur. Leading
to the model having to generalise to much, and therefor loosing accuracy
when given validation data.

52



5. Conclusion
This chapter takes a look at conclusions in regards to the hypotheses, as well
as key results and any future work that is possible from the results.

5.1. Conclusions in regard to hypotheses

Hypothesis 1 Given data gathered from a RGB-Depth (RGB-D) image
it is possible to estimate a 6-degree of freedom (DOF) gripper pose for
grasping.

In the end it was possible to estimate a 6-DOF pose for grasping salad using
data extracted from the colour and depth images. The initial attempt using
only depth images did not work as well as the attempts made using both
colour and depth. This was due to the various shapes of the salad, and there
not being enough information in just the depth images to repeatedly rotate
the salad correctly. Once the data from the colour images was also used,
the model was able to perform much better.

Hypothesis 2 A 6-degree of freedom (DOF) gripper estimation is more
accurate with RGB-Depth (RGB-D) images as input to a Convolutional
Neural Network (CNN) architecture then a Support Vector Regression
(SVR).

By using the raw images, or parts of them it is possible to estimate a suc-
cessful 6-DOF pose. This is good news as finding the correct features to use
is not always as easy as it seems. Salads are rather simple, as they have an
easy shape to work with, but for other objects, this might not always be as
easy. Therefore being able to use some machine vision to locate the general

53



Chapter 5. Conclusion

area of the object, and then allow a CNN to learn the features it needs in
order to make good predictions is the better option. This also means that
time is not spent trying to figure out what features need to be chosen, as
this is done within the program.

5.2. Key Results

The results show it is possible to generate models using RGB-D images,
using either the images, or features extracted from them. Both types of
models achieved an accuracy above 70&, when predicting the position of
a gripper in order to make a grasp, with the CNN model achieving 78%
accuracy. The CNN model also ended up being much quicker to generate
than the SVR model.

The SVR model, using its 12 extracted features, is able to make a prediction
on how to position the gripper, as well as how to rotate it so that it is able
to close and grasp the salad. The SVR model also made predictions as to
how tightly to close the fingers in order to make the grasp. These pressure
predictions did not achieve the same results as the 6-DOF, their predictions
being to low for any grasp. This meant the the pressure instead had to be
hard coded, using a value gathered through trial and error. The reasoning
behind this lack of success at predicting pressure, can be attributed to the
teacher not having a method for telling how hard a grip is.

When generating the dataset, there is no force feedback, the only indicator
that a grip was good was that the gripper was grasping the salad, as well as a
readout on the pressure at each finger. These 9 pressures for each finger were
then converted to an average value. Since the fingers could not uniformly
distribute this pressure around the object, only a few of the sensors received
a high pressure reading, causing the average to drop. It is also worth noting
that salads should not be crushed when handled, so the grasp was not very
hard to begin with, instead it was just enough to get a good grip.

The CNN model is extremely adept at generating its prediction. It does not
take many epochs for it to produce good results. This means that training a
model is done in less than 10 minutes, often less, as opposed to the 12 to 15
hours it takes to train the SVR models. This is good when testing various

54



Chapter 5. Conclusion

parameters, as new models can quickly be generated, with the resulting
models either tested on salads, or compared to other models virtually.

5.3. Further Work

Currently the systems built for predicting 6-DOF pose estimates using the
models generated only work on a static grasp area. A future goal is to be
able to implement the system with a moving conveyor belt, as in a food
processing plant. There the salad, or other object would constantly move
along, and the system would have to take this into account when generating
its 6-DOF. This improved model would also have to handle multiple salads
at the same time, as they wouldn’t be placed one and one on the conveyor,
instead arriving in bunches and groupings.

One interesting future adaptation would be to see how much training data
is needed in order to adapt the model, or train new models that could grasp
multiple kinds of objects instead of only one type. With the SVR model,
this would mean locating and generating the same features for a new object.
The CNN models on the other hand only require the same image input, this
means less time is spent figuring out how to gather the features.

When generating the training data, had there been a possibility for the
trainer to receive some sort of force or haptic feedback, it might have been
easier for the model to predict the finger pressure. Without any indicator of
how hard the gripper is grasping the object, it is difficult to tell how hard
it is actually gripping, and this uncertainty transfers into the model and
predictions.

With the way the gripper is connected to the main program it is not that
simple to control all aspects of the hand. The gripper uses ROS to connect
to the rPi-3, by connecting it directly to the main program without this
intermediary, it is possible to get more control over its movements. This
would mean that it would be possible to gain control over individual fingers
when closing towards a grasps, or receive feedback from the hand while
executing a command.

55





Acronyms
CNN Convolutional Neural Network

DOF degree of freedom

IP Internet Protocol

LabVIEW Laboratory Virtual Instrument Engineering Workbench

NN Neural Network

RGB-D RGB-Depth

ROS Robotic Operating System

rPi-3 RaspberryPi-3

SVR Support Vector Regression

TCP Transmission Control Protocol

57





Bibliography
[1] Denso vs 087. https://www.densorobotics-europe.com/en/product/new-

vs-087.

[2] Kinect v2. https://developer.microsoft.com/en-
us/windows/kinect/hardware.

[3] Labview. http://www.ni.com/en-no/shop/labview.html.

[4] Matlab. https://se.mathworks.com/products/matlab.html.

[5] Python. https://www.python.org/.

[6] Raspberrypi. https://www.raspberrypi.org/.

[7] Reflex hand. http://www.labs.righthandrobotics.com/reflex-hand-1.

[8] Right hand robotics. http://www.righthandrobotics.com/.

[9] Robotic operating system (ros). http://www.ros.org/.

[10] Sixense stem motion tracker. http://sixense.com/wireless.

[11] Tensorflow. http://www.tensorflow.org/.

[12] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3):273–297.

[13] Hornby, G. S., Globus, A., Linden, D. S., and Lohn, J. D. (2006).
Automated antenna design with evolutionary algorithms.

[14] iProcess. http://iprocessproject.com/.

[15] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New
York, NY, USA, 1 edition.

[16] Samuel, A. L. (2000). Some studies in machine learning using the game
of checkers. IBM Journal of Research and Development, 44(1.2):206–226.

59



BIBLIOGRAPHY

[17] Thompson, A. (1997). An evolved circuit, intrinsic in silicon, entwined
with physics, pages 390–405. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

[18] Tsai, R. Y. and Lenz, R. K. (1989). A new technique for fully autonom-
ous and efficient 3d robotics hand/eye calibration. IEEE Transactions on
Robotics and Automation, 5(3):345–358.

[19] Veličković, P. Deep learning for complete be-
ginners: convolutional neural networks with keras.
https://cambridgespark.com/content/tutorials/convolutional-neural-
networks-with-keras/index.html.

60



A. Video
Due to the specific hardware dependencies of the model, a video was edited
together showing various clips of the system. This video can be found on
youtube by following the link: https://youtu.be/MX9HFz827ag.

In the final weeks before the assignment was due, the main workstation
suffered a minor malfunction. We are unsure what has has, as everything
still works, although the working theory is that the power supply has become
damaged. This means that when running some programs, the whole system
becomes very slow. It is still possible to train models, as well as make
predictions, but teleoperation has become unfeasible. This is most likely
due to how the program connecting the remote control, robot, camera and
hand is constructed, making use of several loops. This means that when
trying to teleoperate, the refresh rate drops to levels where it takes seconds
for a loop to complete, instead of milliseconds.

Teleoperation
This clip was captured captured during the construction of the first dataset
in December 2016. It show me holding a black controller. Movements made
with it are telegraphed to the hand, allowing for an intuitive control. I move
the gripper to the salad, close it using buttons on the controller, and then
activate an automated sequence, that moves the gripper to a predetermined
spot, opens the hand, before returning to its resting home position.

Generating a CNN model
This video shows what is printed to console when generating a CNN model,
as well as the tensorboard. The tensorboard shows two graphs, Absolute
Distance and Loss, with each datapoint indicating the results of one training
batch. The Absolute Distance is the Eucledean Distance between the pre-
diction and correct answer. While Loss is the sum of errors in each batch.
Once the model has been trained, a regression plot is made for each vari-
able. This allows us to see how well each was predicted, the goal being a

61

https://youtu.be/MX9HFz827ag


Appendix A. Video

diagonal line indicating the prediction and label are in sync. It also allows
for comparison between models.

Grasping using CNN
There are two clips showing the complete procedure for grasping a salad
using CNN. As well as one giving a closeup of the grasp. In order to make
a grasp, the salad is placed within the grasp area and images are recorded
using the LabView program. These images are then processed, the depth
image is given colour by mapping what colour pixels correspond to what
depth pixels. The depth image is also used to crop out the salad, re-sizing
it to fit within a square, with zeroes or black as the background for depth
and colour images respectively. The location that the crop was made at is
also recorded, as this will be used to convert the models "relative" 6DOF,
into a 6DOF within the robots coordinate space. Once the depth and colour
images have been cropped, a python proram is used to feed the data into
a CNN model, and a "relative" 6DOF prediction is made. This in turn is
converted into the correct 6DOF. Then it is back to the LabView program,
where the prediction is loaded, and the robot moved. The clips showing
the grasping and movement of salad are filmed simultaneously, and later
synchronised with button presses.

Object-in-hand Calibration
This final clip shows how the calibration board has been attached to the
robot, and is moved around to different positions. At each position the
location of the board is recorded by saving an image, as well as the robots
position. The toolpoint used for this calibration is located in the intersection
between the two top leftmost black squares. With the checkboard pattern
it is possible to locate this same point in the images taken, allowing for a
transformation matrix to be calculated.

62



B. Salad Grasp Dataset

This appendix contains information about the salads used when generating
two datasets of salad grasps.

B.1. Salad-1 dataset, generated 06.12.2016

The first set of grasps was created from 6 salads, their weight and length
being recorded and shown in table B.1. An initial 50 grasps were done on
each head of salad. This resulted in a data set of 300 grasps.

An additional 25 grasps were made to fill in any areas where there was less
coverage then desired. The salads used for these augmenting grasps where
chosen at random. With these additional grasps, a complete data set of 325
examples was available for model training and testing.

Table B.1: Table showing the weight and length of each salad used during
the generation of the Salad-1 dataset.

weight(g) length(cm))
1 161.72 14.0
2 154.44 16.0
3 161.54 17.0
4 152.75 20.0
5 219.89 20.5
6 202.04 20.0

63



Appendix B. Salad Grasp Dataset

Figure B.1: Position and orientation of grasps when generating the Salad-1
dataset, colours differentiate between salads

B.2. Salad-2 dataset, generated 28.03.2017

In order to increase the size of the set of data available for model training
and testing, an additional 4 salads were bought. The weight and length of
each salad was recorded as shown in table B.2. These salads where used to
generate 200 more grasps of 50 each. This allowed for the total number of
examples to increase from 325 to 525. As well as increasing the variation of
salads used, from 6 to 10.

Table B.2: Table showing the weight and length of each salad used during
the generation of the Salad-2 dataset.

weight(g) length(cm))
1 203.36 20.5
2 159.36 20.1
3 238.71 17.6
4 195.51 16.3

64



Appendix B. Salad Grasp Dataset

Figure B.2: Position and orientation of grasps when generating the Salad-2
dataset, colours differentiate between salads

B.3. Merged dataset

Combining Salad-1 and Salad-2 into one large dataset produced a sample
pool of 525 different grasps. The distribution of these grasps can be seen in
figure B.3.

65



Appendix B. Salad Grasp Dataset

Figure B.3: Position and orientation of grasps in merged dataset, colours
differentiate between salads

66



C. Transformation
Matrices for
Calibration

The transformation matrices from object-in-hand calibration. The matrices
indicate where the lens of the Kinect2 IR camera is located in the Denso
robots coordinate system.

Figure C.1: The calibration board used when performing object-in-hand cal-
ibration

67



Appendix C. Transformation Matrices for Calibration

C.1. Calibration - 20161205

The calibration seen in table C.1 was performed the 5th of December 2016,
in preparation of generating the Salad-1 dataset.

Table C.1: Transformation matrix for Camera-Robot coordinate mapping.
Calibration performed 2016.12.05
0.00237327 0.998577 -0.0532766 0.599985
0.999989 -0.00214866 0.00427278 0.0398296
0.00415222 -0.0532861 -0.998571 0.992112
0 0 0 1

Average Rotation Error (deg) 0.4651
Average Position Error (mm) 2.9511

C.2. Calibration - 20170328

The calibration seen in table C.2 was performed the 28th of March 2017,
before the increased dataset Salad-2 was generated.

Table C.2: Transformation matrix for Camera-Robot coordinate mapping.
Calibration performed 2017.03.28
0.00988537 0.998723 -0.0495354 0.596485
0.999951 -0.00992022 -0.000457821 0.0401817
-0.000948639 -0.0495285 -0.998772 0.983574
0 0 0 1

Average Rotation Error (deg) 0.6173
Average Position Error (mm) 3.9686

68



Appendix C. Transformation Matrices for Calibration

C.3. Calibration - 20170620

The calibration seen in table C.3 was performed the 20th of June 2017 prior
to testing a CNN model on 10 salads.

Table C.3: Transformation matrix for camera-robot coordinate mapping.
Calibration performed 2017.06.20
0.00487752 0.99862 -0.0522947 0.597984
0.999987 -0.00480833 0.00144879 0.0406969
0.00119534 -0.0523011 -0.998631 0.991886
0 0 0 1

Average Rotation Error (deg) 0.4625
Average Position Error (mm) 3.4086

69





D. Tool-points
Tool-points are used to tell the robot where a predetermined point on an
attachment is located in relation to the robots flange.

D.1. Calibration Tool-point

The tool-point in table D.2a is used when calibrating for object-in-hand.
The position of this point, is the intersection between the two black squares
in the top left corner, as seen in figure C.1

D.2. Gripper Tool-point

The tool-point in table D.2b is located 50mm beneath the centre of the
grippers "palm". Since a quick connector is used to attach the gripper to
the arm, the tool-point also negates an offset introduced due to it not being
attached dead center.

71



Appendix D. Tool-points

Table D.1: Two tables describing the tool-points used for (a) calibration,
and (b) grasping

mm
X -25.5
Y -112.5
Z 155.7
Rx 0.0
Ry 0.0
Rz 0.0

(a)

mm
X -9.5
Y -13.5
Z 145.5
Rx 0.0
Ry 0.0
Rz 45.0

(b)

72



E. Code
The zipped file containing the code contains many different files and folders.
This is due to it containing all the LabView code required to run all the
different programs, as well as the Matlab code to generate SVR and the
pyhton code for generating and predicting CNN. This folder does not con-
tain the dataset, being several gigabytes, although spreadsheets containing
extracted data used when generating the models have been included.

E.1. LabView

LabView requires each sub-routine (SubVI) to be saved as a new file, this
means that large programs may end up consisting of many files, the relative
location of these files is also important for the program to run.

Gathering examples
The main program for controlling the complete system is called RHand_-
DENSO_KINECT_home_kinect_AXL.vi. This program was used when
generating the dataset, being able to control the robot using the STEM
system as well as save images and data.

3D Visualisation
The program for visualising the different grasps over eachother was written
in LabView, and can be found at "../iProcess/3D_Visualizer". There are
several versions of the program, all of them begining with RHAND_visual-
izer_.

Automatic Grasping
When making predictions for either SVR or CNN the programs used are
located in "../iProcess/Automatic". These programs connect to the Kinect,
in order to capture the required image, then after having used a model,

73



Appendix E. Code

move the gripper in order to grasp the salad, although they differ somewhat
depending on what model they use.

Extracting Features
For the SVR models, features had to be extracted, this was first done using
only the depth images, then later using colour as well. The SubVIs for doing
this are located at "../iProcess/FeatureExtraction".

E.2. Matlab

The folder "../iProcess/Matlab/Code" contains the code needed to generate
the SVR models. The folder "../iProcess/Matlab/Data" contains the data
that the program uses in order to generate these models. This data has
either been extracted from the images, or is gathered from the robot during
a successful grasp

E.3. PyCharm

The folder "../iProcess/PyCharm/CNN" contains the code needed to run the
CNN networks. This is both to generate the network, as well as make pre-
dictions using it. There is also a folder cnn_prediction_live for where data
is saved when transfering it between LabView and the CNN model.

74


	List of Figures
	List of Tables
	Introduction
	Motivation
	Hypotheses
	The system

	Theory and Background
	Machine Learning
	Support Vector Machines
	Deep Learning
	Previous Work

	Methodology
	Software and Hardware
	Object-in-hand Calibration
	Data-set
	Feature Extraction
	Support Vector Regression(SVR)
	Convolutional Neural Network(CNN)

	Experimentation and Results
	Support Vector Regression(SVR)
	Convolutional Neural Network(CNN)
	Comparing the best models
	Analysis

	Conclusion
	Conclusions in regard to hypotheses
	Key Results
	Further Work

	Acronyms
	Bibliography
	Video
	Salad Grasp Dataset
	Salad-1 dataset, generated 06.12.2016
	Salad-2 dataset, generated 28.03.2017
	Merged dataset

	Transformation Matrices for Calibration
	Calibration - 20161205
	Calibration - 20170328
	Calibration - 20170620

	Tool-points
	Calibration Tool-point
	Gripper Tool-point

	Code
	LabView
	Matlab
	PyCharm


