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Abstract 
In this study, parameters influencing the adsorption of dispersed oil droplets to suspended 

particulate matter (SPM) in seawater were investigated. The interaction between oil and 

SPMs can alter the ultimate fate of oil spilled in marine environments, and it is therefore of 

interest to be able to predict the effect of these interactions. The chosen parameters of this 

study were sediment type (carbonate sand, quartz sand and clay) and concentration (5-80 

g/L seawater), temperature (5-20 °C) and oil type (two crudes, one condensate and a heavy 

fuel oil). Special attention was given to the effect of adding chemical dispersant to the oil 

prior to mixing with water and SPMs. 

The experimental outline included the mechanical generation of oil droplets using an oil 

droplet generator. Water with oil droplets were added to a beaker with sediment and a 

suspension was induced by stirring. After settling and filtration, both the water samples and 

the sediment samples were subject to extraction, clean-up and analysis by GC-FID. A 

selection of samples was also analysed by GC-MS. 

The study shows that oil droplets adsorb as a bulk to SPM. An absence of water-soluble oil 

components adsorbed to the sediment was observed. Oil type, sediment size and the use of 

chemical dispersant stand out as most influencing on the adsorption properties of oil 

droplets to SPM in seawater. The effect of varying temperature was not considerable 

compared to the other parameters in this study. Partitioning of oil components to the water 

column was also monitored in this study, and found not to be influenced significantly by any 

of the studied parameters.  
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Sammendrag 
I denne studien ble det undersøkt hvordan en rekke parametre ville påvirke adsorpsjon av 

oljedråper til suspendert partikulært materiale (SPM) i sjøvann. De undersøkte parametrene 

var sedimenttype (karbonat sand, kvartssand og leire) og konsentrasjon (5-80 g / L sjøvann), 

temperatur (5-20 °C) og oljetype (to råoljer, et kondensat og en bunkerolje). Spesiell 

oppmerksomhet ble viet effekten av å behandle oljen med kjemisk dispergeringsmiddel før 

interaksjon med SPM. 

Den eksperimentelle prosedyren inkluderte bruk av en oljedråpegenerator som dispergerte 

olje mekanisk i sjøvann. Sjøvann med oljedråper ble tilsatt i et begerglass med sediment, og 

en suspensjon ble indusert ved omrøring. Etter sedimentering og filtrering, ble både 

vannprøver og sedimentprøver ekstrahert og renset opp. Alle ekstrakter ble analysert ved 

hjelp av GC-FID.  Et utvalg prøver ble også analysert på GC-MS. 

Studien viser at oljedråper adsorberes som en bulk til SPM. Fravær av vannløselige 

komponenter i den sedimentadsorberte fraksjonen ble observert. Oljetype, 

sedimentstørrelse og bruk av kjemisk dispergeringsmiddel var de parametrene som hadde 

størst påvirkning på oljedråpenes adsorpsjonsegenskaper til SPM i sjøvann. Effekten av 

temperaturvariasjoner var ikke betydelig i forhold til de andre parameterne i denne studien. 

Oppløsning av oljekomponenter i vannsøylen ble også overvåket, men studien viser ingen 

betydelig effekt av de undersøkte parametrene på konsentrasjonen av oljekomponenter i 

vannsøylen.   
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1 Introduction 

1.1 Oil spills 

Oil may enter the environment from both natural and anthropogenic sources. The largest 

proportion of petroleum entering the environment comes from natural sources (Wang and 

Stout 2007). However, the International Tanker Owners Pollution Federation (ITOPF) report 

that accidental oil spills have released approximately 5 700 000 tons of oil into our seas since 

the 1970’s (ITOPF, 2011). 

ITOPF has collected data on oil spills worldwide since the 1970’s and now hold a database 

including more than 10 000 incidents. The data clearly indicate an improvement over the 

decades, demonstrating how the number of major (>700 tons) and medium (7-700 tons) oil 

spills have declined (Figure 1.1).  

 

 

Figure 1.1 - Major and medium oil spill incidents since the 1970's (http://itopf.com/information-

services/data-and-statistics/statistics/index.html, Accessed 23.03.12) 

 

During the years 2000-2009, a total of 211 000 tons of oil was spilled at sea. In 2010 12 000 

tons were spilled, representing four different large-scale releases from vessels. This does not 

include the Deep Water Horizon disaster in the Gulf of Mexico, where it is estimated that 

nearly 800 million litres of oil were spilled during a underwater blow-out (DHNRT, 2011). 
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2011 represents a historical low, with only one major oil spill incident recorded, and the 

amount of oil spilled 1 000 tons (ITOPF, 2011) 

Sizeable oil spill events receive broad media coverage due to the possible environmental 

implications, e.g. on the local fauna. It is evident that pictures such as Figure 1.2 and 1.3 will 

evoke interest and emotions in the public.  

 

 

Figure 1.2 - Bird covered in oil (http://oilgastrends.com/wp-content/uploads/2011/06/oil-spills-effect-on-

bird.jpg) 

 

Immense recovery operations are often necessary to restore the shoreline after an oil spill. 

The picture in Figure 1.3 is shot during the clean-up after stranding of oil from the shipwreck 

of the tanker Server in Fedje, Norway in January 2007. It is obvious that having correct and 

efficient countermeasures is important to preserve wildlife and economic interests in 

exposed areas. 
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Figure 1.3 - Oil spill on shoreline after the 2007 Server incident in Norway 

(http://www.aftenposten.no/migration_catalog/article5841707.ece/BINARY/w780/DSC_0057.jpg) 

 

Oil spilled at sea may have a number of “final destinations”. The worst case scenario is often 

identified as the stranding of oil on shorelines, with the damage to beaches, fauna and 

human installations this might cause. However, the dissolution and dispersion of oil into the 

water column (as droplets or individual components) or the sedimentation of oil to the 

bottom sediments on the seafloor may also cause severe damage on marine eco-systems 

(Carls et al., 2008, Ho et al., 1999, Neff et al., 1976) . 

 

1.1.1 Concerns for the Norwegian coastline 

Despite the statistically declining risk of a major oil spill occurrence, there are growing 

concerns for acute spills along the Norwegian coastline. This is due to the observed increase 

in ship traffic during the last decade. Special concern is linked to the increasing number of 

vessels from Russia, transporting crude oil along the entire Norwegian coast. Also, oil 

production platforms are now being installed closer to shore and oil resources are explored 

in deeper water and farther north (closer to ice-covered areas) than before, thus increasing 

the risk of severe spill incidents (Daling et al., 2002). 
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The effective length of the Norwegian coastline, characterized by its long fiords, archipelago 

and islets, is vast.  Due to Norway being sparsely populated, the local infrastructure of 

coastal regions may often be insufficient in the case of a major oil spill event demanding fast 

response and extensive allocation of personnel and supplies (Daling and Brandvik, 2010). 

 

1.1.2 Oil spill modelling – predicting the fate of oil spills 

It is desirable to be able to predict the fate of oil spilled at sea in order to choose the correct 

means of oil spill response, both for operation at sea and for shore-line clean-up. Also, the 

forecasting of oil spills is important to be able to assess the environmental impact they might 

lead to. Numerical oil spill models have been developed, and are used to predict the fate, 

and hence the impact, of present and future oil spills (Reed et al., 1995). 

A numerical model is based on the experience gained in a series of bench-scale studies, 

some meso-scale studies and a few full scale studies. As many parameters as practically 

possible are varied, in order to be able to model any kind of spill situation (Daling and Strøm, 

1999). 

When planning oil spill response strategies one must often compromise between what is 

most ecologically and economically beneficial.  A relatively new approach, the use of 

chemical dispersants to break up surface oil slicks is regarded as a cost-efficient response 

method (Li et al., 2009). But there is still need for a deeper understanding on how 

dispersants and dispersed oil droplets will behave in the marine environment (Fingas, 2011). 

 

1.2 Weathering of oil 

When oil is spilled at sea, it will undergo numerous chemical, physical and biological 

processes. These processes are collectively referred to as weathering. The most important 

weathering processes include spreading, evaporation, dissolution, dispersion into the water 

column, water-in-oil emulsification, photochemical oxidation, microbial degradation, 

adsorption to suspended particulate matter and stranding on the shore or sedimentation to 

bottom sediments (Wang and Stout, 2007). Figure 1.4 describes these processes. The 

processes marked with yellow are of importance to this study. 
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Figure 1.4 - An overview of processes that influence the weathering of oil at sea (SINTEF Materials and 

Chemistry). 

 

Evaporation and dissolution will significantly alter the composition of the oil, as volatile and 

water-soluble components are lost from the bulk. Along with emulsification, these processes 

will also alter the physical properties of the bulk oil, such as its density and viscosity, and this 

will affect its further fate in the environment. 

The time-scale of domination of different weathering processes’ varies greatly. Evaporation 

will affect the spill immediately and remain an important factor for the time span of a few 

days to a couple of weeks. At the other extreme, microbial degradations is slow and can be 

of influence several years after the spill incident (Wang and Stout, 2007). 

Some processes (e.g. spreading) do not directly alter the composition of the oil, but will 

influence on the rate of other processes. When making an oil spill model (see Chapter 1.1.2), 

it is important to consider all relevant weathering processes, that can alter the fate of oil in 

the environment (Daling and Strøm, 1999). In the following sections, the dispersion and 

sedimentation of oil is reviewed.  
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1.3 Dispersion of oil 

1.3.1 Natural dispersion of oil 

One of the most significant natural processes that affect oil spilled at sea is mechanical 

dispersion into the water column. Oil spills often coincide with poor weather conditions. 

Heavy wind causes turbulent conditions at the sea surface (wave action) and this might lead 

to the breaking up of oil slicks into small droplets (<100 µm). These droplets become 

dispersed into the water column (Muschenheim and Lee, 2002). As a consequence of 

dispersion, the surface area of the oil increases and this makes the rate of other weathering 

processes increase (Venosa and Holder, 2007, Fiocco and Lewis, 1999, Chapman et al., 

2007). 

 

1.3.2 Chemical dispersion and dispersants 

Chemical dispersants especially designed to disperse oil slicks have been developed and 

become a part of current oil spill response strategies. The aim of the dispersant is to prevent 

the surface oil reaching coastlines by dispersing it in the water column. 

The application of chemical dispersants to an oil slick will result in the formation of more oil 

droplets and droplets of reduced size, when compared to naturally/mechanically dispersed 

oil (Khelifa et al., 2008, Li et al., 2007, Li and Garrett, 1998, Li et al., 2009).  

Studies have seen that oil treated with dispersants more easily biodegraded than un-treated 

oil. A plausible explanation for this observation is the reduction in oil droplet size (increase in 

surface area) (Zahed et al., 2010, Venosa and Holder, 2007, Swannell et al., 1997).  

Due to rapid dilution, dispersed oil droplets have not been observed to have significant 

detrimental effects on marine organisms. In the case of minor effects, biological recovery 

has been rapid. The maximum observed concentration of oil in water after dispersion is 10-

40 ppm (close to the surface). It is not observed that chemically dispersed oil sink (Lessard 

and DeMarco, 2000). 
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The chemistry of dispersants 

Chemical dispersants used in oil spills are a mixture of surfactant in a solvent, and therefore 

not so different from any household detergent (see Figure 1.5).  

 

 

Figure 1.5 - Surfactant molecule, with a long hydrophobic, unpolar chain and a hydrophilic polar “head”. 
(http://www.scienceinthebox.com/en_UK/glossary/surfactants_en.html) 

 

Common solvents for the dispersant surfactants include water and glycol.  The solvents 

function is to behave as a liquid carrier for the surfactants. The percentage of solvent to 

surfactant ranges from 20-80 % (Fingas, 2011, Lessard and DeMarco, 2000, Fiocco and Lewis, 

1999).  

 

How does dispersants work? 

Figure 1.6 illustrates what happens when a dispersant is sprayed on an oil slick. The 

dispersant reduces the surface tension of the oil and stabilizes the formation of droplets, 

normally sized 10-15 µm (Fingas, 2011, Lessard and DeMarco, 2000, Fiocco and Lewis, 1999). 
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Figure 1.6 - Dispersant effect on oil slick. 1) Oil and water do not mix. Dispersant is added 2) Dispersant 
surfactants align along the oil-water interface with polar end in water. 3) Oil slick is dispersed as droplets 
stabilized in the water by the surfactants (Lessard and DeMarco, 2000). 

 

In the case of an oil spill, the decision to apply oil spill dispersants must be determined by a 

Net Environmental Benefit Analysis (NEBA), which is defined as follows (Fiocco and Lewis, 

1999, Daling et al., 2002): 

 

“Weighing of advantages and disadvantages of alternative oil spill responses for all aspects 

of environmental effects compared with no response.”  

 

Historically, oil spill dispersants have not been used much. This is due to potential ecological 

damage caused by overdose treatments and the use of dispersants those themselves proved 

to be toxic. Through the development of better products, it has become more accepted to 

use dispersants over the last ten years. In addition to being less toxic, the “new” dispersant 

are also more effective (less dispersant per amount of oil necessary). More efficient tools for 

application (e.g. from vessels or plain) have also been developed (Daling et al., 2002). 

Normal dosage of dispersant today is 1-5 % of the oil slick (Fiocco and Lewis, 1999). The 
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efficiency of chemical dispersants has been shown to be related to the dispersant type, 

water temperature, oil type and weathering degree of the spilled oil (Fingas, 2011, Li et al., 

2010). Dispersants have been used with great success in several events, amongst them the 

Sea Empress incident in the UK in 1996 (Lessard and DeMarco, 2000). 

 

1.4 Sedimentation of oil 

There are three different routes that may lead oil to sink and be incorporated into bottom 

sediments. Firstly, if weathering processes make the oil’s density exceed 1 g/L, the oil will 

submerge and sink. Secondly, the oil can be ingested by organisms and transported to the 

bottom by these. Thirdly, oil can interact with suspended particulate materials (SPM) to form 

agglomerates and sink when the combined density of oil and particulates is high enough 

(Boehm et al., 1982). Sedimentation of oil has been observed empirically after several oil 

spill incidents, and two cases are presented here. 

 

Tsesis oil spill (1977) 

The tanker Tsesis grounded in the Swedish archipelago on 26 October 1977 and spilled 300 

tons of fuel oil into the environment. It has been estimated that 10-15 % of this oil was 

incorporated into bottom sediments by sedimentation with suspended particulates (Boehm 

et al., 1982, Johansson et al., 1980, Payne et al., 2003). Studies by Johansson et al. (1980) 

and Boehm et al. (1982) demonstrated that the sedimentation of the oil impacted both the 

weathering rate of the oil (increased) and the negative impact on organisms, which was 

lower than expected. 

 

Braer oil spill (1993) 

On 5 January 1993, 85 000 tons of Gullfaks crude oil was spilled off the coast of Shetland. 

The rough weather conditions with heavy wind made the oil quickly disperse completely into 

the water column, and no oil was stranded. It is estimated that approximately 35 % of the oil 

ended up in sediments. Following the spill, several studies of its environmental impact have 

been carried out, and the general outcome is that ecosystems received little impact, and 
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were restored to normal within a year of the release (ESGOSS, 1994a, ESGOSS, 1994b, Edgell, 

1994, Law and Moffat, 2011, Thorpe, 1995, Turrell, 1994).  

Once oil has been incorporated in still sediments, experiences show that biodegradation and 

weathering rates decline considerably. This is due to the oil being enclosed in the sediment, 

and therefore protected from erosion, evaporation and other ambient processes. Oxygen 

supply is at a minimum, and this inhibits microbial degradation (Muschenheim and Lee, 

2002, Taylor and Reimer, 2008, Atlas, 1981, Garcia de Oteyza and Grimalt, 2006).  

 

1.5 Interactions between oil and suspended particulate matter 

Particulate material present in aqueous environments is a known pollutant scavenger 

through the routes of adsorption, flocculation and complexation. Compounds that are 

insoluble in water will have a greater affinity for particle surfaces. The interaction between a 

pollutant and particulates might significantly alter its bioavailability (Stumm and Morgan, 

1996, Manahan, 2005, Skoog, 2004). These interactions will also lead to the transportation 

of pollutants to the seafloor, and reduced residence time in the water column has been 

observed for pollutants in waters with high SPM-loads (Boehm, 1987). Hence, areas of high 

sediment deposition will experience a concentration of pollutants within the sediments. 

Using a numerical model, Bandara et al. (2011) showed that more than 80 % of spilled oil can 

interact with suspended particulate materials (SPM), and that up to 65 % of released oil may 

be removed from the water column as oil-sediment aggregates. In contrast, Muschenheim 

and Lee (2002) have reviewed field and enclosure studies and noted that the general opinion 

is that a maximum of 20-30 % of the spilled oil can be sedimented. Payne et al. (2003) 

emphasize the importance of considering the sources of both SPM and oil droplets when 

modelling their interactions. Organic and inorganic particles of both natural and 

anthropogenic origin will be present in marine waters, of which this text will focus on 

natural, inorganic particles (sediments). Some important sources of inorganic SPMs are the 

following (Payne et al., 2003): 

- resuspension of bottom sediments 

- advective input from rivers, streams and glaciers 

- physical scouring of shoreline sediments by wave turbulence 

- aerolian transport 
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Oil droplets may be formed by turbulence at the sea surface where oil is spilled or by 

dispersion of whole oil-droplets from oil-in water emulsions Also, individual oil components 

may be dissolved both from oil droplets and from oil at the water surface, and these may 

adsorb to SPM on a molecular level (Payne et al., 2003, Bandara et al., 2011). 

 

1.5.1 Mechanism for incorporation of oil in suspended sediments 

The generally accepted model states that oil-SPM aggregates form when oil droplets collide 

and adhere to suspended matter in aqueous environments (Ajijolaiya et al., 2006, Payne et 

al., 2003). Guyomarch et al. (2002) suggest that formation of oil-mineral aggregates is 

caused by interactions between polar oil compounds and negatively charged sediment 

particles.  

When turbulence in the water column is not sufficient to maintain a suspension of oil 

droplet-SPM agglomerates, the oil laden particles will sink and hence the oil is incorporated 

into the bottom sediment (Payne et al., 2003).  

Payne et al. (2003) insists on a limited time-window for the incorporation processes to take 

place after a spill incidence. Weathering processes (evaporation, dissolution, formation of 

emulsions) will act upon the oil to increase its viscosity. It was found that the first 48-hours 

were the most important period for oil-SPM interactions.  After this time, the increased 

viscosity of the oil will make the interactions less effective.  

Several studies have looked at the influence of water salinity on the formation of oil-SPM 

agglomerates. Guyomarch et al. (2002) found that increasing salinity required increasing 

concentration of SPMs to maintain a constant number of aggregates formed. Still, the 

highest rate of oil-SPM aggregate formation is achieved at lower intermediate salinity 

ranges. Freshwater demonstrates the least inviting environment for aggregation. (Bassin and 

Ichiye, 1977, Khelifa et al., 2005a, Muschenheim and Lee, 2002).  

 

1.5.2 Factors determining droplet-particle interaction and adsorption kinetics 

From empirical studies, Kirstein (in Payne et al. (1989)) derived a mathematical description 

(Equation 1.1) for the rate of loss of free oil droplets from the water column, as they collide 

and adhere to SPM (C: concentration of oil droplets (mg/L); S: concentration of SPM (mg/L); 



 Introduction 
 
 

  
12 

 
  

α: an SPM “shape, size and sticking” coefficient; ε: the energy dissipation rate (per mass of 

fluid); ν: the kinematic viscosity of the water). 

 

/ 1.3dC dt CSεα
ν

= −    (1.1) 

 

The equation is meant to describe the well-mixed reaction conditions that are encountered 

in the near-shore/surf-zone waters with high SPM loads (Payne et al., 1989). From a 

qualitative point of view, the equation demonstrates that both oil droplet concentration, 

SPM-concentration and SPM-characteristics will be of importance to the adhesion of oil 

droplets to sediment. A linear relationship between the amounts of oil sorbed (lost from the 

water column) and the SPM-load in the water column is expected. Sediment characteristics 

(such as size) are also expected to be linearly related to the amount of oil sorbed. 

 

1.5.3 The transport of oil to bottom sediments 

Boehm (1987) describes how different SPM loads influence the transportation of oil to the 

seabed. He concludes that in order to sediment a significant fraction of the oil, a SPM load of 

> 100 mg/L is necessary. When the load is less than 10 mg/L, no transport is observed. The 

transport abilities of intermediate loads depend on conditions that promote oil-SPM 

interactions, such as turbulent mixing. Hence, the interactions will probably not be 

significant for transport of oil at open sea, but can be of influence in shallow water, 

especially with turbulent conditions whirling up sediments (Payne et al., 2003). This is 

illustrated by Figure 1.7. 
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Figure 1.7 - Illustration of how increased concentration of suspended particulate material (SPM) promotes 
sorption and sedimentation of oil from a spill source. Facsimile from Boehm (1987). 

 

1.5.4 Appearance of oil adhered to sediment 

The physical behaviour of oil when adhered to sediment can be of importance to its further 

fate, such as weathering and sinking to the bottom. Delvigne (2002) studied the physical 

appearance of oil in oil-contaminated sediment. It was suggested that the parameters 

governing the physical characteristics of oil in sediment are: 

- the interaction mechanism between oil and sediment 

- the oil type 

- the sediment type 

- the concentration of oil 

- degree of weathering of oil 

Using both natural, contaminated sediment and simulated sediment, he found that the oil 

might be present in three different phases: as droplets, coated on sediment particles and as 

“oil patches”. The droplets were either covered with sediment particles or encapsulated in 

the sediment mass as agglomerates. Delvigne (2002) concluded that the majority of oil in 

subtidal sediments exists as discrete droplets. The size distribution of these droplets will 

depend upon oil type and the turbulent energy at the sea surface. 
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1.6 Effects of chemical dispersants on the formation of oil-SPM-aggregates 

The formation of aggregates between SPM (suspended particulate material) and 

mechanically dispersed oil is described in Chapter 1.5. This chapter will describe what is 

known about the influence of chemical dispersants on the formation of oil-SPM aggregates.  

Existing studies show conflicting results on how dispersants affect adsorption properties of 

oil droplets. (Mackay and Hossain, 1982) found that chemically dispersed oil associated less 

with mineral matter than naturally dispersed oil would. However, others, e.g. (Guyomarch et 

al., 2002, Khelifa et al., 2008, Khelifa et al., 2005a, Sun et al., 2010), have found that oil and 

suspended material will form aggregates efficiently despite dispersant being added.  

Khelifa et al. (2008) studied the sedimentation of oil-SPM-aggregates with and without 

dispersant for different concentrations of particulates (fine clay in the range 0,1-10 µm). It 

was found that the formation of oil-SPM aggregate formation was the same, regardless of 

dispersant application, and concluded that chemical dispersants did not form a barrier to oil-

SPM aggregation. Actually, for low particle loads (< 25 mg/L) the dispersant increased oil 

sedimentation with a factor of 3-5. 

Khelifa et al. (2008) points to three important reasons for expecting chemical dispersants to 

alter the formation and fate of oil-SPM-aggregates, namely: 

- the reduction in size and increase in concentration of oil droplets in the water 

column, 

- the alteration of surface properties of the oil droplets 

- that the smaller, chemically dispersed droplets will require less solid material (fines, 

clay) in order to sink  

Simulations by Bandara et al. (2011) showed that the presence of smaller droplets (< 0,1 

mm) increased the predicted amounts of oil-SPM aggregates formed. The suggested 

explanation for this is that the droplet residence time in the water phase is prolonged due to 

the decreased buoyant velocity of smaller particles, and this allows for more interactions 

with suspended matter. 

Lessard and DeMarco (2000) present one of the advantages of dispersant application as the 

reduction of “stickiness” of the oil. Therefore, it is seen as less likely that the chemically 

dispersed oil droplets will adhere to suspended sediments and other solids. 
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1.7 This study  

At present there is still a knowledge gap concerning the fate of (chemically) dispersed oil in 

the marine environment. Adsorption onto suspended particulate matter is one potentially 

important route of fate for such dispersed oil droplets. This study will focus on the 

parameters governing oil-SPM interactions, with the use of dispersant as one of the 

parameters. The influence of other relevant parameters, including oil type, type of adsorbing 

particulate matter (sediment characteristics), and temperature are also investigated in this 

study. 

 

Sediment  

Processes governing adsorption of oil to sediment will be different for scenarios in open 

water and near shore. The depth of water and the amount of sediment dispersed in the 

water column will differ significantly for these two scenarios (Boehm, 1987, Payne et al., 

2003). In this study, the focus will be on the coastal region, from the shoreline and islets to 

some hundred meters ashore. 

Near-coast areas can be characterized by the energy from wave and wind action that they 

are exposed to. In high energetic areas, larger mineral particles of sands and carbonate will 

be drawn up into the water column. In lower energy areas, smaller particles, such as silt and 

clay might exist in suspension equilibrium (Bjerkli, 2011). The experiments conducted in this 

thesis are designed to be of sufficient energy for the suspension of particles with a size up to 

2mm. Clay, quartz sand and carbonate sand is used in the study in order to see if particle 

characteristics such as size and mineral composition make a difference in the bulk amount of 

oil adsorbed. Different sediment concentrations are also tested. 

 

Oil  

Four different oil types are chosen for the study, comprising two crude oils, one condensate 

and one heavy fuel oil. All oils, except the fuel oil, are weathered synthetically in the 

laboratory prior to use in the study.  
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A crude oil is used for the main section of the experiments, and its adsorption is compared 

to that of the other oils. It is suggested that the difference in content of heavier 

components, such as asphaltenes will be of importance to the bulk adsorption. It is also 

investigated whether this difference can be spotted by component analysis by GC-MS. 

Throughout the experiments, the oil concentration (generated droplets in the water) was 

held constant at 20 mg/L.  

 

Temperature 

Throughout the year, the Norwegian coastline is characterized by great diversity in seawater 

temperatures. Therefore the temperature of the experiments in this study was varied from 

18-20 °C (shallow water in warm summers) to 4-5 °C (deeper water and/or winter 

temperatures).  

 

Dispersant 

The chemical dispersant used in this study was “Dasic Slickgone NS 2011-0300”, at two 

different ratios of dispersant to oil (1 % and 5 % by volume). The ratios were chosen as the 

minimum and maximum concentrations that are part of current government 

recommendations for spill scenarios. 

 

1.7.1 Project aim and objectives 

The aim of the project is to study the adsorption of dispersed oil droplets to particulate 

materials when oil is released into the marine environment. 

There are two main objectives to this thesis.  

- To determine which petroleum derived compounds preferentially adsorb to the 

surface of particulate material and which remain in solution.  

- To assess the effects on the adsorption process by varying a selection of parameters.  
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2 Theoretical background 

2.1 Crude oil  

Petroleum (Latin; Petra: rock; oleum: oil) is a naturally occurring, complex mixture of 

hydrocarbons and organic compounds. More than 97 % of petroleum is composed solely of 

hydrogen and carbon. Sulphur, nitrogen, oxygen and some trace metals (e.g. vanadium and 

nickel) comprise the smaller fraction of elements present in petroleum (Hunt, 1996).  

Petroleum is commonly divided into four main sub-categories, namely crude oil, natural 

gas/condensates, solid bitumens and oils sand (Wang and Stout, 2007). This text will focus 

on crude oil. 

Crude oil is a liquid mixture that includes a huge variety of different compounds, ranging 

from the smallest and simplest molecules (e.g. methane) to large and very complex 

molecules, such as the asphaltenes (Wang and Stout, 2007). All crude oils contain both 

aliphatic and aromatic hydrocarbons, as well as non-hydrocarbons, but the proportions of 

each, and distribution of compounds within each class might vary extensively between 

different crude oils (Tissot and Welte, 1984). This variation in composition is due to the 

corresponding variation in natural processes and conditions that govern the formation of 

crude oil. This means that no crude oil has the same “chemical fingerprint” (Wang and Stout, 

2007). 

 

2.1.1 Formation of crude oil 

Petroleum originates from biological material, such as bacteria, algae, higher plants and 

dead animals. Through the complex process called thermal maturation, these materials are 

broken down. There are three main processes governing the outcome of thermal 

maturation, namely diagenesis, catagenesis and metagenesis, where the two former are 

responsible for the formation of petroleum (Hunt, 1996, Tissot and Welte, 1984, Wang and 

Stout, 2007). 

Diagenesis consists of two phases. In the first phase, biological material is buried by 

sedimentation. Next, temperature and pressure acts on the material in order to break down 

the organic compounds it consists of. Also, biodegradation of the oil by bacteria and 

chemical reactions such as oxidation, dehydration and decarboxylation will assist in the 
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transformation of the material. The primary products of diagenesis are called kerogen and 

bitumen. 

Kerogen is a mix of preserved and resistant cellular organic materials from algae, pollen, 

spores, leaf cuticles and degraded residues of less resistant organic matter. It is the variation 

in kerogen composition, determined both by the starting biological material and the 

parameters governing diagenesis that form the basis of the crude oils composition (Tissot 

and Welte, 1984). 

The cracking process that transforms kerogen into liquid or gaseous hydrocarbons is called 

catagenesis. The process takes place in the temperature range of 50-250 °C, and results in 

the formation of the main hydrocarbons of oil and gas (Tissot and Welte, 1984). 

 

2.1.2 Crude oil composition 

Petroleum is a mixture of several different groups of organic compounds, where 

hydrocarbons, aliphatic and aromatic, constitute the major component of crude oil. 

Hunt (1996) sub-divide the constituents of petroleum into five groups based on molecular 

structure. The following will describe these groups. Petrology terms for the chemical groups 

are given in headline parentheses’.  

 

Alkanes (Paraffins)  

The first group of saturated hydrocarbons is known as the alkanes, and consists of the n-

alkanes (straight chain) and branched alkanes (iso-alkanes). One important sub-group of 

paraffins are waxes (straight chain alkanes of more than 20 carbon atoms). The normal 

content of wax in crude oil is 2-15 % (CEN, 2006). The general molecular formula of alkanes 

is CnH2n+2, and some examples of structure are given in Figure 2.1. 
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CH4

methane octane 4-isopropyl-3,6-dimethyloctane
 

Figure 2.1 - Examples of alkanes  

 

Cycloalkanes (Naphthenes) 

Aliphatic compounds of cyclic structure are known as cycloalkanes, and some examples of 

these are given in Figure 2.2. The general molecular formula of cycloalkanes is CnH2n. Due to 

stability constraints, cycloalkanes normally consist only of 5-6-membered rings. The average 

crude oil consists of 50 % naphthenes (Hunt, 1996). 

 

cyclohexane 2-ethyl-4-hexyl-1-methylcyclohexane  

Figure 2.2 - Examples of cycloalkanes  

 

Alkenes (Olefins) 

Alkanes and cycloalkanes are known as saturated compounds, since all available carbon 

bonds are saturated with hydrogen. However, this is not the case for alkenes, which contain 

one or more double between carbon atoms and are therefore unsaturated with hydrogen. 

This unsaturation means that the alkenes are much more reactive than the saturated 

compounds (Hunt, 1996). This instability makes small alkenes rare in crude oil (Tissot and 

Welte, 1984) 
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Arenes (Aromatics) 

Aromatics molecules usually include 1-5 aromatic rings (like the benzene ring in Figure2.3), 

and homologues with side chains of straight or branched nature. Aromatics with two or 

more aromatic rings are known as polycyclic aromatic hydrocarbons (PAH). Two examples of 

PAHs (benzo[a]pyrene and phenanthrene) are given in Figure 2.3. Crude oil normally 

contains a maximum of 15 % aromatics, but the group is often concentrated in more heavy 

oil fractions (Hunt, 1996, Tissot and Welte, 1984). 

 

benzene benzo(a)pyrene phenanthrene
 

Figure 2.3 - Examples of aromatics  

 

NSO-compounds and asphaltics 

Compounds containing the elements nitrogen, sulphur and oxygen are known as NSO-

compounds. Examples of small NSO’s are given in Figure 2.4. NSO-compounds of high 

molecular weights (>700) are known as resins. Resins are surface active compounds, like 

carboxylic acids and phenol-like compounds (CEN, 2006).  

 

O

OH

benzylic acid

OH

phenol

S

O

2H-thiochromene 1-oxide  

Figure 2.4 - Examples of NSO-compounds  
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Along with the resins, asphaltenes make up the group known as asphaltics. Asphaltenes are 

large molecules (molecular weight>1000) that consist of condensed PAHs. Asphaltenes are 

regarded as the most polar constituents of crude oil (CEN, 2006, Jamialahmadi et al., 2009).  

 

UCM’s 

All crude oils and especially weathered oils will contain what is known as an unresolved 

complex mixture (UCM). In a chromatogram (see Chapter 2.6), the UCM is visible as a raised 

baseline hump. The chemical composition of the UCM will vary extensively between oils due 

to their previously described differing formation processes. Degradation of the oil by 

weathering (see Chapter 1.2) will enhance the UCM-proportion of the oil.  

Killops and Aljuboori (1990) found that a typical UCM contained mainly aliphatic compounds, 

a large proportion of them cyclic. Later studies have discovered the variation in UCM’s 

between crudes is vast and that the contribution from aromatic compounds and polar 

compounds can be significant (Booth, 2004, Booth et al., 2007, Melbye et al., 2009). The 

UCM is thought to comprise hundreds of thousands of alkylated analogues of well 

established crude oil compounds, such as benzenes, naphthalenes, phenanthrenes etc. 

The reason for the overlapping nature of the UCM in chemical analysis is that the boiling 

points of the individual components are similar and therefore irresolvable (Frysinger et al., 

2003, Killops and Aljuboori, 1990, Wang and Stout, 2007). 

 

2.2 Refined oil products 

Crude oil is a complex mixture, and therefore oil refineries fractionate the hydrocarbon 

constituents in a way that allows for a more efficient utilization of the compounds energetic 

properties. Distillation (atmospheric and/or vacuum) is one of the central operations in 

crude oil refining. During this process, the oil is fractionated by boiling point ranges (Speight, 

2007).  
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2.2.1 Heavy fuel oil (HFO) 

The highest boiling compounds (t>350 °C), heavy gas oil and the distillation residue are 

combined to what is known as heavy fuel oil (HFO). The composition of HFO depends on the 

refining process, and is therefore individual for fuel oils from different refineries. HFOs are 

classified by IFO-grades (Intermediate Fuel Oil), where the oils are graded after their 

viscosity, measured in centistokes (cSt), at 50 °C. Thus, IFO 380 has a viscosity of 380 cSt (at 

50 °C). Heavy fuel oils are used as fuel in ships and on thermal and power plants on land 

(CEN, 2006, Speight, 2007). 

 

2.3 Properties of oil 

As oils vary in chemical composition, their physico-chemical properties will vary consistently. 

Some important properties are described here. 

 

2.3.1 Boiling point 

The lighter the oil, the more volatile the major proportion of components in the oil. Small, 

straight chain hydrocarbons often have the lowest boiling points. The proportion of volatile 

compounds in oil will determine the evaporative loss in an oil spill incident. This loss can be 

simulated in the lab by “topping” the oil, which means a stepwise distillation until a specific 

temperature (100-250 °C) is reached. A oil that is “topped 250+” should have suffered 

evaporative loss equal to 5 days at open sea (Daling et al., 1997).  

 

2.3.2 Solubility 

Although most hydrocarbons are regarded as “insoluble” in water, all molecules will dissolve 

to some extent. How soluble a specific compound is, depends on its structure. Generally, 

small molecules with polar functional groups are more soluble than more complex 

molecules. Also, small aromatics tend to be relatively more soluble than other heavy oil 

components (Booth, 2004, Carey, 2006). Within a homologous series, higher substitution will 

reduce the water solubility (Tolls et al., 2002). 
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A simple overview of the relative solubility of oil component groups is found in (CEN, 2006), 

and cited here: 

 

Hetero compounds > aromatic hydrocarbons > saturated hydrocarbons  

 

To describe how a given molecule will distribute between water and a non-polar 

environment, the octanol-water coefficient (KOW) is an established surrogate. The coefficient 

of a compound (A) is determined experimentally using a two-phase system consisting of 

water and n-octanol. Equation 2.1 below describes the calculation, where [Aoctanol] is the 

concentration of A in n-octanol and [Aaq] the concentration in water. Values for octanol-

water partition are often given as log KOW, where the higher value the less water soluble a 

compound is. 

 

octanol

aq

[A ]
[A ]OWK =     (2.1) 

 

Raoult’s law (Equation 2.2) describe the concentration (CAW) of a given compound (A) 

dissolved in the aqueous phase, based on its solubility in water (CAW*) and the molar fraction 

(XOW) of A in a solid or liquid that shares an interphase with water (Helbæk and Kjelstrup, 

2006). Sterling Jr et al. (2003) and Faksness et al. (2008) use the equation to describe the 

dissolution of individual compounds from oil in the water (surface slick or droplets). 

 

*
AW AW AOC C X= ⋅     (2.2) 

 

2.3.3 Density 

Density (weight/volume) can be seen as an indication of an oils composition. Oils of low 

density (~0,7-0,8 g/mL) are often rich in paraffinic components of low molecular weight. Oils 
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with high content of aromatics, naphtenes and asphaltenes will have higher densities (up to 

0,99 g/mL) (Speight, 2007). 

 

2.3.4 Viscosity 

Viscosity is defined as a liquids inner friction (resistance to flow). The viscosity of an oil type 

depends on the viscosity of its components, where low molecular weight compounds tend to 

have the lowest viscosity and vice versa. Viscosity is measured in Poise (1 P = 1 dyn*sec/cm3) 

(Speight, 2007). 

 

2.4 Geology 101 

The aim of this section is not to go in detail on geological phenomena, only to clarify some 

definitions relevant to the experimental work conducted as part of this thesis. 

Most rocks are aggregates of minerals, where the silicate minerals are the most common. 

Another important class of minerals are the carbonates. Table 2.1 gives an overview of the 

common particulates found in marine environments, and their typical size distributions. 

 

Table 2.1 - Size of different inorganic particulates (Adapted from Pipkin et al. (2005)). 

Particulate Size 
Gravel > 2 mm 
Sand 62 µm – 2 mm 
Silt 4 µm – 62 µm 
Clay < 4 µm 

 

An important constituent of sand and silt is the mineral quartz (SiO2). Clay has a different 

chemical composition, and its main components are different hydrous alumina silicates 

(Pipkin et al., 2005, Manahan, 2005). Many oxides, carbonates and silicates present in 

waters and sediments exhibit a surface charge, which, at the pH of natural marine waters, 

often is negative. The charge properties will influence how the particles interact with other 

water-borne species  (Stumm and Morgan, 1996).   
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2.5 Sample preparation 

Even the simplest environmental samples (e.g. water) are most often unsuitable for direct 

chemical analysis, and hence some kind of sample preparation is necessary in order to deal 

with concentrations issues, contamination and unwanted components or sample 

incompatibility with the analysis instrument. Sample preparation is regarded the 

“bottleneck” of analytical methodologies, as it is still among the most time-consuming steps 

and also an important source of error (Luque de Castro and Luque-Garcia, 2002). 

 

2.5.1 Liquid-liquid extraction 

Liquid-liquid extraction is based on the partitioning of a solute between two immiscible 

phases, often water and an organic solvent. The purpose of the technique is to transfer a 

desired analyte from one solvent to another, and remove it from components mainly soluble 

in the other phase. The equilibrium of distribution of the solute A between the two phases 

may be described as (Skoog, 2004) 

 

aq orgA A

  

 

The distribution constant K is described by Equation 2.3 (a: activity in the given phase, [A]: 

concentration of A in the given phase).  

 

( ) [ ]
( ) [ ]

A org org

A aq aq

a A
K

a A
= ≈      (2.3) 

 

The distribution constant is useful, as it makes it possible to calculate the concentration of 

analyte remaining in a solution after a certain number of repeated extractions, and thus acts 

as a guide towards the most efficient way to perform an extractive separation. Equation 2.4 

describes this principle for the extraction of a water sample with i portions of organic 

solvent, each of volume Vorg, and thus the remaining concentration of A in the aqueous 

solution ([A]i). 
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  0[ ] ( ) [ ]aq i
i

org aq

V
A A

V K V
=

+
    (2.4) 

 

Improved efficiency of multiple extractions will decrease rapidly (Skoog, 2004), often one 

uses three repeated extractions. The negative aspects of liquid-liquid extraction are a 

relatively large solvent consumption, and that the process (when manually handled) is slow 

and tedious (Skoog, 2004). 

 

2.5.2 Solid sample treatment 

Most analytical instruments cannot handle solid samples, and hence the target analytes 

must be transferred to a liquid phase. There are several ways to achieve this, but solvent 

extraction (solid-liquid extraction, leaching) represents one of the oldest techniques. The 

analyte compounds are separated from their insoluble matrix, but also potentially from 

other compounds that might interfere in the analysis (Luque de Castro and Priego-Capote, 

2010). 

 

2.5.3 Soxhlet extraction 

Soxhlet extraction was developed in 1879, and for a long time has been the most widely 

used technique for the extraction of chemicals from solid matrices. Today, several 

modifications to the conventional Soxhlet method have been developed, including the use of 

high pressure, ultrasound-assistance, micro-wave-assistance and automation. Only 

conventional Soxhlet extraction will be described here. 

The sample is placed in a solvent-permeable thimble (e.g. made of cellulose), and the 

thimble is placed in thimble-holder above a distillation flask in a heat source (as shown in 

Figure 2.5). Fresh, condensed solvent gradually fills the thimble-holder until it reaches the 

over-flow-level. The siphon aspirates the solution from the thimble-holder and back into the 

distillation flask, thus carrying the extracted analytes into the bulk liquid. The operation is 
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repeated until complete extraction is accomplished (Luque de Castro and Priego-Capote, 

2010). 

 

Figure 2.5 - Illustration of the Soxhlet apparatus (Adapted from 

http://www.oxbo.nl/chemie/scheidingsmethoden/extractie/extractie-1.htm) 

 

There is seemingly no matrix effects hindering Soxhlet extraction, it is a simple and easy to 

learn technique. Soxhlet extraction is capable of extracting more sample than competing 

techniques.  The two main disadvantages of Soxhlet extraction is the protracted leaching 

process and the large solvent consumption. Also, since the sample is kept at the solvent 

boiling point over long periods of time, thermal decomposition of thermo labile components 

might occur (Luque de Castro and Priego-Capote, 2010).  

 

2.5.4 Solid phase extraction (SPE) 

Solid phase extraction, also known as liquid-solid extraction, employs the partitioning of a 

compound between a liquid and a solid material. The solid is often referred to as the 

sorbent, and might be both polar and non-polar, depending on the separation problem 
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(Greibrokk et al., 1984). The sorbent can be packed in a cartridge, a syringe, in the form of a 

membrane or some other suitable device (Skoog, 2004). 

The general procedure for solid phase extraction is composed four steps, as illustrated below 

(Figure 2.6): 

1. Conditioning with solvent 

2.  Application of sample 

3. Washing with solvent 

4. Elution using the same or a stronger solvent than during the washing step 

In some procedures, steps 3 and 4 are combined, so that only impurities are retained in the 

sorbent, while compounds of interest pass through at once (Skoog, 2004). 

 

 

Figure 2.6 - The four steps of solid phase extraction. 1) Conditioning of the column with solvent. 2) Sample 

application. 3) Washing with solvent. 4) Elution of analyte compounds (Adapted from Greibrokk, 1984). 

 

2.6 Chemical analysis of oil 

2.6.1 Chromatography – a separation technique 

Chromatography (from Greek chromos: colour, graphein: to write) is a collective term used 

for separation techniques employing two phases, where one is stationary and the other 
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mobile. The analytes will partition between the two phases according to their physical 

and/or chemical properties, and this is basis for their separation (Greibrokk et al., 1984). 

Compounds which prefer to stay in the mobile phase will travel through the system faster 

than compounds which prefer the stationary phase, and thus they are separated.  

A chromatographic system might be either planar or in form of columns of different sizes, 

where the latter is more common in analytical chemistry. Columns might be packed or open, 

depending on their application. 

The different chromatographic methods used in analytical chemical techniques are 

characterized as gas chromatography (GC), liquid chromatography (LC) or supercritical fluid 

chromatography (SFC), based on the nature of their mobile phase. The stationary phase 

might be a solid or a liquid (possibly placed on a solid carrier) (Greibrokk et al., 1984). 

 

Retention time 

The time it takes for a specific analyte to travel through a chromatographic system, is known 

as the retention time (tR). Under constant conditions, the retention time of an analyte will 

remain unchanged. Therefore, retention time is an important parameter for identification of 

the separated compounds (Greibrokk et al., 1984). 

 

Band broadening 

Although a sample is introduced as a sharp, rectangular pulse into the column, the separated 

compounds will leave the column as a broadened band with a maximum at their retention 

time. This phenomenon is known as band broadening, and results from kinetic factors acting 

upon the sample inside the column. The factors contributing to band broadening include 

eddy diffusion, longitudinal diffusion and resistance to mass transfer (Poole, 2003).  

Eddy diffusion is especially a problem in packed column chromatography, and is caused by 

individual molecules taking different routes through the column. These routes might be of 

different length, and hence the analyte zone is broadened. Longitudinal diffusion is caused 

by the diffusion of analytes in the mobile phase (Greibrokk et al., 1984). 
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Resistance to mass transfer is the limitations of diffusion between the mobile and stationary 

phases. Molecules close to the phase boundary might cross this boundary quickly, whilst 

those farther away will require more time. During this time, the molecules might move some 

distance in the mobile phase, causing broadening of the band (Poole, 2003). 

 

Plate number 

Chromatographic efficiency is determined by the extent of band broadening in a given 

system. Efficiency, in the chromatographic sense, is expressed as either the number of 

theoretical plates (N), the height equivalent to a theoretical plate (HETP) or plate height (H). 

The chromatographic system will ideally function as a Gaussian operator, and the 

chromatographic peaks (amount of analyte eluted from the column, plotted as a function of 

time) will be Gaussian (Poole, 2003). This is described by Figure 2.7 below. 

 

 

Figure 2.7 - Description of Gaussian chromatographic peak. w is the width of the peak, described at different 

heights by σ, which represents the standard deviation (Hinshaw and Ettre, 1994). 

 

The efficiency is described mathematically by the equations below (2.5 and 2.6), where L is 

the length of the column, tR the retention time and σt is the standard deviation of the peak 

with the shape of a Gaussian curve (Greibrokk et al., 1984). 
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=      (2.5) 
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=      (2.6) 

 

Resolution 

The objective of chromatography is to separate two or more compounds, and the resolution 

(RS) is the measure of how well this is achieved. To have a baseline separation (see Figure 

2.8), Rs has to be 1,5 or greater (Greibrokk et al., 1984).  

 

Figure 2.8 - An illustration of chromatograms where two compounds elute at close time intervals. In this 

example, only the first two peaks (a) have baseline separation 

(http://www.shodesx.net/index.php?seitenid=1&applic=1473). 

 

The resolution between two peaks can be calculated by Equation 2.7, where wb represents 

the average peak width at the base and ti is the retention time of compound i. 
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t tR
w

+ −
=      (2.7) 
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Applications of chromatography 

Chromatographic techniques find many applications in the fields of analytical chemistry, 

organic chemistry and biochemistry. For the analysis of oil, the most widely used techniques 

are high-resolution capillary GC with a flame ionization detector (GC-FID) and GC coupled 

with a mass spectrometry (GC-MS) (Wang and Fingas, 1997).  

 

2.6.2 Gas chromatography (GC) 

A schematic illustration of a GC-instrument is shown in Figure 2.9 below. 

 

 

Figure 2.9 - Schematic illustration of the gas chromatograph (a: carrier gas supply, b: pressure-and gas-flow 

regulator, c: gas purification, d: injection, e: column, f: temperature regulation, g: detector, h: signal 

processing) (Schmid, 2010).  

 

There are two types of gas chromatography, gas-solid chromatography (GSC) and gas-liquid 

chromatography (GLC), where the latter has the widest range of applications. In GLC, the 

stationary phase is a liquid that is spread on an inert support or coated as a thin film on the 

internal wall of a capillary column. There are five types of columns in GC, where three are 

packed, and the two remaining are open tubular columns. The column is “open” because 

there is an open passageway through the center of the column (Poole, 2003). 
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One type of open tubular column, and the first choice for analytical separations in GLC, is the 

WCOT (wall-coated open tubular) column. In these types of columns, the liquid phase is 

coated directly on to the internal column wall. The wall is either smooth, or has been 

chemically etched. WCOT columns have a much higher permeability than packed columns, 

and therefore provide the opportunity of more rapid separations at constant temperatures 

(Poole, 2003). 

 

Stationary phases in GLC 

Practical requirements of the stationary phase in GLC mean that the liquid should be 

unreactive, non-volatile, have good coating characteristics and reasonable solubility in some 

common volatile organic solvents. The stationary phase should also be thermally stable, as 

the operating temperature range of GC is -60 ° - 400 °C (Poole, 2003). The stationary phase 

should also provide the desired separation without reacting irreversibly with the sample 

(Greibrokk et al., 1984) . Some of the most common stationary phases today include methyl 

siloxanes and phenyl methyl siloxanes (Schmid, 2010) . 

 

Mobile phases in GC 

The three most common mobile phases in gas chromatography are hydrogen, helium and 

nitrogen. These gases are non-solvating and behave close to ideally at the conditions applied 

in GC. The primary function of the gas in GLC is to carry the sample through the column, 

hence the name “carrier gas” (Poole, 2003).  The gas will normally not influence the 

selectivity of the separation. The choice of carrier gas depends on the cost, need for purity, 

safety and control of reactivity. Compatibility with the detector is also an important 

consideration. Nitrogen will be the cheap alternative, but helium and hydrogen provide a 

better efficiency at higher carrier gas velocities, as illustrated by the Van Deemter plot in 

Figure 2.10.  
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Figure 2.10 - Van Deemter plot for GC, comparing efficiency (plate height, H) at different gas phase velocities 

(u) for N2, He and H2 (Bruner, 1993). 

 

Temperature 

By far, the most important factor controlling the separation in gas chromatography is the 

temperature, as it determines the samples vapour pressure (Schmid, 2010). A practical rule 

of thumb is that an increase in column temperature of 30 °C, will reduce the retention time 

for any given analyte by approximately 50 %. Analyses with GC can be performed both 

isothermally and with a temperature program, where the latter is most common in analytical 

applications. 

 

2.6.3 Flame Ionization Detector (FID) 

The flame ionization detector is the most widely used detector for gas chromatography. It is 

a nearly universal detector, which means that it will give a response for practically all organic 

substances. It will however not give response for small inorganic molecules, such as He, N2, 

H2O, O2, CO2 (Greibrokk et al., 1984).  

The flame ionization detector is based on the principle that the electrical conductivity of a 

gas is proportional to the concentration of charged particles in the gas. The effluent from the 

GC-column is directed into a flame consisting of air and hydrogen, which causes some of the 
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organic compounds to be ionized. A voltage (~300 V, (Greibrokk et al., 1984)) is applied 

between the burner tip and a collector electrode. The collector electrode will collect the 

anions and electrons that are produced in the flame, and the resulting current is measured 

with a picoammeter (Skoog, 2004). The flame ionization detector is highly sensitive (~10-3 

g/s), has a vast linear response range (~107) and low noise. Its main disadvantage is that its 

combustion process is destructive towards the sample. This detection method is also unable 

to directly provide any way of characterizing unknown compounds. A schematic overview of 

the detector is presented in Figure 2.11. 

 

 

Figure 2.11 - Schematic illustration of a Flame Ionization Detector, the cathode is earthed 

(http://www.osha.gov/dts/ctc/gas_detec_instruments/slide21.html). 

 

2.6.4 Mass spectrometry (MS) 

Mass spectrometry is an analytical tool that can be used alone, or coupled to a separation 

step, such as chromatography. It can be used to determine both inorganic and organic 

species, and is also commonly used for elemental analysis. The principle of mass 

spectrometry is the separation of ions based on their mass to charge ratio (m/z) (Gross, 

2004).  
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The scheme of a mass spectrometer is illustrated by Figure 2.12. After the sample is 

introduced into the mass spectrometer, the analytes are ionized and the ions are separated 

by the mass analyser and subsequently detected.  

 

 

Figure 2.12 - General scheme of the mass spectrometer (Gross, 2004) 

 

After detection, the data system provides a mass spectrum, which relates signal intensities 

(directly related to abundance) to the respective m/z-values. Often, the ion charge is equal 

to 1, and the m/z-scale can be read directly as a mass-scale. Still, it is important to note that 

this is not always the case. Some molecules and ionization conditions will preferably yield 

ions with multiple charges (Gross, 2004, Hoffmann and Stroobant, 2007). 

 

Ionization 

There exists a variety of ionization techniques that are used for mass spectroscopy. Different 

ionization methods can be divided into three main groups of methods; gas-phase ionization, 

desorption ionization and evaporative ionization methods. The main difference between 

these three is the physical state of the sample at introduction (Silverstein et al., 2005).  

The choice of ion source suitable for a specific application depends on several aspects, such 

as the thermolability of the sample and its volatility. There are two main categories of ion 

sources. The highly energetic ones, that induce extensive fragmentation of the analyte 

molecules, and the more “soft” techniques that only produce ions of the molecular species 

(Hoffmann and Stroobant, 2007).  

Electron ionization (EI, also known as electron impact) is a widely used ionization technique 

that causes extensive fragmentation. In the EI source, a heated filament gives off high 
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energy electrons that are accelerated (normally 70 eV) towards an anode. A beam of 

gaseous analyte molecules are directed perpendicularly through the beam of electrons, and 

thus the two will collide (Hoffmann and Stroobant, 2007).  

The collision will cause the sample molecule to eject one of its electrons and hence produce 

a radical cation (the molecular ion). The relatively high energy at which the ionization takes 

place often causes covalent bonds in the molecule to break (fragmentation). The 

fragmentation pathway of a given molecule under specific conditions is highly reproducible 

and presents the analyst with the possibility to identify compounds from an unknown 

sample. A drawback with the electron impact method is that the fragmentation often makes 

it impossible to detect the molecular ion (Silverstein et al., 2005).  

 

Other ionization techniques are chemical ionization (soft technique, provides a quasi-

molecular ion, e.g. a protonated molecular ion), several types of desorption ionization (for 

desorbing ions from solid samples), fast atom bombardment (desorbing molecules from an 

involatile liquid matrix), and a variety of atmospheric pressure ionization methods (for 

analytes that are thermally labile or of low volatility) (Hoffmann and Stroobant, 2007). 

 

Mass analysers 

From the ion source, the ions pass through a slit or lenses and into the mass analyser. The 

analyser is the part of the MS-instrument where the ions of different m/z-ratio are 

separated. Different types of mass analysers will differ in the principle of ion separation. 

Examples of such include separation by time-of-flight (ToF), separation by momentum in a 

magnetic field (magnetic sector) and separation by cyclotron frequency in magnetic field (ion 

cyclotron resonance).  

One of the most common mass analysers is the quadrupole. The principal of quadrupole 

mass separation is electrostatic attraction, where opposite charges attract and equal charges 

repel each other. A quadrupole consist of four hyperbolic or circular rods, arranged parallel 

to each other. The rods are imposed with a direct voltage (DC) and an alternating voltage 

(AC). Ions are separated by the difference in stability of their trajectories in the oscillating 
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electric fields that are applied to the rods (Gross, 2004). Figure 2.13 show a schematic 

illustration of the quadrupole. 

 

 

Figure 2.13 - Schematic overview of the quadrupole mass analyser. Facsimile from Hoffmann and Stroobant 
(2007). 

 

GC-MS 

In order to analyse a complex mixture such as crude oil, the mass spectrometer is usually 

coupled with a separation technique, often gas chromatography. Capillary GC-columns with 

flow rates of approximately 1 mL/min can be directly connected to EI/CI ion sources. 

The obvious advantage of coupling GC and MS is that offers an added dimension of 

information. One example of such is the possibility of monitoring specific target components 

during the separation. The operation mode of GC-MS known as selected ion monitoring 

(SIM) allows for the repetitive scanning of one or more masses. An alternative to SIM-mode 

is the full scan mode, where the entire eluent flow from the GC is scanned for m/z-values in 

a given range (Gross, 2004).  

 

2.6.5 Treatment of analytical data 

Sources of error 

Chemical analysis may be affected by three types of errors. Random errors have a variety of 

sources, and will ideally lead to the symmetrical scattering of data around a mean value. 

Systematic errors are caused by a continuous fault in the experimental set-up or the 
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instrument. These errors cause all data to differ from the correct value in the same direction. 

The third type of errors is known as gross errors. Gross errors are often caused by human 

errors or temporary system failure. Gross errors will lead to data points differing largely from 

the trend (outliers). 

There are different approaches to dealing with the different types of errors. Outliers in data 

sets should, in some way, be identified and omitted from the data analysis. Systematic errors 

can be found and corrected for by periodic analysis of standards and blank samples. 

Systematic errors that can’t be removed can be handled by external calibration of 

instruments. 

Random errors are difficult to avoid, and must therefore be dealt with in some way. The 

common approach is statistics. Performing a sufficient number of repeated analyses will give 

statistical ground to treat the mean value as the correct value, and it will also give an 

estimate of the (expected) precision of the experimental value (Skoog, 2004). 

 

Statistics 

A set of values describing the results of identical experiments is called a population. The 

average of a population can be calculated using Equation 2.8, where xi represents the result 

of parallel i and n is the number of parallels. Often, the average will be a better description 

of results, as it will compensate for variation due to random errors. 

The standard deviation is a value that complements the average, as it describes how 

individual values deviate from the calculated average. Standard deviation (s) of a population 

can be calculated using Equation 2.9 (Skoog 2004). 
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If a result is calculated from two or more experimental data points, the coherent standard 

deviation must be estimated. Equations 2.10 and 2.11 show the estimation of standard 

deviation of a sum and a product, respectively (Løvås, 2004, Skoog, 2004). 
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3 Method 

3.1 Chemicals and materials 

Table 3.1 specifies the solvents and equipment used in the study. 

Table 3.1 - Specifications of the solvents and equipment used in the study 

Equipment Type Comments 

Water pump CeramPump® QG Valve pump   

Oil pump Aladdin AL-2000 syringe pump  

Overhead stirrer VWR VOS 16 Equipped with a PTFE rod and blade (65 

mm width, 25 mm height) 

Absorbent pad Hazmat  

Soxhlet thimble Whatman standard cellulose, 

type 603 

Rinsed with three portions of DCM before 

use 

Cotton wool Whatman Bilson Rinsed with three portions of DCM before 

use 

Filter paper Whatman GF/C (1,2 µm) Rinsed with three portions of DCM before 

use 

Dry-bath Thermolyne type 16500 Dri-Bath Set to 35 °C 

TurboVap® Zymark TurboVap® 500 Water bath set to 35 °C 

Vacuum chamber Supelco Visiprep D-LTM  

SPE columns Supelco Bond-Elut silica columns 500 mg 

Glassware Various Baked (> 400 °C) and/or rinsed with DCM 

before use 

Dichloromethane 

(DCM) 

Merck, 99 % HPLC grade  

n-hexane Fluka, 99 % HPLC grade  

 

Authentic sea water was supplied from a depth of 90 meters in the Trondheim fiord 

(63°26’N, 10°26’E) through a continuous pipeline seawater system with built-in filters (50 

µm). The salinity of the water is (33,5 ± 0,2) ‰. Before use in the experiments, seawater was 

allowed to adjust to the correct experimental temperature over night by storing it in plastic 

cans near the experimental set-up. Six blank samples of seawater were extracted and 

analysed to determine the background concentration of hydrocarbons in the water. 
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To enable accurate quantification in the chemical analysis of the oil samples, both surrogate 

internal standards (SIS) and recovery internal standards (RIS) were added to the samples. 

The standards are described in Table 3.2. The SIS-standards were added prior to extraction 

of both water and sediment samples, whilst the RIS-standards where added before the 

chemical analysis by GC. THC standards were used for quantification in GC-FID analysis; PAH 

standards were used for quantification in GC-MS analysis. Throughout the project, 100 µL of 

each standard was added to every sample.  

 

Table 3.2 - Recovery (RIS) and surrogate (SIS) internal standards used in the experiments. THC standards are 
used for quantification in GC-FID analysis; PAH standards are used for quantification in GC-MS analysis. 

Name Compounds and their concentrations 

RIS-PAH fluorene-d10 (1,003 µg/mL in DCM) 

RIS-THC 5-α-androstane (10 µg/mL in DCM) 

SIS-PAH naphthalene-d8 (25,14 µg/mL in DCM)  

phenantrene-d10 (5,02µg/mL in DCM) 

chrysene-d12 (4,98 µg/mL in DCM) 

SIS-THC ortho-terphenyl (10 µg/mL in DCM) 

 

 

3.1.1 Oil types 

Four different oils were applied in the study. A summary of their physico-chemical properties 

is given in Table 3.3. “Topped 250+” means that the oil is a residue of a fresh oil that has 

been distilled until the temperature reached 250 °C. This is done to simulate the loss of 

volatile components due to evaporation. The fresh oil has not been altered this way. 
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Table 3.3 - Physico-chemical properties of the four test oils used in the study 

Name Type of oil Sintef 
batch ID 

Density 

 [g/cm3] 

Viscosity, 
13 °C 

[cP] 

Asphaltene 
content 

 [wt%] 

Wax 
content 

[wt%] 

Troll Crude oil, 
topped 250+  

2007-0287 0,9296 2471 0,081 1,931 

Avaldsnes Crude oil, 
topped 250+ 

2011-0444 0,9353 2044 2,2 3,7 

Kvitebjørn  Condensate, 
topped 250+ 

2009-0239 0,8534 4090 0,15 9,18 

IF 380 Fuel oil, fresh 2006-1125 0,9631 N/A N/A N/A 

 

3.1.2 Chemical dispersant 

The chemical dispersant that was applied in the experiments was “Dasic Slickgone NS 2011-

0300”. A sample of the dispersant, along with some of the oils is shown in Figure 3.1. Two 

different dispersant-oil ratios (DOR) were used, 5 % (1:20) and 1 % (1:100 ). The dispersant 

ratios were chosen to span the range of dispersant dosage that is part of present-day 

recommendations (see Chapter 1.3.2).  

 

 

Figure 3.1 - Troll oil, Kvitebjørn oil, dispersant Dasic Slickgone, IF 380 oil (Lisbet Sørensen, 22.11.2011) 

                                                      
1 Measured for Troll blend 2005-0845 
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Procedure for mixing of oil and dispersant 

Dispersant (50 µL for DOR 1 % and 250 µL for DOR 5 %) was added to a vial using an auto-

pipette. Oil (5 mL) was added to the same vial using a graduated syringe. The vial was then 

treated as follows: 

- Heated at 50 °C for 5 minutes 

- Shaken vigorously for 1 minute 

- Sonicated in an ultrasonic bath for 5 minutes 

- Shaken vigorously for 1 minute 

The oil-dispersant mixture was added to the system using the same syringe pump as for the 

pure oil. 

 

3.1.3 Sediment 

Three different, natural sediments were applied in this study. These sediments were found 

and collected at three different locations in Sør-Trøndelag (see map in Figure 3.2). To 

remove any unwanted particles and possible contaminants, the sediments were flushed with 

large amounts of clean seawater and dried at 100 °C before use in experiments. The 

sediments were stored in aluminium containers, covered by aluminium foil. Laboratory 

blanks of the sediments were extracted and analysed similarly to sediment from the 

experiments. 

 

Carbonate sand from Grandefjæra  

The first sediment, which was used as the standard sediment in all experiments except those 

specifically investigating the effect of sediment type, was a carbonate rich sand collected at 

Grandefjæra in Ørland (+63°40'N, +9°32'E). Its grain size distribution was determined using 

SINTEF procedure KS 66-21-A-220, and the result of this is given in Chapter 4.1 and Appendix 

C. The procedure fractionates the particulates using number of connected sieves with filters 

in the range 63 µm – 2 mm. After adding the sediment to the top sieve (2 mm), the sieving 

system is shaken for 10 minutes to ensure that all particles collect at the correct level. The 
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individual fractions are then weighed. The grain size distribution was repeated for three 

parallels. 

 

 

Figure 3.2 - Locations where the three natural sediments used in the study was collected (Google Maps, 
adapted by Lisbet Sørensen) 

 

Sand from Ranheim  

The second sediment was sand collected at Hansbakkfjæra in Ranheim in Trondheim 

(+63°25'N, +10°32'E). The original sediment contained some larger pebbles, and thus it was 

chosen to sieve the sediment to eliminate all particles larger than 2 mm. The grain size 

distribution of the remaining sand was determined using SINTEF procedure KS 66-21-A-220, 

and the result of this is given in Chapter 4.1 and Appendix C. 
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Hansbakkfjæra is a popular beach used for recreation, and hence the sediment could contain 

some coal from barbequing that might interfere with analysis. Thus, the sediment was 

cleaned 3 times by adding 100 mL DCM, stirring and sonicating on an ultrasonic bath for 5 

minutes.  

 

Clay from Buvika  

The final sediment was clay collected at Buvika (+63°18'N, +10°10'E), with all particles 

<63µm. After drying at 100 °C over night, the clay was powdered into fine particles using a 

porcelain pestle and mortar, as seen in Figure 3.3: 

 

 

Figure 3.3 - Grinding of dried clay from Buvika to make a fine powder for use in the experiments (Lisbet 

Sørensen, 22.02.2012) 
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3.2 Experimental set-up 

3.2.1 Generation of the oil-in-water dispersion 

In order to simulate mechanically dispersed oil droplets, an oil droplet generator comprising 

two pumps, one for oil and the other for water, were applied. The water pump was adjusted 

to deliver sea water from a reservoir at a rate of 160 ml/min. The second pump, a syringe 

pump, delivered oil to the system. The rate of oil delivery was adjusted to match the density 

of the oil in use, in order to deliver a fixed amount based on weight. In a SINTEF-developed 

mixing tube, the oil and water was mechanically mixed to generate small droplets of oil 

dispersed in the sea water. Figure 3.4 shows the pumps and generator. 

The initial recommendation given was to give the system 5 minutes to condition/equilibrate 

before using the oil-in-water dispersion in the experiments (Nordtug and Vang, 2011). This 

necessity was supported by laboratory observations in the early phase of the project. It was 

therefore decided to let the generator equilibrate for a minimum of 10 minutes. Some time 

into the project, staff of NTNU Centre of Fisheries and Aquaculture, gave feedback on some 

of their recent experiences using an identical system. They had measured the oil droplet 

distribution at the outlet of the generator and found that a stable output of droplets 

(number and size) was reached only after operation for 2-3 hours (Olsen, 2012). In this 

study, the stability of output (of oil) from the syringe pump was tested and it was 

demonstrated good stability over time (see Appendix B). 

The system would generate oil droplets in the size range of 2 – 20 µm (Nordtug and Vang, 

2011). The desired concentration of oil in water was 20 mg/L. Appendix B describes how the 

syringe pump was tested and set to deliver the required amounts of oil. 
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Figure 3.4 - Overview of the oil droplet generator system, with a CeramPump® QG valve pump for water 
delivery, an Aladdin AL-2000 syringe pump for oil delivery and a mixing tube for generation of oil droplets in 
the water (Lisbet Sørensen, 13.10.2011). 

 

3.2.2 Sediment suspension and exposure to oil dispersion 

Accurately weighed sediment was added to a glass beaker and seawater with dispersed oil 

(20 mg/L) was added by the oil-droplet generator. The system was stirred by an overhead 

stirrer for 55 minutes at ~250 rpm, followed by 5 minutes stirring at ~50 rpm (see Figure 

3.5). The overhead stirrer offered the advantage of optimizing and reproducing the stirring 

speed. The speed was chosen by visual observation of the speed that allowed for suspension 

of all sediment without adding a torque.  Payne et al. (2003) employed a similar design when 

studying the kinetics of oil-SPM interactions.  
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After removing the stirrer, the beaker was covered by aluminium foil and the sample was 

allowed to settle for 24 hours. 

Residual oil on the water surface and glass walls was removed by using a absorbent pad. The 

sample was filtrated on a Buchner funnel with a filter paper. The sediment was flushed three 

times on the filter paper with 30 mL of clean sea water, left to dry at room temperature and 

then transferred to aluminium containers and covered by aluminium foil. 

The water phase was transferred to 2 L glass bottles. 

 

 

Figure 3.5 – An overview of the experimental set-up with the oil-droplet generator, overhead stirrer and the 
beaker containing the mix of dispersed oil in seawater and suspended particulate matter (SPM) (Lisbet 
Sørensen, 13.10.2011). 
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3.2.3 Storage of samples 

To prevent an alteration in chemical composition of the water and sediment samples after 

fractionation, care was taken in storing them safely. All samples were kept in closed 

containers, and in constant cool conditions (4 °C). Water samples were acidified by adding 

hydrochloric acid (HCl, 15 %, 10 mL) as recommended by SINTEF procedure KS 66-21-L-235 

(Faksness, 2000). No sample was stored for more than 7 days prior to extraction. 

 

3.3 Sample extraction and clean-up 

3.3.1 Comparison of techniques for the extraction of oil from sediment 

Soxhlet extraction and alkaline saponification represent two common techniques for 

extraction of oil from sediment. In a preliminary study, the efficiency of these two methods 

was tested, in order to determine which gave the best recovery of oil. It was also interesting 

to see whether the techniques would give the same GC-FID profile. 

 

Soxhlet extraction is described in part 6.2 of SINTEF internal procedure KS 66-21-A-248 

(Sørheim, 2005). The Soxhlet thimble was fitted and rinsed three times with DCM. The 

sample was transferred to the thimble and covered with cotton wool. Internal standards SIS-

PAH (100 µL) and SIS-THC (100 µL) were added to the thimble. The thimble was placed in the 

Soxhlet glassware (see Figure 3.6),  

DCM (50 mL) was added to a round bottomed flask and the flask was connected to the 

Soxhlet glassware with a Liebig cooler and placed in a heat jacket. The extraction time was 7 

hours. The flask with the extract was cooled and filtered through Bilson cotton and 

anhydrous sodium sulphate (Na2SO4, baked) in to TurboVap® glassware and reduced to 

approximately 0,5 mL by evaporation of solvent, using TurboVap®, and reduced to 

approximately 0,5 mL. The samples were transferred to 4 mL sample vials. The TurboVap® 

glassware was rinsed three times with DCM, and this was also transferred to the GC vials.  
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Figure 3.6 - Soxhlet extraction of sediment samples from experiments using oil type IF 380 Fresh. The picture 
shows the Soxhlet glassware with cellulose thimble, and round bottomed flasks placed in the heat jacket. 
(Lisbet Sørensen, 16.11.2011) 

 

Alkaline saponification is described in SINTEF internal procedure KS 66-21-A-204 (Faksness, 

2001b), but this procedure assumes a sediment amount of 100 g. Therefore the procedure 

was adjusted to fit the smaller amount of sediment used in these experiments. 

The sediment was transferred to a round-bottomed flask (100 mL) and methanol (25 mL), 

potassium hydroxide (KOH, 1 g) and anti-bumping granules were added.  Internal standards 

SIS-PAH (100 µL) and SIS-THC (100 µL) was also added. The mixture was boiled for two hours 

on a heat jacket with reflux. After cooling, the sample was filtered through a filter paper on a 

Buchner funnel. The sediment on the filter was washed with DCM (3x10 mL). The filtrate was 

transferred to a separating funnel (250 mL) and distilled water (25 mL) was added. The 

funnel was shaken vigorously for 2 min and after the two phases had separated, the lower 

phase (DCM) was transferred to a conical flask. The extraction was repeated two times with 

15 mL of DCM each time.  
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The combined organic phases were returned to the empty separating funnel and distilled 

water (20 mL) and saturated sodium chloride (NaCl, 2 mL) was added. It was shaken for 2 

min and left for 15 min for phase separation. The lower phase (DCM) was drained into a 

conical flask containing sodium sulphate, shaken for ½ min and left for 1 hour to remove any 

remaining water. The sample was filtered through cotton wool in a glass funnel and into 

TurboVap® glassware and subsequently reduced to approximately 0,5 mL on the TurboVap®. 

The samples were transferred to 4 mL sample vials. 

 

The results from the method development are described in Chapter 4.2. The method chosen 

to be used for the main experiments was Soxhlet extraction, using DCM-volumes as specified 

in Table 3.4. Due to practical considerations, the extraction time was reduced to 6 hours. See 

also the discussion in Chapter 5.7.4. 

 

Table 3.4 - Volume of DCM used for Soxhlet extraction of sediment samples 

Amount of sediment for extraction  

[g] 

Volume of DCM in Soxhlet extraction  

[mL] 

7,5 50 

15 120 

30 120 

60 120 

120 240 

 

 

3.3.2 Extraction of oil from the water phase 

The water phase was extracted using liquid-liquid extraction, as described by SINTEF Internal 

Procedure KS 66-21-L-235 (Faksness, 2000). The pH of the samples was adjusted to <2 

(checked with pH strips) using HCl (15%). The samples were transferred to 2 L separation 

funnels, and internal standards SIS-THC (100 µL) and SIS-PAH (100 µL) added. The sample 
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bottles were rinsed with 120 mL (90+30 mL) DCM and this was also added to the separation 

funnel.  

The separation funnel was sealed and shaken vigorously for 2 minutes. After 10 minutes 

standing to allow the aqueous and organic phases to fully separate, the organic phase was 

transferred to an Erlenmeyer flask. The extraction was repeated two more times, using 2x60 

mL DCM. The three organic extracts were combined and anhydrous sodium sulphate was 

added. The flask was shaken, and the sodium sulphate was allowed to rest for ½ h. See 

Figure 3.7 for a picture describing the liquid-liquid extraction set-up.  

 

 

Figure 3.7 - Equipment set-up for liquid-liquid extraction of seawater samples (Lisbet Sørensen, 24.11.2011). 

 

3.3.3 Sample concentration and clean up 

All sediment and seawater extracts were transferred to TurboVap® glassware and reduced 

to approximately 0,5 mL by evaporation of solvent, using a TurboVap®. The extracts were 

transferred to 2 mL GC vials. The TurboVap® glassware was rinsed three times with DCM, 

and this was also transferred to the GC vials.  
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In the case of the water extracts, the volume was adjusted to 0,8 mL using N2 blow down 

technique on a dry-bath se. Finally, internal standards RIS-PAH (100 µL) and RIS-THC (100 µL) 

were added to each sample to give a total sample volume of 1 mL ready for analysis. 

As the sediment extracts contained high concentrations of biogenic compounds, these were 

subject to sample clean-up prior to analysis. The clean-up procedure is described fully in 

SINTEF internal procedure KS 66-21-A-211 (Faksness, 2001a). The sample solvent was 

changed from DCM to n-hexane, and then the sample was eluted through a silica-column in 

a vacuum chamber using 3x2 mL n-hexane. The biogenic compounds were retained on the 

silica column whilst the target oil compounds eluted in the solvent. The samples were 

reduced to 0,8 mL using N2 blow-down technique on a dry-bath. Internal standards RIS-PAH 

(100 µL) and RIS-THC (100 µL) were added to each sample. An illustration of the equipment 

for sample clean-up is shown in Figure 3.8. 

 

 
Figure 3.8 - Bond-Elut clean-up of sediment extracts on a 500 mg Si-column, n-hexane used as solvent and 
eluent (Lisbet Sørensen, 30.09.2011). 
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3.4 Chemical analysis 

3.4.1 GC-FID 

To determine the total extractable organic compounds (TEOC) in the sediment and water 

samples, all extracts were analysed by GC-FID. The GC-FID system comprised an Agilent 

7890A GC equipped with a 7683B series auto-sampling injector. The GC was fitted with an 

Agilent J&W HP-5 fused silica capillary column (SF: 5 % diphenyl 95 % dimethylpolysiloxane), 

with dimensions 30 m length, 0,25 mm internal diameter and film thickness 0,25 µm. The 

carrier gas was helium (grade 4.6), at a constant flow of 1,5 mL/min. 1 µL of sample was 

injected using pulsed splitless injection. The column oven provided the following 

temperature program: 40 °C for 1 minute, the 6 °C/min until 315 °C, hold at 315 °C for 15 

minutes. The detector temperature of the FID was 330 °C. 

The TEOC-content of each sample was quantified by use of internal standard. A calibration 

curve for each oil type was constructed by analyzing four standards of each with different 

concentrations (1 µg/mL, 2,5 µg/mL, 5 µg/mL and 10 µg/mL oil in DCM).  An internal 

standard (RIS-THC, 100 µL) was added to each oil standard (0,9 mL). The calibration curves 

can be seen in Appendix D. 

 

3.4.2 Quantification of results from GC-FID 

Every chromatogram was integrated from 8 minutes to 48 minutes (corresponding to the 

range of n-alkanes C10 to C40 (Almås, 2011). To estimate the background baseline (and drift in 

baseline) due to column bleeding, blank samples of sample solvent (DCM, n-hexane) were 

analysed at intervals of every 10-15 sample injections. Also, an n-alkane standard (5 µg/mL) 

was analysed repeatedly at the same intervals to ensure that the instrument was stable. 

The relative response factors (RRF) for each of the four oils was calculated using Equation 

3.1, at every concentration, and an average value of RRF was calculated. The criteria for use 

of the average relative response factor was that the average relative standard deviation for 

every analyte was less than 15 % (Almås, 2011). 
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std RIS

RIS std

A CRRF
A C

×
=

×
                (3.1) 

 

Astd is the total area/response of the oil components in the standard 
 
ARIS is the area/response of the RIS-THC component in the standard 
 
Cstd is the concentration of the oil in the standard 
 
CRIS is the concentration of the RIS-THC component in the standard 
 
 

The true response of the total hydrocarbon (THC) was calculated by subtracting the area of 

internal standards (SIS-THS and RIS-THS) and the area due to column bleed from the total 

area of the chromatogram, as described in Equation 3.2. 

 

( )THC tot blank stdA A A A= − +    (3.2) 

 

The concentration of THC in the extract was calculated using Equation 3.3. 

 

THC RIS
THC

RIS

A CC
A RRF

×
=

×
    (3.3) 

 

Note that the samples had not been diluted prior to analysis. 

All data was subsequently corrected for extraction (LLE, Soxhlet) variations by the recovery 

of surrogate internal standard (SIS-THC) (see Tables G.1 and G.2 of Appendix G).   

For a number of the sediment extracts, the o-terphenyl (SIS-THS, internal standard) co-

eluted with a naturally occurring oil component (n-alkane C19), and could not be integrated 

directly. Discussion with the technical staff at SINTEF (Almås and Rønsberg, 2012)  led to the 

realization that this is a common problem, especially for complex samples. The 
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recommended solution was to calculate an average response (area) of o-terphenyl from the 

samples where co-elution was not a problem, and use this to estimate the response (and 

hence, the recovery) of the remaining samples. This estimation is given in Appendix G, and 

used in further calculation of the results presented in Chapter 4.  

 

3.4.3 GC-MS 

Three experiments were chosen to be analysed by GC-MS to determine component group 

distribution of C10+ saturates, naphthalenes, 2-3 ring PAHs and 4-6 ring PAHs (in the text also 

referred to as semi-volatile compounds (SVOCs)). The experiments chosen were: 

 

- Troll 250+ oil, Grandefjæra carbonate sand, 18-20 °C, no dispersant (LIS002) 

- IF 380 Fresh oil, Grandefjæra carbonate sand, 18-20 °C, no dispersant (LIS009) 

- Troll 250+ oil, Grandefjæra carbonate sand, 18-20 °C, 1 % dispersant (LIS010) 

 

Three parallels of both sediment and water extracts were analysed. 

The GC-MS system comprised an Agilent 6890N GC equipped with an Agilent 5975B 

quadrupole mass-selective detector (MSD). The GC was fitted with an Agilent J&W HP-5MS 

fused silica capillary column (SF: 5 % diphenyl 95 % dimethylpolysiloxane), with dimensions 

60 m length, 0,25 mm internal diameter and film thickness 0,25 µm. The carrier gas was 

helium (grade 6.0), at a constant flow of 1.2ml/min. 1 µL of sample was injected at 310 °C 

using pulsed splitless injection. The column oven provided the following temperature 

program: 40 °C for 1 minute, raised by 6 °C/min and held at 315 °C for 15 minutes. The MSD 

ion source used electron ionization (EI) at 70 eV, and held a temperature of 230 °C. 

MSD ChemStation (version D.03.00.611) software monitored and recorded the 

chromatograms. Appendix H specifies the monitored compounds and their quantification 

ions. 
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3.4.4 Quantification of results from GC-MS 

Prior to analysis, eight standards were analysed in order to find response factors of the 

different components for external calibration. Average response factors for the different 

component groups (see Appendices H and I) were calculated using Equation 3.4. 

 

t i

i t

A CRF
A C
×

=
×

                                              (3.4) 

 

At is the total area of quantification ion for the target analyte in the standard 
 
Ai is the total area of quantification ion for the internal standard in the standard 
 
Ct is the concentration of target analyte in the standard 
 
Ci is the concentration of internal standard in the standard 
 
 

The concentration of target analytes is determined using Equation 3.5. 

 

a i
a

i i a

A AmtC
A RF V

×
=

× ×
                                (3.5) 

 

Ca is the concentration of target analyte 
 
Aa is the total area of quantification ion for the target analyte 
 
Ai is the total area of quantification ion for the internal standard 

Amti is the amount of internal standard added to the sample 
 
RFi is the average RF for the analyte, determined from initial calibration 
 
Va is the sample size 
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3.5 The experimental series 

A total of 19 experiments were conducted with 3-7 parallels each. 

The parameters that were varied throughout the experimental series were  

- type of particulate matter 

- concentration of particulate 

- temperature 

- method of dispersion (with/without dispersant, time in water before allowing 

contact with sediment) 

- oil type 

The parameters were varied one by one from a standard set of conditions defined at the 

start of the study. In the standard conditions, the type of particulate was carbonate sand 

from Grandefjæra in a concentration of 10 g/L sea water. The temperature was 18-20 °C, 

and the oil type was Troll 250+ without chemical dispersant. Table 3.5 describes the 

experimental design. Appendix A describes the experimental data for all parallels of every 

experiment. For all experiments, the oil concentration was 20 mg/L seawater, and the 

exposure time was 25 hours (1 hour suspension induced by stirring followed by 24 hours 

settling time). 

 

Two series of experiments (LIS014 and LIS015) attempted to test the combined effect of 

varying temperature and adding dispersant simultaneously. As it is shown in the 

chromatograms in Appendix F, the quantification in Appendix G and seen by observations in 

the laboratory, these experiments suffered from a system failure. The syringe of the syringe 

pump was not able to displace the low-viscosity mix of oil and dispersant when influenced by 

low temperature. Therefore, little or no oil was added to the system. Thus, these results are 

neither presented nor discussed further. 
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Table 3.5 - Description of parameter variation in the experimental series of this study 

Experiment 

ID 

Type of 

particulate 

Concentration 

of particulate 

[g/L] 

Temperature 

[°C] 

Dispersant 

added 

Oil type 

LIS001 Carbonate sand 5 18-20 No Troll 250+ 

LIS002 Carbonate sand 10 18-20 No Troll 250+ 

LIS003 Carbonate sand 20 18-20 No Troll 250+ 

LIS004 Carbonate sand 40 18-20 No Troll 250+ 

LIS005 Carbonate sand 80 18-20 No Troll 250+ 

LIS006 Carbonate sand 10 4-5 No Troll 250+ 

LIS007 Carbonate sand 10 10-11 No Troll 250+ 

LIS008 Carbonate sand 10 18-20 No Kvitebjørn 

condensate 250+ 

LIS009 Carbonate sand 10 18-20 No IF 380 Fresh 

LIS010 Carbonate sand 10 18-20 1 % Troll 250+ 

LIS011 Carbonate sand 10 18-20 5 % Troll 250+ 

LIS012 Carbonate sand 10 18-20 1 %, 

Time 10 min 

Troll 250+ 

LIS013 Carbonate sand 10 18-20 1 %, 

Time 30 min 

Troll 250+ 

LIS014 Carbonate sand 10 10-11 1 % Troll 250+ 

LIS015 Carbonate sand 10 4-5 1 % Troll 250+ 

LIS016 Carbonate sand 10 14-15 No Troll 250+ 

LIS017 Clay 10 18-20 No Troll 250+ 

LIS018 Carbonate sand 10 18-20 No Avaldsnes 250+ 

LIS019 Sand 10 18-20 No Troll 250+ 

 



 Results 
 
 

  
61 

 
  

4 Results 
All GC-FID chromatograms from the analysis of water extracts and sediment extracts of 

samples and blanks are given in Appendix F. Detailed calculation of quantitative results is 

described by Appendix G. Results from quantification of GC-MS results are given in Appendix 

I. In this chapter, the averages of all valid parallels of an experiment are presented. Parallels 

were disregarded from calculations if some experimental conditions made the results of the 

experiment questionable. Error bars in graphs represent standard deviation. The maximum 

relative standard deviation for quantification of GC-FID results for water extracts is 31 %, and 

the average relative standard deviation for all water extracts is 13 %. The corresponding 

numbers for sediment extracts is 22 % (maximum) and 13 % (average). 

 

4.1 Grain size distribution of sediments 

The results of the grain size distribution determination (see Chapter 3.1.3) of sediments are 

given in Appendix C, and presented graphically below (Figure 4.1). The carbonate sand from 

Grandefjæra has most particles in the size range of 125 – 355 µm. The sand from Ranheim 

has most particles in the size range of 180 – 500 µm. A great portion of particles of Ranheim 

sand are also up to 2 mm. The grain size of the Buvika clay particles were all < 63 µm, and no 

grain size distribution diagram was made for this sediment. 

 

 

Figure 4.1 - Grain size distribution of sediments from Grandefjæra and Ranheim (Error bars represent 
standard deviation for, N=3). 
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4.2 Comparison of Soxhlet extraction and alkaline saponification 

The results from the comparison of Soxhlet extraction and alkaline saponification are given 

in Appendix E. Two parallels of each extract gave quantifiable results from GC-FID analysis. A 

comparison of amount of oil recovered by the two techniques is shown in Figure 4.2.  The 

results indicate that Soxhlet extraction is the most efficient technique with regards to 

recovery of oil. The GC-FID profiles (see Appendix E) of the compared extracts do not differ 

in any other way than peak height, which can be directly interpreted as a measure of 

extraction efficiency. 

 

 

Figure 4.2 - Comparison of efficiency recovery of Soxhlet extraction and alkaline saponification (Error bars 
represent standard deviation). 

 

4.3 Adsorption studies – sediment extract samples 

Figure 4.3 shows a comparison of chromatograms of the pure oils used in this study with 

corresponding sediment extracts from the experiments (10 g sediment/L water, 18-20 °C, no 

dispersant). A general trend that can be observed is the loss of components eluting before 

20 minutes in the sediment extracts compared to the pure oils. In addition, there is a relative 

increase in the concentration of the heavier and larger oil components which elute after 35 

minutes in the GC-FID chromatograms. 
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Figure 4.3 - Overlay comparison of chromatograms for all four oil standards (10 µg/mL in DCM) and 
representative sediment extracts of experiments where the oils have been applied. 
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Figure 4.4 shows a comparison of the chromatogram of a sediment extract from an 

experiment with Troll 250+, carbonate sand, 18-20 °C and no dispersant added with a 

sediment extract where dispersant has been added (1 %). The concentration of oil in the 

sediment extract where dispersant has been used is clearly lower than in the experiment 

with no dispersant added. Whilst the chromatograms show differences in response between 

the two samples, they appear to exhibit the same pattern and ratio of different components. 

 

 

Figure 4.4 - Overlay comparison of chromatograms for sediment extracts of experiments with Troll 250+ with 
1 % dispersant and without dispersant added. 

 

4.3.1 Sediment concentration 

The results from varying sediment concentrations (investigated using the carbonate sand) in 

the water are shown in Figure 4.5. It is apparent that the increase in sediment amount 

increases the amount of oil removed from the water phase. A linear curve is fitted to the 

data, and the R-squared value for this fitting is 0,6996. A logarithmic curve is also fitted to 

the same data, and the R-squared value for this fitting is 0,8633. 
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Figure 4.5 - Graph displaying the variation in oil uptake (µg) in sediment as a function of sediment 
concentration (Error bars represent standard deviation). The data is fitted with both a linear and a 
logarithmic curve. 

 

Figure 4.6 plots the concentration of oil in the sediment as a function of increasing sediment 

concentration in the water column. The plot clearly demonstrates the oil-SPM ratio decrease 

when the amount of sediment is increased. A logarithmic curve is fitted to the data, and the 

R-squared value for this fitting is 0,9733. 

 

 

Figure 4.6 - Graph displaying the variation in oil concentration in sediment (µg oil/g sediment) as a function 
of sediment concentration (Error bars represent standard deviation). The graph is fitted with a logarithmic 
curve. 
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4.3.2 Sediment type 

A bar chart displaying the results from the variation of sediment type is given in Figure 4.7. In 

these experiments, the effect of sediment type on adsorption of oil was assessed using the 

defined standard conditions of 10 g/L sediment concentration, temperature of 18-20°C, Troll 

250+ crude oil and no dispersant. Only the sediment type was varied in the study. The 

quantitative amount of oil (Troll 250+) adsorbed to the clay is 2-3 times the amount 

adsorbed to any of the sands. 

 

 

Figure 4.7 - Bar chart displaying the variation in oil uptake (µg) in sediment as a function of sediment type 
(Error bars represent standard deviation, N=7; 4; 3). 
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Figure 4.8 - Bar chart displaying the variation in oil uptake (µg) in sediment as a function of oil type (Error 
bars represent standard deviation, N= 7; 3; 3; 3). 
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Figure 4.9 - Graph displaying the variation in oil uptake (µg) in sediment as a function of temperature (Error 
bars represent standard deviation, N=3; 5; 4; 7). 
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Figure 4.10 - Graph displaying the variation in oil uptake (µg) in sediment as a function of amount dispersant 
added (Error bars represent standard deviation, N= 7; 5; 3). 
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Figure 4.11 - Graph displaying the variation in oil uptake (µg) in sediment using 1 % dispersant as a function 
of hold-up time before adding the sediment to the system (Error bars represent standard deviation, N= 5; 3; 
3). 
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Figure 4.12 - GC-FID chromatogram of water extract from experiment with Troll 250+, no dispersant added. 

 

4.4.1 Sediment concentration 

The effect of varying sediment concentration on the dissolved components in the water 

phase demonstrates no clear trend (Figure 4.13).  

 

  

Figure 4.13 - Graph displaying the variation of oil in the water phase (µg) as a function of sediment 
concentration (Error bars represent standard deviation, N= 3; 6; 3). 
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4.4.2 Sediment type 

The sediment type does not appear to result in any significant difference in the total amount 

of oil present in the water phase, given the relatively high standard deviations seen in Figure 

4.14. 

 

 

Figure 4.14 - Bar chart displaying the variation of oil in the water phase (µg) as a function of sediment type 
(Error bars represent standard deviation N= 6; 4; 4). 
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Figure 4.15 - Bar chart displaying the variation of oil in the water phase (µg) as a function of oil type (Error 
bars represent standard deviation, N= 6; 3; 3; 4). 

 

4.4.4 Temperature effects on dissolved oil fraction 

Figure 4.16 demonstrates the variation in oil dissolution as a function of temperature. The 

data does not indicate any clear trend.  

 

 

Figure 4.16 - Graph displaying the variation of oil in the water phase (µg) as a function of temperature (Error 
bars represent standard deviation, N= 3; 4; 4; 6). 
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4.4.5 Use of chemical dispersant 

Figure 4.17 suggest that adding dispersants to the oil does not alter the amount of oil 

dissolved to the water phase, as there is not observed any change in amount of oil extracted 

from the water phase of experiments with 0, 1 or 5 % dispersant added. 

 

 

Figure 4.17 - Graph displaying the variation of oil in the water phase (µg) as a function of dispersant amount 
(Error bars represent standard deviation, N= 6; 4; 5). 
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Figure 4.18 - Graph displaying the variation of oil in the water phase (µg) using 1 % dispersant as a function 
of hold-up time before adding the sediment to the system (Error bars represent standard deviation, N= 4; 3; 
3). 

 

4.5 Results of SVOC-analysis 

Three parallels of both sediment extracts and water extracts from experiments with Troll 

250+ oil and no dispersant, Troll 250+ oil with 1 % dispersant and IF 380 Fresh (no 

dispersant) were analysed by GC-MS to quantify the distribution of semi-volatile organic 

compound groups (SVOCs). Table 4.1 shows the sum of SVOCs quantified for each sample 

extract (µg/sample). Appendix H show an overview of the ions monitored and detected 

(SIM). 

 

Table 4.1 - Sum of SVOCs determined by GC-MS analysis of pure oil and sample extracts. 

 

Pure oil Sediment extract Water extract 
Troll 
250+ 

IF 380 
Fresh 

 

Troll 
250+ 

IF 380 
Fresh 

Troll 250+ 
1 % 

dispersant 

Troll 
250+ 

IF 380 
Fresh 

 

Troll 250+ 
1 %  

dispersant 
Average 

(µg/ 
sample) 

19 6 73 78 41 77 11 81 

Standard 
deviation 

(µg/ 
sample) 

2 1 6 5 1 22 2 19 
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Figure 4.19 shows the distribution of SVOCs in Troll 250+ and IF 380 Fresh oils. Both oils have 

a low content of C10+ saturates. Troll 250+ is dominated by naphthalenes (~60 %), and 2-3 

ring PAHs (~30 %) is the second most abundant component group. IF 380 Fresh is dominated 

by 2-3 ring PAHs (~45 %), and have almost equal content of naphthalenes and 4-6 ring PAHs 

(~25 %). 

 

 

Figure 4.19 - Component group distribution of SVOCs in Troll 250+ and IF 380 Fresh 

 

Figure 4.20 demonstrates the component group distribution of the proportion of Troll 250+ 

and IF 380 Fresh that adhered to the sediment (Grandefjæra carbonate sand). Figure 4.21 

shows the same for the corresponding water columns. By comparing these graphs to those 

in Figure 4.19, one can see how naphthalenes are enriched in the water column compared to 

the parent oil but less abundant in the sediment extracts. In contrast, the 2-3 and 4-6 ring 

PAHs are enriched in the sediment extracts but reduced in the aqueous extracts. 
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Figure 4.20 - Comparison of component group distribution (SVOC) in the sediment extracts of the 
experiments where Troll 250+ and IF 380 Fresh were added (Error bars represent standard deviations, N=3). 

 

 

Figure 4.21 - Comparison of component group distribution (SVOC) in the water extracts of the experiments 
where Troll 250+ and IF 380 Fresh were added (Error bars represent standard deviations, N=3). 

 

Figure 4.22 compares the component group distribution of SVOCs for Troll 250+ with the 

proportion of oil adhered to sediment in experiments with and without chemical dispersant 

added. Figure 4.23 compares the component group distribution of SVOCs for Troll 250+in the 

corresponding aqueous extracts. Again, it is clear that naphthalenes are enriched in the 
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water column and PAHs are enriched in the sediment. However, the addition of dispersant 

does not appear to cause any significant affect on either the component distribution profiles 

in the sediment and water extracts or amounts adsorbed/dissolved.  

 

 

Figure 4.22 - Comparison of component group distribution (SVOC) in the in Troll 250+ with sediment extracts 
of the experiment with Troll 250+ (no dispersant) and the experiment with Troll 250+ with 1 % dispersant 
(Error bars represent standard deviations, N=3). 

 

 

Figure 4.23 - Comparison of component group distribution (SVOC) in the in Troll 250+ with water extracts of 
the experiment with Troll 250+ (no dispersant) and the experiment with Troll 250+ with 1 % dispersant (Error 
bars represent standard deviations, N=3). 
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5 Discussion 
In the case of an oil spill, it is of interest to be able to predict the environmental fate of the 

spilled oil. One possible route of fate for aqueous contaminants is the interaction with 

suspended particulate materials (SPM) present in the marine environment, and subsequent 

transport to the seafloor. 

In this study, the influence of different parameters on the adsorption of oil to SPMs in 

seawater was examined. Oil droplets were generated mechanically by an oil-droplet 

generator. Seawater with oil droplets (20 mg/L) was added to a beaker with sediment and a 

suspension was induced by stirring. 

The parameters investigated were sediment type (carbonate sand, quartz sand and clay) and 

concentration (5-80 g/L seawater), temperature (5-20 °C) and oil type (two crudes, one 

condensate and a heavy fuel oil). Special attention was given to the effect of adding 

chemical dispersant to the oil prior to mixing with water and SPMs. 

Dissolved oil components in the water column were monitored in all the experiments. The 

dissolved fraction of oil is also of environmental interest, and it was of interest to see 

whether the parameters investigated in this study would also influence the dissolution 

process. 

Extracts of water and sediment were analysed by GC-FID and GC-MS. 

 

5.1 General partitioning patterns 

The results from GC-FID analysis of the sediment extracts from samples containing the four 

test oils of the study (demonstrated by the chromatograms in Figure 4.3) show a loss of the 

earliest eluting components (the first 20 minutes of the temperature program). This trend is 

consistent for all the oils. This reduction in the lighter components also corresponds to a 

relative enrichment of the heavier oil compounds in the sediment adsorbed samples. No 

other change in the GC-FID profiles from pure oil to extract than the loss of early-eluting 

components is observed.  

The components eluting early are relatively small and polar, and hence more soluble in 

water. The reason for their loss in the sediment extracts is therefore probably preferential 



 Discussion 
 
 

  
80 

 
  

partitioning into the water column. The chromatograms from GC-FID analysis of the water 

extracts show no UCM (see Figure 4.12 and Appendix F.2), but they do show an enrichment 

of individual components eluting in the (approximate) time range 16-22 minutes. This 

enrichment is not observed in the blank samples of water, and thus can be caused by oil 

components dissolved in the water column of the experiments. The GC-FID profiles (Figure 

4.3) of the sediment extracts also show a relative increase of the larger and heavier 

components (eluting after 35 minutes). These components are more hydrophobic, and will 

therefore prefer partitioning to sediment over dissolution in the water column. 

If the experiments had involved the use of fresh oils, the loss of early eluting components 

could possibly be due to evaporation. The influence of evaporation was deliberately 

eliminated from the experiments by choosing topped oils (250 °C), where the most volatile 

components have been effectively removed. The nature of a heavy fuel oil (IF 380) means 

that it does not contain components volatile enough to evaporate at room temperatures 

either (see Chapter 2.2). 

When compared to pure oils (Figure 4.19), GC-MS analysis of the sediment extracts from the 

experiments using the oil types IF 380 Fresh and Troll 250+ (Figure 4.20) show that the PAHs 

(2-6 rings) are preferentially enriched in the sediment, whilst the C10+ saturate compounds 

and naphthalenes are clearly reduced in concentration compared to pure oils. In the 

corresponding water extracts (Figure 4.21), the naphthalenes are enriched. The water phase 

is almost free of C10+ saturates and 4-6 ring PAHs. This observation is in agreement with the 

theoretical knowledge the solubility of individual PAHs in water will decrease exponentially 

with an increase in number of aromatic rings (Neff, 1979). The log KOW value of naphthalene 

is 3,4. Larger PAHs have higher log KOW values, e.g. benzanthracene and chrysene (4 ring 

PAHs) which have KOW values in the range 5,3-5,6 (Briggs, 1981, Xing, 1997). This also 

supports the observation of a higher water fraction of naphthalenes than larger PAHs in the 

experiments of the current study. 

Although the SVOC profiles of pure Troll 250+ and IF 380 Fresh have significant differences 

(Figure 4.19), the SVOC profiles of extract of water column exposed to droplets of these oils 

are alike (Figure 4.21). Apart from a depletion of naphthalenes, the profiles of pure oil 

(Figure 4.19) and sediment extracts (Figure 4.20) appear to have corresponding profiles. 

These findings show that the oil components that partition more strongly to particulates are 
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those which have low aqueous solubility. Thus, it appears as the dissolution process takes 

place independently of the adsorption. 

The findings of the current study are supported by results from earlier studies (Payne and 

McNabb, 1984, Payne et al., 2003, Zurcher and Thuer, 1978), which demonstrate that 

higher-molecular weight aliphatics and PAH components prefer to partition to SPM in a 

water-oil-SPM system. Payne et al. (1984) have specifically shown that C10-C40+ aliphatics and 

alkyl-substituted 2-5 ring PAH compounds (log KOW values > 4) prefer to associate with 

particles rather than dissolve in the water column. The same studies showed that monocyclic 

aromatics with log KOW values between 2,1 and 3,7, the more volatile C1-C10 aliphatics and 

some lower molecular weight 2-3 ring PAH’s with log KOW values between 3,7 and 4,8 would 

partition to the water column (Payne et al., 2003). 

Faksness et al. (2008) studied the water accommodated fraction (WAF) of nine different oils 

from Norwegian oil fields. For all the oils, the naphthalenes (along with the phenols) were 

the dominating group of SVOCs in WAF. Saeed and Al-Mutairi (2000) studied the water 

soluble fraction (WSF) of ten Kuwait crude oils, and found that of the PAHs, naphthalene and 

its homologues were the dominating group of all the oils WSFs. These two studies show 

excellent agreement with the current study, indicating that the naphthalenes will be the 

dominant hydrocarbon species in the water column near an oil spill (dispersed droplets or 

slick). 

 

Contamination of water extracts 

Some of the GC-FID chromatograms of water extracts show an enrichment of compounds 

eluting before 15 minutes. This trend is observed for some of the blank samples as well (see 

Appendix F.2.2). Contamination of the sea water or of glassware is the suggested cause of 

these otherwise unexplainable trends, as they do not show any coherence with 

experimental variables. Therefore, trends of compounds eluting before 15 minutes are not 

discussed. 
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5.2 Comparison of Soxhlet extraction and alkaline saponification 

From a qualitative interpretation of the GC-FID results from the initial comparison of 

extraction techniques (given in Appendix E), it is apparent that the Soxhlet extraction is the 

most efficient technique with regards to recovery of oil from contaminated sediment. Figure 

4.2 indicates that Soxhlet extraction recovers more than double the amount of oil than 

alkaline saponification. The two techniques do not give GC-FID profiles that differ 

significantly in any other way than amount. This indicates that there is o discrimination 

towards particular compound types between the two extraction techniques. 

From a time-frame perspective, Soxhlet and alkaline saponification both require the same 

amount of time to be completed. However, the Soxhlet apparatus runs unsupervised, whilst 

the saponification requires more hands-on work. This also supports the choice of using 

Soxhlet in a project with a limited time frame. 

Luque de Castro and Priego-Capote (2010) have compared Soxhlet extraction to other 

conventional techniques for extraction from solid materials. In terms of efficiency, it was 

found that Soxhlet was superior to any of the other techniques. The main disadvantage of 

Soxhlet was in fact related to the environmental issues caused by the high consumption of 

solvent that the technique requires. 

 

5.3 Sediment characteristics 

5.3.1 Sediment concentration 

Figures 4.5 and 4.6 in Chapter 4.3.1 show that total oil adsorption increases with increasing 

amount of sediment. This trend was expected, as higher loads of sediment should provide an 

increased surface area available for adsorption of dispersed oil. 

In Figure 4.5, both a linear curve (R2=0,6996) and a logarithmic curve (R2=0,8633) is fitted to 

the data set. The logarithmic curve is more speculative due to the limited number of data 

points, but appears to demonstrate a better fit. The fact that the relationship is clearly not 

linear indicates that doubling sediment concentration does not double the amount of oil 

partitioned to the suspended sediment. From the same experimental data, the 

concentration of oil in sediment (mg/g) is calculated and plotted against sediment 

concentration (g/L) in the water column (Figure 4.6). This clearly demonstrates how the 
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oil/SPM ratio of the extracted sediment decreases with increasing loads of SPM in the water 

column. 

The good fit of the logarithmic curve in Figure 4.6 (R2= 0,9733) indicates that the oil 

components in the water phase will not fully partition to the particulates (for a sediment 

type of the given characteristics; carbonate sand, grain size distribution as shown in Figure 

4.1). These data indicate that for a given sediment type, there will exist an SPM-load where 

there is no further partitioning of oil droplets from the water column. Thus, a full equilibrium 

of oil partitioning between water and SPM is achieved. 

For the experiments using Troll 250+ oil and carbonate sand, the maximum observed 

adsorption of oil is 15 mg (in one parallel where the SPM load was 80 g/L seawater). This is 

close to the amount of oil adsorbed to 10 g/L of clay from Buvika (see Figure 4.7). It is 

probable that a higher load of clay particles would lead to a higher fraction of adsorbed oil, 

but this can’t be directly derived from the results of this study. Chapter 5.2.2 will further 

discuss the observed adsorption differences between sand and clay. 

High relative standard deviations are observed for the experiments with high SPM-loads. By 

observation, these experiments show an “over-saturated” water column with regards to 

SPM. It is suggested that the implication of this is that the interactions between oil droplets 

and SPM become less effective, as particles will be so concentrated that their self-interaction 

can hinder the oil-SPM interactions. These concentrations (> 20 g SPM/L seawater) are also 

less realistic in an environmental perspective. 

 

5.3.2 Sediment type 

As demonstrated by Figure 4.7, the adsorption of oil varies with the type of sediments. Per 

gram of sediment, the clay from Buvika adsorbs 2-3 times more oil from a water column with 

20 mg/L dispersed oil droplets, than the two sands applied in this study. There is no 

significant difference in adsorption between the carbonate sand from Grandefjæra and the 

quartz sand from Ranheim, and their grain size distributions (Figure 4.1) are not so different 

either. 

The most apparent reason for the significant difference in adsorption of the oil is the size 

distribution of the sediments. For equivalent masses of sand and clay, clay will contain a 
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significantly greater proportion of individual particles, and hence have a significantly larger 

surface area for oil to adsorb to. In simulations of oil-SPM aggregation using a numerical 

model, Bandara et al. (2011) showed that sediment sizes > 0,5 mm led to less aggregate 

formation than smaller sizes (< 63 µm), and explained this by the reduction in number 

density of sediment in the water column. Natural waters are dominated by particles < 2 µm 

(Lee, 2002), so the results from the experiments with clay might be the most interesting in 

the environmental perspective. However, in high energy areas, particles of greater size are 

more likely to be suspended in the water column and influence the partitioning of oil. 

The Ranheim sand was pre-rinsed with DCM before use in the experiments, and this will 

have lead to the removal of any organic residues coating the particles. This can have had an 

effect on the sorption of oil. In a review by Muschenheim and Lee (2002) it is presented that 

many studies have observed that organic coatings of the sediment particles have increased 

the sorption of hydrocarbons to the particles. Karickhoff et al. (1979) found that adsorption 

to particles of an isolated particle size depended upon the amount of organic substances 

associated with the particles. Hence, particles < 50 µm sorbed more hydrocarbons than 

particles > 50 µm, since the smaller particles were associated with more organic substances. 

In contrast, Meyers and Quinn (1973) found that organic coatings hindered the sorption of 

oil. Thus, it is not clear whether the rinsing of the sand has had any effect on the results of 

this study. The difference between sorption to Grandefjæra sand and Ranheim sand is not 

significant within the first standard deviation. It is therefore difficult to say whether the 

difference in mineral composition of the two sediments have had any influence on the 

adsorption process. 

Stoffyn-Egli and Lee (2002) studied the influence of different clay types on oil-mineral 

aggregates and found that different clay types promoted aggregates of different shapes 

(droplet, flake, solid). Khelifa et al. (2005b) showed that while the concentration of oil-

mineral aggregated droplets was determined mostly by oil type, the size droplet size was 

influenced by clay type and water salinity. Guyomarch et al. (2002) studied the effect of clay 

concentration on the size of formed oil-mineral aggregates and found that the largest 

aggregates were formed at a specific clay load. Lower or higher loads led to significantly 

smaller aggregates.    
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A number of studies focusing on oil-mineral aggregation, where the particulates are clay or 

other small mineral fines, have shown that the aggregates appear as oil droplets coated with 

fine particulates (Bragg and Owens, 1994, Guyomarch et al., 2002, Khelifa et al., 2002, 

Stoffyn-Egli and Lee, 2002, Ajijolaiya et al., 2006, Khelifa et al., 2005a, Khelifa et al., 2005b). 

It is therefore questionable whether the results of studies using clay can be directly 

extrapolated and compared to the current study which uses larger particles. It is possible 

that the larger sand particulates will be associated with oil droplets in a different manner 

than clay particles, but there is no existing evidence of this. Delvigne (2002), who found that 

oil in sediments had the appearance of droplets, also only looked at grains < 50 µm.  

In the current study, the most important factor controlling the amount of oil adsorbed by 

SPM is the sediment grain size distribution, where smaller grains adsorb more oil than larger 

grains. Other studies have shown that mineral type can be an influence on the adsorption of 

oil to clay sediments. Further work is required to determine whether the mineral 

composition of sand is also an influence in the adsorption to these particulates. The physical 

appearance of oil adsorbed to larger particulates (~100 µm-2 mm) should also be 

investigated.  

 

5.3.3 Amount of oil dissolved in water as function of sediment characteristics 

There appears to be no significant difference in the amount of oil partitioning to the water 

phase when varying sediment characteristics (type, amount), as seen in Figures 4.13 and 

4.14. This indicates that the process of dissolution of individual components is independent 

of the adsorption possibilities. Components with a log KOW that favour dissolution in water 

will dissolve regardless of the SPM-loads in the water column. The compounds which will 

preferentially partition into the water phase from the oil droplets will not partition to the 

sediment at all. Therefore sediment type and concentration are non-influencing factors 

towards this equilibrium. The equilibrium will be based only on the partitioning of these 

compounds between the water phase and the oil droplets at the conditions of the 

experiments. It should be noted that other equilibria than that between oil component in 

water and SPM that might be of influence, given the experimental set-up (oil at surface, oil 

droplets, oil at glass wall). 
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5.4 Oil type 

The degree of adsorption of the four studied oils to carbonate sand is shown in Figure 4. 8.  

The order below ranks the oils from highest (~15 mg) to lowest (~4 mg) adsorption to 15 g 

carbonate sand: 

IF 380 Fresh > Avaldsnes 250+ > Troll 250+ > Kvitebjørn condensate 250+  

In a study of oil-mineral aggregates, Guyomarch et al. (2002) found that the oil/clay ratio of 

four different oils increased with increasing asphaltenes content of the oils. The study also 

found that the heavy fuel oil adsorbed strongest (compared to two crudes and a HFO-crude 

mix), the asphaltenes content of the HFO was the highest of the oils. Asphaltene content can 

be seen as a measure of an oils polarity, and Guyomarch et al. (2002) suggests this as the 

explanation for the observed relationship between increased adsorption and asphaltene 

content of the oils. This is based upon their hypothesis that the formation of oil-mineral 

aggregates is caused by the interactions of polar oil compounds and the negatively charged 

clay particles. In the current study, the asphaltene content (See Table 3.1) of Avaldsnes oil is 

more than 10 times higher than the corresponding content in Troll and Kvitebjørn. The data 

therefore, seem to agree with the findings in Guyomarch et al. (2002), indicating that 

asphaltene content significantly influences the quantity of oil which partitions to sediment. 

In this study, the asphaltene content of the applied heavy fuel oil (IF 380) is unfortunately 

not known. In the study of (Guyomarch et al., 2002), the oil with highest asphaltene content 

was in fact the fuel oil (14 %). The recommended maximum content of asphaltenes in heavy 

fuel oil is 14 % (Wartsila, 2007). This indicate that the asphaltene content of heavy fuel oils 

may be higher than in the crude oils applied in this study (max 2,2 %). Should this 

assumption be correct, this would support the theory of asphaltene content being the 

dominant factor promoting oil-SPM interactions. 

The viscosities of the oils used by Guyomarch et al. (2002)  increased with increasing 

asphaltene content. In the present study this is not the case, as the Kvitebjørn condensate 

250+ is the oil of highest viscosity. This may indicate that the asphaltene content is of 

greater importance than viscosity to the adsorption properties of an oil type. 

In this study, the fuel oil IF 380 Fresh is demonstrated to adsorb to SPM in significantly 

greater quantities than some topped crude oils. It is known that significant amounts of fresh 

crude oil will be lost due to evaporation in the early hours following a spill (Wang and Stout, 
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2007). This clearly indicates that in the event of an oil spill, more oil will end up in the 

sediment if the spilled oil is a fuel oil than if it is a crude oil.  

 

Variation in components dissolved in water as a function of oil type 

Figure 4.15 shows the amount of each of the test oils which has partitioned into the aqueous 

phase. There appears to be relatively little difference in the total amount of each oil type in 

the aqueous phase and variation is less than an order of magnitude across all 4 oil types 

(~500-750 µg). A comparison of Figure 4.15 and Figure 4.8 shows that the difference 

between the least dissolved oil (Kvitebjørn condensate 250+) to the most dissolved oil (IF 

380 Fresh) is relatively small when compared to the difference in adsorption to SPM of the 

same oils.  

The GC-FID analysis (see Appendix F.2) of water extracts from the experiments where IF 380 

Fresh is added stand out with “cleaner” chromatograms and less intense peaks than 

observed in other experiments. However, the quantification of GC-FID analysis show the 

water column from the experiment with IF 380 Fresh to be the most enriched in oil. The 

relative response factor used in the quantification for IF 380 Fresh (0,437) is lower than the 

one for Troll 250+ (0,748). Given that the water phase consists of individual components, the 

responses in the FID may not be dependent on the oils relative response factor, and hence 

the quantification overestimates the amount of oil in the water phase of IF 380 Fresh. The 

relative response factor of Avaldsnes 250+ is 0,591, and the relative response factor of 

Kvitebjørn condensate 250+ is 0,773. Figure 5.1 can be seen as a correction of Figure 4.15 

from the results section, in which the quantification has used the same relative response 

factor (0,748) for all samples. This representation demonstrates that there is no significant 

difference between the dissolved components for Kvitebjørn condensate 250+, IF 380 Fresh 

and Avaldsnes 250+. The average amount of dissolved components for Troll 250+ is higher 

than for the rest, but the difference is not significant. 
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Figure 5.1 - Bar chart displaying the variation in oil in the water phase (µg) as a function of oil type. 
Calculations have used the same RRF for all samples (0,748). Error bars represent standard deviation. 

 

GC-MS analyses of the water phase extracts (see Table 4.1) show that the sum of SVOC of IF 

380 Fresh is lower (11±2 µg/sample)  than the  corresponding sum of SVOCs for Troll 250+ 

(77±22 µg/sample). This result is in contrast to the trend shown in Figure 5.1 and Figure 

4.15, where no significant difference between the water partitioning of the different oils is 

observed.  

When comparing the SVOC-profiles of Troll 250+ and IF 380 Fresh in Figure 4.19, it is seen 

that Troll 250+ is richer in naphthalenes than IF 380 Fresh. When considered in connection 

with Figure 4.21, this clearly demonstrates that naphthalenes are the main constituent of 

the dissolved fraction of SVOCs, irrespective of oil type. This could have explained why there 

appear to be more oil components in the water column of experiments using Troll 250+ than 

in the experiments using IF 380 Fresh. However, by referring to Table 4.1, it is also clearly 

seen that the sum of SVOCs is significantly lower in pure IF 380 Fresh (6±1 µg/sample) than 

in Troll 250+ (19±2 µg/sample). According to Raoult’s law (Equation 2.2), a lower total 

concentration of SVOCs in the oil, would also lead to lower dissolution in the water phase. 

The results from this study also illustrate clearly that there are other water-soluble 

components from the oil (apart from the naphthalenes) that are predominantly dissolved in 

the water phase, but the identity of these was unfortunately not determined by the GC-MS 

analysis method used. 
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5.5 Temperature 

The effect of varying the temperature (5, 10, 15, 20 °C) on oil adsorption to SPM is shown in 

Figure 4.9. The results demonstrate that the test oil (Troll 250+) adsorbs in the highest 

quantities at low temperatures (5 °C). The amounts adsorbed at 10, 15 and 20 °C are 

approximately the same (~6-7 mg), whilst the amount at 5 °C (~11 mg) is significantly higher 

than these values. 

The viscosity of oil will increase at lower temperatures, and this might explain the higher 

adsorption at 5 °C. In the oil type experiments (see Figure 4.8), the oil type with the highest 

viscosity at 13 °C (Kvitebjørn condensate 250+), is actually the oil that adsorbs the least to 

SPM. But, it was also suggested (Chapter 5.4) that asphaltene content were of greater 

importance than viscosity in determining the adsorption properties of an oil type. Therefore, 

the adsorption properties of an individual oil type might be affected by viscosity changes 

induced by temperature changes. Stoffyn-Egli and Lee (2002) found a reduction in the oil 

content of oil-mineral aggregates at 0 °C when compared to 20 °C, and attributed this to the 

increased viscosity of oil at low temperature. This is the opposite trend of what is found in 

the current study.  

In contrast to the findings of Stoffyn-Egli and Lee (2002), Meyers and Quinn (1973) found 

that sorption of hydrocarbons to sediment decreased with increasing temperature. The 

decrease in sorption was attributed to the increasing solubility of hydrocarbons with 

increasing temperature. This finding is supported by Tremblay et al. (2005), who investigated 

the partitioning of the PAHs phenanthrene and fluorene in estuarine environments, and 

found that the adsorption to SPM increased when the temperature of the water was 

lowered from 20 to 2 °C. The increase in sorption is attributed to the decreased water 

solubility of the PAHs at low temperature. In another study, Murray (1973)  investigated the 

sorption of proteins to suspended sediments in Alaskan waters and found that varying the 

temperatures from 5-25 °C gave no significant change in amount protein sorbed. Zhao et al. 

(2001) also found that temperature did not influence the sorption of chlorobenzene to 

marine sediments. In general, the current study agrees with the results reported by Meyers 

and Quinn (1973) and Tremblay et al. (2005). However, in the present study, the dissolution 

of oil components does not increase significantly enough to explain the associated drop in 

adsorption (Figures 4.9 and 4.16) at low temperatures (5 °C).  It is suggested that higher 
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temperatures increase the “bulk” solubility of oil droplets, and that dissolution of specific 

components from the droplets is a different, unlinked process. The viscosity of an oil also 

may be of influence, but to the authors knowledge there is nothing available in the current 

literature to support the findings of this study. 

As the solubility of molecules increases with increasing temperature, it was expected that 

the amount of oil dissolved in the water phase would decrease in the experiments using 

lower temperature. This is not observed in the current study (Figure 4.16). One might 

therefore question if the proposed method used in this study (mixing for 1 hour followed by 

24 hours settling time), allows sufficient time for the dissolution of oil compounds into the 

water phase to reach equilibrium. Faksness et al. (2008) investigated the effect of mixing 

time (of oil and seawater) in WAF experiments, and found that at lower temperatures, 

longer mixing times were necessary in order to achieve equilibrium. 48 hours is the 

recommended mixing time at 13 °C, but this was not sufficient at 2 °C. This indicates that the 

current study might have underestimated the amount of oil in the water phase, due to 

insufficient mixing times and failing to reach full equilibrium. In a study of petroleum 

hydrocarbon solubility, Page et al. (2000) found that naphthalenes equilibrated in the water 

column after 19 hours, but this observation may not be extrapolated to compounds of lower 

water-solubility.  

 

5.6 Use of chemical dispersant 

The results described in Chapter 4.3.5 clearly demonstrate how addition of dispersant 

decreases the adsorption of the test oil (Troll 250+) to suspended carbonate sand. Adding 1 

% dispersant leads to an approximately 50 % reduction of the amount of oil adsorbed. Table 

4.1 also shows that the total amount of SVOCs adsorbed to SPM is approximately halved by 

addition of 1 % dispersant to Troll 250+ oil. Increasing the dispersant amount to 5 % leads to 

an additional 50 % reduction (75 % reduction total) of the amount adsorbed. If one was to 

extrapolate this trend linearly, it would only take a dispersant to oil ratio of 6 % to ensure 

that no oil would adsorb to SPM. However, it is unlikely that the effect of increasing 

dispersant/oil ratio is linear. Mackay and Hossain (1982) also found that dispersants 

inhibited the adsorption of oil to sediments. They suggested a relationship expressed like 

this: 
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FR = e-0,15D 

 

Where FR is the ratio of oil settled with sediment and D is the dispersant to oil ratio (%). 

Employing  the same relationship with the data from this project, the equation would be 

(see Figure 4.10): 

 

FR = e-0,31D 

 

Interpreting the data as having an exponential trend would mean that there exists a 

minimum level of oil that will adsorb to SPMs no matter how much dispersant is added to 

the oil. From a practical point of view, adding dispersant cannot completely hinder oil 

droplets from interacting with suspended particulates in the water column. Figure 4.22 

demonstrates how the SVOC distribution profile for sediment extracts is unrelated to the use 

of dispersant. This means that the chemically dispersed oil droplets will still adsorb as a bulk, 

only in smaller proportions than naturally dispersed droplets. 

Lessard and DeMarco (2000) suggest it is less likely that a chemically dispersed oil will 

adhere to SPMs, as it is “less sticky” than a naturally dispersed oil.  As discussed in Chapter 

5.3.2, it is possible that the interaction mechanism of small (clay) particles and larger 

particles (e.g. sand) with oil droplets may be different. The difference is predominantly 

based upon the available surface area of the different particle sizes. However, Mackay and 

Hossain (1982) suggest a different explanation; smaller grains will reside longer in the water 

column and therefore have t he opportunity to interact more with dispersed oil. Irrespective 

of the process occuring, this does not explain why other previous studies have seen more 

association of oil-SPMs with dispersant added than without. 

Chapter 1.6 reviews a number of previous studies which have focused on the effect of 

dispersants on oil-SPM interactions. These studies are in conflict with the findings of the 

current study and with the study of Mackay and Hossain (1982). Several of the studies found 

that chemical dispersants did not inhibit the formation of oil-SPM aggregates. Khelifa et al. 
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(2008) used clay particles and found that for low particle loads (< 25 mg/L) the chemical 

dispersant increased oil sedimentation by a factor of 3-5. For higher mineral loads, the 

adsorbed amount was equal for experiments with and without dispersant added. The 

reduction in oil droplet size, increase in concentration of oil droplets in the water column 

and the alteration of surface properties of the oil droplets are the reasons given for the 

observed increase in adsorption. Numerical model simulations by Bandara et al. (2011) 

showed that the presence of smaller oil droplets increased the predicted amounts of oil-SPM 

aggregates formed. The suggested explanation for this is that the droplet residence time in 

the water phase is prolonged due to the decreased buoyant velocity of smaller particles, and 

this allows for more interactions with suspended matter.  

The current study looked at the effect of dispersant on adsorption to (carbonate) sand, 

whereas the studies showing increased adsorption when dispersant was added used fine 

clay particles. The increased total surface area of the chemically dispersed oil droplets might 

increase the adsorption of fine mineral particles on their surface. This would not be 

observed with sand particles. The reduction in adsorption to sand particles might therefore 

be explained by “less stickiness” of the oil, as suggested by Lessard and DeMarco (2000).  

The results of this study show that adding dispersants to oil does not lead to an increase (or 

decrease) in amount of oil components dissolved in the water column (see Figure 4.17). 

Table 4.1 also shows how the total amount of SVOCs dissolved in the water column does not 

change when dispersant is added. Figure 4.23 shows how the addition of dispersant does not 

affect the SVOC profile of dissolved components. These observations indicate that 

dispersants do not directly affect the partitioning of individual components (or groups of 

components) to the water phase. This is in contrast to the impact on oil adsorption to SPM, 

which is clearly reduced in the presence of a dispersant. Wolfe et al. (1998) found that the 

concentration of naphthalene in water did not change with the addition of dispersant to a 

crude oil, and this supports the findings of current study (see Appendix I).  

The observed reduction in oil adsorption to SPM when chemical dispersant is added is clearly 

not a direct result of increased dissolution of oil compounds into the water phase caused by 

the dispersant. A potential explanation may be that the surfactants of the dispersant 

stabilize the smaller oil droplets in the water column (and hence counteract adsorption to 

particulates). The stabilizing effect of dispersants on oil droplets is described by Fingas 
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(2011), Lessard and DeMarco (2000) and Fiocco and Lewis (1999). As the surfactants are 

structurally equal to detergents made to dissolve and stabilize household grease as droplets 

in wash water, this is not a surprising effect of the application of chemical dispersants on oil.  

 

Effect of residence time 

It has already been indicated that dispersant addition does not affect the amount of oil 

components, or component groups, that are dissolved in the water column. Therefore, it is 

not surprising that the experiments with a residence time of chemically dispersed oil 

droplets in water before addition of sediment show no difference in amount of oil dissolved 

(Figure 4.18). 

The sediment phase extracts show a minimum concentration of oil adsorbed after a 10 

minute residence time before interaction with SPM (Figure 4.11). In contrast, the 

concentration of oil in the samples following immediate interaction with sediment particles 

and interaction after 30 minutes, which both show similar amount of adsorption, are higher. 

However, the standard deviations mean that the differences between the different 

residence times are not significant. Furthermore, the amount of oil in all three sample types 

is in the range of 2500-3500 µg. It would be difficult to explain this observation, especially 

since there is little existing experience with the surface properties of chemically dispersed 

droplets in the marine environment. The reason for the interest in the effect of residence 

time is the potential for leaching of the dispersant surfactants from the droplets over time 

(Fingas, 2011, Lewis et al., 2010). This could potentially lead the droplets to be less stabilized 

after a given amount of time, and therefore start to behave like physically dispersed 

droplets. This trend is not observed in this study. It should also be noted that this study uses 

a closed system, and if the surfactants were to leave the oil droplets, they would still remain 

in the enclosed water-oil-SPM system, with the ability to re-interact with a new oil droplet.  

 

5.7 Environmental implications 

In this study, the effect of sediment type and concentration, oil type, temperature and use of 

chemical dispersant on the adsorption of oil to suspended sediment in seawater were 

studied. Three of the studied parameters stand out as most influential in affecting the 
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adsorption properties of oil droplets to SPM in seawater. First, sediment of smaller 

particulate size (clay) adsorbs more oil per gram than larger sediment (sand). Second, an oil 

characterised as being heavy and polar (higher content of asphaltenes) adsorbed more 

efficiently to suspended particulates than oils which were lighter and less polar oil. Finally, 

addition of chemical dispersant to the oil droplets decreased the sedimentation of oil in an 

exponential manner. 1 % dispersant halved the amount of oil sorbed to carbonate sand. GC-

MS analysis revealed that the dispersant did not change the distribution of C10+ saturates, 

naphthalenes and 2-6 ring PAHs in the sediment, only the amount. The effect of varying 

temperature (5-20 °C) was not considerable compared to the other parameters in this study. 

Previous studies show conflicting results about the effect of temperature on adsorption. In 

this study, the adsorption was highest at the lowest temperature, and this is attributed to 

increased viscosity of the oil at lower temperature. GC-MS analysis revealed an absence of 

compounds with low log KOW values (e.g. naphthalenes) in the oil adsorbed to sediment 

extract. No change in SVOC distribution was observed with the addition of 1 % dispersant. 

The distribution and concentration of oil compounds dissolved in the water column was also 

monitored in every experiment. None of the parameters studied were found to alter the 

concentration or distribution of dissolved oil compounds significantly, and it is suggested 

that dissolution and adsorption are separate processes.  Of the range of compounds studied 

by GC-MS, the naphthalenes exhibited the highest partitioning to the water phase. The C0-C3 

naphthalenes are relatively volatile and represent some of the early-eluting components 

which were absent or reduced in the GC-FID chromatograms from the sediment extracts. In 

an oil spill scenario, the amount of oil sorbed to SPMs might therefore be related to the 

amount of dissolvable (and volatile) components in the spilled oil. However, there was no 

apparent influence from the studied parameters on the dissolution of specific oil. Dissolution 

is therefore regarded as an oil type dependent process. 

 

Fate of chemically dispersed oil in the marine environment 

The results from the current study show that chemically dispersed oil droplets adsorb less to 

suspended particulates in seawater than mechanically dispersed droplets. In a marine 

environment dominated by relatively high SPM-loads, this finding implies that the use of 

chemical dispersant will lead to more oil droplets being present in the water column over a 
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longer time period. As a result, the exposure time of marine organisms to oil will be 

correspondingly longer. Furthermore, the increased residence time of oil droplets in the 

water column might lead to increased dissolution of water-soluble components. Faksness et 

al. (2004) studied the partitioning of semi-soluble organic compounds between the water 

phase and dispersed oil droplets in produced water. It was found that there was a positive 

correlation between the concentration of dispersed oil in the water and the concentration of 

semi-soluble aromatics dissolved in the same water. The correlation varied for different 

groups of compounds, but the trend was especially clear for the PAHs. In the current study, 

an increase in oil components dissolved in the water phase from chemically dispersed oil 

droplets was not observed. This might be caused by the experimental conditions, where the 

stirring was switched off after an hour, allowing the droplets to float to the water surface. It 

is possible that the droplets will merge and significantly reduce the surface area of the oil in 

contact with the water. It is also likely given the short exposure period, that the system does 

not have the time to reach equilibrium for partitioning of compounds between the oil 

droplets and the water phase. In coastal regions, the energy of wave action may fluctuate, 

but turbulence in the water column will never subside completely. Therefore, the oil 

droplets are more likely to stay submerged in the water column and not reach the water 

surface. This might enhance the dissolution of components, and the same trend should be 

seen for physically dispersed droplets. It should be noted that the current study show that 

dispersant themselves do not enhance oil droplet dissolution.  

Previous studies (Zahed et al., 2010, Venosa and Holder, 2007, Swannell et al., 1997) have 

shown increased weathering rates (especially biodegradation) for chemically dispersed oil 

droplets compared to naturally dispersed oil droplets. The smaller chemically dispersed 

droplets are more buoyant than the larger naturally dispersed droplets and therefore less 

likely to sink to bottom sediments without interactions with suspended materials. Previous 

studies and observations state that biodegradation of oil buried in sediments is slow 

(Muschenheim and Lee, 2002, Taylor and Reimer, 2008, Atlas, 1981, Garcia de Oteyza and 

Grimalt, 2006). Therefore, the use of chemical dispersant to disperse spilled oil in the marine 

environment should be considered carefully. Use of chemical dispersant will lead to a 

significantly increased lifetime of petroleum hydrocarbons in the water column and 

therefore increased exposure to pelagic species. In contrast, the mechanically dispersed oil 
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will most likely be adsorbed to SPMs and transported to the sea floor where it will be 

exposed to benthic organisms living in the sediment. For a given spill scenario in a given 

location, one must therefore determine what will be most detrimental, a short term 

increased exposure to oil for organisms in the water column, or an extensive exposure to oil 

for organisms at the sea bottom. In the last scenario, one should also take into account that 

the oil in bottom sediments may be re-distributed in the event of physical processes (wave 

action, erosion) affecting the sea floor.  

The experiences from the Braer spill  in 1993 (ESGOSS, 1994a, ESGOSS, 1994b) show that 

heavy weather will drastically effect the amount of oil stranded on shorelines. This is 

accounted to the formation of physically dispersed oil droplets by wind turbulence at the sea 

surface. Approximately 35 % of the oil is estimated to have ended up in the bottom 

sediments off the Shetland coast. Had the oil been chemically dispersed, less of the oil would 

have ended up in the sediments (according to the results from the current study), as less oil 

would adsorb to suspended sediments. The heavy weather conditions might have helped the 

chemically dispersed oil droplets spread and dilute. 

The practical implication of the results from this study is that the increased amount of oil in 

the water column (dispersed droplets or dissolved components) must be taken into account 

when applying chemical dispersants in shallow waters. Wolfe et al. (1998), who found that 

the concentration of naphthalene in water did not change with the addition of dispersant to 

a crude oil, still found that  the presence of dispersant increased the trophic transfer of the 

compound in primary levels of a marine food chain. In a recent study Jung et al. (2012) found 

a decrease in plankton assemblages due to higher oil (droplet) concentration in deeper 

water when the oil was chemically dispersed compared to situations with naturally dispersed 

oil. 
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6 Conclusion 
The aim of this thesis was to study the adsorption of dispersed crude oil to seawater 

suspended particulate materials when oil is released into the marine environment. 

Laboratory experiments were conducted with simulated seawater conditions and 

mechanically generated oil droplets. The study attempted to determine which crude oil 

derived compounds preferentially adsorbed to the surface of particulate material and which 

remained in solution. A selection of parameters (sediment type and concentration, oil type, 

temperature and use of chemical dispersant) was varied to try to assess the individual 

parameters effects on the adsorption process.  

It was shown that oil droplets adsorbed as a bulk to the sediment, not as individual 

components. An absence of the smaller, more water-soluble oil components was evidenced 

by the reduction of early eluting components in GC-FID profiles of sediment extracts. This 

was confirmed by comparing SVOC profiles (GC-MS analysis) of the pure oil and the oil 

extracted from sediment samples.  

Particle size (surface area), oil characteristics (chemical composition) and presence of 

chemical dispersant were the three parameters which had the greater impact on the 

adsorption properties of oil droplets to SPM in seawater. In this study, smaller size 

sediments (e.g. clay) were capable of adsorbing up to 3 times more oil than sediment 

consisting mainly of larger grains (e.g. carbonate sand and quartz sand). This indicates that 

surface area has a primary role in controlling adsorption. Another important parameter in 

determining the adsorption is the chemical characteristics of oil. A heavy fuel oil (IF 380 

Fresh) used in this study adsorbed 3 times more efficiently to suspended particulates than a 

Kvitebjørn condensate (topped 250+). The adsorption properties of oil appear to be related 

to the content of polar compounds (estimated by asphaltenes content). Finally, the addition 

of chemical dispersant to the seawater dispersed oil droplets decreased the sedimentation 

of oil in an exponential-like manner. Addition of just 1 % dispersant reduced the amount of 

oil sorbed to suspended carbonate sand by 50 %. However, the presence of dispersant did 

not change the distribution of compounds adsorbed to the sediment.  

The effect of varying temperature (over the range 5-20 °C) was not considerable when 

compared to the influence of other parameters investigated in this study. Previous studies 

show conflicting results about the effect of temperature on adsorption. In this study, the 
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adsorption was highest at the lowest temperature, and this is attributed to increased 

viscosity of the oil at low temperatures. 

The partitioning of oil components to the water column was also monitored in this study, 

and found not to be influenced significantly by any of the studied parameters. The use of 

chemical dispersant did not alter the concentration or distribution of oil components 

dissolved in water. It appears that the water partitioning of oil is dominated by the solubility 

of the individual components.    
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7 Further work 
This thesis shows that there are several parameters that can significantly effect the 

adsorption properties of oil to suspended particulate material (SPM) present in the 

environment. In this study, sediment size, oil type and use of chemical dispersant are 

identified as the most important parameters governing the adsorption of oil to SPM. 

The experimental work conducted for this thesis has formed part of the early stages of an 

ongoing large-scale research project at SINTEF Marine Environmental Technology. Based on 

the results generated in the present study, it is suggested that future work expands further 

on the role of particulate sizes in the lower sand-silt range. The influence of mineral 

composition in adsorption to larger particles should also be assessed. A planned next step of 

the SINTEF project includes the study of adsorption to algae species in seawater. It is 

suggested that chemical dispersant is used in these experiments, to see whether the trend 

of reducing adsorption is seen for biotic particles as well as the inorganic sediment particles 

used in this study. 

It is seen as of special importance to determine the effect of cold water on the effectiveness 

of chemical dispersants. The described experimental set-up should be improved in order to 

achieve successful tests with dispersant at low temperatures. It is also seen as desirable to 

study the effect of dispersant on a greater variety of oil types. The effect of equilibrium time 

on the water dissolved compounds should also be assessed (see Chapter 5.5).  

A scale up of the experimental dimensions, (e.g. with a more realistic wave action 

simulation), should also be conducted at a later stage in the project, in order to verify how 

realistic the small scale results are. 

In future work, it is recommended to analyse more (preferentially all) samples by GC-MS to 

monitor the alterations in SVOC profiles by changing experimental parameters. In addition to 

supporting the findings from the GC-FID results, it will give the project a more developed 

understanding of which oil components are influenced most by altered parameters, and thus 

which oil components are the driving factors in oil-SPM aggregation. It should also be 

considered to include more components to the GC-MS profiling, such as the phenols (more 

polar compounds).  
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For future analysis of sediment extracts using GC-FID, one should find one or more 

additional surrogate internal standard (SIS-THC) to complement o-terphenyl in order to 

avoid the problems with co-elution that is seen in this study.  
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Appendix A Experimental series and data for experiments 
Table A.1 – Data for all experiments 

Experiment ID 
 

Main variable(s) 
 

Weight of sediment 
added [g] 

Weight of sediment 
extracted [g] 

Volume of oil added 
[µL] 

 

Weight of oil added 
[mg] 

 

Date of 
experiment 

 

LIS001_1 
Sediment 

concentration 
5 g/L 

7,49 7,17 34,3 31,9 10.10.2011 
LIS001_2 7,48 7,14 34,3 31,9 10.10.2011 
LIS001_3 7,52 6,97 34,3 31,9 10.10.2011 
LIS001_4 7,51 6,29 34,3 31,9 04.01.2012 
LIS002_1 

Sediment 
concentration 

10 g/L 

15,08 14,51 34,3 31,9 10.10.2011 
LIS002_2 15,07 13,43 34,3 31,9 10.10.2011 
LIS002_3 15,07 13,59 34,3 31,9 10.10.2011 
LIS002_4 15,12 14,52 34,3 31,9 04.01.2012 
LIS002_5 15,15 14,66 34,3 31,9 04.01.2012 
LIS002_6 15,05 14,53 34,3 31,9 06.03.2012 
LIS002_7 15,01 14,36 34,3 31,9 06.03.2012 
LIS003_1 

Sediment 
concentration 

20 g/L 

30,39 29,66 34,3 31,9 17.10.2011 
LIS003_2 30,53 29,76 34,3 31,9 17.10.2011 
LIS003_3 30,21 29,03 34,3 31,9 17.10.2011 
LIS003_4 30,16 29,11 34,3 31,9 04.01.2012 
LIS004_1 Sediment 

concentration 
40 g/L 

 

60,13 59,25 34,3 31,9 24.10.2011 
LIS004_2 60,10 58,34 34,3 31,9 24.10.2011 

LIS004_3 60,08 N/A 34,3 31,9 24.10.2011 
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LIS005_1 Sediment 
concentration 

80 g/L 
 

120,00 121,54 34,3 31,9 24.10.2011 
LIS005_2 120,13 120,38 34,3 31,9 24.10.2011 

LIS005_3 120,14 120,87 34,3 31,9 24.10.2011 

LIS006_1 

Temperature 4-5 °C 

15,11 14,59 34,3 31,9 03.11.2011 
LIS006_2 15,13 14,38 34,3 31,9 03.11.2011 
LIS006_3 15,14 14,34 34,3 31,9 03.11.2011 
LIS006_6 15,06 13,48 34,3 31,9 01.02.2012 
LIS006_7 15,06 14,37 34,3 31,9 01.02.2012 
LIS007_1 

Temperature 10-11 °C 

15,15 14,59 34,3 31,9 07.11.2011 
LIS007_2 15,05 14,56 34,3 31,9 07.11.2011 
LIS007_3 15,10 14,54 34,3 31,9 07.11.2011 
LIS007_4 14,99 14,53 34,3 31,9 11.01.2012 
LIS007_5 15,04 14,56 34,3 31,9 11.01.2012 
LIS008_1 

Oil type Kvitebjørn 
condensate 250+ 

15,27 14,76 37,4 31,9 10.11.2011 
LIS008_2 15,08 14,50 37,4 31,9 10.11.2011 
LIS008_3 14,98 14,33 37,4 31,9 10.11.2011 
LIS009_1 

Oil type; IF380 Fresh 
15,10 14,60 33,1 31,9 14.11.2011 

LIS009_2 15,10 14,53 33,1 31,9 14.11.2011 
LIS009_3 15,14 14,49 33,1 31,9 14.11.2011 
LIS010_1 

Dispersant 1 % 
 

15,18 14,27 34,3 31,9 22.11.2011 
LIS010_2 15,05 13,59 34,3 31,9 22.11.2011 
LIS010_3 15,09 14,17 34,3 31,9 22.11.2011 
LIS010_4 15,09 14,22 34,3 31,9 07.02.2012 
LIS010_5 15,05 3,27 34,3 31,9 07.02.2012 
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Table A.1 continued 

Experiment ID 
 

Main variable(s) 
 

Weight of sediment 
added [g] 

Weight of sediment 
extracted [g] 

Volume of oil added 
[µL] 

 

Weight of oil added 
[mg] 

 

Date of 
experiment 

 LIS011_1 
Dispersant 5 % 

15,10 14,60 34,3 31,9 22.11.2011 
LIS011_2 15,07 14,37 34,3 31,9 22.11.2011 
LIS011_3 15,18 14,16 34,3 31,9 22.11.2011 
LIS011_4 

 
15,06 14,16 34,3 31,9 07.02.2012 

LIS011 5  15,04 13,59 34,3 31,9 07.02.2012 
LIS012_1 

Dispersant 1 % 
10 min residence time 

15,14 14,54 34,3 31,9 29.11.2011 
LIS012_2 15,10 14,47 34,3 31,9 29.11.2011 
LIS012_3 15,09 14,55 34,3 31,9 29.11.2011 
LIS013_1 

Dispersant 1 % 
30 min residence time 

15,00 14,47 34,3 31,9 29.11.2011 
LIS013_2 15,15 N/A 34,3 31,9 29.11.2011 
LIS013_3 15,10 N/A 34,3 31,9 29.11.2011 
LIS014_1 

Temperature; 10 °C 
Dispersant 1 % 

 

15,17 14,26 34,3 31,9 12.01.2012 
LIS014_2 15,03 14,40 34,3 31,9 12.01.2012 
LIS014_3 15,03 14,13 N/A N/A 12.01.2012 
LIS014_4 15,16 14,45 34,3 31,9 12.01.2012 
LIS015_1 

Temperature; 5 °C 
Dispersant 1 % 

 

15,10 14,12 34,3 31,9 31.01.2012 
LIS015_2 15,02 14,55 34,3 31,9 31.01.2012 
LIS015_3 15,05 14,19 34,3 31,9 31.01.2012 
LIS015_4 15,10 14,20 34,3 31,9 31.01.2012 
LIS016_1 

Temperature; 14-15 
°C 

14,97 14,45 34,3 31,9 21.02.2012 
LIS016_2 15,02 14,27 34,3 31,9 21.02.2012 
LIS016_3 15,05 14,44 34,3 31,9 21.02.2012 
LIS016_4 15,08 14,14 34,3 31,9 21.02.2012 
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LIS017_1 
Sediment type; Clay 

from Buvika 

15,12 14,94 34,3 31,9 23.02.2012 
LIS017_2 15,09 14,88 34,3 31,9 23.02.2012 
LIS017_3 15,03 15,03 34,3 31,9 23.02.2012 
LIS017_4 15,06 14,81 34,3 31,9 23.02.2012 
LIS018_1 

Oil type; Avaldsnes 
250+ 

15,13 14,57 34,1 31,9 28.02.2012 
LIS018_2 15,09 14,31 34,1 31,9 28.02.2012 
LIS018_4 15,06 14,42 34,1 31,9 29.02.2012 
LIS018_5 15,07 14,14 34,1 31,9 29.02.2012 
LIS019_1 

Sediment type; Sand 
from Ranheim 

15,00 14,74 34,3 31,9 06.03.2012 
LIS019_2 15,06 14,53 34,3 31,9 06.03.2012 
LIS019_3 15,03 14,53 34,3 31,9 06.03.2012 
LIS019_4 15,07 14,32 34,3 31,9 06.03.2012 

B1 
Procedural blank 

15,15 14,37 - - 17.10.2011 
B2 15,27 14,44 - - 07.11.2011 
B3 15,02 14,41 - - 14.11.2011 

Lab blank 1 
Lab blank Carbonate 

sand from 
Grandefjæra 

15,02 15,02 - - - 
 
 
 

Lab blank 2 14,97 14,97 - - - 
 Lab blank 3 15,00 14,94 - - - 

Lab blank 4 15,04 14,98 - - - 

Lab blank 5 
Lab blank Clay from 

Buvika 

15,09 14,98 - - - 
Lab blank 6 15,11 15,04 - - - 
Lab blank 7 15,00 14,84 - - - 
Lab blank 8 

Lab blank 
Sand from Ranheim 

15,01 14,92 - - - 
Lab blank 9 15,03 14,96 - - - 

Lab blank 10 15,02 14,98 - - - 
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Appendix B Parameters for the syringe pump 
The syringe used on the syringe pump had a volume of 1 mL and a length of 6 cm. Hence, the 

internal diameter of the syringe was 0,4608 cm. This number was used to set the pump rate 

correctly. 

The rate of the water valve pump was 160 mL/min, and the desired concentration of oil was 

20 mg/L. This, along with the densities of the respective oil was used to calculate the 

necessary rate of the oil syringe for each oil, by equation B.1. The calculation results are 

given in Table B.1. 

 

6[ / min] [ / ] 10
[ / min]

[ / ]
waterpump oil

oilpump
oil

Rate mL Concentration mg L
Rate µL

Density g mL

−× ×
=    (B.1) 

 

Table B.1 – Rate of oil output from the syringe pump 

Oil type 

Rate of 
seawater 
[mL/min] 

Concentration 
of oil  

[mg/L]  
Density oil  

[kg/L] 

Rate of oil 
  

[µL/min] 
Troll 250+ 160 20 0,92962 3,442 
Avaldsnes 250+ 160 20 0,93534 3,421 
Kvitebjørn condensate 
250+ 160 20 0,85337 3,750 
IF380 Fresh 160 20 0,9631 3,323 
 

When dispersants were added to the oil, a different rate of the syringe pump was necessary. 

This was calculated using equation B.2, and the results are given in Table B.2. 

 

6[ / min] [ / ] 10 (%)[ / min] (1 )
[ / ] 100

waterpump oil
oilpump

oil

Rate mL Concentration mg L DORRate µL
Density g mL

−× ×
= × +  (B.2) 
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Table B.2 – Rate of oil and dispersant on the syringe pump 

Oil type 

Rate of 
seawater 
[mL/min] 

Concentration 
of oil [mg/L]  

Density of 
oil [kg/L] 

Amount of 
oil 

[µL/min] 

Mengde 
dispersant 

(%) 

Oil + 
dispersant 
[µL/min] 

Troll 250+ 160 20 0,92962 3,442 1 3,477 
Troll 250+ 160 20 0,92962 3,442 5 3,614 
 

 

B.1 Test of syringe pump stability 

The stability in output of the syringe pump was tested by allowing it to pump 5 repeated 

parallels of 34,3 µL Troll 250+ into a pre-weighed GC-glass, and weighing the glass again for 

each parallel. The first parallel was disregarded since the amount of oil was significantly 

lower than for the rest of the parallels, and this can be explained by that the oil didn’t yet fill 

the entire syringe tip. 

Given the density of Troll 250 + (Table B.1), the expected mass of 34,3 µL would be 31,9 mg. 

The syringe pumps output when set to 24,3 µL was (31,7 ± 1,2) mg. The relative standard 

deviation for the repeated parallels were 3,9 %. 

 

Table B.3 – Stability in oil mass output of syringe pump 

Nominal volume of oil 
added [µL] 

Weight of GC-glass with oil 
[g] 

Weight of nominal 34,3 µL oil  
[mg] 

0 
 

2,345 0 

34,3 2,374                      28,7 (Disregarded) 

68,6 2,405 31,6 

102,9 2,437 31,8 

137,2 2,468 31,4 

171,5 2,500 32,1 

  
Average [mg] 31,7 

Standard deviation [mg] 1,2 
Relative standard deviation 

(%) 
3,9 
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Appendix C Grain size distribution 
This appendix presents the results from the determination of grain size distribution of the 

sediment, as described in Chapter 3, and in SINTEF procedure KS 66-21-A-220. 

Tables C.1 and C.2 show the grain size distributions for the sediments from Grandefjæra and 

Ranheim. Three parallels of both sediments were sieved, and average and standard 

deviations are calculated.  

Table C.1 – Grain size distribution of the carbonate sand from Grandefjæra 

 
 

Grandefjæra 

G1  
[g] 

G2  
[g] 

G3  
[g] 

Average  
[g] 

Standard 
deviation  

[g] 

Relative standard 
deviation  

(%) 
Total mass 20,01 20,01 20,00 20,01 0,00 0,0 
> 2000 µm 0,23 0,17 0,19 0,20 0,03 16,0 

1000-2000 µm 1,25 1,73 1,42 1,46 0,24 16,7 
500-1000 µm 1,43 1,54 1,29 1,42 0,13 8,8 
355-500 µm 0,92 0,95 1,06 0,98 0,07 7,5 
250-355 µm 4,70 5,00 2,48 4,06 1,38 34,0 
180-250 µm 7,96 5,76 9,53 7,75 1,89 24,4 
125-180 µm 2,71 3,98 3,08 3,25 0,66 20,2 
90-125 µm 0,40 0,45 0,48 0,44 0,04 9,2 
63-90 µm 0,27 0,26 0,26 0,26 0,00 1,0 
< 63 µm 0,08 0,07 0,10 0,08 0,01 16,1 

 

Table C.2 - Grain size distribution of the sand from Ranheim 

 
 

Ranheim 

R1  
[g] 

R2  
[g] 

R3  
[g] 

Average  
[g] 

Standard 
deviation 

[g] 

Relative standard 
deviation  

(%) 
Total mass  20,00 20,01 20,01 20,01 0,00 0,0 
> 2000 µm - - - - - - 

1000-2000 µm 3,33 3,80 3,91 3,68 0,31 8,4 
500-1000 µm 3,19 3,41 3,26 3,28 0,11 3,3 
355-500 µm 3,38 2,93 3,52 3,28 0,31 9,4 
250-355 µm 6,74 6,69 6,24 6,56 0,28 4,3 
180-250 µm 2,19 2,12 2,06 2,12 0,07 3,2 
125-180 µm 0,89 0,82 0,77 0,83 0,06 7,4 
90-125 µm 0,16 0,16 0,14 0,15 0,01 9,3 
63-90 µm 0,03 0,03 0,02 0,02 0,00 18,4 
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Appendix D Relative response factors of the oil types for GC-FID 
As described in Chapter 3 of the main text, four calibration standards of each oil was 

prepared and analyzed by GC-FID in order to determine the relative response factor (RRF) of 

the oil type. The calibration standards were made from a primary standard of 20 mg oil 

dissolved in 10 mL of DCM. The standards held concentrations of 10, 5, 2,5 and 1 mg/mL. 

The equation for calculating RRF is given in Chapter 3 of the main text. 

 

D.1 Troll 250+ 

An overlay of the chromatograms of the calibration standards for Troll 250+ is given in Figure 

D.1. 

 

Figure D.1 – Overlay of GC-FID chromatograms for the calibration standards of Troll 250+ 

 

The analytical data for the GC-FID analysis of the Troll 250+ standards are given in Table D.1. 

The concentration of the primary standard was 20,64 mg/mL. 

A calibration curve is plotted in Figure D.2, and this demonstrates that the response for of 

Troll 250+ is linear in the investigated concentration range. 
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Table D.1 - Calibration data for Troll 250+ 

Total area  
[pA] 

Area of α-
androstane  

[pA] 
Area-DCM  

[pA] 

Concentration of 
oil  

[mg/mL] 
Relative response 

factor RRF 
15 631 156 12 810 1,03 0,802 
32 370 153 29 550 2,58 0,754 
60 977 152 58 156 5,16 0,749 

118 073 164 115 252 10,32 0,689 

 
Average RRF 0,748 

Average area of DCM 
blanks in the run [pA] 2 821 

 

Standard deviation  
RRF 0,047 

Concentration of α-
androstane [mg/mL] 0,01008 

Relative standard 
deviation RRF (%) 6,218 

      

 

 

Figure D.2 - Calibration curve for Troll 250+ 

 

D.2 Avaldsnes 250+ 

An overlay of the chromatograms of the calibration standards for Avaldsnes 250+ is given in 

Figure D.3. 
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Figure D.3 - Overlay of GC-FID chromatograms for the calibration standards of Avaldsnes 250+ 

 

The analytical data for the GC-FID analysis of the Avaldsnes 250+ standards are given in 

Table D.2. The concentration of the primary standard was 20,22 mg/mL. 

A calibration curve is plotted in Figure D.4, and this demonstrates that the response for of 

Avaldsnes 250+ is linear in the investigated concentration range. 

 

Table D.2 – Calibration data for Avaldsnes 250+ 

Total area  
[pA] 

Area of α-
androstane  

[pA] 
Area-DCM  

[pA] 

Concentration of 
oil  

[mg/mL] 
Relative response factor 

RRF 
12 923 180 9 830 1,01 0,544 
26 271 167 23 178 2,53 0,555 
54 747 162 51 654 5,05 0,635 

105 775 163 102 682 10,11 0,630 

 Average area of DCM 
blanks in the run [pA] 3 093 

  
  

Average RRF 0,591 
Concentration of α-
androstane [mg/mL] 0,01008 

Standard deviation 
RRF 0,048 

  
  

Relative standard 
deviation RRF (%) 8,134 

 

. 
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Figure D.4 – Calibration curve for Avaldsnes 250+ 

 

D.3 Kvitebjørn condensate 250+ 

An overlay of the chromatograms of the calibration standards for Kvitebjørn condensate 

250+ is given in Figure D.5. 

 

 

Figure D.5 - Overlay of GC-FID chromatograms for the calibration standards of Kvitebjørn condensate 250+ 
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The analytical data for the GC-FID analysis of the Kvitebjørn condensate 250+ standards are 

given in Table D.3. The concentration of the primary standard was 20,68 mg/mL. As seen 

from the overlay in Figure D.5, the standard supposed to be of concentration 2,5, 

demonstrates unexplainable low response. The data for this standard is therefore omitted 

from the calculation of RRF. 

A calibration curve is plotted in Figure D.6, and this demonstrates that the response for of 

Kvitebjørn condensate 250+ is linear in the investigated concentration range. 

 

Table D.3 - Calibration data for Kvitebjørn condensate 250+ 

Total area 
[pA] 

Area of α-
androstane  

[pA] 
Area-DCM  

[pA] 

Concentration of 
oil 

[mg/mL] 

Relative response 
factor 
RRF 

17 170 170 14 349 1,03 0,824 
73 559 190 70 738 5,17 0,727 

149 476 186 146 655 10,34 0,769 
  

 
Average RRF 0,773 

Average area of DCM 
blanks in the run [pA] 2 821 

 
 

Standard deviation 
RRF 0,049 

Concentration of α-
androstane [mg/mL] 0,01008 

Relative standard 
deviation RRF (%) 6,327 

 

 

 

Figure D.6 - Calibration curve for Kvitebjørn condensate 250+ 
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D.4 IF380 Fresh 

An overlay of the chromatograms of the calibration standards for IF380 Fresh is given in 

Figure D.7. 

 

Figure D.7 - Overlay of GC-FID chromatograms for the calibration standards of IF380 Fresh 

 

The analytical data for the GC-FID analysis of the IF380 Fresh standards are given in Table 

D.4. The concentration of the primary standard was 20,57 mg/mL. 

A calibration curve is plotted in Figure D.8, and this demonstrates that the response for of 

IF380 Fresh is linear in the investigated concentration range. 

 

Table D.4 – Calibration data for IF380 Fresh 

Total area 
[pA] 

Area of α-
androstane 

[pA] 
Area-DCM 

[pA] 

Concentration of 
oil 

[mg/mL] 
Relative response factor 

RRF 
10 730 165 7 910 1,03 0,470 
20 715 167 17 894 2,57 0,421 
39 456 163 36 635 5,14 0,440 
72 587 163 69 766 10,29 0,418 

 
Average RRF 0,437 

Average area of DCM 
blanks in the run [pA] 2 821 

 
 

Standard deviation 
RRF 0,024 

Concentration of α-
androstane [mg/mL] 0,01008 

Relative standard 
deviation RRF (%) 5,500 
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Figure D.8 – Calibration curve for IF 380 Fresh 
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Appendix E Method development 

E.1 Comparison of extraction techniques 
Table E.1 show the experimental data for the six experiments used to compare Soxhlet extraction and 
alkaline saponification. 

 

Table E.1 – Data of samples for comparison of extraction techniques 

Experiment 
ID 

Extraction method 
 

Weight of 
sediment [g] 

Volume of oil added  
[µL] 

Weight of oil added 
[mg] 

M1_1 
Soxhlet extraction 

  

7,55 N/A N/A 
M1_2 7,61 31,82 29,58 
M1_3 7,65 30,15 28,03 
M2_1 

Alkaline saponification 
 

7,60 30,07 27,95 
M2_2 7,53 30,18 28,06 
M2_3 7,64 30,04 27,93 
 

The results from GC-FID analysis of the extracts are shown in Table E.2 and Figures E.1 – E.6. 

Figure E.7 is an overlay of the two quantifiable chromatograms for each extraction.  

 

Table E.2 – Results from GC-FID analysis of method development samples 

Sample ID 
 

Atot 

 
ADCM 

 
Aotp 

 
A5α-and 

 
ATHC 

 
CRIS [µg] 

 
RRF (oil) 

 

THC 
[µg/ 

extract] 
CSIS [µg] 

 

THC 
[µg/ 

sample] 
M1_1 46 153 10579 136 194 35 244 10 0,748 2 424 10 3467 
M1_2 42 478 10579 109 178 31 612 10 0,748 2 372 10 3877 
M2_2 27 724 10579 107 184 16 854 10 0,748 1 223 10 2106 
M2_3 22 991 10579 189 218 12 006 10 0,748 738 10 848 

 

 

Figure E.1 - M1_1 Soxhlet extraction 
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Figure E.2 - M1_2 Soxhlet extraction 

 

 

Figure E.3 - M1_3 Soxhlet extraction 

 

 

Figure E.4 – M2_1 Alkaline saponification 
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Figure E.5 - M2_2 Alkaline saponification 

 

 

Figure E.6 - M2_3 Alkaline saponification 

 

 

Figure E.7 - Overlay of M1_1, M1_2, M2_2, and M2_3. Comparison of Soxhlet extraction and alkaline 
saponification.
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Appendix F GC-FID Chromatograms 
This appendix will present all chromatograms obtained by GC-FID analysis of sediment 

extracts, water extracts, procedural blanks and laboratory blanks. Values on x-axis is in 

minutes, values on y-axis is in pA. 

F.1 GC-FID Chromatograms of sediment extracts 

The following will present the chromatograms for all samples of sediment extracts. 

 

Figure F.1 - LIS001_1 Sediment 

 

 

Figure F.2 - LIS001_2 Sediment 

 

 

Figure F.3 - LIS001_3 Sediment 
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F.4 - LIS001_4 Sediment 

 

 

Figure F.5 - LIS002_1 Sediment 

 

 

Figure F.6 - LIS002_2 Sediment 

 

 

Figure F.7 - LIS002_3 Sediment 
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Figure F.8 - LIS002_4 Sediment 

 

 

Figure F.9 - LIS002_5 Sediment 

 

 

Figure F.10 - LIS002_6 Sediment 

 

 

Figure F.11 - LIS002_7 Sediment 
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Figure F.12 - LIS003_1 Sediment 

 

 

Figure F.13 -LIS003_2 Sediment 

 

 

Figure F.14 - LIS003_3 Sediment 

 

 

Figure F.15 - LIS003_4 Sediment 
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Figure F.16 - LIS004_1 Sediment 

 

 

Figure F.17 - LIS004_2 Sediment 

 

 

Figure F.18 - LIS004_3 Sediment 

 

 

Figure F.19 - LIS005_1 Sediment 



Appendix F 
 
 

  A.24  
  

 

Figure F.20 - LIS005_2 Sediment 

 

 

Figure F.21 - LIS005_3 Sediment 

 

 

Figure F.22 - LIS006_1 Sediment 

 

 

Figure F.23 - LIS006_2 Sediment 



Appendix F 
 
 

  A.25  
  

 

Figure F.24 - LIS006_3 Sediment 

 

Figure F.25 - LIS006_6 Sediment 

 

 

Figure F.26 - LIS006_7 Sediment 

 

 

Figure F.27 - LIS007_1 Sediment 
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Figure F.28 - LIS007_2 Sediment 

 

 

Figure F.29 - LIS007_3 Sediment 

 

 

Figure F.30 - LIS007_4 Sediment 

 

 

Figure F.31 - LIS007_5 Sediment 
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Figure F.32 - LIS008_1 Sediment 

 

 

Figure F.33 - LIS008_2 Sediment 

 

 

Figure F.34 - LIS008_3 Sediment 

 

 

Figure F.35 - LIS009_1 Sediment 
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Figure F.36 - LIS009_2 Sediment 

 

 

Figure F.37 - LIS009_3 Sediment 

 

 

Figure F.38 - LIS010_1 Sediment 

 

 

Figure F.39 - LIS010_2 Sediment 
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Figure F.40 - LIS010_3 Sediment 

 

 

Figure F.41 - LIS010_4 Sediment 

 

 

Figure F.42 - LIS010_5 Sediment 

 

 

Figure F.43 - LIS011_1 Sediment 
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Figure F.44 - LIS011_2 Sediment 

 

 

Figure F.45 - LIS011_3 Sediment 

 

 

Figure F.46 - LIS011_4 Sediment 

 

 

Figure F.47 - LIS011_5 Sediment 
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Figure F.48 - LIS012_1 Sediment 

 

 

Figure F.49 -LIS012_2 Sediment 

 

 

Figure F.50 - LIS012_3 Sediment 

 

 

Figure F.51 - LIS013_1 Sediment 
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Figure F.52 - LIS013_2 Sediment 

 

 

Figure F.53 - LIS013_3 Sediment 

 

 

Figure F.54 - LIS014_1 Sediment 

 

 

Figure F.55 - LIS014_2 Sediment 
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Figure F.56 - LIS014_3 Sediment 

 

 

Figure F.57 - LIS014_4 Sediment 

 

Figure F.58 - LIS015_1 Sediment 

 

 

Figure F.59 - LIS015_2 Sediment 
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Figure F.60 - LIS015_3 Sediment 

 

 

Figure F.61 - LIS015_4 Sediment 

 

Figure F.62 - LIS016_1 Sediment 

 

 

Figure F.63 - LIS016_2 Sediment 
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Figure F.64 - LIS016_3 Sediment 

 

 

Figure F.65 - LIS016_4 Sediment 

 

Figure F.66 - LIS017_1 Sediment 

 

 

Figure F.67 - LIS017_2 Sediment 
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Figure F.68 - LIS017_3 Sediment 

 

 

Figure F.69 - LIS017_4 Sediment 

 

Figure F.70 - LIS018_1 Sediment 

 

 

Figure F.71 - LIS018_2 Sediment 
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Figure F.72 - LIS018_4 Sediment 

 

 

Figure F.73 - LIS018_5 Sediment 

 

Figure F.74 - LIS019_1 Sediment 

 

 

Figure F.75 - LIS019_2 Sediment 
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Figure F.76 - LIS019_3 Sediment 

 

 

Figure F.77 -LIS019_4 Sediment 

 

F.1.1 GC-FID Chromatograms of extracts of procedural blanks for sediment 

These are the chromatograms of extracts of the sediment fraction of the three procedural 

blanks. 

 

Figure F.78 - Procedural blank 1 Sediment 
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Figure F.79 - Procedural blank 2 Sediment  

 

 

Figure F.80 - Procedural blank 3 Sediment 

 

F.1.2 GC-FID Chromatograms of extracts of laboratory blanks for sediment 

The first four chromatograms are for analysis of “blank” sediment from Grandefjæra 

(carbonate sand). 

 

Figure F.81 - Laboratory blank 1 Sediment Grandefjæra 
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Figure F.82 - Laboratory blank 2 Sediment Grandefjæra 

 

 

Figure F.83 - Laboratory blank 3 Sediment Grandefjæra 

 

 

Figure F.84 - Laboratory blank 4 Sediment Grandefjæra 
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The following three chromatograms are for analysis of “blank” sediment from Buvika (clay). 

 

Figure F.85 - Laboratory blank 5 Sediment Buvika 

 

 

Figure F.86 - Laboratory blank 6 Sediment Buvika 

 

 

Figure F.87 - Laboratory blank 7 Sediment Buvika 
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The following three chromatograms are for analysis of “blank” sediment from Ranheim 

(sand). 

 

Figure F.88 - Laboratory blank 8 Sediment Ranheim 

 

 

Figure F.89 - Laboratory blank 9 Sediment Ranheim 

 

 

Figure F.90 - Laboratory blank 10 Sediment Ranheim 
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F.2 GC-FID Chromatograms of water extracts 

The following will present the chromatograms for all samples of water extracts. 

 

 

Figure F.91 - LIS001_1 Water 

 

 

Figure F.92 - LIS001_2 Water 

 

 

Figure F.93 - LIS001_3 Water 
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Figure F.94 - LIS001_4 Water 

 

 

Figure F.95 - LIS002_1 Water 

 

 

Figure F.96 - LIS002_2 Water 

 

 

Figure F.97 - LIS002_3 Water 
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Figure F.98 - LIS002_4 Water 

 

 

Figure F.99 - LIS002_5 Water 

 

 

Figure F.100 - LIS002_6 Water 

 

 

Figure F.101 - LIS002_7 Water 
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Figure F.102 - LIS003_1 Water 

 

 

Figure F.103 - LIS003_2 Water 

 

 

Figure F.104 - LIS003_3 Water 

 

 

Figure F.105 - LIS003_4 Water 
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Figure F.106 - LIS006_1 Water 

 

 

Figure F.107 - LIS006_2 Water 

 

 

Figure F.108 - LIS006_3 Water 

 

 

Figure F.109 - LIS006_6 Water 



Appendix F 
 
 

  A.48  
  

 

Figure F.110 - LIS006_7 Water 

 

 

Figure F.111 - LIS007_1 Water 

 

 

Figure F.112 - LIS007_2 Water 

 

 

Figure F.113 - LIS007_3 Water 
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Figure F.114 - LIS007_4 Water 

 

 

Figure F.115 - LIS007_5 Water 

 

 

Figure F.116 - LIS008_1 Water 

 

 

Figure F.117 - LIS008_2 Water 
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Figure F.118 - LIS008_3 Water 

 

 

Figure F.119 - LIS009_1 Water 

 

 

Figure F.120 - LIS009_2 Water 

 

 

Figure F.121 - LIS009_3 Water 
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Figure F.122 - LIS010_1 Water 

 

 

Figure F.123 - LIS010_2 Water 

 

 

Figure F.124 - LIS010_3 Water 

 

 

Figure F.125 - LIS010_4 Water 
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Figure F.126 - LIS010_5 Water 

 

 

Figure F.127 - LIS011_1 Water 

 

 

Figure F.128 - LIS011_2 Water 

 

 

Figure F.129 - LIS011_3 Water 
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Figure F.130 - LIS011_4 Water 

 

 

Figure F.131 - LIS011_5 Water 

 

 

Figure F.132 - LIS012_1 Water 

 

 

Figure F.133 - LIS012_2 Water 
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Figure F.134 - LIS012_3 Water 

 

 

Figure F.135 - LIS013_1 Water 

 

 

Figure F.136 - LIS013_2 Water 

 

 

Figure F.137 - LIS013_3 Water 
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Figure F.138 - LIS014_1 Water 

 

 

Figure F.139 - LIS014_2 Water 

 

 

Figure F.140 - LIS014_3 Water 

 

 

Figure F.141 - LIS014_4 Water 
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Figure F.142 - LIS015_1 Water 

 

 

Figure F.143 - LIS015_2 Water 

 

 

Figure F.144 - LIS015_3 Water 

 

 

Figure F.145 - LIS015_4 Water 
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Figure F.146 - LIS016_1 Water 

 

 

Figure F.147 - LIS016_2 Water 

 

 

Figure F.148 - LIS016_3 Water 

 

 

Figure F.149 - LIS016_4 Water 
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Figure F.150 - LIS017_1 Water 

 

 

Figure F.151 - LIS017_2 Water 

 

 

Figure F.152 - LIS017_3 Water 

 

 

Figure F.153 - LIS017_4 Water 
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Figure F.154 - LIS018_1 Water 

 

 

Figure F.155 - LIS018_2 Water 

 

 

Figure F.156 - LIS018_4 Water 

 

 

Figure F.157 - LIS018_5 Water 
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Figure F.158 - LIS019_1 Water 

 

 

Figure F.159 - LIS019_2 Water 

 

 

Figure F.160 - LIS019_3 Water 

 

 

Figure F.161 - LIS019_4 Water 
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F.2.1 GC-FID Chromatograms of extracts of procedural blanks for water 

These are the chromatograms of extracts of the water fraction of the three procedural 

blanks. 

 

Figure F.162 - Procedural blank 1 Water 

 

 

Figure F.163 – Procedural blank 2 Water 

 

 

Figure F.164 – Procedural blank 3 Water 
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F.2.2 GC-FID Chromatograms of extracts of laboratory blanks for water 

These are the chromatograms of six laboratory blanks of sea water from the same supply as 

used in the experiments. 

 

Figure F.165 - Laboratory blank 1 Water 

 

 

Figure F.166 - Laboratory blank 2 Water 

 

 

Figure F.167 - Laboratory blank 3 Water 
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Figure F.168 - Laboratory blank 4 Water 

 

 

Figure F.169 - Laboratory blank 5 Water 

 

 

Figure F.170 - Laboratory blank 6 Water 
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F.3 Overlay of chromatograms for comparison of experiments 

with/without dispersant 

 

 

Figure F.171 - LIS002_3 Sediment (no dispersant) (most intensive) overlaid with LIS010_3 (1 % dispersant). 

 

 

Figure F.172 - LIS002_3 Sediment (no dispersant) (most intensive) overlaid with LIS011_2 Sediment (1 % 
dispersant). 
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Appendix G GC-FID Results 
Table G.1 – Quantification of GC-FID results for sediment extracts. Areas of SIS-component (Aotp) written in bold italic are estimated values (see Table G.3, refer also to 
Chapter 3.4.2 of the main text). Samples marked * are not used for calculations. 

Sample ID 
 

Atot 

 
Ahexane 

 
Aotp 

 
A5α-and 

 
ATHC 

 
 

CRIS 
[µg] 

 

RRF (oil) 
 

THC 
[µg/ 

extract] 

CSIS 
[µg] 

 

Recovery 
 

THC 
[µg/ 

sample] 

LIS001_1 Sed* 31 545 2 501 177 214 28 653 10 0,748 1 792 10 0,8 2167 

LIS001_2 Sed 62 367 2 501 193 203 59 471 10 0,748 3 926 10 1,0 4126 

LIS001_3 Sed 64 541 2 501 199 224 61 616 10 0,748 3 682 10 0,9 4135 

LIS001_4 Sed 54 207 3 621 164 173 50 248 10 0,748 3 876 10 0,9 4089 

LIS002_1 Sed 76 555 2 501 166 197 73 691 10 0,748 5 001 10 0,8 5935 

LIS002_2 Sed 90 863 2 501 166 246 87 950 10 0,748 4 776 10 0,7 7083 

LIS002_3 Sed 76 286 2 501 166 197 73 421 10 0,748 4 975 10 0,8 5913 

LIS002_4 Sed 56 232 3 621 166 181 52 264 10 0,748 3 867 10 0,9 4209 

LIS002_5 Sed 120 548 3 621 166 199 116 562 10 0,748 7 819 10 0,8 9387 

LIS002_6 Sed 90 234 3 699 166 175 86 194 10 0,748 6 581 10 0,9 6942 

LIS002_7 Sed 81 896 3 699 166 183 77 847 10 0,748 5 681 10 0,9 6270 

LIS003_1 Sed* 72 752 2 501 166 200 69 884 10 0,748 4 667 10 0,8 5628 

LIS003_2 Sed 130 562 2 501 166 239 127 656 10 0,748 7 138 10 0,7 10281 

LIS003_3 Sed 158 146 2 501 166 213 155 266 10 0,748 9 736 10 0,8 12504 

LIS003_4 Sed 109 483 3 621 166 189 105 507 10 0,748 7 459 10 0,9 8497 

 



Appendix G 
 
 

  A.66  
  

Table G.1 continued 

Sample ID 
 

Atot 

 
Ahexane 

 
Aotp 

 
A5α-and 

 
ATHC 

 
CRIS 
[µg] 

 

RRF (oil) 
 

THC 
[µg/extract] 

CSIS 
[µg] 

 

Recovery 
 

THC 
[µg/sample] 

LIS004_1 Sed 110 764 2 501 166 185 107 912 10 0,748 7 819 10 0,9 8691 

LIS004_2 Sed 89 538 2 501 166 218 86 653 10 0,748 5 312 10 0,8 6979 

LIS004_3 Sed 145 815 2 501 166 236 142 912 10 0,748 8 113 10 0,7 11510 

LIS005_1 Sed 201 489 2 501 166 263 198 559 10 0,748 10 097 10 0,6 15991 

LIS005_2 Sed 139 650 2 501 166 205 136 778 10 0,748 8 933 10 0,8 11016 

LIS005_3 Sed 132 860 2 501 166 225 129 968 10 0,748 7 729 10 0,7 10467 

LIS006_1 Sed 121 750 2 501 166 176 118 906 10 0,748 9 012 10 0,9 9576 

LIS006_2 Sed 142 083 2 501 166 198 139 218 10 0,748 9 405 10 0,8 11212 

LIS006_3 Sed 162 326 2 501 166 195 159 464 10 0,748 10 950 10 0,9 12843 

LIS006_6 Sed* 20 377 3 621 166 165 16 425 10 0,748 1 333 10 1,0 1323 

LIS006_7 Sed* 30 587 3 621 166 161 26 639 10 0,748 2 218 10 1,0 2145 

LIS007_1 Sed 71 407 2 501 166 179 68 561 10 0,748 5 115 10 0,9 5522 

LIS007_2 Sed 104 367 2 501 166 200 101 500 10 0,748 6 788 10 0,8 8174 

LIS007_3 Sed 97 311 2 501 166 193 94 451 10 0,748 6 553 10 0,9 7607 

LIS007_4 Sed 73 117 3 621 166 180 69 150 10 0,748 5 150 10 0,9 5569 

LIS007_5 Sed 105 194 3 621 166 187 101 219 10 0,748 7 221 10 0,9 8152 

LIS008_1 Sed 59 373 2 501 166 191 56 515 10 0,773 3 832 10 0,9 4404 

LIS008_2 Sed 56 966 2 501 166 213 54 086 10 0,773 3 285 10 0,8 4215 

LIS008_3 Sed 59 772 2 501 166 196 56 909 10 0,773 3 760 10 0,8 4435 
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LIS009_1 Sed 105 386 2 501 166 175 102 543 10 0,437 13 386 10 0,9 14136 

LIS009_2 Sed 120 110 2 501 166 195 117 248 10 0,437 13 759 10 0,9 16163 

LIS009_3 Sed 107 783 2 501 166 198 104 918 10 0,437 12 150 10 0,8 14463 

LIS010_1 Sed 33 489 2 501 166 150 30 671 10 0,748 2 734 10 1,1 2470 

LIS010_2 Sed 45 283 2 501 166 174 42 442 10 0,748 3 261 10 1,0 3418 

LIS010_3 Sed 44 509 2 501 166 165 41 676 10 0,748 3 379 10 1,0 3356 

LIS010_4 Sed 54 469 3 699 166 172 50 431 10 0,748 3 911 10 1,0 4062 

LIS010_5 Sed 52 408 3 699 166 184 48 359 10 0,748 3 512 10 0,9 3895 

LIS011_1 Sed* 28 277 2 501 166 174 25 436 10 0,748 1 958 10 1,0 2055 

LIS011_2 Sed 16 803 2 501 159 162 13 981 10 0,748 1 156 10 1,0 1176 

LIS011_3 Sed* 5 306 2 501 145 161 2 499 10 0,748 208 10 0,9 231 

LIS011_4 Sed 20 353 3 699 163 169 16 322 10 0,748 1 292 10 1,0 1335 

LIS011_5 Sed 23 750 3 699 212 213 19 626 10 0,748 1 234 10 1,0 1238 

LIS012_1 Sed 33 004 2 528 166 169 30 141 10 0,748 2 382 10 1,0 2427 

LIS012_2 Sed 36 389 2 528 170 175 33 515 10 0,748 2 560 10 1,0 2629 

LIS012_3 Sed 31 393 2 528 167 179 28 519 10 0,748 2 131 10 0,9 2286 

LIS013_1 Sed 41 685 2 528 166 173 38 818 10 0,748 3 005 10 1,0 3126 

LIS013_2 Sed 43 864 2 528 166 171 40 999 10 0,748 3 202 10 1,0 3302 

LIS013_3 Sed 52 826 2 528 166 171 49 961 10 0,748 3 906 10 1,0 4024 

LIS014_1 Sed* 11 192 3 621 154 165 7 252 10 0,748 588 10 0,9 630 

LIS014_2 Sed* 11 934 3 621 136 167 8 009 10 0,748 641 10 0,8 788 

LIS014_3 Sed* 13 880 3 621 127 161 9 970 10 0,748 827 10 0,8 1046 
 



Appendix G 
 
 

  A.68  
  

Table G.1 continued 

Sample ID 
 

Atot 

 
Ahexane 

 
Aotp 

 
A5α-and 

 
ATHC 

 
CRIS 
[µg] 

 

RRF (oil) 
 

THC 
[µg/extract] 

CSIS 
[µg] 

 

Recovery 
 

THC 
[µg/sample] 

LIS014_4 Sed* 15 676 3 621 160 166 11 729 10 0,748 945 10 1,0 978 

LIS015_1 Sed* 5 833 3 621 137 162 1 913 10 0,748 158 10 0,8 186 

LIS015_2 Sed* 7 530 3 621 200 224 3 486 10 0,748 208 10 0,9 233 

LIS015_3 Sed* 11 825 3 621 167 173 7 864 10 0,748 607 10 1,0 631 

LIS015_4 Sed* 7 745 3 621 151 159 3 814 10 0,748 320 10 0,9 338 

LIS016_1 Sed 85 871 3 699 166 177 81 829 10 0,748 6 191 10 0,9 6590 

LIS016_2 Sed 84 005 3 699 166 187 79 953 10 0,748 5 719 10 0,9 6439 

LIS016_3 Sed 84 594 3 699 166 176 80 552 10 0,748 6 108 10 0,9 6487 

LIS016_4 Sed 78 526 3 699 166 179 74 482 10 0,748 5 554 10 0,9 5998 

LIS017_1 Sed 202 542 3 699 166 163 198 514 10 0,748 16 312 10 1,0 15988 

LIS017_2 Sed 166 980 3 699 166 151 162 964 10 0,748 14 435 10 1,1 13124 

LIS017_3 Sed 213 362 3 699 166 187 209 310 10 0,748 14 956 10 0,9 16857 

LIS017_4 Sed 204 203 3 699 166 187 200 151 10 0,748 14 325 10 0,9 16119 

LIS018_1 Sed* 59 268 3 699 166 164 55 239 10 0,591 5 703 10 1,0 5631 

LIS018_2 Sed 111 438 3 699 166 176 107 397 10 0,591 10 353 10 0,9 10947 

LIS018_4 Sed 126 732 3 699 166 186 122 681 10 0,591 11 160 10 0,9 12505 

LIS018_5 Sed 108 077 3 699 166 183 104 029 10 0,591 9 613 10 0,9 10604 

LIS019_1 Sed 62 255 3 699 166 173 58 217 10 0,748 4 504 10 1,0 4689 

LIS019_2 Sed 69 333 3 699 166 177 65 290 10 0,748 4 926 10 0,9 5258 



Appendix G 
 
 

  A.69  
  

LIS019_3 Sed* 41 408 3 699 166 174 37 369 10 0,748 2 870 10 1,0 3010 

LIS019_4 Sed 74 204 3 699 166 181 70 158 10 0,748 5 185 10 0,9 5650 

Procedure blank 1  12 216 2 501 161 201 9 353 10 0,748 621 10 0,8 776 

Procedure blank 2 10 086 2 501 149 171 7 265 10 0,748 568 10 0,9 654 

Procedure blank 3 4 169 2 501 132 176 1 360 10 0,773 100 10 0,7 134 

Lab blank 1 
(Grandefjæra) 

4 544 3 621 105 155 663 10 0,748 57 10 0,7 84 

Lab blank 2 4 585 3 621 108 158 699 10 0,748 59 10 0,7 87 

Lab blank 3* 5 001 3 699 134 159 1 009 10 0,748 85 10 0,8 101 

Lab blank 4 4 264 3 699 145 166 254 10 0,748 20 10 0,9 23 

Lab blank 5 
(Buvika) 

3 629 3 699 137 166 -373 10 0,748 -30 10 0,8 -36 

Lab blank 6 4 109 3 699 120 164 126 10 0,748 10 10 0,7 14 

Lab blank 7 4 278 3 699 124 168 287 10 0,748 23 10 0,7 31 

Lab blank 8 
(Ranheim) 

8 411 3 699 153 173 4 386 10 0,748 339 10 0,9 384 

Lab blank 9* 3 770 3 699 134 170 -233 10 0,748 -18 10 0,8 -23 

Lab blank 10 4 706 3 699 151 173 684 10 0,748 53 10 0,9 61 
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Table G.2 - Quantification of GC-FID results for water extracts. Samples marked * are not used for calculations. 

Sample ID 
 

Atot 

 
ADCM 

 
Aotp 

 
A5α-and 

 
ATHC 

 
CRIS [µg] 

 
RRF (oil) 

 
THC  

[µg/extract] 
CSIS [µg] 

 
Recovery 

 
THC  

[µg/sample] 
LIS001_1 Water* 9 809 2 688 133 207 6 781 10 0,748 437 10 0,6 680 
LIS001_2 Water 13 044 2 688 158 199 9 999 10 0,748 672 10 0,8 846 
LIS001_3 Water 17 387 2 688 211 225 14 262 10 0,748 847 10 0,9 902 
LIS001_4 Water 13 567 3 390 160 171 9 846 10 0,748 769 10 0,9 824 
LIS002_1 Water 12 034 2 688 178 193 8 975 10 0,748 620 10 0,9 674 
LIS002_2 Water 14 509 2 688 169 183 11 469 10 0,748 836 10 0,9 908 
LIS002_3 Water* 31 623 2 688 198 184 28 553 10 0,748 2 077 10 1,1 1 925 
LIS002_4 Water 14 709 3 390 171 169 10 979 10 0,748 871 10 1,0 858 
LIS002_5 Water 14 217 3 390 154 165 10 509 10 0,748 854 10 0,9 915 
LIS002_6 Water 9 609 3 093 157 167 6 192 10 0,748 496 10 0,9 526 
LIS002_7 Water 8 223 3 093 144 160 4 827 10 0,748 404 10 0,9 449 
LIS003_1 Water* 12 476 2 688 188 210 9 390 10 0,748 597 10 0,9 668 
LIS003_2 Water 26 771 2 688 193 212 23 677 10 0,748 1 491 10 0,9 1 640 
LIS003_3 Water 14 029 2 688 180 187 10 975 10 0,748 785 10 1,0 816 
LIS003_4 Water 16 078 3 390 165 174 12 349 10 0,748 950 10 0,9 1 000 
LIS006_1 Water 14 993 2 688 155 164 11 986 10 0,748 976 10 0,9 1 033 
LIS006_2 Water 14 671 2 688 147 171 11 665 10 0,748 910 10 0,9 1 059 
LIS006_3 Water 14 450 2 688 150 164 11 448 10 0,748 931 10 0,9 1 024 
LIS006_6 Water* 12 015 3 390 164 166 8 295 10 0,748 669 10 1,0 676 
LIS006_7 Water* 12 062 3 390 131 164 8 377 10 0,748 685 10 0,8 854 
LIS007_1 Water 15 198 2 688 158 166 12 185 10 0,748 981 10 1,0 1 028 
LIS007_2 Water 13 620 2 688 159 168 10 605 10 0,748 842 10 0,9 890 
LIS007_3 Water* 44 357 2 688 158 176 41 336 10 0,748 3 147 10 0,9 3 498 
LIS007_4 Water 13 209 3 390 157 172 9 490 10 0,748 739 10 0,9 806 
LIS007_5 Water 13 583 3 390 164 175 9 854 10 0,748 751 10 0,9 806 
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LIS008_1 Water 10 148 2 688 180 177 7 103 10 0,773 519 10 1,0 510 
LIS008_2 Water 10 411 2 688 182 169 7 372 10 0,773 566 10 1,1 524 
LIS008_3 Water 10 170 2 688 190 180 7 111 10 0,773 510 10 1,1 484 
LIS009_1 Water 7 579 2 688 155 174 4 562 10 0,437 599 10 0,9 676 
LIS009_2 Water 8 531 2 688 158 171 5 514 10 0,437 738 10 0,9 797 
LIS009_3 Water 7 609 2 688 130 177 4 613 10 0,437 596 10 0,7 810 
LIS010_1 Water 15 200 2 688 157 158 12 198 10 0,748 1 033 10 1,0 1 041 
LIS010_2 Water 13 804 2 688 160 173 10 783 10 0,748 834 10 0,9 904 
LIS010_3 Water 14 330 2 688 155 162 11 325 10 0,748 936 10 1,0 977 
LIS010_4 Water* 30 372 3 093 176 166 26 938 10 0,748 2 175 10 1,1 2 050 
LIS010_5 Water 11 188 3 093 160 163 7 772 10 0,748 638 10 1,0 649 
LIS011_1 Water 13 025 2 688 150 161 10 026 10 0,748 831 10 0,9 893 
LIS011_2 Water 14 584 2 688 144 173 11 578 10 0,748 894 10 0,8 1 072 
LIS011_3 Water 8 406 2 688 120 170 5 429 10 0,748 428 10 0,7 606 
LIS011_4 Water 8 103 3 093 119 168 4 723 10 0,748 376 10 0,7 532 
LIS011_5 Water 10 792 3 093 144 168 7 388 10 0,748 590 10 0,9 688 
LIS012_1 Water 11 880 2 748 160 177 8 795 10 0,748 664 10 0,9 736 
LIS012_2 Water 14 197 2 748 151 161 11 137 10 0,748 925 10 0,9 985 
LIS012_3 Water 14 353 2 748 167 177 11 261 10 0,748 851 10 0,9 899 
LIS013_1 Water 12 935 2 748 146 171 9 869 10 0,748 770 10 0,9 903 
LIS013_2 Water 13 743 2 748 175 181 10 639 10 0,748 786 10 1,0 812 
LIS013_3 Water 14 113 2 748 138 151 11 076 10 0,748 978 10 0,9 1 074 
LIS014_1 Water* 10 598 3 390 148 160 6 900 10 0,748 578 10 0,9 624 
LIS014_2 Water* 11 159 3 390 152 158 7 458 10 0,748 631 10 1,0 658 
LIS014_3 Water* 11 060 3 390 139 162 7 368 10 0,748 607 10 0,9 708 
LIS014_4 Water* 12 162 3 390 130 160 8 482 10 0,748 711 10 0,8 872 
LIS015_1 Water* 9 990 3 390 155 161 6 284 10 0,748 523 10 1,0 542 
LIS015_2 Water* 11 011 3 390 151 172 7 298 10 0,748 568 10 0,9 644 
LIS015_3 Water* 9 226 3 390 152 164 5 520 10 0,748 450 10 0,9 487 
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Table G.2 continued 

Sample ID 
 

Atot 

 
ADCM 

 
Aotp 

 
A5α-and 

 
ATHC 

 
CRIS [µg] 

 
RRF (oil) 

 
THC  

[µg/extract] 
CSIS [µg] 

 
Recovery 

 
THC  

[µg/sample] 
LIS015_4 Water* 11 661 3 390 156 166 7 949 10 0,748 640 10 0,9 683 
LIS016_1 Water 12 606 3 093 153 166 9 194 10 0,748 739 10 0,9 805 
LIS016_2 Water 10 327 3 093 154 163 6 916 10 0,748 567 10 0,9 600 
LIS016_3 Water 11 780 3 093 167 174 8 346 10 0,748 640 10 1,0 668 
LIS016_4 Water 12 020 3 093 154 169 8 604 10 0,748 681 10 0,9 745 
LIS017_1 Water 8 082 3 093 156 171 4 662 10 0,748 366 10 0,9 400 
LIS017_2 Water 8 624 3 093 159 175 5 197 10 0,748 397 10 0,9 438 
LIS017_3 Water 8 658 3 093 161 172 5 232 10 0,748 408 10 0,9 433 
LIS017_4 Water 9 948 3 093 159 177 6 519 10 0,748 492 10 0,9 549 
LIS018_1 Water 9 448 3 093 161 169 6 025 10 0,591 604 10 1,0 632 
LIS018_2 Water 9 121 3 093 151 163 5 714 10 0,591 594 10 0,9 639 
LIS018_4 Water 9 591 3 093 143 166 6 189 10 0,591 630 10 0,9 734 
LIS018_5 Water 9 199 3 093 141 164 5 802 10 0,591 600 10 0,9 697 
LIS019_1 Water 10 645 3 093 157 175 7 221 10 0,748 553 10 0,9 617 
LIS019_2 Water 8 167 3 093 149 166 4 759 10 0,748 384 10 0,9 426 
LIS019_3 Water 11 993 3 093 166 185 8 550 10 0,748 619 10 0,9 689 
LIS019_4 Water 9 768 3 093 153 168 6 355 10 0,748 505 10 0,9 557 
Procedure blank 1  8269 2 688 159 215 5 207 10 0,748 323 10 0,7 439 
Procedure blank 2 9034 2 688 158 177 6 011 10 0,748 453 10 0,9 507 
Procedure blank 3 5861 2 688 156 173 2 844 10 0,773 212 10 0,9 236 
Lab blank 1 SW 6848 3 390 153 163 3 142 10 0,748 258 10 0,9 275 
Lab blank 2 SW 7421 3 390 121 161 3 749 10 0,748 311 10 0,7 415 
Lab blank 3 SW 4190 3 093 149 169 779 10 0,748 62 10 0,9 70 
Lab blank 4 SW 7279 3 093 150 150 3 885 10 0,748 345 10 1,0 346 
Lab blank 5 SW 3605 3 093 117 170 225 10 0,748 18 10 0,7 26 
Lab blank 6 SW 4263 3 093 136 161 872 10 0,748 72 10 0,8 85 
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Table G.3 – Estimated area of o-terphenyl peak in sediment extracts from samples without co-elution 

Sample ID 
 

Aotp 

 
Recovery 

 
LIS001_1 Sed 177 0,83 
LIS001_2 Sed 193 0,95 
LIS001_3 Sed 199 0,89 
LIS001_4 Sed 164 0,95 
LIS011_1 Sed 166 0,95 
LIS011_2 Sed 159 0,98 
LIS011_4 Sed 163 0,97 
LIS012_2 Sed 170 0,97 
LIS012_3 Sed 167 0,93 
LIS014_1 Sed 154 0,93 
LIS014_4 Sed 160 0,97 
LIS015_2 Sed 200 0,90 
LIS015_3 Sed 167 0,96 
LIS015_4 Sed 151 0,95 

Proc blank 1 Sed 161 0,80 
Proc. blank 2 Sed 149 0,87 
Lab blank 4 Sed 145 0,87 
Lab blank 8 Sed 153 0,88 

Lab blank 10 Sed 151 0,87 

 Average area 166 0,92 
Standard deviation 16 0,05 
Relative standard 
deviation (%) 10 6 
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Appendix H Target ions in GC-MS SIM mode 
Table H.1 – Target ions in GC-MS SIM mode 

Component Component group Target ion 
Decalin C-10 saturates 138 
C1-decalins C-10 saturates 152 
C2-decalins C-10 saturates 166 
C3-decalins C-10 saturates 180 
C4-decalins C-10 saturates 194 
Naphthalene Naphthalenes 128 
C1-naphthalenes Naphthalenes 142 
C2-naphthalenes Naphthalenes 156 
C3-naphthalenes Naphthalenes 170 
C4-naphthalenes Naphthalenes 184 
Biphenyl 2-3 ring PAHs 164 
Acenaphthylene 2-3 ring PAHs 152 
Acenaphthene 2-3 ring PAHs 154 
Dibenzofuran 2-3 ring PAHs 168 
Fluorene 2-3 ring PAHs 166 
C1-fluorenes 2-3 ring PAHs 180 
C2-fluorenes 2-3 ring PAHs 194 
C3-fluorenes 2-3 ring PAHs 208 
Phenanthrene 2-3 ring PAHs 178 
Anthracene 2-3 ring PAHs 178 
C1-phenanthrenes/anthracenes 2-3 ring PAHs 192 
C2-phenanthrenes/anthracenes 2-3 ring PAHs 206 
C3-phenanthrenes/anthracenes 2-3 ring PAHs 220 
C4-phenanthrenes/anthracenes 2-3 ring PAHs 234 
Dibenzothiophene 2-3 ring PAHs 184 
C1-dibenzothiophenes 2-3 ring PAHs 198 
C2-dibenzothiophenes 2-3 ring PAHs 212 
C3-dibenzothiophenes 2-3 ring PAHs 226 
C4-dibenzothiophenes 2-3 ring PAHs 240 
Fluoranthene 4-6 ring PAHs 202 
Pyrene 4-6 ring PAHs 202 
C1-fluoranthrenes/pyrenes 4-6 ring PAHs 216 
C2-fluoranthenes/pyrenes 4-6 ring PAHs 230 
C3-fluoranthenes/pyrenes 4-6 ring PAHs 244 
Benz(a)anthracene 4-6 ring PAHs 228 
Chrysene 4-6 ring PAHs 228 
C1-chrysenes 4-6 ring PAHs 242 
C2-chrysenes 4-6 ring PAHs 256 
C3-chrysenes 4-6 ring PAHs 270 
C4-chrysenes 4-6 ring PAHs 284 
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Table H.1 continued 

Component Component group Target ion 
Benzo(b)fluoranthene 4-6 ring PAHs 252 
Benzo(k)fluoranthene 4-6 ring PAHs 252 
Benzo(e)pyrene 4-6 ring PAHs 252 
Benzo(a)pyrene 4-6 ring PAHs 252 
Perylene 4-6 ring PAHs 252 
Indeno(1,2,3-c,d)pyrene 4-6 ring PAHs 276 
Dibenz(a,h)anthracene 4-6 ring PAHs 278 
Benzo(g,h,i)perylene 4-6 ring PAHs 276 
Internal standards 

  Flurorene-d10 (RIS) 
 

176 
Naphthalene-d8 (SIS) 

 
136 

Phenanthrene-d10 (SIS) 
 

188 
Chrysene-d12 (SIS) 

 
240 

Perylene-d12 (RIS) 
 

264 
 



Appendix I 
 
 

  A.76  
  

Appendix I GC-MS Results 
Table I.1 – GC-MS quantification results for pure oil samples 

Sample ID RRF  
Troll 1 
µg/mL 

Troll 2,5 
µg/mL 

Troll 5 
µg/mL 

Troll 10 
µg/mL 

IF380 1 
µg/mL 

IF380 2,5 
µg/mL 

IF380 5 
µg/mL 

IF380 10 
µg/mL 

 d8 naftalen   0,891 0,883 0,847 0,783 0,975 0,959 0,943 0,899 
 d10 fenatren   0,909 0,909 0,889 0,83 0,988 0,968 0,968 0,929 
 d12 crysene   0,956 0,956 0,956 0,916 0,996 1,016 1,036 1,056 
Decalin 0,262 0,47 1,04 2,05 3,99 0,11 0,23 0,46 0,91 
C1-decalins 0,262 1,40 3,17 6,12 11,94 0,17 0,37 0,73 1,41 
C2-decalins 0,262 1,33 2,95 5,96 11,72 0,17 0,37 0,82 1,36 
C3-decalins 0,262 1,47 3,18 6,53 12,70 0,18 0,43 0,87 1,70 
C4-decalins 0,262 1,41 2,78 5,26 11,58 0,00 0,25 0,70 1,30 
Benzo(b)thiophene 2,045 0,00 0,02 0,03 0,06 0,00 0,01 0,02 0,05 
Naphthalene 1,792 0,86 1,88 3,68 7,13 0,12 0,25 0,51 0,99 
C1-naphthalenes 1,792 2,39 5,21 10,24 19,81 0,38 0,84 1,68 3,33 
C2-naphthalenes 1,792 3,18 6,89 13,37 25,69 0,54 1,18 2,33 4,60 
C3-naphthalenes 1,792 2,41 5,13 9,98 18,91 0,50 1,02 1,94 3,77 
C4-naphthalenes 1,792 1,31 2,68 5,68 10,49 0,25 0,56 1,15 2,16 
Biphenyl 2,31 0,30 0,66 1,27 2,43 0,03 0,06 0,11 0,22 
Acenaphthylene 1,764 0,02 0,00 0,00 0,00 0,00 0,00 0,01 0,00 
Acenaphthene 0,997 0,05 0,08 0,17 0,32 0,02 0,04 0,07 0,14 
Dibenzofuran 2,564 0,04 0,08 0,15 0,30 0,01 0,01 0,03 0,05 
Fluorene 1,259 0,14 0,27 0,57 1,09 0,04 0,08 0,17 0,32 
C1-fluorenes 1,259 0,32 0,68 1,33 2,47 0,12 0,24 0,49 0,94 
C2-fluorenes 1,259 0,46 1,35 2,53 5,51 0,19 0,39 0,83 1,65 
C3-fluorenes 1,259 0,64 1,46 2,98 4,36 0,18 0,45 0,78 1,82 
Phenanthrene 2,011 0,32 0,68 1,34 2,61 0,20 0,27 4,58 1,05 
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Anthracene 1,766 0,00 0,00 0,00 0,00 0,02 0,04 0,00 0,14 
C1-phenanthrenes/anthracenes 2,011 0,73 1,56 2,93 5,74 0,33 0,74 1,49 2,98 
C2-phenanthrenes/anthracenes 2,011 0,75 1,63 3,27 6,33 0,44 0,99 2,05 4,13 
C3-phenanthrenes/anthracenes 2,011 0,56 1,25 2,38 4,88 0,33 0,72 1,59 3,01 
C4-phenanthrenes/anthracenes 2,011 0,31 1,14 2,06 3,91 0,21 0,41 0,93 2,01 
Dibenzothiophene 2,804 0,03 0,06 0,12 0,24 0,02 0,03 0,10 0,14 
C1-dibenzothiophenes 2,804 0,10 0,21 0,42 0,82 0,06 0,15 0,28 0,59 
C2-dibenzothiophenes 2,804 0,13 0,26 0,52 0,98 0,12 0,26 0,53 1,05 
C3-dibenzothiophenes 2,804 0,11 0,21 0,04 0,88 0,11 0,25 0,48 1,03 
C4-dibenzothiophenes 2,804 0,05 0,13 0,22 0,46 0,07 0,15 0,31 0,60 
Fluoranthene 2,146 0,02 0,05 0,10 0,19 0,01 0,02 0,04 0,08 
Pyrene 2,221 0,04 0,00 0,12 0,22 0,03 0,07 0,13 0,24 
C1-fluoranthrenes/pyrenes 2,221 0,17 0,36 0,74 1,38 0,14 0,32 0,55 1,13 
C2-fluoranthenes/pyrenes 2,221 0,22 0,49 0,97 1,80 0,20 0,45 0,90 1,73 
C3-fluoranthenes/pyrenes 2,221 0,20 0,40 1,00 1,47 0,20 0,45 0,93 1,75 
Benz(a)anthracene 1,83 0,01 0,02 0,04 0,07 0,02 0,05 0,10 0,19 
Chrysene 1,839 0,05 0,10 0,21 0,40 0,08 0,17 0,34 0,64 
C1-chrysenes 1,839 0,12 0,23 0,48 0,87 0,19 0,43 0,88 1,72 
C2-chrysenes 1,839 0,12 0,28 0,55 0,95 0,21 0,50 1,06 2,00 
C3-chrysenes 1,839 0,00 0,27 0,41 0,84 0,16 0,40 0,76 1,45 
C4-chrysenes 1,839 0,00 0,00 0,00 0,67 0,00 0,24 0,41 0,94 
Benzo(b)fluoranthene 2,021 0,00 0,02 0,04 0,07 0,02 0,03 0,07 0,13 
Benzo(k)fluoranthene 2,023 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Benzo(e)pyrene 3,138 0,01 0,02 0,03 0,07 0,02 0,05 0,09 0,19 
Benzo(a)pyrene 1,867 0,00 0,01 0,01 0,03 0,01 0,02 0,04 0,08 
Perylene 2,994 0,01 0,01 0,03 0,05 0,01 0,02 0,05 0,10 
Indeno(1,2,3-c,d)pyrene 1,683 0,00 0,00 0,00 0,00 0,00 0,01 0,02 0,03 
Dibenz(a,h)anthracene 1,558 0,00 0,00 0,00 0,02 0,01 0,02 0,03 0,07 
Benzo(g,h,i)perylene 1,957 0,00 0,01 0,02 0,03 0,01 0,03 0,06 0,11 
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Table I.1 continued 

Sample ID RRF  
Troll 1 
µg/mL 

Troll 2,5 
µg/mL 

Troll 5 
µg/mL 

Troll 10 
µg/mL 

IF380 1 
µg/mL 

IF380 2,5 
µg/mL 

IF380 5 
µg/mL 

IF380 10 
µg/mL 

Fluorene-d10 concentration 1,003                 
Sum all compounds   22 49 96 186 6 14 32 56 
C10-saturates   6 13 26 52 1 2 4 7 
Naphthalenes   10 22 43 82 2 4 8 15 
2-3 ring PAHs   5 12 22 43 2 5 15 22 
4-6 ring PAHs   1 2 5 9 1 3 6 13 
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Table I.2 – GC-MS Quantification results of sediment extracts 

Sample ID  RRF LIS-002-1 LIS-002-2 LIS-002-7 LIS-009-1 LIS-009-2 LIS-009-3 LIS-010-2 LIS-010-3 LIS-010-5 
 d8 naftalen   0,273 0,297 0,405 0,289 0,381 0,393 0,546 0,482 0,494 
 d10 fenatren   0,692 0,613 0,83 0,731 0,712 0,81 0,81 0,81 0,87 
 d12 crysene   0,857 0,737 0,956 1,016 0,956 0,996 0,976 0,916 1,036 
Decalin 0,262 0,03 0,02 0,22 0,04 0,04 0,03 0,14 0,21 0,11 
C1-decalins 0,262 0,20 0,12 0,48 0,00 0,00 0,00 0,39 0,59 0,24 
C2-decalins 0,262 0,64 0,54 0,53 0,00 0,63 0,33 0,50 0,84 0,23 
C3-decalins 0,262 2,68 2,14 1,19 0,00 1,18 0,74 0,91 1,34 0,43 
C4-decalins 0,262 6,07 6,51 2,66 0,00 1,03 1,65 1,61 2,48 1,32 
Benzo(b)thiophene 2,045 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Naphthalene 1,792 0,07 0,05 0,38 0,27 0,53 0,20 0,25 0,31 0,15 
C1-naphthalenes 1,792 0,88 1,11 0,77 0,66 1,34 0,97 0,51 0,96 0,28 
C2-naphthalenes 1,792 4,29 5,90 3,63 1,60 2,62 2,56 2,35 3,23 1,46 
C3-naphthalenes 1,792 8,56 10,70 8,10 3,11 4,31 4,09 4,78 5,14 4,14 
C4-naphthalenes 1,792 7,04 8,38 7,49 2,80 3,61 3,33 4,05 4,13 4,04 
Biphenyl 2,31 0,14 0,21 0,13 0,05 0,10 0,07 0,10 0,15 0,05 
Acenaphthylene 1,764 0,00 0,00 0,05 0,01 0,02 0,02 0,03 0,04 0,02 
Acenaphthene 0,997 0,00 0,00 0,00 0,06 0,09 0,09 0,00 0,04 0,00 
Dibenzofuran 2,564 0,05 0,07 0,07 0,03 0,04 0,04 0,04 0,05 0,04 
Fluorene 1,259 0,28 0,36 0,30 0,24 0,35 0,31 0,22 0,22 0,16 
C1-fluorenes 1,259 1,65 1,95 1,82 1,22 1,61 1,40 1,03 0,92 0,96 
C2-fluorenes 1,259 2,96 3,58 3,16 2,79 3,46 3,18 1,74 1,51 1,98 
C3-fluorenes 1,259 2,44 3,14 2,89 3,86 3,63 3,48 1,63 1,45 1,63 
Phenanthrene 2,011 1,82 2,11 2,02 1,37 1,60 1,44 1,19 1,15 1,25 
Anthracene 1,766 0,00 0,00 0,00 0,21 0,27 0,23 0,00 0,00 0,00 
C1-phenanthrenes/anthracenes 2,011 5,62 5,89 5,60 5,65 6,28 5,54 3,29 2,98 3,80 
C2-phenanthrenes/anthracenes 2,011 6,27 6,96 6,65 8,43 9,62 7,87 3,75 3,41 4,29 
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Table I.2 continued 

Sample ID  RRF LIS-002-1 LIS-002-2 LIS-002-7 LIS-009-1 LIS-009-2 LIS-009-3 LIS-010-2 LIS-010-3 LIS-010-5 
C3-phenanthrenes/anthracenes 2,011 4,54 5,34 4,83 6,69 7,21 6,02 2,63 2,40 3,05 
C4-phenanthrenes/anthracenes 2,011 3,25 4,01 3,79 4,15 5,06 4,08 1,83 1,86 2,32 
Dibenzothiophene 2,804 0,15 0,17 0,16 0,18 0,21 0,19 0,10 0,09 0,10 
C1-dibenzothiophenes 2,804 0,76 0,85 0,82 1,00 1,15 1,04 0,45 0,40 0,50 
C2-dibenzothiophenes 2,804 1,00 1,14 1,02 2,08 2,30 1,97 0,58 0,55 0,68 
C3-dibenzothiophenes 2,804 0,84 0,94 0,93 2,05 2,48 1,81 0,51 0,50 0,57 
C4-dibenzothiophenes 2,804 0,45 0,48 0,49 1,29 1,39 1,22 0,27 0,24 0,31 
Fluoranthene 2,146 0,26 0,27 0,30 0,25 0,27 0,23 0,20 0,27 0,34 
Pyrene 2,221 0,24 0,29 0,31 0,50 0,56 0,50 0,20 0,25 0,35 
C1-fluoranthrenes/pyrenes 2,221 1,14 1,42 1,35 2,04 2,23 2,05 0,73 0,73 0,88 
C2-fluoranthenes/pyrenes 2,221 1,23 1,37 1,33 3,12 3,48 3,11 0,71 0,71 0,88 
C3-fluoranthenes/pyrenes 2,221 0,70 1,03 1,17 2,74 3,92 3,30 0,41 0,59 0,45 
Benz(a)anthracene 1,83 0,10 0,09 0,10 0,38 0,45 0,37 0,07 0,12 0,34 
Chrysene 1,839 0,43 0,45 0,45 1,21 1,36 1,20 0,26 0,34 0,60 
C1-chrysenes 1,839 0,80 0,86 0,76 2,86 0,00 2,92 0,45 0,46 0,62 
C2-chrysenes 1,839 0,84 0,97 0,83 3,27 3,56 3,59 0,54 0,46 0,66 
C3-chrysenes 1,839 0,57 0,67 0,48 2,57 3,32 2,88 0,35 0,33 0,44 
C4-chrysenes 1,839 0,38 0,42 0,32 1,56 1,78 1,92 0,25 0,25 0,30 
Benzo(b)fluoranthene 2,021 0,12 0,11 0,11 0,28 0,29 0,26 0,07 0,16 0,42 
Benzo(k)fluoranthene 2,023 0,07 0,06 0,07 0,11 0,12 0,08 0,05 0,13 0,42 
Benzo(e)pyrene 3,138 0,08 0,08 0,09 0,32 0,36 0,31 0,05 0,10 0,22 
Benzo(a)pyrene 1,867 0,08 0,07 0,08 0,20 0,22 0,17 0,05 0,15 0,51 
Perylene 2,994 0,05 0,05 0,05 0,19 0,21 0,19 0,03 0,04 0,11 
Indeno(1,2,3-c,d)pyrene 1,683 0,05 0,05 0,05 0,09 0,09 0,07 0,04 0,11 0,36 
Dibenz(a,h)anthracene 1,558 0,01 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,05 
Benzo(g,h,i)perylene 1,957 0,06 0,07 0,07 0,25 0,26 0,23 0,04 0,12 0,33 
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Fluorene-d10 concentration 
(µg/mL) 1,003                   
Sum all compounds   70 81 68 72 85 77 39 43 42 
C10-saturates   10 9 5 0 3 3 4 5 2 
Naphthalenes   21 26 20 8 12 11 12 14 10 
2-3 ring PAHs   32 37 35 41 47 40 19 18 22 
4-6 ring PAHs   7 8 8 22 22 23 5 5 8 
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Table I.3 – GC-MS Quantification results of water extracts 

Sample ID RRF  
LIS-002-1-

VANN 
LIS-002-2-

VANN 
LIS-002-7-

VANN 
LIS-009-1-

VANN 
LIS-009-2-

VANN 
LIS-009-3-

VANN 
LIS-010-2-

VANN 
LIS-010-3-

VANN 
LIS-010-5-

VANN 
 d8 naftalen   0,55 0,401 0,63 0,53 0,622 0,397 0,542 0,574 0,682 
 d10 fenatren   0,81 0,593 0,771 0,791 0,81 0,593 0,751 0,771 0,83 
 d12 crysene   0,936 0,797 0,896 0,996 0,956 0,777 0,896 0,896 0,976 
Decalin 0,262 0,17 0,28 0,10 0,00 0,00 0,00 0,16 0,14 0,90 
C1-decalins 0,262 0,18 0,32 0,11 0,00 0,00 0,00 0,17 0,00 1,24 
C2-decalins 0,262 0,08 0,14 0,06 0,00 0,00 0,00 0,07 0,00 0,69 
C3-decalins 0,262 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,39 
C4-decalins 0,262 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,21 
Benzo(b)thiophene 2,045 0,03 0,04 0,02 0,05 0,06 0,07 0,03 0,03 0,02 
Naphthalene 1,792 7,79 12,33 4,97 0,92 1,19 1,35 10,57 11,23 7,30 
C1-naphthalenes 1,792 21,70 33,29 13,49 2,41 2,98 3,59 27,88 29,14 17,71 
C2-naphthalenes 1,792 14,50 21,71 11,15 1,49 1,96 2,16 19,58 20,23 14,56 
C3-naphthalenes 1,792 5,83 8,58 4,64 0,85 0,86 1,13 7,39 7,49 6,04 
C4-naphthalenes 1,792 1,38 2,84 1,35 0,24 0,27 0,34 1,82 1,70 1,46 
Biphenyl 2,31 2,12 3,23 1,63 0,12 0,17 0,18 2,87 3,05 2,12 
Acenaphthylene 1,764 0,00 0,06 0,04 0,01 0,00 0,01 0,05 0,05 0,04 
Acenaphthene 0,997 0,28 0,43 0,22 0,07 0,10 0,11 0,36 0,39 0,29 
Dibenzofuran 2,564 0,29 0,44 0,23 0,03 0,04 0,05 0,37 0,39 0,30 
Fluorene 1,259 1,12 1,73 0,91 0,21 0,24 0,30 1,41 1,44 1,16 
C1-fluorenes 1,259 1,31 1,97 1,13 0,32 0,32 0,43 1,54 1,50 1,32 
C2-fluorenes 1,259 3,50 6,68 4,65 0,30 0,32 0,42 5,05 0,00 2,96 
C3-fluorenes 1,259 2,97 3,74 3,24 0,18 0,16 0,18 3,18 3,08 2,84 
Phenanthrene 2,011 1,88 2,86 1,74 0,45 0,46 0,62 2,23 2,20 2,08 
Anthracene 1,766 0,00 0,00 0,00 0,05 0,05 0,07 0,00 0,00 0,00 
C1-phenanthrenes/anthracenes 2,011 1,70 2,53 1,59 0,64 0,63 0,86 1,82 1,87 1,85 
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C2-phenanthrenes/anthracenes 2,011 0,86 1,14 0,78 0,33 0,32 0,47 0,72 0,79 0,82 
C3-phenanthrenes/anthracenes 2,011 0,41 0,72 0,43 0,11 0,09 0,13 0,47 0,39 0,30 
C4-phenanthrenes/anthracenes 2,011 0,22 0,42 0,00 0,00 0,00 0,00 0,33 0,28 0,24 
Dibenzothiophene 2,804 0,19 0,29 0,18 0,06 0,07 0,09 0,23 0,23 0,21 
C1-dibenzothiophenes 2,804 0,24 0,38 0,25 0,13 0,13 0,18 0,28 0,26 0,26 
C2-dibenzothiophenes 2,804 0,12 0,19 0,12 0,09 0,08 0,12 0,12 0,14 0,12 
C3-dibenzothiophenes 2,804 0,04 0,00 0,00 0,04 0,04 0,05 0,00 0,00 0,00 
C4-dibenzothiophenes 2,804 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Fluoranthene 2,146 0,05 0,06 0,05 0,03 0,03 0,03 0,06 0,05 0,06 
Pyrene 2,221 0,04 0,05 0,04 0,04 0,04 0,05 0,04 0,04 0,04 
C1-fluoranthrenes/pyrenes 2,221 0,14 0,17 0,13 0,06 0,06 0,08 0,15 0,14 0,15 
C2-fluoranthenes/pyrenes 2,221 0,29 0,37 0,28 0,05 0,04 0,06 0,00 0,22 0,21 
C3-fluoranthenes/pyrenes 2,221 0,25 0,23 0,24 0,00 0,00 0,00 0,26 0,23 0,26 
Benz(a)anthracene 1,83 0,02 0,03 0,00 0,01 0,01 0,01 0,01 0,01 0,00 
Chrysene 1,839 0,02 0,03 0,02 0,02 0,02 0,03 0,02 0,03 0,02 
C1-chrysenes 1,839 0,03 0,03 0,03 0,02 0,02 0,02 0,12 0,03 0,03 
C2-chrysenes 1,839 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
C3-chrysenes 1,839 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
C4-chrysenes 1,839 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Benzo(b)fluoranthene 2,021 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Benzo(k)fluoranthene 2,023 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Benzo(e)pyrene 3,138 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Benzo(a)pyrene 1,867 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Perylene 2,994 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Indeno(1,2,3-c,d)pyrene 1,683 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Dibenz(a,h)anthracene 1,558 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Benzo(g,h,i)perylene 1,957 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
Fluorene-d10 concentration 
(µg/mL) 1,003                   
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Table I.3 continued 

Sample ID RRF  
LIS-002-1-

VANN 
LIS-002-2-

VANN 
LIS-002-7-

VANN 
LIS-009-1-

VANN 
LIS-009-2-

VANN 
LIS-009-3-

VANN 
LIS-010-2-

VANN 
LIS-010-3-

VANN 
LIS-010-5-

VANN 
Sum all compounds   70 107 54 9 11 13 89 87 68 
C10-saturates   0 1 0 0 0 0 0 0 3 
Naphthalenes   51 79 36 6 7 9 67 70 47 
2-3 ring PAHs   17 27 17 3 3 4 21 16 17 
4-6 ring PAHs   1 1 1 0 0 0 1 1 1 
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