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Summary

One-quarter of the worldwide greenhouse gas emissions is emitted by fossil fuel based
power plants. In order to limit future climate changes caused by these emissions,
several types of CO2-capturing power plants are currently being developed. An inte-
grated gasification combined cycle (IGCC) is one of the most promising alternatives.
It is the mission of a European collaboration project called DECARBit to enable the
commercial use of this type of power plant. One of the main process units of an IGCC
is the air separation unit (ASU). It provides both oxygen and nitrogen to the gasifier,
and nitrogen to the gas turbine. The main objective of this thesis is to improve the
Second law efficiency of a cryogenic ASU, with a focus on the use of novel distillation
concepts.

Improving the Second law efficiency of a process is equivalent to improving its exergy
efficiency. In this thesis, the exergy efficiency is defined as the desired change in exergy
contents of the ASU products divided by the net amount of added work. Using exergy
analysis, it is shown that the exergy efficiency of a state-of-the-art two-column ASU
with a pumped liquid cycle is approximately 35%. Most of the exergy destruction
is located in the compressor after-coolers, the distillation section, and the main heat
exchanger.
The irreversibilities in the compressor after-coolers are caused by the use of cooling
water. They can almost completely be eliminated by transferring the heat of com-
pression to the ASU products instead of to the cooling water. The achieved reduction
in exergy destruction corresponds to almost 1% of the net electric efficiency of the
IGCC and it increases the exergy efficiency of the ASU to approximately 70%.
Two alternatives are presented that can improve the distillation section efficiency.
The first one is the addition of a third distillation column; it can reduce the exergy
destruction in the distillation section by approximately 30%. The second option is to
improve the heat integration of the two distillation columns, by using heat-integrated
distillation stages (HI stages). These HI stages are the basis of a relatively novel dis-
tillation column configuration called a heat-integrated distillation column (HIDiC). In
an ASU, the use of HI stages enables a lower operating pressure in the high-pressure
column, which reduces the required work input to ASU. Depending on the amount of
heat-transfer capacity per HI stage, the exergy destruction in the distillation section
can be reduced by 20 to 30% due to the use of HI stages.



iv Summary

HI stages and HIDiCs are not yet in industrial use. So far, only two complete HIDiCs
have been built, both using concentrically-integrated columns equipped with struc-
tured packing. They have proven the feasibility of the HIDiC concept, but detailed
knowledge on the performance of the columns is still very scarce. As a result, simula-
tions of packed concentric HIDiCs still involve several uncertainties. They are related
to the achievable overall heat-transfer coefficient, to the performance of a ring-shaped
distillation column, and to the effects that a radial heat flux has on the column perfor-
mance. In order to obtain more insight into these phenomena, two research directions
have been pursued: a theoretical one and an experimental one.

The theoretical work concerns the further development of a model for the simultaneous
transfer of mass and thermal energy, based on the theory of irreversible thermody-
namics. The model describes the vapour–liquid interface region of a mixture as a
series of connected control volumes that together represent a vapour film, the inter-
face, and a liquid film. This interface region is located in between the bulk vapour
and bulk liquid phases; the conditions at its boundaries are equal to the adjacent
bulk phase conditions. A routine has been developed that calculates the thermal and
molar fluxes through the interface region, based on input values for the boundary con-
ditions, or driving forces. The film thicknesses ratio is found by requiring consistency
between the entropy productions calculated using the entropy balance and using the
product-sum of conjugate fluxes and driving forces.
By applying this model to a nitrogen–oxygen mixture, it has been shown that the
direct coupling between heat and diffusion fluxes has a considerable influence on the
calculated values of the fluxes. The measurable heat flux is most sensitive to the cou-
pling effect, which makes a correct description of the effect especially important when
simulating a HIDiC. Another important model parameter is the number of control
volumes that is used to represent the films. The effect of the interface resistances on
the calculation results was relatively small.

The experimental work concerns the development of a new experimental HIDiC. The
designed set-up consists of a cylindrical inner column with a diameter of 14 cm that
is surrounded by a ring-shaped outer column with a diameter of 22 cm. A difference
in operating pressures causes thermal energy to be transferred from the high-pressure
inner column to the low-pressure outer column. Both columns will be equipped with
1.6 m of structured packing and will operate at total reflux conditions. The set-up is
designed to operate at cryogenic temperatures, elevated pressures, and high oxygen
concentrations. At the top of the set-up, two copper-brazed plate heat exchangers
will be used as condensers, using evaporating nitrogen as coolant. Electrical heaters
with a maximum duty of 25 kW will be used as reboilers.
Radial and angular temperature and composition gradients inside the columns will
be measured directly at several height levels, in both the vapour and liquid phases.
These measurements can also be used to determine the separation efficiency of the
columns. The total amount of thermal energy transfer will be obtained based on two
independent measurements of the condenser and reboiler duties of both columns. The
set-up can also be used to assess the coupling between thermal and molar fluxes.
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Chapter 1

Introduction

This Ph.D. thesis is written as part of a large European collaboration project called
DECARBit. The main aim of the DECARBit project is to enable the commercializa-
tion of an integrated gasification combined cycle (IGCC) with pre-combustion CO2

capture [Røkke and Langørgen, 2009]. This fossil fuel based power plant emits a re-
duced amount of greenhouse gas into the atmosphere. The work presented in this
thesis focusses on improvements in the cryogenic air separation unit that is typically
used to provide the oxygen and nitrogen that are required in such a power plant.

1.1 CO2 emissions from fossil fuel based power plants

Nowadays, reducing the emissions of greenhouse gases is considered one of the main
measures to limit future unsustainable climate changes. According to the Interna-
tional Energy Agency [2010], CO2 emissions accounted for three-quarters of the world-
wide greenhouse gas emissions in 2005. The other two main contributing gases were
CH4 and N2O. About four-fifths of the total CO2 emissions are caused by the use of
fossil fuels (coal, oil, and natural gas), 16% is caused by deforestation and biomass
burning, and about 3% is related to cement production. Two-fifths of these fossil
fuels are combusted in electric power plants, one-quarter is used in industry, 22% is
used for transportation purposes, and 6% is burned for residential use.
Combining these numbers teaches us that one-quarter of the worldwide greenhouse
gas emissions is emitted by fossil fuel based power plants. These power plants are pro-
ducing about two-thirds of the global electricity consumption. Although the share of
electricity that is generated from fossil fuels is expected to become somewhat smaller
over the next decades, the absolute number will still increase due to growing electric-
ity consumption. Therefore, reducing the CO2 emissions from fossil fuel based power
plants is considered to be one of the most important actions to limit future climate
changes. This motivates research projects such as the DECARBit project to focus



2 Chapter 1. Introduction

on the capture (and storage) of CO2 that is originating from fossil fuel based power
plants.

1.2 Fossil fuel based power plants with CO2 capture

In a conventional fossil fuel based power plant (without CO2 capture), fuel is burned
with air in order to release high-temperature thermal energy that subsequently can be
used to produce electricity in a series of turbines. The CO2 that is produced during
the combustion reaction leaves the power plant as part of the flue gas, which further
mainly consists of nitrogen and water.
For the CO2 to be suitable for storage, it first needs to be compressed to a high pres-
sure. Because this requires a considerable amount of energy, it is favourable to purify
the CO2 in order to prevent other components from needlessly being compressed.
The purification, or capturing, of the CO2 can be done using various alternative
power plant designs. Currently, three types of processes seem to be the most promis-
ing ones: post-combustion capture, pre-combustion capture, and oxy-fuel combustion
[Rackley, 2010].

1.2.1 Post-combustion capture

A power plant with post-combustion CO2 capture is very similar to a conventional
power plant. The main difference is that a CO2-capture unit is added at the end of
the process, after the combustion step but before the flue gas is vented into the atmo-
sphere. Therefore, this alternative is very suitable for retrofitting of existing power
plants.
The main task of the CO2-capture unit is to separate CO2, having a concentration typ-
ically between 5% and 15%, from nitrogen. The most commonly used technology for
this task is absorption using amine-based chemical solvents like monoethanolamine.
Other options that are investigated are the use of adsorbents, membranes, and cryo-
genic temperatures.

1.2.2 Pre-combustion capture

Power plants with pre-combustion CO2 capture are usually based on an integrated
gasification combined cycle (IGCC). The main difference between an IGCC and a
conventional power plant is that before combustion, the fuel is first converted into a
syngas mixture by partial oxidation with purified oxygen, also known as gasification.
The resulting syngas mixture mainly consists of carbon monoxide and hydrogen.
In case of an IGCC with pre-combustion CO2 capture, an additional water-gas shift
unit is used to convert the carbon monoxide in the syngas to carbon dioxide. The
obtained process stream has a relatively high pressure with CO2 concentrations typi-
cally between 15% and 40%. Before combusting the hydrogen with air and additional
nitrogen, the CO2 is removed from the process stream, resulting in a carbon-lean flue
gas. This is the alternative on which the DECARBit project focusses.
The main task of a CO2-capture unit that is part of an IGCC is to separate the carbon
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dioxide from hydrogen, which is easier than separating it from nitrogen. Similar to
post-combustion capture processes, absorption is currently the most commercially de-
veloped technology, but using physical solvents instead of chemical ones. A commonly
used solvent is Selexol, which is a mixture of the dimethyl ethers of polyethylene gly-
col. The use of adsorbents, membranes, and cryogenic temperatures is also researched
for this separation.
In addition to the separation of carbon dioxide from hydrogen, an IGCC, both with
and without CO2 capture, also involves the separation of air in oxygen and nitrogen.
Here, the most commonly used technology is cryogenic distillation. However, other
alternatives can also be used, as is discussed in Section 1.3.

1.2.3 Oxy-fuel combustion

In oxy-fuel combustion power plants, the fuel is combusted using oxygen only, result-
ing in a flue gas that mainly consists of CO2. In order to control the combustion
temperature, a part of the flue gas is recycled into the combustion reactor. The re-
quired oxygen can be provided either as a pure gas, obtained using air separation, or
as a solid oxide in a chemical looping cycle.

1.3 Air separation

Both IGCCs and oxy-fuel combustion power plants (can) involve an air separation
unit. In an IGCC, both purified oxygen and nitrogen are required, whereas an oxy-
fuel combustion power plant only requires oxygen, although at a higher purity. Other
examples of industrial processes that use large amounts of oxygen are steel produc-
tion, cement production, and oil refining.
Several types of air separation technologies can be distinguished: adsorption of ni-
trogen using zeolite materials, adsorption of oxygen using activated carbon molecular
sieves or perovskite materials, absorption of oxygen in molten salt solutions, polymer
membranes, oxygen-transfer membranes made of solid oxide ceramics, and cryogenic
distillation [Smith and Klosek, 2001].
As part of the DECARBit project, the use of oxygen adsorbents, oxygen-transfer
membranes, and cryogenic distillation is investigated. The work presented in this
thesis focuses on cryogenic distillation only, which currently is the most cost-effective
option when large amounts of high-purity products are required.
Various types of cryogenic air separation units exist, as explained in more detail by,
for example, Smith and Klosek [2001]. The work in this thesis does not concern a
comparison of these different types of processes. Instead, it focuses on the analysis
and potential improvement of one of them. The studied process is designed based on
the experience of industrial partners within the DECARBit project, it is considered
to be a state-of-the-art design for a cryogenic air separation unit as part of an IGCC
and is described in more detail in Chapter 4.
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1.4 Research objectives

The main objective of this Ph.D. thesis, as defined in the DECARBit project, is to
improve the Second law efficiency of a cryogenic air separation unit, with a special
focus on the use of novel distillation concepts. The use of the Second law efficiency as
performance criterion is motivated and explained in more detail in Chapter 2. More
background information on distillation in general and on novel distillation concepts in
particular is presented in Chapter 3. Improvements in the efficiency of a cryogenic air
separation unit do not only increase the effectiveness of fossil fuel based power plants
with CO2 capture, but they can increase the energy efficiency of any industrial process
that makes use of a cryogenic air separation unit. These efficiency improvements will
help to limit future climate changes.
A second objective is related to the use of novel distillation concepts, which are
based on the integration of elaborate heat transfer possibilities within conventional
distillation equipment. In such configurations, considerable amounts of mass and
thermal energy are being transferred simultaneously. The interdependency of these
transfer processes is not explicitly included in existing distillation models. Therefore,
efforts on the development and implementation of a novel transfer model based on
the theory of irreversible thermodynamics have been initiated. It is an objective of
this thesis to continue the development of this model. Distillation is a widely used
separation technology. A more-accurate distillation model is not only useful for novel
types of cryogenic air separation units, but for distillation in general and possibly also
for other separation techniques like absorption and extraction.
One of the aims of the DECARBit project is to bridge the gap between theoretical
ideas and commercial implementations. This is pursued by building several pilot-sized
experimental set-ups. It has been a task within the project to propose conceptual
designs for such experimental set-ups. A proposal for a set-up concerning the use of
heat-integrated air distillation column has been submitted, in close collaboration with
SINTEF Energy Research, one of the partners within the DECARBit project. Because
the proposed design was selected for realization by the technical advisory committee
of the DECARBit project, the development of a detailed design and an experimental
plan has also been added to the thesis objectives. The experience and knowledge that
is generated by these activities is again not only useful for air distillation columns,
but for separation columns in general.

1.5 Thesis outline

This thesis continues with two chapters that provide more background information on
Second law analysis and on distillation. In Chapter 2, it is explained how an analysis
based on the Second law of thermodynamics can be used to improve the efficiency
of processes and process units. The connection of the Second law efficiency with
quantities like the ‘exergy destruction’ and the ‘entropy production’ is also discussed.
Chapter 3 presents more details on various types of distillation column configuration,
with a special focus on a novel configuration called a heat-integrated distillation col-
umn (HIDiC). Some different models that can be used to simulate distillation columns
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are also discussed.
The next seven chapters form the main body of this thesis. In Chapters 4 to 6, Second
law analysis is used to suggest and investigate possible improvements of a cryogenic
air separation unit. Chapter 4 presents the exergy analysis of two state-of-the-art
cryogenic air separation units, one containing two distillation columns and one con-
taining three. Based on the results of this analysis, two possible improvements are
identified. The first one is the use of heat-integrated distillation stages. Chapter 5
investigates the effect that the use of these stages has on the performance of the dis-
tillation section of a cryogenic air separation unit. In Chapter 6, the effect on the
entire air separation unit is investigated. Chapter 6 also assesses the effect of the
second possible improvement, which is to make better use of the heat of compression
by heating the separation products.
The next two chapters focus on the development and application of a novel approach
to the modelling of distillation columns. Chapter 7 presents a thermodynamically
consistent model for the simultaneous transfer of mass and thermal energy through
a vapour–liquid interface. The model is subsequently applied to a binary oxygen–
nitrogen mixture in order to evaluate its properties and in order to assess the effect
of coupling between the thermal energy and mass fluxes. This coupling is expected
to be significant especially in heat-integrated distillation columns. In Chapter 7, the
model is applied to a single set of system conditions, representing a single location
in a distillation column. In Chapter 8, it is applied to a range of system conditions
that represent an entire distillation column. The obtained results are subsequently
compared to the results of a conventional distillation model.
Chapters 9 and 10 concern the development of an experimental set-up that will allow
for a more accurate performance evaluation of heat-integrated air distillation columns.
These chapters can be regarded as the experimental continuation of the simulation
results obtained in Chapters 5, 7 and 8. The detailed design of the set-up, and the
rational behind it, are presented in Chapter 9. Descriptions of the instrumentation
that is used and of the experiments that are required are all part of Chapter 10.
The thesis is concluded by Chapters 11 and 12, which contains general discussions
and conclusions, and Appendix A, which discusses the details of the high-accuracy
thermodynamic model that has been used in the calculations presented in Chapters 5,
7, 8 and 10.

1.6 List of publications

All publications that have been used to disseminate the results of the work presented
in this thesis are listed in Sections 1.6.1 and 1.6.2. The author of the thesis is the
first author of all publications and he has performed the majority of the work. The
contributions of the co-authors are discussed in more detail in Section 1.6.3. The
seven journal publications listed in Section 1.6.1 correspond to Chapters 4 to 10 of
this thesis.
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up for performance assessment of heat-integrated air distillation columns. 23rd IIR
International Congress of Refrigeration; 21-26 August 2011, Prague, Czech Republic.

1.6.3 Co-author contributions

Co-author Kjelstrup has been the thesis supervisor. She has contributed to the pub-
lications by scientific discussions and by thoroughly reading the manuscripts. Co-
author Bock and the author have jointly taken a Ph.D. course under supervision of
Kjelstrup, which has resulted in a report that has been the basis for the first journal
publication. He has also contributed by reading the manuscript of this publication.
Co-author Drescher has contributed to the detailed design of the experimental set-up
and has been the main responsible on behalf of SINTEF Energy Research for the
design and construction of the set-up. He has also contributed by thoroughly reading
the publications that concern the experimental set-up.





Chapter 2

Second law analysis1

Classically, energy conversion processes are evaluated based on amounts of energy.
A common way of assessing process performances is to divide the amount of useful
energy that is leaving the process by the amount of useful energy that is added to it.
The resulting quantity is called the energy efficiency or the First law efficiency.
The energy efficiency is based on quantities of energy alone. Nowadays, it is in-
creasingly argued that processes should be evaluated using criteria that also take the
quality of energy into account, such as the exergy efficiency and the Second law effi-
ciency. Contrary to the energy efficiency, these efficiencies always have values between
zero and unity. In addition, they can be used to locate process inefficiencies and thus
indicate where in the process possible improvements can have the largest impact. A
process analysis based on this approach is known as a Second law analysis.
Numerous theoretical as well as practical examples exist that demonstrate the poten-
tial of Second law analysis, see for example the monograph by Kotas [1985], the work
of Bejan et al. [1996], the work in the research group of Kjelstrup [De Koeijer, 2002,
Johannessen, 2004, Røsjorde, 2004], and the work of Leites et al. [2003].

2.1 Exergy destruction, lost work, and entropy production

The exergy of a process stream is defined as its potential to perform work. The ratio
between the net exergy output and input of a process is often called the exergy effi-
ciency of the process.
The difference between the exergy inputs and outputs of a process is the amount of
work that has been consumed or produced. For each work consuming process, there
exists a minimum amount of required work, defined by the Second law of thermody-
namics, which is called the ideal or reversible work. This is the minimum amount of

1This chapter is based on the introductions of two publications [Van der Ham et al., 2011, 2009]
that are written as follow-ups on the M.Sc. thesis of the author. These publications are not included
in this Ph.D. thesis.
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net exergy input. In practise, the amount of consumed work is always larger than
the ideal work, so the actual amount of net exergy input is always larger than the
minimum amount. The difference between these two amounts is called the destroyed
exergy, or the ‘lost work’. The Second law efficiency of a work consuming process is
defined as the ratio between the minimum and actual amounts of net exergy input.
According to the Gouy–Stodola theorem, the amount of exergy that is destroyed in
a process is proportional to the amount of entropy that is produced [Bejan, 1982].
Therefore, optimization of both the exergy efficiency and the Second law efficiency is
equivalent to minimization of both the exergy destruction and the entropy produc-
tion. In an ideal reversible process, the amount of entropy production is equal to zero.
However, as given by the Second law of thermodynamics, in real processes it is always
positive.

2.2 Calculating the entropy production

Two different methods for calculating the entropy production can be distinguished:
the first considers process units as black boxes, the second is based on the theory of
irreversible thermodynamics or non-equilibrium thermodynamics.

2.2.1 Black-box approach

The black-box approach is the simplest way to calculate the entropy production. It
is based purely on a balance of the ingoing and outgoing process streams. For steady
state it is

dSirr

dt
=

∑
i

Fi,outsi −
∑
i

Fi,insi −
∑
i

Si,add (2.1)

Here dSirr

dt is the total entropy production, Fi,out are the outgoing material streams,
Fi,in are the incoming material streams, si are the specific entropies of the material
streams and Si,add are the directly added (or removed) amounts of entropy. The last
term contains contributions of thermal energy fluxes and radiation. This approach
can be applied both to single process units as well as to entire processes.

2.2.2 Irreversible thermodynamics approach

Contrary to the black-box approach, the irreversible thermodynamics approach fo-
cuses on the phenomena that are occurring inside a process unit, for example the
transfer of mass, the transfer of thermal energy, the transfer of charge, or chemical
reactions. According to the theory of irreversible thermodynamics, the local entropy
production is the product sum of all the conjugate thermodynamic fluxes and forces
that are involved [De Groot and Mazur, 1962, Kjelstrup et al., 2010]. Examples of
thermodynamic fluxes (Ji) are a mass flux, a thermal energy flux and a reaction rate;
examples of thermodynamic forces (Xi) are a chemical potential gradient, a temper-
ature gradient and a reaction Gibbs energy difference. The local entropy production
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(σ) is thus given by

σ =
∑
i

JiXi (2.2)

Each of the thermodynamic fluxes is given by a linear combination of all thermody-
namic driving forces:

Ji =
∑
j

LijXj (2.3)

Here Lij is the coupling coefficient that is coupling flux i with driving force j. The
coupling coefficients are symmetric, meaning that Lij = Lji. The total entropy pro-
duction of a process unit can be calculated by integrating the local entropy production
over the entire volume (V ) of the process unit

dSirr

dt
=

∫ V

0

σdV (2.4)

In comparison with the black-box approach, the irreversible thermodynamics ap-
proach requires a more detailed resolution of the transport processes in the process
unit. It can only be applied to one process unit at the same time. In the case that an
entire process needs to be analysed, first each of the process units need to be anal-
ysed separately, then their contributions can be summed to yield the overall entropy
production.

2.2.3 Consistent modelling of transfer processes

The fact that the steady state total entropy production can be calculated using the
two different approaches discussed above provides excellent means for verifying model
and calculation consistencies. This can be especially useful when modelling transfer
processes that are occurring simultaneously. Most models for simultaneous transfer
processes do not fully take into account the principles of irreversible thermodynamics;
they are rather based on extensive sets of empirical correlations. As a result, these
models can yield inconsistent results. The transfer model that is described in Chap-
ters 7 and 8 is based on irreversible thermodynamics and makes use of these two ways
of calculating the total entropy production in order to ensure a thermodynamically
consistent model.

2.3 Improving the Second law efficiency

Two different strategies can be distinguished that aim at improving the Second law
efficiency. The first one is called exergy analysis, it uses the black-box approach
described in Section 2.2.1 to calculate the entropy production for different process al-
ternatives. The second strategy is based on irreversible thermodynamics, as described
in Section 2.2.2. Its main aim is to minimize the total entropy production in a single
process unit.
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2.3.1 Exergy analysis

When using the exergy analysis approach, the Second law efficiency is improved by
comparing the total entropy production, or its equivalent the exergy destruction, of
various process alternatives, and selecting the best configuration. Different process
alternatives can be created by varying operating conditions and design variables, and
by changing the process superstructure and the types of the process units that are
used. The investigated process variations and changes are often focussed on the most
inefficient process parts; the parts that are producing the most entropy. This is the
approach that is pursued in Chapters 4 to 6 of this thesis.

2.3.2 Minimization of entropy production

In order to get more fundamental insight into strategies for the minimization of en-
tropy production in a process unit, the state of minimum entropy production has
received considerable attention, for example by Johannessen and Kjelstrup [2005] and
by Wilhelmsen et al. [2010]. The state of minimum entropy production of a process
unit corresponds to the configuration that results in the lowest possible entropy pro-
duction, while obeying a given constraint that is related to the function of the process
unit. Examples of such constraints are the transfer of a given amount of thermal
energy, or the conversion of a given amount of chemicals. An important result of
the work by Johannessen and Kjelstrup is a hypothesis stating that “Equipartition
of Entropy Production (EoEP), but also Equipartition of Forces (EoF) are good ap-
proximations to the state of minimum entropy production in the parts of an optimally
controlled system that have sufficient freedom.”.

Equipartition of entropy production

EoEP means that the local entropy production is the same at every location in a pro-
cess unit. In other words, the total entropy production is distributed evenly over the
available volume, resulting in a constant entropy production profile. Because EoEP
involves the entropy production at a local scale, the use of irreversible thermody-
namics is a prerequisite. The theory of irreversible thermodynamics also gives more
insight into why EoEP and EoF can minimize the entropy production. If we combine
Equations (2.2) and (2.3) for one single conjugate flux–force pair, we see that its local
entropy production (σi) equals the coupling coefficient times the squared force, or the
squared flux divided by the coupling coefficient alternatively

σi = LiiX
2
i =

J2
i

Lii
(2.5)

When we consider an even distribution of this single flux and require that the total
flux, which is the local flux integrated over its relevant spatial coordinate, remains con-
stant, it becomes plausible that minimum entropy production corresponds to EoEP.
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Starting from the even distribution, any local decrease of the flux is then countered
by a local increase of the flux elsewhere, in order to maintain the defined total flux.
Because the entropy production is proportional to the squared flux, the decrease in
entropy production due to the local decrease of the flux is always smaller than the
increase in entropy production due to the corresponding local increase of the flux. So
any deviation from an even distribution of the flux always increases the entropy pro-
duction. It can therefore be concluded that the optimal distribution of the flux is an
even distribution. This also implies that the driving force and the entropy production
of this flux should have an even distribution.
This argument is of course an idealization; we did not consider the influence of the
boundary conditions and we assumed that the system indeed has “sufficient degrees
of freedom”. But the argument helps to understand why EoEP and EoF can be use-
ful strategies to minimize entropy production and it motivates work to develop their
application in practise. Both concepts were discussed in more detail by Tondeur and
Kvaalen [1987] and by Kjelstrup, Sauar and co-workers [Kjelstrup Ratkje et al., 1995,
Sauar et al., 1996].

Practical requirements and examples

The assumption that sufficient degrees of freedom are available can be translated in
the requirement that there must be at least one quantity that can be fully controlled
along the entire spatial coordinate of the process unit. When such a quantity is avail-
able, its profile can be used to approximate EoEP as much as possible.
An example of such quantity is the temperature at which thermal energy is added to a
plug-flow reactor in which an endothermic reaction takes place [Johannessen and Kjel-
strup, 2004, Van der Ham et al., 2009, Wilhelmsen et al., 2010]. Another example is
the thermal energy transfer in distillation columns that involve thermal energy trans-
fer along their entire length, such as diabatic distillation columns [De Koeijer, 2002,
Johannessen, 2004, Schaller, 2007] and heat-integrated distillation columns [Røsjorde,
2004]. These types of distillation column are discussed in more detail in Chapter 3.

2.3.3 Economical considerations

For an improvement in the Second law efficiency to be applied in practise, it should
result in a higher profitability. An increase in the process efficiency typically trans-
lates in lower operating costs. However, in order to achieve the efficiency increase,
the investment costs often increase. The net change in costs depends on many fac-
tors, which differ from location to location and from time to time. Therefore, the
work in this thesis focuses mainly on efficiency improvements. Financial assessments
are restricted to qualitative considerations only. The economical consequences that
improvements in the Second law efficiency have are not investigated in a quantitative
matter.





Chapter 3

Distillation

Distillation is the most widely used technique in chemical industry to separate a feed
mixture in two or more purified products. A distillation column is a process unit that
separates a mixture based on differences in boiling temperatures, or volatilities, of its
components. Several types of distillation column configurations can be distinguished.

3.1 Distillation column configurations

Figure 3.1a shows a schematic overview of a conventional distillation column. A feed
mixture, which can be vapour, liquid, or both, is fed to column at a height that is
determined by the feed composition and by the product purities. Within the column,
liquid is continuously flowing down and vapour is continuously flowing up.
A vapour stream rich in the most volatile component (having the lowest boiling tem-
perature) leaves the top of the column. A part of this stream is condensed in a
condenser and recycled to the column as liquid (the reflux); the remainder forms the
top product (the distillate). The ratio between the reflux and the distillate is called
the reflux ratio.
A liquid stream rich in the least volatile component (having the highest boiling tem-
perature) leaves at the bottom of the column. A part of this stream is evaporated
in a reboiler and recycled to the column as vapour; the remainder forms the bottom
product.
The height of the column is determined by the feed composition, by the required prod-
uct purities, by the reflux ratio, and by the type of column internal that is used. The
most common column internals are physical trays, random packing, and structured
packing.
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Figure 3.1: Schematics of a conventional (a), a vapour re-compression (b),
and a liquid re-expansion (c) distillation column.

3.1.1 Heat-pump assisted configurations

Most distillation processes take place at temperatures above the ambient tempera-
ture. High quality heat is then added to the bottom of the column by the reboiler,
and heat of a lower quality is removed at the top of the column by the condenser.
Because this conventional configuration proved to be thermodynamically very ineffi-
cient, alternative configurations have been developed [Freshwater, 1951].
One of the first approaches to increase the efficiency was to re-use the energy removed
in the condenser by using the top-product as heat source in the reboiler. Since the
reboiler operates at a higher temperature than the condenser, the temperature of
the top product needs to be increased first. This can be done by compressing it.
The resulting concept is called a vapour recompression column and it is shown in
Figure 3.1b. The compression ratio depends on the required temperature increase.
Vapour recompression is especially feasible for close boiling mixtures. If the tempera-
ture difference becomes too large, the energy associated with the required compression
ratio surpasses the reduction in external energy input of the reboiler.
The distillation step of an air separation unit takes place at temperatures far below
the ambient temperature. In this case, high quality cold is added to the column
in the condenser and cold of a lower quality is removed at the reboiler. Therefore,
more-efficient distillation configurations aim at the re-use of the cold removed at the
reboiler. Upgrading the quality of this cold stream can be done by expanding it,
yielding a cryogenic variant of the vapour recompression configuration. A schematic
of this liquid re-expansion configuration is shown in Figure 3.1c. To enable expansion
of the bottom product, an elevated column pressure is required. Therefore, the feed
needs to be compressed before it is added to the column.
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Figure 3.2: Schematics of a pressure swing (a), a one-shell pressure-swing (b),
and an ideal heat-integrated (c) distillation column.

3.1.2 Pressure-swing configurations

A variation to the vapour recompression and liquid re-expansion configurations is the
pressure-swing concept. In this case, the single column is split in two parts, which
are now operated at different pressures. The compressor and expander are positioned
between the two column parts. The new configuration is shown in Figure 3.2a.
Instead of using two separate columns, the pressure-swing configuration is often inte-
grated into one single column shell. The heat exchanger that is replacing the condenser
and reboiler is also incorporated in this shell. The top half of the conventional dis-
tillation column is now the bottom half and vice versa. This one-shell configuration
is shown in Figure 3.2b. Cryogenic air distillation processes are usually based on this
type of column configuration. More details on the actual configuration are discussed
in Section 3.1.4.
In a relatively novel distillation concept, the two column halves are positioned next to
each other instead of on top of each other (see, for example Nakaiwa et al. [2003]. In
this way, heat can be exchanged between the two columns along their heights, instead
of in the central heat exchanger only. This configuration is called a heat-integrated
distillation column (HIDiC). In an ideal situation, a HIDiC can operate without re-
boiler and condenser, as is shown in Figure 3.2c. In practise however, they are often
still necessary. The HIDiC is discussed in more detail in Section 3.2.
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Figure 3.3: Schematics of an ideal diabatic (a) and a
sequential diabatic (b) distillation column.

3.1.3 Diabatic configurations

Another relatively novel distillation concept that uses heat exchangers along the entire
column height is called diabatic distillation. The heat exchangers can be considered
to distribute the reboiler and condenser duties over the entire columns height, see, for
example, the work of Fonyó [1974a,b]. In the ideal case, an independently operating
heat exchanger is present at each tray of the column, as shown in Figure 3.3a.
In more practical designs, the heat exchangers are coupled in the top and the bottom
parts of the column, yielding a diabatic distillation column with sequential heat ex-
changers, see, for example, the work by Jimenez et al. [2004]. For easier operation,
a small separate reboiler and condenser can also be installed. Figure 3.3b shows a
diabatic distillation column with sequential heat exchangers and a separate reboiler
and condenser.

3.1.4 Two-column air distillation configuration

The column configuration that is the basis for most air distillation processes is based
on the one-shell pressure-swing configuration shown in Figure 3.2b. However, the two
column parts are connected to each other in a different way. They are rather operated
as two columns in series, than as one column that is split into two parts.
In the simplest version of this configuration, pressurized and super-heated air is fed
to the bottom of the bottom column. The top product, high-purity nitrogen, is
withdrawn from the top of the bottom column. The liquid that is leaving the bottom
of this column is cooled, throttled down in pressure, and fed to the top column at
an intermediate height. Another liquid stream is withdrawn from the bottom column
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Figure 3.4: Schematics of a basic (a) and an advanced (b)
two-column configuration used for air distillation.

at an intermediate height, sub-cooled, throttled down in pressure, and fed to the
top of the top column. The top column produces high-purity oxygen, which is the
bottom product of the column configuration, and a low-purity nitrogen by-product,
which is used to cool the liquid streams that are fed to the top column. This basic
configuration is shown in Figure 3.4a.
In more advanced configurations, the air can be fed to the columns at several locations,
both as vapour and as liquid. In addition, more liquid streams can be used to connect
the two columns. An example of an advanced two-column configuration is shown in
Figure 3.4b. This is the configuration that is used in Chapters 4 to 6. More details
on the other process units that are part of a cryogenic air separation process included
in Chapters 4 and 6.

3.2 Heat-integrated distillation columns

Nakaiwa and Ohmori [2009] showed that the thermodynamically optimal way of op-
erating a distillation column involves the transfer of thermal energy along the entire
length of the column. In a conventional distillation column, the addition and removal
of thermal energy is limited to three locations only: the top, the bottom, and the
feed location. The number of locations can be increased by using additional feed and
product locations, and by adding intermediate heat exchangers. However, in order
to achieve thermal energy transfer at every location, a different type of distillation
column is required. Both diabatic distillation columns and heat-integrated distillation
columns (HIDiC) allow for this type of thermal energy transfer. This thesis focuses
mainly on the HIDiC option.
As discussed in Section 3.1.2, a HIDiC can be regarded as a conventional distillation
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Bottom product

Feed
Top product

Figure 3.5: Schematic representation of a heat-integrated distillation column
with a reboiler and a condenser.

column that is split into two at its feed location. By operating the two parts at
different pressures and by positioning them next to each other, thermal energy can
be transferred from the high-pressure part to the low-pressure part along the entire
length of the integrated column. Figure 3.5 shows a schematic of a practical imple-
mentation of a HIDiC, it is equipped with both a reboiler and a condenser, as opposed
to the ideal HIDiC shown in Figure 3.2c.
Compared to a conventional distillation column, a HIDiC has two big advantages.
The first one is the possibility for thermal energy transfer along the entire height
of the columns, which can enable a thermodynamically more efficient design. The
second one is a reduction in the required condenser and reboiler duties, caused by
thermal energy transfer along the column height. However, in order to realize these
advantages, an additional compressor and throttle valve are required, as shown in
Figure 3.5. The net effect of reducing the condenser and reboiler duties but adding
compressor duty is often used to determine the thermodynamic feasibility of a HIDiC
design, an overview of reported efficiency gains is given in Section 3.2.1. From an
economic point of view, the feasibility of a HIDiC is determined by the increase in
investment costs, related to the addition of a compressor, and by the change in oper-
ational costs, related to the changing energy duties.
Applying this type of heat integration to air distillation columns has a big advantage
when compared to the use of a HIDiC for other applications. Because the current
state-of-the-art air distillation processes already involve different operating pressures,
no additional compressor is required.

3.2.1 Reported efficiency gains

Various theoretical and experimental studies that are comparing HIDiCs to conven-
tional columns report considerable efficiency gains. Table 3.1 shows a chronological
overview of the reported efficiency gains, represented by the reduction in the total en-
ergy input. The total energy input is given by the sum of the reboiler and compressor
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duties, it is chosen because it is the only quantity available for all studies.
In addition to the changes in the total energy input, Mah et al. [1977] also calculated
the changes in the steam and cooling water requirements for the three separation
cases they studied. This was done in order to take the changes in the temperatures at
which energy is added and removed into account. For the trans-2-butene–cis-2-butene
case, they found comparable results; a reduction of 15% in the steam consumption
and of 35% in the cooling water consumption. The propylene–propane case showed
utility requirements that were quite different from the changes in the energy input;
a 70% increase in the steam consumption and a 60% decrease in the cooling water
consumption. The third case, the ethylene–ethane separation, performed much better
in terms of utilities; the steam consumption decreased by 55% and the cooling water
by 75%.
Røsjorde [2004] also reports the efficiency gain in terms of a reduced amount of lost
exergy. He found possible reductions of 35% and 45%, depending on the allowed type
of heat-transfer area distribution. For the case of a propylene–propane splitter, De
Rijke [2007] reports a decrease in the exergy requirement of approximately 40%. For a
similar case, but operated at higher pressures, Olujić et al. [2003] reported a possible
decrease in the exergy losses of 75%.
All the reductions in energy input that are listed in Table 3.1 concern comparisons
between a HIDiC and a conventional distillation column. According to Shenvi et al.
[2011], a configuration based on the use of a heat pump (as shown in Figure 3.1b),
potentially equipped with one or two additional intermediate heat exchangers, should
also be considered. Such a configuration can be the most effective one, depending on
the temperature profiles in the two heat-integrated columns.

3.2.2 Heat-integrated air distillation columns

Detailed performance evaluations of heat-integrated air distillation columns have not
been found in the open literature. However, the use of such a column configuration
has been mentioned.
Nakaiwa et al. [1996] describe an energy supply system that uses purified oxygen,
which is obtained using air distillation. They state that the use of column configu-
ration with two reboiler–condensers that are enclosing a heat-integrated column part
can reduce the energy requirement of the air separation unit by 30%. This reduction
is related to a decrease in the operating pressure of the high-pressure column, which
lowers the required feed pressure.
Iwakabe et al. [2006a] report a study that predicts a reduction in the energy input of
40% when using a plate-fin type HIDiC as part of a cryogenic air separation unit.
In order to place these efficiency gains in a wider perspective, detailed information
is needed on both the suggested process flow sheets, the processes to which they are
compared, and the practical implementation of the heat integration. Unfortunately,
insufficient data is available for this purpose. Detailed numerical performance assess-
ments of heat-integrated air distillation columns are included in Chapters 5 and 6 of
this thesis.
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3.2.3 Existing HIDiC installations

HIDiCs are not yet in industrial use; they are still under development. At the mo-
ment, only two complete experimental HIDiC configurations are described in the
open literature. Both have been built and operated successfully as part of Japanese
national research projects and both used concentrically-integrated columns equipped
with structured packing. In a concentric HIDiC, one of the column parts is positioned
inside the other column part, yielding a configuration with a regular cylindrical inner
column and an annular or ring-shaped outer column. The first Japanese HIDiC was
about 20 m high and had an outer diameter of about 25 cm [Naito et al., 2000]. The
second Japanese HIDiC was 27 m high and contained 7 parallel columns with an outer
diameter of 41 cm that were positioned in a single shell of 1.4 m diameter [Horiuchi
et al., 2008]. In both designs, three different inner column diameters were used to
account for the changing vapour flow rates.
The most important European experimental efforts aiming at the development of a
HIDiC are done by a Dutch research consortium. Their initial experimental work has
been focused on the properties of an annular sieve tray equipped with heat transfer
panels [De Rijke, 2007]. More recently, they have also started experimental efforts on
a plate-fin type HIDiC.

3.2.4 Designing a HIDiC

The key design variables of a HIDiC are the ratio between the pressures in two column
parts, the available heat-transfer area, and the overall heat-transfer coefficient. The
pressure ratio determines the required compressor duty and the temperature difference
between the two columns. This temperature difference, in combination with the heat-
transfer area and the overall heat-transfer coefficient, determines the thermal energy
transfer, and thus the reduction in reboiler and condenser duties. The pressure ratio
is relatively straightforward to model. However, the heat-transfer area and especially
the overall heat-transfer coefficient are more complicated.

Heat-transfer area

The amount of available heat-transfer area depends a lot on the type of column
internals that is used: either trays or (structured) packing.
When using packing, heat integration can be realized by using concentrically-integra-
ted columns, as explained in Section 3.2.3. The inner column wall forms the basis
of the heat-transfer equipment in such a configuration. The amount of heat-transfer
area is mainly defined by the diameter of the inner column and the number of parallel
columns that is used. The design described by Horiuchi et al. [2008] used a wire that
was wound around the inner column wall. Such surface or flow enhancements increase
the overall heat-transfer coefficient, but make it harder to define the heat-transfer area
accurately. Good thermal contact between the inner column wall and the packing in
the columns is advantageous for the thermal energy transfer between the columns,
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but it also makes it harder to define the heat-transfer area.
When using trays, additional heat-transfer equipment is often used to connect the
two column parts thermally . It can be placed in the downcomer area or in the
active tray area. When it is placed in the active tray area, the active heat-transfer
area can depend on the flow conditions and the froth height on the tray [De Rijke,
2007]. The active area can also decrease during operation due to the accumulation of
incondensables in the heat-transfer equipment.

Overall heat-transfer coefficient

HIDiC designs are usually modelled and evaluated using a constant value for the over-
all heat-transfer coefficient, which is used for the entire column. In reality, the overall
heat-transfer coefficient is not constant. In case of packed columns, it depends for
example on the properties of the liquid films that are flowing down on both sides of
the wall. Table 3.2 gives an overview of reported experimental overall heat-transfer
coefficients in distillation columns equipped with structured packing.

Table 3.2: Reported experimental overall heat-transfer coefficients in distillation
columns with structured packing.

Overall heat-transfer coefficient Reference

670 W/(m2K) Horiuchi et al. [2008]

700 W/(m2K) Niggemann et al. [2010]

1100 W/(m2K) Nakanishi et al. [2008]

According to Iwakabe et al. [2006a], it was found that the overall heat-transfer coeffi-
cient in a trayed column does not depend on the compression ratio. But an experimen-
tal investigation by De Rijke [2007] showed that the overall heat-transfer coefficient
does depend on the temperature difference between the two columns, because of the
effect that this temperature difference has on the flow conditions of the liquid films.
This suggests that different types of heat-transfer coefficient models should be used,
depending on type of condensation and evaporation mechanisms.
Based on this information, we can conclude that it is not yet straightforward to make
a reliable prediction for the overall heat-transfer coefficient in a specific HIDiC de-
sign. For an accurate HIDiC model, more-detailed experimental data on the overall
heat-transfer coefficient is required.

3.2.5 Properties of a packed HIDiC

The properties of a packed HIDiC cannot be described by simply combining the
properties of two conventional packed columns. Some additional effects need to be
taken into account. Firstly, the amount of wall area per column volume is higher in a
HIDiC than in a conventional column. Secondly, the transfer of thermal energy within
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a HIDiC promotes radial gradients and affects the mass transfer characteristics. Both
effects can influence the separation efficiency of the packing.

Increased wall effects

In conventional packed distillation columns, it is a well-known phenomenon that a part
of the liquid flows down along the wall of the column, thus bypassing the packing. Such
a radial liquid flow maldistribution causes maldistributions in the temperature and
compositions, eventually decreasing the separation efficiency of the packing [Huber
and Hiltbrunner, 1966]. Columns with structured packing use wall scrapers to reduce
this effect; they redirect the liquid flow back into the packing. However, these wall-
scrapers do not completely prevent an increase of liquid flow in the wall zone of the
column [Olujić et al., 2006].
There are two reasons why the wall effects are more severe in a packed concentric
HIDiC. First, several parallel columns with a small diameter are used instead of a
single column with a large diameter. This is done in order to accommodate sufficient
heat-transfer area and it results in more wall area per total column volume. The
column diameter also affects the pressure drop and the capacity of structured packing
[Olujić, 1999].
The second reason for increased wall effects is related to the concentric integration of
the two column parts. The inner column has the same amount of wall area per column
volume as a conventional column, but the outer annular part contains more wall area
per column volume. So the wall effects can be expected to be more severe in the
outer column, possibly causing the outer column to have lower separation efficiency
than the inner column. At the moment, no experimental or numerical data is publicly
available on the performance of annular columns.

Effect of heat integration

The transfer of thermal energy from the high-pressure part of a HIDiC to its low-
pressure part causes several operational differences compared to a conventional dis-
tillation column.

Firstly, it creates radial temperature gradients in both columns. These gradients will
be steepest in the near-wall zones of the inner column wall, but they might also affect
the other zones in the columns.
The heat flux through the inner wall will also cause an increase in the evaporation at
the low-pressure side of the wall, and an increase in condensation at the high-pressure
side. So the wall-zone liquid flow can be expected to decrease in the low-pressure
column, and it can be expected to increase in the high-pressure column. This means
that the reduction in separation efficiency due to wall flow can be expected to be
lower at the low-pressure side of the inner wall than at its high-pressure side. The
evaporation and condensation at the inner column wall will also affect the separation
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efficiency of the two columns directly, because light components tend to evaporate
easier than heavy components. As a result, radial composition gradients might be
observed.
To what extent the temperature and concentration gradients will be present, and to
what extent the separation performance will be affected is currently unknown. It is
therefore interesting to investigate these phenomena experimentally.

The fact that a change in the heat flux causes changes in the diffusional fluxes is
described by the theory of irreversible thermodynamics. According to this theory,
there exists a direct coupling between thermal and molar fluxes, see Section 2.2.2. In
previous studies, based on conventional columns separating an ethanol–water mixture
[De Koeijer and Kjelstrup, 2004, Kjelstrup and De Koeijer, 2003], it was found that
this coupling effect can be significant and should be included in detailed distillation
models. It can be expected that the importance of this effect is even more pronounced
in a HIDiC, because of the additional heat flux through the inner wall.
The importance of the coupling can be quantified using various quantities that all
describe the same effect: the heat of transfer, the thermal diffusion coefficient, the
Soret coefficient, the Dufour coefficient, the thermal diffusion factor, and the thermal
diffusion ratio. For air-like mixtures, some of these quantities have been investigated
experimentally for the vapour phase [Ibbs et al., 1929, Nakano and Maeda, 2008,
Rastogi and Madan, 1966, Van Itterbeek and De Rop, 1956, Waldmann, 1944, 1949].
But for the liquid phase, no experimental data is available. According to Kjelstrup
and De Koeijer [2003], the coupling effect is the strongest in the liquid phase. This
gives a rational for doing additional experiments to elucidate these phenomena.

3.2.6 The need for experimental investigations

The data presented in Sections 3.2.1 and 3.2.2 show that the use of heat-integrated
(air) distillation columns has a high potential to improve the efficiency of distillation
processes. So far, the only practical implementations of a HIDiC use concentrically-
integrated columns that are equipped with structured packing. Section 3.2.3 shows
that the amount and level of detail of the publicly available experimental data of such
configurations is very limited. As a results, there exist several uncertainties in the
model parameters that are used when simulating these configuration, as explained
in Sections 3.2.4 and 3.2.5. In order to obtain more accurate efficiency improvement
estimates, experimental investigations are needed that focus on four aspects of a
packed concentric HIDiC:

1. The overall heat-transfer coefficient, its dependency on operating conditions and
its variation along the column height.

2. The separation efficiency and capacity limits of an annular column, compared
to a cylindrical one.

3. The severity of radial temperature and composition gradients under varying
operating conditions.
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4. The effect of the additional heat flux on the diffusion fluxes, as a result of their
direct coupling.

The experimental set-up that is developed in Chapters 9 and 10 aims to address these
four issues.

3.3 Distillation column models

The building and operation of industrial-scale distillation columns involves substantial
amounts of money. As a natural result, considerable efforts have been made to develop
predictive distillation column models that allow for an accurate simulation of column
performances.
The models that are commonly used to simulate distillation columns can be considered
to consist of two parts: a theoretical part and an empirical part. Two main types
of theoretical models can be distinguished: the theoretical equilibrium stage model
and the rate-based model. The theoretical equilibrium stage model is the simplest
one; thermodynamic data is required as main input, which can be supplemented
with empirical correlations in order to improve the predictive accuracy. The rate-
based model is more elaborate and requires both thermodynamic data and empirical
correlations as input.
The main assumptions of these models and their differences are discussed below in
a qualitative manner. More elaborate descriptions of the models, including relevant
equations and calculation routines, can be found, for example, in the monographs by
Taylor and Krishna [1993], by Seader and Henley [1998], and by Asano [2006].

3.3.1 Theoretical equilibrium stage model

In the theoretical equilibrium stage model, a distillation column is assumed to consist
of a series of connected theoretical equilibrium stages. The main assumption that is
made in the model is that the vapour and liquid streams that are leaving a distillation
stage are in thermodynamic equilibrium. This means that their temperature, pressure
and chemical potentials are equal. The transfer processes that are occurring within
the distillation stage are not modelled explicitly.
The origin of this model can be best understood when considering distillation columns
that are equipped with physical trays. In a properly designed tray, thermodynamic
equilibrium between the outgoing streams can indeed be achieved. A physical tray is in
such a case equal to a theoretical equilibrium stage. However, this is not always true.
The difference in performance of physical trays compared to theoretical equilibrium
stages can be captured using tray or point efficiencies. These efficiencies are calculated
using correlations that are developed based on past experimental experience, they use
various design variables as input.
In case of a distillation column that is equipped with packing, a theoretical equilibrium
stage is assumed to correspond to a certain height of packing. The exact height
depends on the type of packing that is used and on the operating conditions. It can
again be calculated using empirical correlations.
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3.3.2 Rate-based model

In the rate-based model, equilibrium is assumed to exist at the vapour–liquid inter-
face instead of between the streams leaving a theoretical stage. In order to calculate
the properties of the streams that are leaving a physical tray or a section of packing,
additional relations for the interfacial area and the rates of mass and thermal energy
transfer are required. These transfer rates can be calculated using two different ways
of modelling the vapour–liquid interface region: the four-film approach [Taylor and
Krishna, 1993], which is most commonly used, and the integrated-interface approach
[Bedeaux and Kjelstrup, 2004, Kjelstrup and De Koeijer, 2003], which is still under
development. The second approach is the one that this thesis will focus on, in Chap-
ters 7 and 8.
In both approaches, the interface region is a hypothetical region in which all transfer
resistance is assumed to be located. It is positioned between the bulk liquid and the
bulk vapour phases, as shown in Figure 3.6. The physical properties at the liquid and
vapour boundaries of the region are assumed to be equal to the bulk properties. The
two model approaches differ mainly in their definitions for the thickness(es) of the
interface region(s) and in the structure of their transfer equations.

I IIbulk liquid bulk vapourvapour-liquid
interface region

transfer

Figure 3.6: Schematic overview of the transfer processes
through a vapour–liquid interface region.

Four-film approach

In the four-film approach, two partly-overlapping interface regions are distinguished:
one containing the resistance against mass transfer, and one containing the resistance
against thermal energy transfer. Both regions consist of a liquid film and a vapour film
that meet each other at the vapour–liquid interface, resulting in a total of four films.
The transfer rates through the interface regions are functions of transfer coefficients
and of the differences in temperature or composition between the interface and the
bulk phases.
The thicknesses of the four films can be calculated using correlations for the transfer
coefficients, which are developed using past experimental observations. Because these
empirical correlations contain correction factors that dependent on the transfer rates,
some interdependency between the mass and thermal energy transfer processes can
be present in the model, although included implicitly.
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Empirical correlations are often not available for all four transfer coefficients or film
thicknesses. To cope with this problem, different types of assumptions are being
used. A first approach is to estimate heat-transfer coefficients based on mass transfer
coefficient relations, using an analogy between thermal energy and mass transfer.
A second approach is to estimate liquid phase coefficients by multiplying vapour
phase coefficients by a certain fixed value. Sometimes the liquid phase resistance is
assumed negligible, which corresponds to multiplication by infinity, or to assuming a
film thickness that is equal to zero.

Integrated-interface approach

The integrated-interface approach is based on the theory of irreversible thermodynam-
ics (see Section 2.2.2). According to this theory, there exists direct coupling between
the mass and thermal energy transfer rates. Therefore, the region containing the resis-
tance against mass transfer and the region containing the resistance against thermal
energy transfer are by definition the same. Furthermore, the thicknesses of the liquid
and the vapour parts of the interface region are dependent on each other, in order to
ensure a thermodynamically consistent transfer model, as discussed in Section 2.2.3.
As a result, the entire vapour–liquid interface region is considered as a single inte-
grated system, which is defined by a single thickness. In theory, this thickness only
depends on the flow conditions, but this has not yet been verified experimentally. The
experimental efforts described in Chapters 9 and 10 aim to elucidate this.
Another property of the integrated-interface approach is the addition of the interface
transfer resistance. In the four-film approach, this resistance is assumed negligible,
resulting in, for example, a constant temperature on both sides of the interface. In-
cluding the resistance of the vapour–liquid interface creates a temperature jump over
the interface.

3.3.3 Simulations of air distillation columns

Several approaches to the simulation of air distillation columns have been published
during the past five decades. They reflect the transition from the use of theoretical
equilibrium stage models to the use of rate-based models, and from the use of physical
trays to the use of structured packing.

Latimer [1967] gave an extensive description of various air distillation configurations in
terms of common operating conditions, numbers of theoretical equilibrium stages, and
achieved purities. Based on one of these configurations, Biddulph [1975] investigated
the use of experimentally obtained point efficiencies as part of a multi-component
distillation simulation. He found a number of required distillation stages that was
close the number mentioned by Latimer.

Krishnamurty and Andrecovich [1989] made a numerical comparison between the use
of an efficiency modified equilibrium stage model and a rate-based model for the
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simulation of an argon-producing air distillation process using physical trays. They
stated that the rate-based model yielded more-accurate results. However, they did
not include a comparison of the simulation results with experimental data. Numerical
results that can be related to the film thicknesses were neither reported.
Agrawal et al. [1993] presented experimental performance data for an air distilla-
tion column equipped with structured packing. Based on their measurements on a
nitrogen–oxygen system, they developed empirical correlations for liquid and vapour
mass transfer coefficients. Using these correlations, they were able to predict the
separation performance for a nitrogen–oxygen mixture quite well. However, when ap-
plying them to an oxygen–argon mixture, the accuracy of the predictions was worse.
Agrawal et al. were not able to identify a clear reason for this difference and concluded
that more research is needed to explain the variation in performance.

Recently, Egoshi et al. published a series of articles [Egoshi et al., 1999, 2000, 2001,
2002, 1997] on the development of a simplified four-film transfer model for mixtures
of nitrogen, argon, and oxygen based on experimental data.
In the first article [Egoshi et al., 1997], an empirical mass transfer coefficient cor-
relation was developed based on experimental data for nitrogen–oxygen and argon–
oxygen mixtures in a wetted-wall column. High vapour flow rates were used, resulting
in turbulent vapour flow. The transfer process was assumed to be completely vapour-
controlled and mass fraction differences were used to represent the driving forces.
Both the diffusional fluxes and the total mass fluxes were found to depend linearly
on these driving forces. It was observed that, in the absence of driving forces, the
diffusional fluxes became zero, but the total mass fluxes did not.
The second article [Egoshi et al., 1999] extended the model from binary mixtures to
ternary mixtures, based on experimental investigations of a nitrogen–argon–oxygen
mixture in a wetted-wall column. The combination of an effective diffusion coefficient
and the empirical correlation for binary mixtures was found to predict the separation
efficiency of the ternary mixture satisfactory. It was concluded that the interaction
between the diffusional fluxes was negligibly small for the distillation of air.
In the third article [Egoshi et al., 2000], binary experimental data was obtained for a
structured packing column (instead of a wetted-wall column) and subsequently used
to develop new empirical mass transfer coefficient correlations. A penetration model
was included in the model, which was used to estimate the liquid interface composi-
tion based on the bulk liquid composition. It was observed that the total mass fluxes
depended on the amount of thermal energy that was transferred through the wall of
the column.
The last two articles [Egoshi et al., 2001, 2002] are very similar to each other. They
compared simulations based on the correlations developed in the third paper [Egoshi
et al., 2000] with experimental values obtained from pilot-scale air distillation columns.
The used heat-transfer coefficients were based on the mass transfer coefficients, using
an analogy between mass and thermal energy transfer. The reported experimental
data consisted of a limited number of mole fraction measurements in the vapour phase,
which did not cover the entire column for all components. Although the predictions
sometimes differed by a factor of two from the measurements, it was concluded that
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the predicted separation performance and concentration profiles showed good agree-
ment with the observed data. No temperature measurements were reported.

The work presented in Chapters 7 and 8, in combination with the experiments de-
scribed in Chapters 9 and 10, is a first effort to use the integrated-interface approach
described in Section 3.3.2 for the simulation of air distillation column.
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Abstract

Two process designs of a cryogenic ASU (air separation unit) have been evaluated
using exergy analysis. The ASU is part of an IGCC (integrated gasification combined
cycle); it is supplying oxygen and nitrogen to the gasifier and nitrogen to the gas
turbine. The two process designs separate the same feed into products with the
same specifications. They differ in the number of distillation columns that are used;
either two or three. Addition of the third column reduced the exergy destruction in
the distillation section with 31%. Overall, the three-column design destroyed 12%
less exergy than the two-column design. The rational exergy efficiency is defined
as the desired exergy change divided by the total exergy change; it is 38% for the
three-column design and 35% for the two-column design. Almost half of the exergy
destruction is located in compressor after-coolers. Using this heat of compression
elsewhere in the IGCC can be an important way to increase the IGCC efficiency. It
is proposed to use it for the pre-heating of ASU products or for the production of
steam, which can be used as part of the steam turbine cycle.

4.1 Introduction

The current work is part of a study that aims at improving the Second law efficiency
of air distillation processes. Distillation of air is currently the most commonly used
technique for production of pure oxygen and nitrogen on an industrial scale. An
example of an industrial process that requires pure oxygen and nitrogen is an IGCC
(integrated gasification combined cycle), where the oxygen is fed to a gasifier and
the nitrogen to a gas turbine. Our study is part of an international collaboration
project called DECARBit, which aims at developing an IGCC with pre-combustion
CO2 capture [Røkke and Langørgen, 2009]. We focus on a cryogenic air separation
process within this context, and in particular on its distillation section.

4.1.1 Integrated gasification combined cycle

A schematic overview of the main process steps of a coal-based IGCC with pre-
combustion CO2 capture is given in Figure 4.1. The first step of an IGCC is the
gasification of a hydrocarbon feedstock using pure oxygen. The coal is fed to the
gasifier using pressurized nitrogen. Both the oxygen and nitrogen are produced in an
ASU (air separation unit), which separates air into oxygen and nitrogen. The outlet
stream of the gasifier consists mainly of hydrogen, carbon monoxide and steam, which
are converted into a carbon dioxide and hydrogen mixture in the water–gas shift unit.
The carbon dioxide is separated from the hydrogen in a subsequent separation unit,
and prepared for storage. Next, the hydrogen is fed to a gas turbine, where it is burnt
with air to produce electricity. A part of the air that leaves the compressor of the
gas turbine can be fed to the ASU, which can return a part of its produced nitrogen
to the burner of the gas turbine to be used as diluent. The outlet stream of the gas
turbine consists mainly of steam and nitrogen. This hot flue gas is used in a steam
turbine to produce more electricity and leaves the process afterwards.
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Figure 4.1: A schematic overview of a coal-based integrated gasification
combined cycle (IGCC) with pre-combustion CO2 capture.

4.1.2 Integrating the ASU and gas turbine

One of the advantages of an IGCC is the possibility to integrate the ASU and the
gas turbine. The most important integration options are discussed in more detail by
Smith and Klosek [2001]. The two most obvious options are to extract (a part) of the
feed to the ASU from the gas turbine compressor, and to feed (a part) of the nitrogen
that is produced in the ASU to the gas turbine. These options have already been
realized in commercial processes and are indicated in Figure 4.1 using dotted lines.
Another integration option is to warm the nitrogen that is fed to the gas turbine using
the compressed air that is extracted from it. In this way, the heat of compression is
used within the process instead of removed with cooling water.
The fraction of the feed air to the ASU that is extracted from the gas turbine com-
pressor is often used to characterize the degree of air integration between the ASU
and gas turbine. The fraction of the produced nitrogen that is fed to the gas turbine
can in a similar way be used to characterize the nitrogen integration between the ASU
and gas turbine. Frey and Zhu [2006] examined how different combinations of air and
nitrogen integration affect the IGCC efficiency. They concluded that air integration
only is the worst option, no integration at all is the second worst option, both air
and nitrogen integration is the second best option, and nitrogen integration only is
the best option. The difference between nitrogen only and both air and nitrogen was
small and depended on the degrees of integration. Emun et al. [2010] also investi-
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gated the effect of the degree of nitrogen integration on the efficiency of an IGCC and
concluded that it should be as high as possible.

4.1.3 Cryogenic air separation

Separation of air can be achieved using various technologies, for example distillation,
adsorption or membranes. When large volumes of high purity products are required,
distillation at cryogenic conditions is the first choice [Smith and Klosek, 2001, Thoro-
good, 1991]. The first steps in a cryogenic ASU are to compress the feed air and
remove water, carbon dioxide and other hydrocarbon contaminants from it. The re-
sulting mixture consists of nitrogen, oxygen, argon and some traces of other noble
gases. Next, the cleaned air is cooled to cryogenic conditions in the MHX (main
heat exchanger) and subsequently fed to the distillation unit. The distillation unit
separates the air into an oxygen stream and a nitrogen stream; sometimes an argon
stream is produced as well. The product streams are passed again through the MHX
and compressed or pumped to pressures that are required downstream of the ASU.
There exists a wide variety of process designs for the cryogenic separation of air. The
main differences are related to the method used for providing refrigeration, to the
method used for pressurizing the products, to the operating pressures, and to the
column configuration in the distillation section. The type of process that is chosen
depends usually on the feed and product specifications of the specific application.
In this work, we will assess two processes that are both designed to be part of an IGCC,
but differ in their column configurations. For a process that is not producing any ar-
gon, the most common configuration contains two columns, see for example Raney
and Thorogood [1997] and Kerry [2007]. Another type of configuration, that has not
received much attention in the academic literature so far, contains three columns, see
for example Higginbotham et al. [2001] and Shah [2003]. We will analyse and compare
a two-column and a three-column design. In addition to the distillation section, the
designs contain a feed pre-processing part, the MHX and a product post-processing
part.

4.1.4 Exergy analysis of cryogenic air separation processes

The Second law or exergy efficiencies of various cryogenic ASUs have been investigated
in the past. Agrawal and Woodward [1991] and Raney and Thorogood [1997] both
looked at the effect that the addition of intermediate heat exchangers has on the
exergy efficiency of a two-column ASU. Agrawal and Woodward assessed a process
for the production of high purity nitrogen, focussing on the cryogenic part of the
process. They investigated processes using either liquid air or liquid nitrogen as cold
fluid in the additional heat exchanger. Raney and Thorogood considered a process
for the production of low purity oxygen, and focused on the optimal positioning of a
first and a second additional heat exchanger.
Cornelissen [1997] made a detailed exergy analysis of an air separation and liquefaction
process. The process produced both gaseous and liquid nitrogen, oxygen and argon
in a three-column configuration, where the third column was used for purification of
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argon.
Yong et al. [2002] looked at a single column configuration used for the production
of high purity nitrogen. They compared the efficiencies of the cryogenic part of the
process when providing refrigeration either by expansion or by using liquid nitrogen.
In addition, they compared the efficiencies of sieve trays and of structured packing,
both by simulation and experiments.

4.1.5 Aim of the work

The aim of this work is to assess two designs of an ASU that is part of an IGCC
using exergy analysis. The main difference between the two designs is the number of
columns used in their distillation sections; either two or three. The assessment serves
two main purposes. First of all, it will give more insight in typical efficiencies of
current air separation processes, and in the location of their inefficiencies. Secondly,
it will be used to compare the performances and properties of the two processes and
in particular their distillation sections.
Previous exergy analysis of ASUs cover processes for several applications and with
various product specifications. An ASU as part of an IGCC has not yet been analysed.
A three-column design that is not producing any argon has not been analysed either.

4.2 Theoretical background on exergy analysis

The theory that is used in this work is based on the monograph by Kotas [1985].
Relevant relations are here shortly repeated for convenience.

4.2.1 Exergy contents of a stream of matter

In the current study, the kinetic and the potential exergy of streams of matter are
assumed to be negligible. This means that the total molar exergy (εtot) is given by
the sum of the physical molar exergy (εph) and the chemical molar exergy (ε0) only:

εtot = εph + ε0 (4.1)

The physical molar exergy of a mixture can be calculated from the molar enthalpy (h)
and molar entropy (s) of the mixture at the actual conditions, in combination with
the molar enthalpy (h0) and molar entropy (s0) of the mixture at the environmental
temperature (T 0 = 298.15 K) and pressure (P 0 = 1 atm):

εph =
(
hT,P − hT 0,P 0

)− T 0
(
sT,P − sT 0,P 0

)
(4.2)

The chemical molar exergy of an ideal gas mixture can be calculated from the standard
chemical exergies of the components (ε0,i) and their mole fractions (xi):

ε0 =
∑
i

xiε0,i +RT 0
∑
i

xi lnxi (4.3)
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Here, R is the molar gas constant. The total exergy of a stream of matter (Etot) can
be calculated by multiplying its total molar exergy with its molar flow rate (F ):

Etot = Fεtot (4.4)

4.2.2 Standard chemical exergies

In this work we consider the streams of matter to consist of nitrogen, argon and oxygen
only. In reality, other noble gases such as helium, krypton, neon and xenon are also
part of the mixture. The standard chemical exergies of gaseous atmospheric reference
substances listed by Kotas [1985] are calculated based on a mixture containing these
noble gases. In order to use standard chemical exergies that are consistent with the
considered substances, they have been recalculated for a hypothetical atmosphere that
consists of nitrogen, argon, oxygen, carbon dioxide and water.
The partial pressure of water was set at the value that Kotas uses; it is assumed that
this value captures both the vapour pressure that water has at the environmental
temperature and the average relative humidity of air. The partial pressures (P 00

i ) of
the other four substances were calculated by distributing the difference between the
environmental pressure and the partial pressure of water over them, while keeping
the ratios in mole fractions constant at the values they have in dry air. The standard
chemical exergies can subsequently be calculated using the formula provided by Kotas,
assuming ideal gas behaviour:

ε0i = −RT 0 ln
P 00
i

P 0
(4.5)

The resulting values are shown in Table 4.1; they show small deviations compared to
the values from Kotas. The differences between the values are partly caused by the

Table 4.1: Comparison between the standard chemical exergies used in this work
and the ones listed by Kotas [1985], in J/mol.

Substance H2O CO2 N2 Ar O2

Current work 11766 20130 636 11609 3891
Kotas 11760 20170 720 11690 3970

fact that the partial pressures that Kotas uses do not sum up to the environmental
pressure. The partial pressure for water that he uses indicates a low relative humidity.
Since there are no chemical reactions occurring in the current process, these deviations
will have no practical importance for the cases studied in this work.

4.2.3 Exergy efficiency definitions

Several exergy efficiencies exist. Two common ones are the simple and the rational
exergy efficiencies. The simple exergy efficiency (η) is given by dividing the total
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exergy output by the total exergy input:

η =
Eout

Ein
(4.6)

The rational exergy efficiency (ψ) of a process or process unit can be calculated by
dividing the desired exergy change by the total used exergy.

ψ =
ΔEdesired

ΔEused
(4.7)

It depends on the process or process unit that is considered what exactly the desired
exergy change and total used exergy are. Agrawal and Woodward [1991] suggested
that a similar criterion can also be used to characterize the efficiency of a part of a
distillation column. The rational efficiency is closely related to the exergy efficiency
without transiting exergy.

4.3 Two ASU flow sheets

The two ASU designs that are analysed in this work are designed as part of an IGCC.
Integration between the ASU and the gas turbine of the IGCC is limited to nitrogen
only, in this respect we follow Frey and Zhu [2006]. The ASU product specifications
that we use are the same for both designs. They are determined by the the gasifier
and gas turbine operating conditions and are listed in Table 4.2. Oxygen (O2) and

Table 4.2: Product specifications

O2 mole fraction 95.0 %

O2 pressure 48.0 bar

HP N2 mole fraction 99.9 %

HP N2 pressure 88.0 bar

MP N2 mole fraction 99.0 %

MP N2 pressure 25.0 bar

O2-to-HP N2 flow ratio 3.20 -

high pressure nitrogen (HP N2) are used in the gasification step of the IGCC. They
are pressurized using a pumped liquid cycle. Medium pressure nitrogen (MP N2) is
fed to the gas turbine. All products are gaseous and no argon is produced. Because
the air pre-purification step is the same for both designs, it is not included in the
current comparison. The feed stream that both designs use is therefore assumed to
be a mixture of nitrogen, argon and oxygen at an elevated pressure.

4.3.1 Two-column design

Figure 4.2 shows the flow sheet of the ASU that is using two distillation columns.
The most important process units in the flow sheet are the MHX, the high-pressure
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Figure 4.2: A schematic process flow sheet of the two-column ASU design.
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column (HPC, 4.8 bar and 50 stages) and the low-pressure column (LPC, 1.3 bar
and 55 stages). The two columns are thermally coupled by a heat exchanger, which
is functioning as reboiler for the low-pressure column and as condenser for the high-
pressure column.
Cleaned and pressurized air enters the process and is split into three streams. The
first stream is compressed, cooled to an ambient temperature, subsequently cooled
and liquefied in the MHX, expanded, and finally fed to the high-pressure column.
The second stream is directly cooled to a cryogenic temperature and is also fed to
the high-pressure column. The third and relatively smallest stream is compressed,
cooled, expanded and fed to the low-pressure column.
The high-pressure column has five outlet streams. Three of them are inputs to the
low-pressure column. They are first cooled and throttled before they enter the second
column. The other two outlets are nitrogen product streams. The liquid stream is
first pumped to a higher pressure, than vaporised and heated in the MHX and finally
delivered as HP N2 (high pressure nitrogen) product. The vapour stream is heated in
the MHX, compressed and delivered as MP N2 (medium pressure nitrogen) product.
The low-pressure column has two outlets. The top product is first used to cool the
three streams coming from the high-pressure column. Subsequently it passes through
the MHX. Depending on the amount of required medium pressure nitrogen, a part
of it is mixed with the gaseous nitrogen product from the high-pressure column. It
is first compressed and cooled before the two streams are combined. The other part
leaves the process as LP N2 (low pressure nitrogen) by-product with a pressure slightly
above the environmental pressure. The liquid bottom product is pumped to a higher
pressure, vaporised and heated in the main heat exchanger, and finally delivered as
oxygen product (O2).

4.3.2 Three-column design

Figure 4.3 shows the flow sheet of the ASU that is using three distillation columns.
This three-column design is very similar to the two-column design. The main dif-
ference is the addition of the third distillation column, which operates at a pressure
in between the high and low-pressure columns (MPC (medium-pressure column), 2.8
bar and 40 stages). The bottom of the MPC is thermally coupled to top of the high-
pressure column, similar to the low-pressure column.
The condenser at the top of the MPC uses its throttled bottom product as cooling
fluid. The MPC receives it feed from the bottom of the high-pressure column and
delivers its products to the low-pressure column. Its top product is first cooled and
throttled before it enters the low-pressure column.

4.3.3 Flow sheet simulations

Both flow sheets have been simulated with the process simulator HYSYS, using the
Peng–Robinsons equation of state, modified by Stryjek and Vera and using Lee–
Kessler vapour pressures (PRSV-LK). The three-column design was simulated first.
The amount of medium pressure nitrogen that was produced by this design was sub-
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Figure 4.3: A schematic process flow sheet of the three-column ASU design.



4.4 Exergy calculations 43

sequently used as target for the two-column design.
During the simulation of the three-column design, the product pressures were fixed
at their specification values. The feed flow rate, the oxygen purity and the flow rate
of HP N2 were fixed too. The oxygen fraction of the two top streams entering the
low-pressure column was fixed at 0.012 and a minimum approach temperature of 2.5
K was used for the sub-cooler. The flow rate of air entering the low-pressure column
was fixed at 1.5% of the total feed flow rate. Losses of low temperature thermal energy
to the environment were included for all columns and heat exchangers. The pumps
are modelled with efficiency of 50%, the compressors with an efficiency of 87%, the
liquid expander before the high-pressure column with an efficiency of 75%, and the
booster compressor and expander with efficiencies of 80% and 87%. All efficiencies are
adiabatic efficiencies. These efficiencies are used for both designs and affect them in
a similar manner. The exact values have therefore little influence on the comparison
between the two designs.
Three flow rates were varied in order to find the most efficient design, while taking
into account the specified oxygen flow rate and a minimum approach temperature in
the MHX of 2.0 K: the flow rate of the compressed and expanded air entering the
high-pressure column, the flow rate of the gaseous product leaving the high-pressure
column, and the flow rate of the stream from the high to the low-pressure column
with the lowest nitrogen fraction. The purities of the MP and HP N2 products proved
to be above their specified minima for all studied cases.
The two-column design was simulated using the same specifications and variables as
the three-column design. One exception is the oxygen fraction of the top streams en-
tering the low-pressure column, which was fixed at 0.02. The flow rate of the MP N2

was additionally required to match the flow rate obtained in the three-column model.
This was achieved by compressing a part of the nitrogen leaving the low-pressure col-
umn and mixing it with the gaseous nitrogen product from the high-pressure column.
Before mixing, the compressed nitrogen is first cooled to match the temperature of
the nitrogen coming from the high-pressure column.

4.4 Exergy calculations

The exergy calculations have been done based on the HYSYS simulations of the
two process designs. All process stream properties required for the exergy analysis
were extracted from HYSYS simulations and imported into Excel, which was used to
perform the actual analysis.

4.4.1 Extracting process data

The magnitudes of all the energy streams could be extracted directly from HYSYS.
The energy that is added to the compressors and pumps, and extracted from the
expanders has the form of work, which is equivalent to exergy. Thermal energy is
leaving the process in the coolers, which use cooling water. It is assumed that this
cooling water is taken from and returned to a large reservoir at ambient temperature.
Thermal energy is added to the heat exchangers and columns to represent losses from
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the environment. Because all the thermal energy streams enter or leave at the envi-
ronmental temperature, their exergy contents is zero.
The properties of the streams of matter that were extracted from the HYSYS sim-
ulation are the molar flow rate, the composition (nitrogen, argon and oxygen mole
fractions), the temperature, the pressure, the molar enthalpy and the molar entropy.
For all the compositions in the process, reference molar enthalpies and entropies were
calculated by creating new process streams with the same compositions but at the
environmental temperature and pressure. Using these quantities it is possible to cal-
culate the exergy contents of the streams, as explained in Section 4.2.

4.4.2 Checking data consistency

After importing all process data in Excel, the first step was to check their consistency.
This has been done by calculating mole, component and energy balances, both over the
total process and over each of the process units separately. The mole and component
balances proved to be completely consistent. The energy balances showed some minor
inconsistencies in the order of magnitude of the simulation accuracy; they were below
0.001% of the net work input.

4.4.3 Calculating exergy destruction

After calculating mole, component and energy balances over all process units, the
next step was to set up their exergy balances and calculate the destroyed exergy in
each of them. An exergy balance over the total process was also used to check the
consistency of the calculations. The total amount of destroyed exergy should be equal
to net work input minus the increase in exergy contents of the streams of matter. This
was indeed true. The destroyed exergy should also be positive in all process units,
which was the case.

4.5 Results

In order to facilitate a direct and quantitative comparison between the two designs,
we have chosen to present all results using tables rather than graphs. We have also
decided to focus more on the localization and distribution of the total exergy destruc-
tion, rather than on the total exergy streams in the process. This is related to the
relatively large amount of ‘exergy in transit’ in the processes, as is discussed in more
detail in Section 4.5.3. This large amount of exergy in transit, in combination with
the process structure, is also the reason why we have omitted Grassmann diagrams;
they present the results in an overcomplicated way for the processes that are studied
in this work.

4.5.1 Two-column design

Table 4.3 gives an overview of the composition, pressure, and temperature of all feed
and products streams. By comparing with Table 4.2 it can be verified that all product
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Table 4.3: Feed and product properties of the two-column design.
The molar flow rates are given as fraction of the feed flow rate.

Stream Air O2 HP N2 MP N2 LP N2

F - 1 0.212 0.066 0.262 0.459

xN2
- 0.781 0.017 1.000 0.991 0.982

xO2
- 0.009 0.950 0.000 0.002 0.004

xAr - 0.210 0.033 0.000 0.007 0.014

P bar 5.07 48.0 88.0 25.0 1.15

T K 293 295 295 500 295

specifications have been met.
The total exergy destruction amounts to 4.76 kJ/mol air. Table 4.4 shows how much
of the total exergy destruction is destroyed in which part of the process. The process
is subdivided into four separate parts; feed pre-processing, the MHX, the distillation
section, and product post-processing. The first column of numbers gives the contri-
butions of the process units and the last column gives the contributions of the four
process parts. All process parts are responsible for a considerable part of the total

Table 4.4: Break-down of the total exergy destruction over the different process
parts and process units of the two-column design.

Feed pre-processing 47.1%
Compressors 6.3%
Coolers 38.7%
Expanders 2.1%

Main heat exchanger 16.7%
Distillation section 26.5%

HP column 5.7%
LP column 14.1%
Heat exchangers 4.4%
Throttle valves 2.2%

Product post-processing 9.8%
Pumps 3.3%
Compressors 3.8%
Cooler 2.5%
Mixer 0.1%

Total exergy destruction 100.0%

exergy destruction. The feed pre-processing part, representing compression, cooling
and expansion of the air feed, has the biggest contribution; almost half of the total
exergy destruction is located in this process part. The distillation section accounts
for about one-quarter of the total, the MHX destroys one-sixth, and around 10% of
the total exergy destruction is located in the product post-processing part.
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Within the feed pre-processing section, the coolers destroy by far the most exergy;
almost 40% of the total exergy destruction. This exergy destruction is mainly caused
by the use of water as cooling fluid. The thermal energy that is transferred to the
cooling water becomes useless, which means that its exergy is reduced to zero. Within
the distillation section, the two columns are destroying most of the exergy; about 20%
of the total exergy destruction. The heat exchangers in the process, including the re-
boiler/condenser, destroy 20 %, and the compressors destroy about 10% of the total.
The expanders, throttle valves, pumps, and mixer have relatively small contributions.

4.5.2 Three-column design

Table 4.5 gives an overview of the composition, pressure, and temperature of all feed
and products streams. The total exergy destruction amounts to 4.12 kJ/mol air.

Table 4.5: Feed and product properties of the three-column design.
The molar flow rates are given as fraction of the feed flow rate.

Stream Air O2 HP N2 MP N2 LP N2

F - 1 0.212 0.066 0.262 0.459

xN2 - 0.781 0.022 0.999 0.999 0.975

xO2 - 0.009 0.950 0.000 0.000 0.018

xAr - 0.210 0.028 0.001 0.001 0.007

P bar 5.03 48.0 88.0 25.0 1.15

T K 293 295 295 502 295

Table 4.6 shows again how much of the total exergy destruction is destroyed in which
part of the process. The feed pre-processing part has again the biggest contribution;
over half of the total exergy destruction is located in this process part. The distillation
section and the MHX both account for about one-fifth of the total, and around 7%
of the total exergy destruction is located in the product post-processing part.
Within the feed pre-processing section, the coolers destroy again by far the most
exergy; almost 45% of the total exergy destruction. Within the distillation section,
the three columns are destroying most of the exergy; around 13% of the total exergy
destruction. The heat exchangers destroy 25 %, and the compressors destroy about
10% of the total. The expanders, throttle valves, and pumps have relatively small
contributions.

4.5.3 Comparison between the two designs

By comparing Tables 4.3 and 4.5, it can be seen that the two process designs de-
liver practically the same products. There are some minor differences in the product
compositions, in the feed pressure, and in the temperature of the medium pressure
nitrogen. The effect of these differences on the exergy contents of these streams is
very small however, as will be shown below.
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Table 4.6: Break-down of the total exergy destruction over the different process
parts and process units of the three-column design.

Feed pre-processing 54.1%
Compressors 7.2%
Coolers 44.5%
Expanders 2.4%

Main heat exchanger 18.3%
Distillation section 20.8%

HP column 5.9%
MP column 0.7%
LP column 6.1%
Heat exchangers 6.5%
Throttle valves 1.6%

Product post-processing 6.8%
Pumps 3.7%
Compressors 3.1%

Total exergy destruction 100.0%

Distribution of the exergy destruction

Table 4.7 gives an overview of the differences in exergy destruction localization be-
tween the two- and three-column designs. In order to make a proper comparison
between the two designs, the exergy destruction contributions are given per amount
of feed air instead of percentage of the total destruction. When comparing the con-
tributions of the four process parts, we see that the feed pre-processing and MHX
perform comparable. The main differences are located in the distillation section and
the product post-processing part; they represent 68% and 32% of the total difference
in exergy destruction.
Within the distillation section, the addition of the MPC reduces the exergy destruc-
tion in the low-pressure column with more than 60%. The exergy destruction in the
MPC itself is small, but the condenser and reboiler of the column also cause an in-
crease in the exergy destruction of the heat exchangers. Because more product is
recovered from the high-pressure column in the three-column design, less throttling
is required. This causes less exergy destruction in the throttle valves.
The recovery of more product from the high-pressure column is also the main reason
for less exergy destruction in the post-processing part of the three-column design. In
the two-column design, the lower quantity of product from the high-pressure column
has to be compensated for by compressing some low pressure product. The additional
compression, and the cooling that is related to it, causes an increase in the exergy
destruction. This increase represents about one-third of the total difference in exergy
destruction. So even if we would not compress the low pressure product, and thus al-
low a lower MP N2 production rate, the two-column design would still perform worse
than the three-column design.
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Table 4.7: Comparison between the exergy destruction per amount of feed (kJ/mol)
of the two- and three-column designs.

Process design 2-column 3-column
Feed pre-processing 2.20 2.23

Compressors 0.29 0.30
Coolers 1.81 1.83
Expanders 0.10 0.10

Main heat exchanger 0.78 0.75
Distillation section 1.24 0.86

HP column 0.27 0.24
MP column − 0.03
LP column 0.66 0.25
Heat exchangers 0.21 0.27
Throttle valves 0.10 0.07

Product post-processing 0.46 0.28
Pumps 0.15 0.15
Compressors 0.18 0.13
Cooler 0.12 −
Mixer 0.00 −

Total exergy destruction 4.67 4.12

Total exergy inputs and outputs

Overall, the three-column design destroys 12% less exergy than the two-column design.
Table 4.8 shows how the amounts of exergy destruction are related to the total exergy
inputs and outputs of the two designs. A first observation is that the exergy in
the feed and products is practically the same for both designs. Another interesting
thing to look at is the distribution of those exergies over their physical and chemical
components. In the feed, only 0.6% of the exergy is chemical exergy. This is logical
because the composition of the feed is almost equal to the environmental composition.
In the products, the chemical exergy amounts to 18%. The amount of added chemical
exergy corresponds to approximately 16% of the net work input. Because the total
standard chemical exergy is equal in the feed and the products, this increase is only
caused by an increase in the chemical exergy of mixing. An increasing exergy of
mixing means that the products are less mixed than the feed, which is the primary
aim of separation processes like distillation.

Exergy efficiencies

At the bottom of Table 4.8, the simple and rational exergy efficiencies of the two
designs are given. The simple exergy efficiency relates the exergy destruction to the
total exergy input, including the exergy in the feed. Because a part of the exergy in
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Table 4.8: Comparison between the exergy inputs and outputs per amount of feed
(kJ/mol) of the two- and three-column designs.

Process design 2-column 3-column
Physical exergy in feed 3.99 3.97
Chemical exergy in feed 0.02 0.02
Work input 7.26 6.73
Physical exergy in products 5.35 5.35
Chemical exergy in products 1.15 1.14
Work output 0.10 0.10
Destroyed exergy 4.67 4.12
Simple exergy efficiency 58.6 % 61.5 %
Rational exergy efficiency 34.7 % 37.8 %

the feed simply passes through the process, this can be argued to give a false picture.
In a process with a very large exergy in transit, the exergy destruction will always
be small compared to the total exergy input. A similar thing can be said about the
work terms; when the total work input is used as exergy input and the total work
output as exergy output, a large amount of work in transit will give a false picture. In
order to avoid potentially misleading numbers, the exergy destruction can be related
to the net work input instead of the total exergy input. If we consider the changes in
both physical and chemical exergy of all products to be desirable, this is equal to the
rational exergy efficiency.
The simple efficiencies of both designs are about 60%, while the rational ones are
about 35%. This clearly shows that there is a big difference between the two types
of efficiencies. When comparing the two designs, both efficiencies suggest that the
three-column design performs approximately 3% better than the two-column design.
In case of the simple efficiency this means a 5% improvement, but when using the
rational efficiency it corresponds to an improvement of 9%. Based on the amount
of destroyed exergy, the three-column design performs 12% better. When looking
purely at the required net work inputs, which can be used as measure for the energy
efficiency, the three-column design is 7% more efficient. The additional work that is
required in the two-column design is mainly used for compressing a part of the low
pressure product.

4.6 Discussion

4.6.1 Comparison with results from other works

Although the details of the previously studied air separation processes that are dis-
cussed in Section 4.1.4 are quite different from the ones studies in this work, it can
still be interesting to compare some general characteristics.



50 Chapter 4. Exergy analysis of two cryogenic ASUs

Agrawal and Woodward

Agrawal and Woodward [1991] analysed a process that shows similarities with the
two-column design that is discussed in this work. They did not include any feed
pre-processing or product post-processing steps in their analysis. In the process they
analysed, the major part of the exergy destruction was located in the MHX, the low-
pressure column and the integrated reboiler/condenser. The total exergy destruction
per amount of produced nitrogen was about 2.2 kJ/mol. Using a nitrogen recovery
of 90%, this corresponds to an exergy destruction of approximately 1.6 kJ/mol air.
This is very close to the sum of the exergy destruction in the MHX and distillation
section of the three-column design.
More than half of the exergy destruction in the MHX was related to pressure drop.
Within the low-pressure column, especially the bottom part was inefficient. By
adding an intermediate heat exchanger in the bottom part of the low-pressure column,
Agrawal and Woodward were able to reduce the exergy destruction in the process
with about 9%. This increased the efficiency of the process from 36% to 38%. These
improvements are comparable to the performance difference between the two- and
three-column designs.

Raney and Thorogood

Raney and Thorogood [1997] used the decrease in exergy destruction caused by adding
intermediate heat exchangers as guideline to optimize their locations within the bot-
tom of the low-pressure column. They concluded that the work input per amount of
oxygen product can be decreased with 5% or 10% when adding one or two interme-
diate heat exchangers. This corresponds to a decrease in the work input from 7.09
to 6.28 or 6.20 kJ/mol air. These improvements are also in the same order as the
performance difference between the two- and three-column designs.

Cornelissen

The analysis of a cryogenic air separation and liquefaction process performed by Cor-
nelissen [1997] yielded a rational efficiency for the total process of 28%. The exergy
destruction was 15.57 kJ/mol air, which is much higher than in the processes studied
in this work. The difference is mostly related to the fact that Cornelissen analysed
a different type of process; it included the feed pre-purification step and the turbines
that are driving the compressors, and it was producing liquid products and argon as
well. The exergy destruction in the MHX and distillation section were 0.59 and 1.39
kJ/mol, yielding a rational efficiency of 41%. These values are much closer to the
values found in this work. Within the distillation section, the combination of the low
pressure and argon columns destroyed most of the exergy.
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Yong, Moon and Yi

The process analysed by Yong et al. [2002] produced nitrogen with a relatively low
recovery of 55%. The total exergy destruction in the MHX and distillation section of
their base case amounts to 2.03 kJ/mol air. This is again comparable to the values
found in this work. Most of the losses are located in the MHX however, followed by
the distillation column. Yong et al. also mention the pressure drop as one of the main
causes for exergy destruction in the MHX. The work input is 7.44 kJ/mol air. Their
case that is using liquid nitrogen as refrigeration source is hard to evaluate, because
they did not include the liquid nitrogen and its exergy contents in their analysis.

Common findings

Based on the results of the current work and the other works discussed in this section,
some common findings can be identified. The rational exergy efficiency of cryogenic
air separation processes is typically in the order of 35-40%. The exergy destruction in
the MHX and distillation section together is about 1.6-2.0 kJ/mol air. The required
work input for a process with gaseous products is in the range of 6.0-7.5 kJ/mol air.
In addition to being destroyed within the process, a part of this work is added to its
products and waste streams. These numbers are rough estimates, the exact values
depend to a large extent on the details of a specific process and do not necessarily
have to be within the indicated ranges.
Within the cold part of the process, the main exergy destroying pieces of equipment are
the MHX and the distillation columns. An important part of the exergy destruction
in the MHX is related to its pressure drop. Within the distillation section of a two-
column configuration, a large part of the exergy destruction occurs in the bottom part
of the low-pressure column. This inefficiency can be reduced by adding intermediate
heat exchangers in the low-pressure column, or by adding the third column to the
process. These changes can have a significant effect on the required work input of the
process.

4.6.2 Improving distillation efficiency

Conventional distillation columns use a single reboiler at their bottom and a single
condenser at their top, concentrating the thermal energy transfer at two single points
in the column. It is discussed by Nakaiwa and Ohmori [2009] that the theoretically
optimal way of operating a distillation column involves thermal energy transfer along
its entire length. So attempts to improve the efficiency of a distillation column should
focus on providing more thermal energy transfer points along the length of the col-
umn.
One example of this approach is the addition of intermediate heat exchangers, as
studied by Agrawal and Woodward [1991] and Raney and Thorogood [1997]. An-
other good example, explained in detail by Nakaiwa and Ohmori, is a heat-integrated
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distillation column (HIDiC). A HIDiC can be regarded as conventional column that
is split into two parts at a certain point along its length. By position one part inside
the other part and by operating them at different pressures, thermal energy can be
transferred from the high pressure part to the low pressure part along the entire length
of the integrated column. Applying this type of heat integration to (a part of) an air
distillation section could be an interesting option to further improve its efficiency.

4.6.3 Evaluating distillation section efficiency

The evaluation of the distillation section efficiency shows why using an exergy-based
criterion can be better than using the conventional energy efficiency. The energy
efficiency is based on amounts of added and removed energy. When looking at the
distillation sections shown in Figures 4.2 and 4.3, we see that there is no energy added
or removed within this process part, except for losses to the environment. Using
the energy efficiency to characterize the distillation section performance is therefore
completely meaningless. The desired separation of air into nitrogen and oxygen is
paid for by a decrease in the pressure of the process streams. The efficiency of this
conversion can easily be evaluated using exergy efficiencies.

4.6.4 Integration with the gas turbine

As discussed in Section 4.1.2, it can be advantageous to integrate the ASU and gas
turbine of an IGCC as much as possible with respect to nitrogen. The process designs
discussed in this work deliver 8% of the nitrogen products at high pressure, 33% at
medium pressure and 58% at low pressure. Only the MP N2 product is fed to the
gas turbine. If more MP N2 is required, a part of the low pressure product can be
upgraded to a medium pressure, as is already done to some extent in the two-column
design. The exergy losses that are related to this additional compression are the same
for both process designs.
The ASU and gas turbine can also be integrated with respect to air. In the current
process designs, a part of the air feed is further compressed. This stream is especially
suitable to be replaced by air that is extracted from the gas turbine compressor. In
the current designs, its flow rate amounts to about 42% of the total air feed. The
degree of air integration affects the two designs in a similar manner.

4.6.5 Making use of the heat of compression

A large part of the exergy destruction is caused by the use of cooling water to remove
heat of compression from compressed process streams. Smith and Klosek [2001] al-
ready suggested to use the heat of compression in a better way. As possible uses, they
mentioned the regeneration steps of adsorption or solvent based processes elsewhere
in the IGCC, or the production and heating of steam for the humidification of the
nitrogen stream to the gas turbine.
Emun et al. [2010] suggested to pre-heat the oxygen that is fed to the gasifier with a
stream from the CO2 separation unit. The heat of compression from an ASU could
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also be used for this purpose, and the nitrogen that is fed to the gasifier could be
pre-heated as well. The effect of pre-heating these streams would be to lower the
amount of hydrocarbon feed that normally would be oxidized to heat them within the
gasifier. This can lower both the hydrocarbon consumption and the oxygen demand.
The maximum temperature of the feed air after adiabatic compression is about 410
◦C. Because this is higher than the temperature of the MP N2 product, it can also
partially be used to further increase the temperature of this stream. In the case of
the two-column design, the after-cooler that is used when upgrading a part of the low
pressure product to a medium pressure product can simply be removed.
Another option to use the heat of compression in a better way could be to generate
or upgrade steam. This steam can be used in the steam turbine cycle of the IGCC,
increasing the electricity output of the process.

4.7 Conclusions

A two- and a three-column design of a cryogenic ASU have been evaluated using
exergy analysis. Both designs were separating the same feed into products with the
same specifications. The three-column design performed better than the two-column
design; their exergy destructions amounted to 4.12 and 4.67 kJ/mol air. This means
that the three-column design destroyed 12% less exergy, which was coupled to a 7%
lower net work input requirement. The rational exergy efficiencies of the two designs
are 35% and 38%.
Almost half of the exergy destruction was caused by the compressor after-coolers,
which are using water as cooling fluid. The distillation sections and the MHXs also
have considerable contributions. The exergy destruction within the cold section of a
cryogenic ASU is typically around 1.6-2.0 kJ/mol air. The product post-processing
part accounted for a relatively small part of the total exergy destruction.
Making better use of the heat of compression can be an important step towards a
higher efficiency of the IGCC. Possible uses are to pre-heat the ASU products before
they are fed to the gasifier or gas turbine, or to create steam that can be used to
humidify the nitrogen stream that is fed to the gas turbine or as part of the steam
turbine cycle.
The distillation section of the three-column design destroyed 31% less exergy than
the distillation section of the two-column design. This is the result of adding the
third column. Other works showed that the efficiency of the distillation section can
also be improved by adding intermediate heat exchangers in the bottom of the low-
pressure column. Using the HIDiC-concept in (a part of) the distillation section can
be another important way to improve its efficiency. Evaluating the performance of
the distillation section requires an exergy based criterion. It is impossible to use the
energy efficiency for this purpose.

Nomenclature

ASU air separation unit
Etot total exergy flow, J/s
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F molar flow rate, mol/s
h molar enthalpy, J/mol
HIDiC heat-integrated distillation column
HP high pressure
IGCC integrated gasification combined cycle
LP low pressure
MHX main heat exchanger
MP medium pressure
P pressure, bar
R universal gas constant, 8.3145 J/(K mol)
s molar entropy, J/(K mol)
T temperature, K
x mole fraction, dimensionless

Greek symbols
ε0 chemical molar exergy, J/mol
εph physical molar exergy, J/mol
εtot total molar exergy, J/mol
η simple exergy efficiency, dimensionless
ψ rational exergy efficiency, dimensionless

Sub- and superscripts
0 ambient or reference conditions
i component index
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Abstract

The efficiency of a two-column cryogenic ASU (air separation unit) that is part of
an IGCC (integrated gasification combined cycle) can be increased significantly by
making better use of the heat of compression and by improving the heat integration
of the distillation columns. The rational exergy efficiency of the ASU, which is de-
fined as the desired increase in exergy content of the products divided by the amount
of work that is added to the process, can be increased from 35% to over 70%. The
exergy destruction per amount of feed is reduced with 1.6 kJ/mol air, correspond-
ing to a 0.74% increase in the net electric efficiency of the IGCC. The efficiencies
are expected to increase further because the full potential of using heat-integrated
distillation columns is not yet achieved.

6.1 Introduction

DECARBit is a European collaboration project whose main aim is to develop a coal-
based IGCC (integrated gasification combined cycle) with pre-combustion CO2 cap-
ture [Røkke and Langørgen, 2009]. Figure 6.1 shows a schematic overview of the main
process units in such an IGCC.

Gas turbine

Air separation
unit

Gasifier

Water-gas
shift unit

CO2 separation
unit

Steam turbine

Coal

Electricity

N2

Air

Flue gas

CO2

O2

N2

H2 + CO2

H2O + CO + H

H2

Hot flue gas

Air
2

Figure 6.1: A schematic overview of a coal-based IGCC (integrated gasification
combined cycle) with pre-combustion CO2 capture.

Pulverized and dried coal is transported to the gasifier using high pressure nitrogen. In
the gasifier, the coal is partly oxidized using a purified oxygen stream. The oxidation
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is completed in the water-gas shift reactors, which convert carbon monoxide and water
into carbon dioxide and hydrogen. The carbon dioxide is subsequently separated from
the hydrogen and transported away for storage. The hydrogen is diluted with nitrogen
and burnt with compressed air to generate electricity in the gas and steam turbines.

6.1.1 Air separation units

An IGCC uses both purified oxygen and nitrogen, which are usually obtained by
separating air. Within the DECARBit project, three different air separation tech-
nologies are investigated: high-temperature ceramic membranes, pressure-swing or
temperature-swing adsorption, and cryogenic distillation. The current work is part of
an effort to improve the Second law (or exergy) efficiency of cryogenic air separation
processes.
A cryogenic ASU (air separation unit) typically consists of four main process sections:
a feed compression and purification section, a main heat exchanger, a distillation sec-
tion, and a product compression and pumping section, see for example Thorogood
[1991] and Smith and Klosek [2001] for more details.

6.1.2 Improving the efficiency of a cryogenic ASU

In a previous work [Van der Ham and Kjelstrup, 2010], we used exergy analysis to
evaluate two low pressure pumped liquid cycle ASUs that were designed as part of
an IGCC. The two processes delivered the same products, but differed in the number
of distillation columns that were used: either two or three. A two-column design is
commonly used when no argon product is required.
The study showed amongst others that the compressor after-coolers, the distillation
columns, and the main heat exchanger are responsible for most of the exergy de-
struction in both processes. Exergy is the potential to do work, so the destruction
or loss of exergy can be regarded as a loss in work potential. Two strategies were
suggested in order to try and decrease the exergy destruction: making better use of
the heat of compression, and improving the distillation section efficiency by applying
the type of heat integration used in a HIDiC (heat-integrated distillation column).
The first strategy involves changes in the process flow sheet, while the second focuses
on altering a single process unit.

Making use of the heat of compression

The ASU designs studied by Van der Ham and Kjelstrup [2010] use cooling water to
remove thermal energy from compressed process streams. This reduces the tempera-
ture of the thermal energy from over 400 ◦C to the ambient temperature, rendering
the thermal energy useless. This degradation of the thermal energy quality is equiv-
alent to the destruction of exergy.
In the current process, the nitrogen and oxygen streams enter the gasifier at approx-
imately ambient temperatures. The nitrogen stream that is fed to the gas turbine
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has a temperature of about 200 ◦C. Both the gasifier and the gas turbine operate at
temperatures above 1000 ◦C. So it might be possible to use the heat of compression
more efficiently by using it to heat the ASU products in an additional heat exchanger.
Several patents have been filed that pursue this approach, see for example Shah et al.
[2001], Briesch et al. [2007] and Günster et al. [2010]. However, no detailed studies of
this alternative are currently available in the academic literature. In the current work,
we assess what effect the addition of this heat exchanger has on the product temper-
atures, and how these temperature changes affect the performances of the ASU, the
gasifier and the gas turbine.

Improving distillation efficiency

A HIDiC (heat-integrated distillation column) can be considered as a conventional
distillation column that is split into two parts at its feed point. The two column parts
are operated at different pressures and positioned next to each other, enabling ther-
mal energy transfer from the HPC (high-pressure column) to the LPC (low-pressure
column) along the entire height of the integrated column. The duties of the original
reboiler and condenser are in this way spread out over a larger part of the column
height. This can reduce the irreversibilities within the distillation columns and it
reduces the reboiler and condenser duties.
The distillation section of a conventional two-column ASU contains two distillation
column that operate at different pressures. They are thermally integrated by a single
heat exchanger that is functioning as condenser for the HPC and as reboiler for the
LPC.
In a previous study [Van der Ham et al., 2011], we investigated how the performance
of the distillation section changes when the LPC is moved down along the HPC,
thereby creating a HIDiC-type heat-integrated column part. It was shown that the
exergy destruction in the distillation section can be reduced with 23% when using
such a configuration. The reduction in exergy destruction can be translated into a
lower operating pressure of the HPC, which means that the feed air can be provided
at a lower pressure, or into a higher operating pressure of the LPC, which means that
some products are delivered at a higher pressure. In the current study, we investigate
how such a change in configuration and operating pressure affects the efficiency of the
entire ASU.

6.1.3 Aim of the work

The aim of this work is to assess how heating of the ASU products and using a HIDiC-
type heat integration affect the Second law efficiency of a cryogenic ASU that is part
of an IGCC.
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6.2 Theoretical background on exergy analysis

The Second law efficiency of the ASU is evaluated using exergy analysis. The theo-
retical background and use of exergy analysis are explained in detail in for example
the monograph by Kotas [1985]. Relevant relations are here shortly repeated for
convenience.

6.2.1 Exergy contents of a stream of matter

The exergy content of a stream of matter is given by the amount of work that ideally
can be extracted when the stream is brought into equilibrium with the environment.
In the current study, the kinetic and the potential exergy of streams of matter are
assumed to be negligible. This means that the total molar exergy (εtot) is given by
the sum of the physical molar exergy (εph) and the chemical molar exergy (ε0) only:

εtot = εph + ε0 (6.1)

The physical molar exergy of a mixture can be calculated from the molar enthalpy (h)
and molar entropy (s) of the mixture at the actual conditions, in combination with
the molar enthalpy (h0) and molar entropy (s0) of the mixture at the environmental
temperature (T 0 = 298.15 K) and pressure (P 0 = 1 atm):

εph =
(
hT,P − hT 0,P 0

)− T 0
(
sT,P − sT 0,P 0

)
(6.2)

The chemical molar exergy of an ideal gas mixture can be calculated from the standard
chemical exergies of the components (ε0,i) and their mole fractions (xi):

ε0 =
∑
i

xiε0,i +RT 0
∑
i

xi lnxi (6.3)

Here, R is the molar gas constant. The standard chemical exergies are defined based
on the atmospheric concentrations of reference substances. The values that are used in
the current study are shown in Table 6.1, they are based on a hypothetical atmosphere
consisting of nitrogen, argon, oxygen, carbon dioxide and water only, see Van der Ham
and Kjelstrup [2010] for more details.

Table 6.1: Standard chemical exergies used in this work, in J/mol.

Substance ε0,i
N2 636
Ar 11609
O2 3891

The total exergy of a stream of matter (Etot) can finally be calculated by multiplying
its total molar exergy with its molar flow rate (F ):

Etot = Fεtot (6.4)
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6.2.2 Rational exergy efficiency

The current study uses the rational exergy efficiency (ψ) as performance criterion. It
is a measure for the thermodynamic perfection of a process or process unit and can
be calculated by dividing the desired exergy change by the total used exergy.

ψ =
ΔEdesired

ΔEused
(6.5)

A rational exergy efficiency of unity corresponds to complete perfection or reversibility.
Completely irreversible processes or process units have a rational exergy efficiency of
zero.
The definitions of the desired exergy change and total used exergy depend on the
process or process unit that is being considered. In the current study, the desired
exergy change is given by the amount of exergy that is added to the process streams,
it can be calculated by subtracting the exergy contents of the feed air (Efeed) from
the exergy contents of the separation products (Eproducts). The total used exergy is
given by the net work input to the process (Ework).

6.3 Process unit descriptions

Three parts of the IGCC process shown in Figure 6.1 are considered in more detail
in this study: the ASU, the gasifier, and the gas turbine. The process unit operating
conditions that are relevant for the current study are based on the values that are
used in the DECARBit project [Bolland et al., 2009]. The gasifier and gas turbine are
discussed first, because their characteristics define the product specifications of the
ASU. The proposed changes in the flow sheet and column configuration of the ASU
are also discussed in more detail.

6.3.1 Coal gasifier

The gasifier is assumed to operate at a pressure of 44 bar and a temperature of 1550
◦C . It is fed with bituminous Douglas Premium coal, having a higher heating value of
26.23 MJ/kg and a lower heating value of 25.17 MJ/kg. The assumed coal properties
are listed in Table 6.2.
The specifications of the required nitrogen and oxygen streams are listed in Table 6.3.

6.3.2 Gas turbine

The use of a generic F class gas turbine is assumed. It operates with a pressure ratio
of 18 and has a turbine inlet temperature of 1350 ◦C. The diluted synthesis gas is fed
to the unit at a pressure of 25 bar and 200 ◦C. A minimum mole fraction of 0.99 is
required for the nitrogen streams that is used as diluent.



6.3 Process unit descriptions 101

Table 6.2: Properties of bituminous Douglas Premium coal

Proximate analysis Ultimate analysis

Fixed carbon 54.95 % Carbon 66.52 %

Volatiles 22.90 % Ash 14.15 %

Ash 14.15 % Oxygen 5.46 %

Moisture 8.00 % Hydrogen 3.78 %

Nitrogen 1.56 %

Sulphur 0.52 %

Chlorine 0.01 %

Total 100.00 % Total 100.00 %

Table 6.3: Gasifier input specifications

Stream N2 O2

Mole fraction - 0.999 0.950

Pressure bar 88 48

Flow rate per kg coal kg 0.221 0.812

6.3.3 Two-column ASU

The ASU design that is used as base case in the current work is similar to the two-
column design that was previously analysed [Van der Ham and Kjelstrup, 2010] and
that was used as basis when assessing the performance increase of the distillation
section due to improved heat integration of the distillation columns [Van der Ham
et al., 2011]. Figure 6.2 shows the process flow sheet of the base case ASU.

The three most important process units are the HPC (high-pressure column), the LPC
(low-pressure column), and the MHX (main heat exchanger). The air pre-purification
step of the ASU is not included in the current design.
Purified and compressed air enters the process and is split into three parts. Almost
half of the air is further compressed to a high pressure, cooled to an ambient temper-
ature, liquefied in the MHX, expanded, and fed to the HPC. More than half of the air
is cooled in the MHX and fed to the bottom of the HPC as a vapour. A very small
portion of the air is compressed in the booster air compressor, cooled, expanded, and
fed to the LPC.
The HPC is assumed to have 51 theoretical equilibrium stages, including condenser.
The liquid feed enters the column at stage 42, counting from top to bottom. Two
products are withdrawn from the top of the HPC: a liquid stream which is subse-
quently pumped to a high pressure and vaporised in the MHX to yield HP N2 (high
pressure nitrogen), and a gaseous stream that passes through the MHX and is com-
pressed to yield MP N2 (medium pressure nitrogen). Both products have the same
composition. Three liquid streams are withdrawn from the HPC, sub-cooled, throt-
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Figure 6.2: Process flow sheet of the base case two-column ASU design.
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tled, and fed to the LPC. They are withdrawn from stage 11, stage 42 and the bottom
stage.
The LPC has 56 theoretical equilibrium stages, including reboiler. The air stream
is fed to stage 25, counting from top to bottom. The liquid parts of the streams
originating from HPC are fed to the top stage, stage 16 and stage 28; the vapour
parts are fed to the top stage, stage 15 and stage 27. The top product is first used
to sub-cool the streams originating from the HPC and subsequently warmed in the
MHX. A part of this stream is compressed, cooled and added to the gaseous nitrogen
product from the HPC before it is compressed to yield MP N2. The remaining part
leaves the process as LP N2 (low pressure nitrogen), which is used for regeneration
purposes in the feed pre-purification step of the ASU.
Previous studies [Van der Ham et al., 2011, Van der Ham and Kjelstrup, 2010] used
an oxygen recovery of 96.0% and a ratio of 3.20 between the O2 and HP N2 molar
flow rates. The amount of produced MP N2 was 26.2% of the molar feed flow rate.
In combination with the specification originating from the gasifier and gas turbine,
this results in the ASU product specification listed in Table 6.4.

Table 6.4: ASU product specifications.

Stream O2 HP N2 MP N2

Flow per mole feed mol 0.212 0.066 0.262

Purity - 0.950 0.999 0.990

Pressure bar 48.0 88.0 25.0

Additional heat exchanger

As discussed in Section 6.1.2, the efficiency of the ASU might be improved by adding
a heat exchanger that uses heat of compression to heat some of the ASU products.
The O2, HP N2, and MP N2 are all used at high temperatures downstream of the
ASU. They are therefore good candidates to be heated. Any combination of these
three streams can be heated. In the current study we investigate two combinations:
heating of the O2 and the HP N2 only, and heating of all three streams. Heating
of the MP N2 stream is combined with removal of the cooler that is used after the
nitrogen compressor. Figure 6.3 shows the process flow sheet for the case where all
three streams are heated.

Improved heat integration of distillation columns

The second strategy to try and increase the ASU efficiency is by improving the heat
integration of the distillation columns, as discussed in Section 6.1.2. The proposed
change in the configuration of the columns is illustrated schematically in Figure 6.4. In
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Figure 6.3: Process flow sheet of the two-column ASU design
with an additional heat exchanger that is used to heat all product streams

that are used in the gasifier and gas turbine.
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Figure 6.4: Schematic illustration of the proposed change in distillation column
configuration: the HPC (high-pressure column) and RC (reboiler-condenser)

are moved up along the LPC (low-pressure column),
enabling heat integration of a larger part of the column heights.

a previous study [Van der Ham et al., 2011], it was found that the gain in performance
increases as the height of the heat-integrated column part is increased. The maximum
height of the heat-integrated column part is determined by the required product
specifications; if the height becomes too large, it is no longer possible to produce
the required amounts of product. The maximum feasible number of HI-stages (heat-
integrated stages) was found to be 26, which is approximately half of the column
height. This is the number of HI-stages that is used in the current study as well.
The use of HI-stages makes it possible to decrease the ratio between the operating
pressure of the two columns, while keeping the temperature difference in the RC
(reboiler-condenser) unchanged. A decrease in pressure ratio can be realized either
by increasing the pressure in the LPC or by decreasing the pressure in the HPC. Both
alternatives are investigated in the current study.

6.4 Simulations and calculations

6.4.1 Coal gasifier

The coal gasifier is simulated using the process simulator Aspen PLUS V7.1, using
the Soave–Redlich–Kwong equation of state.
A series of two reactors is used to model the gasifier. The first one is a ‘yield reactor’;
it decomposes the coal feedstock into the components listed in the ultimate analysis
in Table 6.2. The reactor operates at the temperature and pressure of the coal feed:
15 ◦C and 1 atm. The coal properties listed in Table 6.2 need to be converted to a
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dry basis before they are used in Aspen PLUS. The heat of combustion is specified
directly, based on the higher heating value of the coal. The reaction products and
the thermal energy that is liberated during the decomposition reactions are fed to the
second reactor, together with the nitrogen and oxygen streams.
The second reactor is a ‘Gibbs reactor’; it is used to find the equilibrium composition
and temperature at the gasifier outlet for the operating pressure listed in Section 6.3.1.
The allowed outlet components are N2, O2, Ar, H2O, CO, CO2, ash, C, S, SO2, SO3,
NO, NO2, H2, HCl, CL2, CH4, NH3, COS and HCN. The nitrogen flow rate is fixed at
the value given in Table 6.3, while the oxygen flow rate is used to obtain the desired
outlet temperature.

6.4.2 Gas turbine

The gas turbine calculations are done in the process simulator Aspen HYSYS V7.1,
using the Soave–Redlich–Kwong equation of state.
The main function of the nitrogen that is used as diluent in the gas turbine is to make
sure that the TIT (turbine inlet temperature) does not become too high. The total
amount of thermal energy that is absorbed by the nitrogen stream is given by the
nitrogen inlet temperature, the TIT and the nitrogen flow rate. When increasing the
nitrogen inlet temperature, the temperature difference decreases. In order to keep
the total amount of energy that is absorbed by the nitrogen unchanged, the nitrogen
flow rate needs to increase. The required increase in flow rate can be calculate using
specific enthalpy (h) values:

Fnew

F old
=

h (TIT )− h
(
T old
N2

)
h (TIT )− h

(
Tnew
N2

) (6.6)

An increase in the nitrogen flow rate means that more nitrogen has to be compressed,
requiring more work input. But since the amount of matter that is entering the
turbine also increases, more work is extracted as well. The net effect can be estimated
by subtracting the work required for compression from a pressure of 1 atm and a
temperature of 20 ◦C to a pressure of 25 bar, from the work obtained when expanding
from a pressure of 18 bar and a temperature of 1350 ◦C to a pressure of 1 atm.
Using adiabatic efficiencies of 87% for the compressor and expander, this yields a net
work output of approximately 10 kJ/mol nitrogen. So an increase in the nitrogen
temperature has a positive effect on the net work output, even without including the
additional work output from the steam cycle.

6.4.3 Two-column ASU

The ASU flow sheet is simulated with the process simulator Aspen HYSYS V7.1,
using the Peng-Robinsons equation of state modified by Stryjek and Vera and using
Lee-Kessler vapour pressures (PRSV-LK).
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Fixed operating conditions

All simulations use a total air feed flow rate of 1 mol, at a temperature of 20 ◦C
and with mole fractions of 0.781, 0.009 and 0.210 for nitrogen, argon and oxygen
respectively. The pressures of the O2, HP N2 and MP N2 products are set are their
specification values as listed in Section 6.3.3. The pressure of the LP N2 is set at 0.14
bar above the minimum pressure level. The minimum pressure level is equal to 1 atm,
except when using HI-stages in combination with an increased pressure in the LPC.
The flow rate of the air that is fed to the LPC is fixed at 1.5% of the total feed;
its temperature is specified at 30 ◦C at the inlet of the MHX and at -125 ◦C at its
outlet. The liquid air that is fed to the HPC has a temperature of -176 ◦C at the
MHX outlet; it is compressed to a pressure of 80 bar and cooled to a temperature of
30 ◦C before entering the MHX. All streams leaving the hot side of the MHX have
the same temperature.
The flow rate of the liquid nitrogen product from the HPC is fixed at the product
specification for the HP N2. Liquid is leaving the HPC at stage 42 with a flow rate
equal to 13.0% of the total feed. The liquid withdrawn from stage 11 has a oxygen
mole fraction of 0.020. Sub-cooling of the liquid streams from the HPC to the LPC is
done in two heat exchangers that have a minimum approach temperature of 2.5 ◦C.
The purity of the liquid oxygen leaving the LPC is set at its specification value.
The adiabatic efficiencies of the compressors are 87%; they are 50% for the liquid
pumps, 75% for the liquid expander, 80% for the booster compressor and 87% for the
turbo-expander. Pressure drop and losses of low temperature thermal energy to the
environment were included for all columns and heat exchangers.

Varying operating conditions

When solving the process flow sheet, the feed pressure is used to ensure a temperature
difference of 0.80 ◦C in the RC (reboiler-condenser). In the case of HI-stages in com-
bination with an increased pressure in the LPC, the LP N2 pressure is used to control
the RC temperature difference. A minimum approach temperature of 2.0 ◦C in the
MHX is realized by adjusting the flow rate of the liquid air; it amounts to approxi-
mately 42% of the total feed. The flow rate of the gaseous air that is fed to the HPC
is set such that the total feed flow rate remains constant. Its temperature when leav-
ing the MHX is found using the energy balance of the RC (reboiler-condenser). The
pressure after the booster compressor is defined by the work input of the compressor,
which is set at 96% of the turbo-expander work output. The required oxygen flow
rate is obtained by varying the flow rate of the gaseous HPC product. The pressure
and temperature of the nitrogen that is upgraded from LP N2 to MP N2 are set to
match the values of the gaseous nitrogen from the HPC. Its flow rate is chosen such
that the flow rate of the total MP N2 equals the product specification.
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Additional heat exchanger

The additional heat exchanger is modelled with a minimum approach temperature of
25 ◦C. All hot outlet streams have the same temperature. For simplicity, no pressure
drop and heat losses are assumed for this heat exchanger.

Heat-integrated distillation stages

The heat duties of the HI-stages are calculated using the spreadsheet functionality
that is part of HYSYS. Based on the stage temperatures and a fixed value for the
heat-transfer capacity per stage, the heat duties can be calculated. These duties are
added to the relevant stages of the LPC and removed from the relevant stages of the
HPC. Heat-transfer capacity is defined as the available heat-transfer area multiplied
with the overall heat-transfer coefficient; a value of 17 W/◦C per stage is used. This
value is based on assumptions concerning the column diameter, the type of structured
packing that is used, the overall heat-transfer coefficient, the vapour density, and the
maximum vapour flow rate; see Van der Ham et al. [2011].

Exergy calculations

The exergy contents of the feed and products is calculated according to the relations
given in Section 6.2.1, using the spreadsheet functionality of HYSYS. The exergy
contents of the thermal energy streams that are entering and leaving the process are
equal to zero, because the temperature of the energy is equal to the environmental
temperature. Work is by definition equal to exergy.

6.4.4 Case descriptions

Several ASU cases are simulated. The first case is the base case (case 0), which is
also discussed in [Van der Ham and Kjelstrup, 2010]. Next, the HI-stages are added
to the design. The effects of both increasing the pressure in the LPC (case 1L) and
decreasing the pressure in the HPC (1H) are evaluated.
The additional heat exchanger is subsequently added to both designs. Two more cases
are considered for each of them: heating of the products to the gasifier only (case 2L
& 2H), and heating of the products to both the gasifier and gas turbine (case 3L &
3H).
In the next six cases, the interaction of the gasifier and gas turbine with the ASU is
included. The interaction with the gasifier involves a change in the flow ratio between
the O2 and HP N2 products. Both changing the O2 flow rate (case 4L & 4H) and
changing the HP N2 flow rate (case 5L & 5H) are assessed. The most promising
alternatives are used for the two final designs, which add the interaction with the gas
turbine (case 6L & 6H) to the ASU design.
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6.5 Simulation results

The simulation results of the cases described in Section 6.4.4 are first shown and
discussed separately. A summarizing overview of the performance improvements is
given at the end of the section.

6.5.1 Case 0: Base case

The resulting properties of the feed and products of the base case ASU design are
shown in Table 6.5.

Table 6.5: Feed and product properties of the base case ASU design.
Molar flow rates are given as fraction of the total feed flow rate.

Stream Air O2 HP N2 MP N2 LP N2

F - 1 0.212 0.066 0.262 0.459

xN2
- 0.781 0.017 1.000 0.992 0.982

xAr - 0.009 0.033 0.000 0.002 0.004

xO2 - 0.210 0.950 0.000 0.006 0.014

P bar 5.08 48.0 88.0 25.0 1.15

T ◦C 20 22 22 226 22

The values found in this work are very similar to ones previously found [Van der Ham
and Kjelstrup, 2010]1. There are some very minor differences in the air pressure and in
the MP N2 mole fractions. They are caused by the use of different versions of Aspen
HYSYS in the two works, either 2006.5 or V7.1. Table 6.6 contains a comparison
between the found exergy characteristics of the two works, it also shows some minor
differences.

Table 6.6: Comparison between the exergy inputs and outputs per amount of feed
(kJ/mol) of the two-column designs evaluated in the current work

and in a previous work [Van der Ham and Kjelstrup, 2010].

Study Current Previous
Physical exergy in feed 3.99 3.99
Chemical exergy in feed 0.02 0.02
Work input 7.22 7.26
Physical exergy in products 5.34 5.35
Chemical exergy in products 1.15 1.15
Work output 0.10 0.10
Destroyed exergy 4.64 4.67
Rational exergy efficiency 0.348 0.347

1In Table 3 of the previous work [Van der Ham and Kjelstrup, 2010], the argon and oxygen mole
fractions of the Air, MP N2 and LP N2 streams were accidentally interchanged.
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6.5.2 Case 1L & 1H: Adding heat-integrated stages

Figure 6.5 shows how the temperature profile of the columns change when HI-stages
are added to the base case ASU design (case 0).
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Figure 6.5: Column temperatures as function of the distance from the top of the
low-pressure column (LPC) for column configurations without (case 0) and with

(case 1L and 1H) heat-integrated stages. Case 1L maintains the base case
temperature difference in the reboiler-condenser by increasing the pressure in the
LPC, while case 1H achieves this by decreasing the pressure in the high-pressure

column.

Increasing the pressure in the LPC (case 1L) causes an increase in the LPC temper-
atures, thus maintain the base case temperature difference in the reboiler-condenser.
Decreasing the pressure in the HPC (case 1H) achieves the same result by decreasing
the HPC temperatures. The fraction of the total heat duty that is accommodated
by the HI-stages is 13% for both cases; Van der Ham et al. [2011] found 22% for
comparable cases.
Table 6.7 shows how the operating pressures and product temperatures change when
HI-stages are added to the base case ASU design.
In order to keep the temperature difference at the base case value, the pressure in
the LPC needs to be increased with 13% or the pressure in the HPC needs to be
decreased with 10%. The resulting decreases in the pressure ratio are smaller than
the ones found in Van der Ham et al. [2011]. Only the temperature of the MP N2

product is affected by the pressure changes; it increases with 0.3 ◦C for case 1L and
with 16 ◦C for case 1H. The effect that these temperature increases have on the MP
N2 flow rate required by the gas turbine is included in Section 6.5.5.
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Table 6.7: Product temperatures for different cases of HI-stages.

Case Pressures (bar) Temperatures (◦C)
Feed LP N2 O2 & HP N2 MP N2

0 5.08 1.15 22 226

1L 5.08 1.33 22 227

1H 4.62 1.15 22 242

Table 6.8 shows how the exergy characteristics of the ASU change when HI-stages are
added to the base case design.

Table 6.8: Exergy characteristics per amount of feed (kJ/mol)
for different cases of HI-stages.

Case Ework Efeed Eproducts Edestroyed ψ (-)

0 7.12 4.01 6.49 4.64 0.348

1L 7.24 4.01 6.63 4.63 0.361

1H 7.55 3.78 6.52 4.81 0.363

Both cases with HI-stages require more work input than the base case. For case 1L,
only the compressor that is upgrading LP N2 to MP N2 requires more work. The
main air compressor is responsible for most of the extra work in case 1H. This makes
sense because the air is entering the process at a lower pressure, while still being
compressed to a pressure of 80 bar. The decreased feed pressure is also the reason
for the decreased exergy content of the feed. The increasing exergy content of the
products is caused by the increased product temperatures, and for case 1L also by an
increase in the LP N2 pressure.
Overall, the rational efficiency of both cases is higher than the one of the base case,
with case 1H performing slightly better than case 1L. These efficiency increases are
approximately half of the efficiency increase that can achieved by adding a third dis-
tillation column to the ASU design, as discussed in more detail in Van der Ham and
Kjelstrup [2010].

6.5.3 Case 2L, 3L, 2H & 3H: Adding the hot heat exchanger

The effect of adding the proposed heat exchanger is evaluated in two steps. First it is
used to only heat the O2 and HP N2 streams, which are the ASU products that are
fed to the gasifier (case 2L & 2H). Subsequently, heating of the MP N2 stream, which
is fed to the gas turbine, is included as well (case 3L & and 3H).
Table 6.9 shows how the product temperatures change when the hot heat exchanger
is added to the ASU design. Heating of products that are fed to the gasifier does
not affect the temperature of the stream to the gas turbine, and vice versa. The
temperature increases for the cases with an increased LPC pressure (denoted with L)
are smaller than the ones for cases with a decreased HPC pressure (denoted with H).
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Table 6.9: Product temperatures for different cases of product heating.

Case Product heating Temperatures (◦C)
O2 & HP N2 MP N2 O2 & HP N2 MP N2

1L No No 22 227

2L Yes No 383 227

3L Yes Yes 383 580

1H No No 22 242

2H Yes No 402 242

3H Yes Yes 402 657

This was also the case when adding the HI-stages.
Table 6.10 shows how the exergy characteristics of the ASU change when the hot
heat exchanger is added to the design. Heating of the streams to gasifier increases

Table 6.10: Exergy characteristics per amount of feed (kJ/mol)
for different cases of product heating.

Case Ework Efeed Eproducts Edestroyed ψ (-)

1L 7.24 4.01 6.63 4.63 0.361

2L 7.24 4.01 7.71 3.55 0.510

3L 8.41 4.01 9.30 3.12 0.628

1H 7.55 3.78 6.52 4.81 0.363

2H 7.55 3.78 7.69 3.64 0.518

3H 8.98 3.78 9.66 3.11 0.654

the exergy content of the products, caused by the increase in their temperatures.
The amount of destroyed exergy decreases significantly, since the exergy added to the
process remains unchanged, resulting in a considerable increase in the rational exergy
efficiency.
Heating the stream to the gas turbine increases the exergy content of the products even
further, but an increase in the work input is now required. All of the additional work
is used in the MP N2 compressor, related to the increase of its operating temperature.
The net effect is another decrease in the amount of destroyed exergy, resulting in a
second large increase in the rational exergy efficiency.
When comparing the L-cases with the H-cases, it can be concluded that the H-cases
are more extreme in all the increases and decreases that occur. The difference between
the rational efficiencies of the two design variants becomes larger when adding the
hot heat exchanger to the design.
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6.5.4 Case 4L, 5L, 4H & 5H: Including gasifier interaction

In Section 6.5.3 it is shown that adding the HI-stages and the hot heat exchanger
increases the temperatures of the oxygen and nitrogen streams that are fed to the
gasifier. Because the nitrogen stream is used for coal transportation, its flow rate
depends on the coal flow rate only. So the temperature change will only affect the
amount of oxygen that is required in the gasifier. The extent of this effect is evalu-
ated by first performing the calculations described in Section 6.5.3 based on the base
case temperature, and subsequently based on the temperatures found in Section 6.5.2.
Compositional changes are neglected.
Due to the found change in oxygen flow rate, the ratio between the nitrogen and
oxygen flow rates changes. This change can be translated back to the ASU by either
adjusting the oxygen flow rate (case 4L & 4H) or by adjusting the nitrogen flow rate
(case 5L & 5H). When adjusting the nitrogen flow rate, the entire ASU should sub-
sequently be scaled with the relative change in nitrogen flow rate in order to keep
the ratio between the nitrogen and coal flow rates unchanged. This means that the
amount of air feed changes. The ASU flow rate adjustments cause small changes in
some operating temperatures and pressures. They converge after a few iteration steps.
Table 6.11 shows the converged product temperatures and flow rates when interaction
with the gasifier is included.

Table 6.11: Product temperatures for different cases
of adjusted O2 or HP N2 flow rates. The flow rates are given

as fraction of their base case values listed in Table 6.5.

Case Flow rates (-) Temperatures (◦C)
O2 HP N2 O2 & HP N2 MP N2

3L 1 1 383 580

4L 0.967 1 383 617

5L 1 1.034 383 575

3H 1 1 402 657

4H 0.966 1 398 696

5H 1 1.036 402 651

For case 4L, the pressure in the LPC had to be increased with 0.3% in order to keep
the temperature difference in the RC constant. The HPC pressure had to be de-
creased with 0.3% for case 4H. These pressure changes cause small decreases in the
O2 and HP N2 temperatures. The MP N2 temperature increases when adjusting the
O2 flowrate and decreases when adjusting the HP N2 flow rate. Table 6.12 shows how
the oxygen flow rate and the gasifier outlet flow rate and composition change for the
different cases.
The oxygen mass flow rate found for the base case is slightly higher than the specifi-
cation value taken from Bolland et al. [2009]. That is why it has been decided to use
the relative change in oxygen flow rate as basis for the ASU flow rate adjustments,
rather than the absolute change.
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Table 6.12: Oxygen and outlet mass flow rates for different temperatures of the
oxygen and nitrogen streams entering the gasifier, given per mass of coal. The

shown O2/N2 ratio is based on molar flow rates and relative to the base case ratio.

Case 0 4L & 5L 4H 5H

Temperature (◦C) 22 383 398 402

O2 flow rate 0.845 0.818 0.816 0.816

Relative O2/N2 ratio 1 0.967 0.966 0.965

Outlet flow rate 2.066 2.038 2.037 2.037

CO 1.516 1.533 1.534 1.534

N2 0.250 0.250 0.250 0.250

Ash 0.142 0.142 0.142 0.142

CO2 0.047 0.018 0.017 0.017

H2 0.043 0.045 0.045 0.045

H2O 0.029 0.012 0.011 0.011

Ar 0.028 0.027 0.027 0.027

COS 0.010 0.010 0.010 0.010

Other 0.001 0.001 0.002 0.002

Table 6.12 shows that the oxygen requirement of the gasifier indeed decreases when
the temperature of the oxygen and nitrogen streams increases. It also reveals how an
increase in temperature is translated into an efficiency increase of the IGCC. When
comparing the CO, CO2, H2 and H2O mass flow rates of the different cases, it can
be seen that the outlet composition becomes less oxidized when the temperature in-
creases; there is more CO and H2 and less CO2 and H2O. This means that more H2O
is needed in the water-gas shift unit in order to oxidise the remaining CO, increasing
the H2 flow rate even more. So in the end, the increase in oxygen and nitrogen tem-
perature results into a higher H2 flow rate into the gas turbine, increasing the work
output of both the gas and steam turbines.
Table 6.13 shows how the exergy characteristics of the ASU change when interaction
with the gasifier is included. When using the HP N2 flow rate to adjust the O2/N2

Table 6.13: Exergy characteristics (in kJ) based on the base case amount of HP N2

product, for different cases of adjusted O2 or HP N2 flow rates.

Case Ework Efeed Eproducts Edestroyed ψ (-)

3L 8.41 4.01 9.30 3.12 0.628

4L 8.64 4.01 9.35 3.30 0.618

5L 8.16 3.88 9.00 3.05 0.627

3H 8.98 3.78 9.66 3.11 0.654

4H 8.86 3.77 9.70 2.93 0.669

5H 8.70 3.65 9.33 3.03 0.652
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ratio (case 5L & 5H), both cases behave similarly. The required work input, the ex-
ergy contents of the feed and products, and the resulting exergy destruction all show
a small decrease. This decrease is mainly caused by the decrease in feed flow rate.
The net effect is a minor decrease in the rational efficiency, which is independent on
the amount of feed flow rate.
When using the O2 flow rate to adjust the O2/N2 ratio (case 4L & 4H), the two
cases behave differently. For case 4L, the work input increases, while it decreases
for case 4H. These changes are mainly caused by changing flow rates of the stream
going through the main air compressor. The exergy content of the products increases
slightly for both cases, related to the higher temperature of the MP N2. The overall
effect is a decrease in the rational efficiency of case 4L, and an increase in the rational
efficiency of case 4H.
Because we can choose ourselves whether we want to adjust the HP N2 flow rate or
the O2 flow rate, we select the HP N2 flow rate for the L-variant (case 5L) and the
O2 flow rate for the H-variant (case 4H).

6.5.5 Case 6L & 6H: Including gas turbine interaction

By adding HI-stages, adding the hot heat exchanger and including the interaction
with the gasifier, the MP N2 temperature has increased from its base case value of
226 ◦C to 575 ◦C for case 5L and 696 ◦C for case 4H. Using these temperatures and
the gas turbine inlet temperature specified in Section 6.3.2, a new MP N2 flow rate can
be calculated. Adjusting the ASU flow rate specification to this values causes a small
change in the MP N2 temperature. After several iteration steps, the MP N2 flow rate
and temperature converge to the values listed in Table 6.14. Including interaction

Table 6.14: MP N2 temperatures for adjusted MP N2 flow rates. The flow rate is
given as fraction of the base case values listed in Table 6.5.

Case Flow rate (-) Temperatures (◦C)
5L 1 575

6L 1.357 545

4H 1 696

6H 1.501 628

with the gas turbine increases the MP N2 flow rate and decreases its temperature.
The changes are again more extreme for the H-variant than for the L-variant of the
ASU design. The resulting ASU exergy characteristics when including the interaction
with the gasifier are shown in Table 6.15. Both case 6L and 6H require more work
input, caused by the increased MP N2 flow rate. The exergy content of the products
increase with a slightly smaller amount; a small part of the additional work input is
destroyed. Including the gas turbine interaction in the ASU design results in a higher
rational efficiency. The final efficiency of the H-variant is considerably higher than
the one of the L-variant.
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Table 6.15: Exergy characteristics (in kJ) based on the base case amount of HP N2

product, for an adjusted MP N2 flow rate.

Case Ework Efeed Eproducts Edestroyed ψ (-)

5L 8.16 3.88 9.00 3.05 0.627

6L 9.36 3.88 10.11 3.13 0.665

4H 8.86 3.77 9.70 2.93 0.669

6H 10.73 3.77 11.43 3.07 0.713

6.5.6 Overall efficiency improvements

The overall effect of adding the HI-stages and the hot heat exchanger, while including
the interaction of the ASU with the gasifier and gas turbine, is graphically depicted
in Figure 6.6; it shows the exergy characteristics of the base case design (case 0) and
the two final designs (case 6L & 6H).
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Figure 6.6: Comparison between the exergy characteristics of the base case ASU
design (case 0) and the final ASU designs (case 6L & 6H). The amounts of exergy

are given based on the base case amount of HP N2 product.

It can be seen that the exergy content of the feed hardly changes. There is a minor
decrease for case 6H, related to a decrease in pressure, and an even smaller decrease
in case 6L, related to the decrease in feed flow rate. The work input of both final
cases is substantially larger than for the base case. This is mainly related to increased
duties of the two nitrogen compressors. The majority of the additional work is trans-
formed into thermal exergy of the products. But this is not the only cause for the
increased exergy content of the products. Addition of the HI-stages and the hot heat
exchanger makes the process more efficient, resulting in less exergy destruction which
also translates into a higher exergy content of the products.
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When comparing the two final ASU variants, it shows that the H-variant destroys
less exergy than the L-variant. Case 6H is therefore the most promising variant. Ta-
ble 6.16 gives the feed and products properties of this case.

Table 6.16: Feed and product properties of case 6H, the final ASU design.
Molar flow rates are given as fraction of the total feed flow rate.

Stream Air O2 HP N2 MP N2 LP N2

F - 1 0.205 0.066 0.393 0.336

xN2
- 0.781 0.024 1.000 0.979 0.967

xAr - 0.009 0.026 0.000 0.004 0.007

xO2 - 0.210 0.950 0.000 0.016 0.026

P bar 4.61 48.0 88.0 25.0 1.15

T ◦C 20 398 398 628 22

These numbers can be compared to their base case values given in Table 6.5. Apart
from the changes in pressure, temperatures and flow rates discussed in the previous
sections, there are some minor changes in the product mole fractions. The oxygen
product contains a bit more nitrogen, which is compensated for by a decrease in the
argon content. This change is not expected to have a notable effect on the process
performance. The decreased flow rate of the oxygen product causes increased oxygen
fractions in both the MP N2 and LP N2 products. In combination with a small in-
crease in their argon fractions, this results in lower nitrogen fractions. The MP N2

nitrogen fraction is now below its specification given in Section 6.3.2. An excess of air
is normally fed to the gas turbine. The decreased nitrogen fraction is therefore not
expected to cause any problems, as long as the turbine inlet temperature not exceeds
its maximum.
Table 6.17 gives a comparison between the distribution of the exergy destruction over
the different process parts and process units of case 0 and case 6H. The exergy de-
struction in the feed pre-processing part of the ASU decreases with more than 80%,
caused by an almost disappearing contribution of the coolers. This huge reduction is
mainly realized by the addition of the hot heat exchanger, which is taking over a large
part of the cooling duty. The extra heat exchanger itself adds some exergy destruction
to the heat exchanger process part, but the net effect is still a large reduction. The
distillation section is now the process part that destroys most of the exergy, although
its efficiency has increased a little bit. For the product post-processing part we can
see an increase in the exergy destruction. The overall result is a decrease of 34% in
the exergy destruction.
Looking at the process unit types, it can be concluded that the contribution of the
coolers decreases from 41% to below 1%. The main exergy destroying types of equip-
ment are now the heat exchangers, the distillation columns and the compressors,
accounting for 38%, 30% and 19 % of the total destruction.
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Table 6.17: Comparison between the exergy destruction per amount of feed
(kJ/mol) of the base case (case 0) and final case (case 6H) designs.

Process design Base case Final case
Feed pre-processing 2.20 0.40

Compressors 0.29 0.29
Coolers 1.80 0.01
Expanders 0.10 0.09

Heat exchangers 0.78 0.98
Main heat exchanger 0.78 0.81
Hot heat exchanger − 0.18

Distillation section 1.21 1.16
HP column 0.26 0.25
LP column 0.65 0.66
HI-stages 0.11 0.08
Sub-coolers 0.10 0.09
Throttle valves 0.10 0.08

Product post-processing 0.45 0.53
Pumps 0.15 0.15
Compressors 0.18 0.30
Cooler 0.11 −
Mixer 0.00 0.08

Total exergy destruction 4.64 3.07
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6.6 Discussion

6.6.1 Effect on the IGCC efficiency

We have seen in Section 6.5 that the efficiency of the ASU can be increased substan-
tially. If we keep the amount of feed coal fixed, then this performance improvement
should in the end translate into an increased net work output of the IGCC. There are
two ways in which the work output is increased. The first one is an increase in the
amount of nitrogen that is passing through the turbine as discussed in Section 6.4.2,
the second one is an increase in the amount of hydrogen that is entering the gas tur-
bine, as discussed in Section 6.5.4.
In order to quantify the efficiency improvement of the IGCC, we need to calculate the
amount of air that is required per amount of coal. This can be done using the HP
N2 flow rates in Tables 6.3 and 6.5 and the molar mass of nitrogen, yielding an air
requirement of 119 mol/kg coal. Per mole of air, we can reduce the exergy destruction
with 1.57 kJ. So per kilogram of coal, the exergy destruction can be reduced with 187
kJ. Since exergy is equal to potential work, this means that the net work output of
the IGCC can be increased with 187 kJ/kg coal. If we relate this number to the lower
heating value of the coal, as given in Section 6.3.1, we obtain a possible increase of
0.74% in the net electric efficieny of the IGCC.
This efficiency increase is calculated based on the ASU and its interaction with the
gasifier and gas turbine only. All other process units will most likely also be affected
by the changes in amounts of hydrogen and nitrogen that are fed to the gas turbine.
In order to fully capture all process unit interdependencies properly, the entire IGCC
should be simulated as a whole. This is outside the scope of the current work.

6.6.2 Further ASU improvements

The main process irreversibilities of the base case were located in the coolers. This
work has shown that they almost completely can be prevented by the addition of an
extra heat exchanger. The remaining irreversibilities are mainly located in the heat
exchangers, the distillation columns and the compressors, so this is where efforts for
further improvements should focus at. Of these three areas, the distillation columns
have the highest potential for improvements. Both heat exchangers and compressors
are relatively mature process units for which currently no substantial performance
improvements are expected. But there are indications that the distillation column
efficiency can be further increased.
In a previous work [Van der Ham et al., 2011], the use of HI-stages decreased the
exergy destruction of the distillation section with 21% when increasing the pressure
in the LPC, and with 23% when decreasing the pressure in the HPC. The LPC was
in both cases responsible for approximately 75% of the reduction. In the current
work, the exergy destruction of the distillation secion decreases with only 5%, and
the contribution of the LPC remains almost unchanged. It is discussed in Section 6.5.2
that the HI-stages in the current work seem to affect the design to a lesser extent;
their total heat duty is smaller and the required decrease in pressure ratio is smaller.
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This suggests that the potential performance improvements of using heat-integrated
distillation columns is not yet fully achieved in the current ASU design.
In the current work, we have implemented the HI-stages in an existing flow sheet
without attempting to optimize the flow sheet for the use of HI-stages. There are
several design parameters that could be varied in order to try and improved the
performance of the distillation section. Some are related to the distillation section
itself, like the flow rates, compositions, and/or draw locations of the HPC side-draws.
The locations at which the HPC bottom product and its lowest side-draw are fed to
the LPC are also good candidates. Some other design parameters are rather related
to the MHX, like the cold outlet temperatures and the flow rate through the turbo-
expander. In order to increase the heat duties of the HI-stages, it is also possible
to increase the pressure ratio. The effects that such changes have on the distillation
section and ASU efficiency would be a very interesting subject for future studies.
More structural changes in the process flow sheet can also be considered.

6.6.3 Relevance for other processes

The advantages of adding the hot heat exchanger and using HI-stages are not limited
to the ASU design that is studied in this work, they can be used in various other
designs and processes as well.
The hot heat exchanger can be used in any process where products from the ASU
are used at elevated temperatures, for example in an oxy-fuel combustion process
[Brugerolle and Ha, 2009, Darde et al., 2009]. The efficiency of the three-column ASU
studied in Van der Ham and Kjelstrup [2010] can also be increased using the extra
heat exchanger.
Adding HI-stages to the three-column design is less straightforward, because the ad-
dition of the third column already reduces the exergy destruction in the distillation
section considerably. Rather than adding HI-stages to the three-column design, it
might be possible to replace the third column with a HIDiC. A related design is pre-
sented by Arman et al. [2001], who are describing the use of heat-integrated rectifying
and stripping sections as part of the MHX.

6.6.4 On the use of exergy analysis

Exergy analysis has been the basis for the current and previous [Van der Ham and
Kjelstrup, 2010] ASU studies. First, it was used to characterize the process and
locate the largest inefficiencies. Subsequently, it was used to evaluate the effect of
measures aiming to reduce these inefficiencies. According to the exergy efficiency, the
process can be improved considerably. Section 6.6.1 discusses how this improvement
translates into a higher net work output of the entire IGCC.
Energy conversion processes are often evaluated based on amounts of energy, without
taking into account the quality of the energy. If such a performance criterion had
been used to evaluate the ASU performance, then it would have been concluded that
the ASU performs worse because the amount of net work input increases. The entire
IGCC would have to be simulated in order to show that the changed design actually
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has a positive effect, which is much more demanding.
This shows that, when evaluating the performance of a part of a larger process,
performance criteria based on the Second law of thermodynamics are more suitable
than criteria based on the First law of thermodynamics. However, increasing the
Second law efficiency of a process part or unit should not become a goal on its own.
It is important to always make sure that the improvement of this single process part
can also be translated into a higher Second law efficiency of the entire process. In
case of an energy conversion processes like an IGCC, this means that the First law
efficiency should increase as well.

6.7 Conclusions

The effect that the addition of HI-stages and a hot heat exchanger has on the Second
law efficiency of an ASU as part of an IGCC has been studied. Adding the HI-stages
increases the rational exergy efficiency with 1 to 2 %, while adding the heat exchanger
increases it with 30 to 35 %. When adding HI-stages, decreasing the pressure in the
HPC results in a thermodynamically better process than increasing the pressure in
the LPC. The reduction in exergy destruction of the final case, which also includes
the interaction of the ASU with the gasifier and gas turbine, amounts to 1.6 kJ/mol
air. This corresponds to an increase in the net electric IGCC efficiency of 0.74%.
The improved ASU performance translates into a higher IGCC efficiency by increas-
ing the net work output of the combined cycle. An increase in the temperatures of
the oxygen and nitrogen streams that are fed to the gasifier result in a lower oxygen
demand per amount of coal, which eventually increases the amount hydrogen that
can be fed to the gas turbine. Increasing the temperature of the nitrogen stream that
is fed to the gas turbine allows for a larger nitrogen flow rate through the gas turbine.
Addition of the hot heat exchanger removes the largest source of exergy destruction
from base case ASU. The most important remaining sources are the heat exchang-
ers, the distillation columns and the compressors. The distillation columns have the
largest potential for improvements; future efforts should aim at reducing the exergy
destruction in the distillation section of the ASU. The ASU flow sheet can be opti-
mized in order to make better use of the HI-stages.

Nomenclature

ASU air separation unit
E exergy flow, J/s
F molar flow rate, mol/s
h molar enthalpy, J/mol
HI-stage heat-integrated stage
HIDiC heat-integrated distillation column
HP high pressure
HPC high-pressure column
IGCC integrated gasification combined cycle
LP low pressure
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LPC low-pressure column
MHX main heat exchanger
MP medium pressure
P pressure, bar
R universal gas constant, 8.3145 J/(K mol)
RC reboiler-condenser
s molar entropy, J/(K mol)
TIT turbine inlet temperature
x mole fraction, dimensionless

Greek symbols
ε0 chemical molar exergy, J/mol
εph physical molar exergy, J/mol
εtot total molar exergy, J/mol
ψ rational exergy efficiency, dimensionless

Sub- and superscripts
0 ambient or reference conditions
i component index
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Abstract

Current non-equilibrium distillation models do not explicitly include the coupling
between thermal and mass fluxes. We present a calculation model for the coupled
transfer of mass and thermal energy in the vapour–liquid region of a binary mixture.
The region is modelled as a vapour–liquid interface in between two homogeneous
films. The entropy production in the vapour–liquid region can be calculated using
both irreversible thermodynamics and the entropy balance. The film thickness ratio
is found by requiring the entropy production calculated with the two methods to
be equal, while keeping the vapour film thickness fixed. Using a nitrogen–oxygen
mixture as example, we show that neglecting the coupling between thermal and mass
fluxes can have a large impact on the magnitude and direction of the theoretical
(net) fluxes. The size of the impact depends on the vapour film thickness, but it is
significant for all thicknesses. By increasing the number of control volumes that is
used to represent the liquid and vapour films, we also show that the fluxes depend
highly on the resistivity profiles in the films. They depend slightly on the interface
resistance. A sensitivity analysis of the transport properties shows that accurate
values of the Maxwell–Stefan diffusion coefficients in both homogeneous phases and
of the liquid phase heat of transfer are most important. Especially the measurable
heat flux at the liquid boundary of the system is sensitive to neglect of coupling, to
neglect of the interface resistance and to uncertainties in the transfer properties.

7.1 Introduction

The current work is part of a study that aims at improving the Second law efficiency of
an cryogenic air distillation process. Distillation of air is currently the most commonly
used technique for the production of pure oxygen and nitrogen on an industrial scale.
An example of an industrial process that requires pure oxygen and nitrogen is an
integrated gasification combined cycle (IGCC), where the oxygen is fed to a gasifier
and the nitrogen to a gas turbine. Our study on a cryogenic air separation unit is part
of an international collaboration project called DECARBit, which aims at developing
an IGCC with pre-combustion CO2 capture [Røkke and Langørgen, 2009].
Most efforts to increase the energy and exergy efficiencies of distillation columns
involve improved strategies for energy addition and removal. In traditional designs,
energy is only added to the bottom of a column and it is removed only at the top.
Alternative designs like diabatic distillation columns and heat-integrated distillation
columns increase the efficiencies by transferring thermal energy along the entire length
of the column. When optimising the efficiencies of such columns, it is essential to
model the thermal energy flows inside the column as accurately as possible.

7.1.1 Conventional distillation column models

Distillation columns are classically modelled using the equilibrium stage concept. The
main assumption of this concept is that the vapour and liquid streams that are leaving
a stage are at equilibrium. Or in other words, it is assumed that the mass and en-
ergy transfer processes are fast enough to reach equilibrium within the available time
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frame. Thermodynamic data are in this case sufficient to calculate the conditions
of the streams leaving a stage. The equilibrium stage assumption, in combination
with mass and energy balances over the entire column and over each stage separately,
makes it relatively straightforward to model a distillation column, see for example
Seader and Henley [1998].
When the transfer processes are too slow to reach equilibrium within the available
time frame, a different procedure can be used; the non-equilibrium approach. This
approach, also known as the rate-based approach, assumes equilibrium at the vapour–
liquid interface, but not between the streams leaving a stage [Seader and Henley, 1998].
In combination with adding mass and thermal energy transfer relations, this assump-
tion results in a much more realistic model. But it also requires more detailed input,
for example on tray or packing hydraulics and expressions for the mass-transfer and
heat-transfer coefficients. The difference between the equilibrium and non-equilibrium
approaches is especially profound in multi-component mixture models.

7.1.2 Modelling distillation using irreversible thermodynamics

The rate-based approach to model multi-component mixtures includes the interde-
pendency of all component mass transfer rates, but the mass and thermal energy
transfer rates are assumed to be independent [Taylor and Krishna, 1993]. The theory
of irreversible thermodynamics provides a rigorous method for the determination of
the mass and thermal fluxes that also takes into account the coupling between the
different types of fluxes. According to this theory, every flux is a linear combination
of all the driving forces. So the component fluxes are not only dependent on chemical
potential differences, which are their direct driving forces, but also on the temperature
difference, which is the direct driving force for the thermal flux. And in parallel, the
thermal flux depends on both the temperature difference and the chemical potential
differences [Kjelstrup and Bedeaux, 2008].
The design of a distillation column is based on a theoretical model in combination
with a set of empirical relations. Current theoretical distillation models neglect the
coupling between thermal and mass fluxes. As a result, the coupling effects are im-
plicitly included in the empirical part of the design, for example using efficiencies.
Kjelstrup and De Koeijer [2003] were the first to explicitly include coupling in the
theoretical model. They assessed the importance of the coupling contributions us-
ing an ethanol–water distillation column as case study. Based on a film model, they
derived a set of transport equations for the coupled transfer of mass and thermal en-
ergy and showed that coupling can have considerable contributions to the theoretical
transfer rates.
According to irreversible thermodynamics, the local entropy production in a system
is given by the product sum of its conjugate fluxes and driving forces. The entropy
production in a process is directly related to its Second law efficiency. This is another
reason for describing the system using irreversible thermodynamics.
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7.1.3 Aim of the work

Accurate values of the thermal energy flux are essential when evaluating the energy
and exergy efficiencies of distillation columns. The aim of the current work is to gain
more insight into the contribution of coupling to the theoretical transfer rates in an air
distillation column. Kjelstrup and De Koeijer [2003] assumed that the resistance to
mass and thermal energy transfer is constant throughout the liquid and vapour films.
To assess the validity of this assumption, a model will be presented that enables a
description of these resistances as function of position in the films.

7.2 Modelling the vapour–liquid region

We model the vapour–liquid region at one single point in a distillation column. In the
case of a packed column with negligible wall-effects, this corresponds to a single posi-
tion on the length-axis of the column. Modern air distillation columns use structured
packings as contacting equipment [Kerry, 2007]. In the case of a trayed column, this
single point corresponds to the interface of a droplet or bubble at a single position on
a tray.
Kjelstrup and De Koeijer [2003] modelled the vapour–liquid region as an interface film
with a negligible thickness in between a liquid film of thickness dl and a vapour film
of thickness dv. Each of these three films was modelled as a single control volume.
It was assumed that the resistance to mass and thermal energy transfer is located in
these films only; the bulk liquid and vapour phases next to the films have uniform
temperatures and compositions. The model was described in more detail by Bedeaux
and Kjelstrup [2004]. In the current work, we want to model the liquid and vapour
films as series of connected control volumes while keeping the possibility to calculate
the total entropy production in the system. This requires a change in the earlier
description.

7.2.1 Entropy production

The starting point for the description of our system is a general expression for the
local entropy production σ caused by heat transfer and diffusion:

σ = J ′
q

(
∂

∂x

1

T

)
+

n∑
j=1

Jj

(
− 1

T

∂μj,T

∂x

)
(7.1)

Here, J ′
q is the measurable heat flux, Jj are the molar fluxes of the n components, the

first bracketed term is the inverse temperature gradient and the last bracketed term
contains the gradients of the chemical potentials evaluated at a constant temperature.
The local entropy production of the interface σs, going from the liquid to the vapour,
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is given by

σs = J ′
q,v

(
1

Tv
− 1

Tl

)
+

n∑
j=1

Jj

(
−μj,v (Tl)− μj,l (Tl)

Tl

)

= J ′
q,v

(
Δlv

1

T

)
+

n∑
j=1

Jj

(
−Δlvμj (Tl)

Tl

)
(7.2)

The subscript v indicates the vapour phase directly next to the interface and the
subscript l indicates the liquid phase directly next to the interface. This expression
assumes that the molar fluxes are equal on both sides of the interface, i.e. a steady
state. When we write Equation (7.1) for the case of a one-dimensional difference dx
between the points a and b, we obtain a general expression similar to Equation (7.2):

dxσ = J ′
q,b

(
Δab

1

T

)
+

n∑
j=1

Jj

(
−Δabμj (Ta)

Ta

)
(7.3)

When the liquid and vapour films each consist of m equally sized control volumes,
the total local entropy production per unit of surface area is given by

σtot =
dl
m

m∑
k=1

σl
k + σs +

dv
m

m∑
k=1

σv
k (7.4)

Alternatively, the total local entropy production can be calculated from the entropy
balance using the partial molar entropies of the components Sj :

σtot =

n∑
j=1

Jj (Sj,out − Sj,in) +

(
J ′
q,out

Tout
− J ′

q,in

Tin

)
(7.5)

7.2.2 Force–flux relations

Equation (7.3) leads to the following force–flux relations for the liquid and vapour
control volumes:

Δab
1

T
= rabqqJ

′
q,b +

n∑
j=1

rabqjJj (7.6)

−Δabμi (Ta)

Ta
= rabiq J

′
q,b +

n∑
j=1

rabij Jj (7.7)

where rabmn is the resistivity of the control volume between points a and b that is
coupling driving force m with flux n, where m,n ∈ q, i, j. The resistivity matrix is
symmetric, which means that rmn = rnm. For the interface, Equation (7.2) yields the
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following force–flux relations:

Δlv
1

T
= rs,vqq J ′

q,v +

n∑
j=1

rs,vqj Jj (7.8)

−Δlvμi (Tl)

Tl
= rs,viq J ′

q,v +

n∑
j=1

rs,vij Jj (7.9)

In this formulation, the interface resistivities rs,vmn are based on properties of the vapour
phase directly next to the interface, where again m,n ∈ q, i, j.

7.2.3 Generalized force–flux relations

Both sets of force–flux relations in Section 7.2.2 describe one single control volume
only. A control volume can be the liquid or the vapour film, a part of one of these films
or the interface. Instead of modelling separate control volumes, we want to model a
series of connected control volumes. When we apply the force–flux relations to each of
the control volumes, the temperature differences can be directly combined to yield the
total temperature difference. But each set of relations uses a different measurable heat
flux and the chemical potentials are evaluated at different temperatures. It proves
to be convenient to use the same measurable heat flux in all control volumes and to
evaluate all chemical potentials at the same temperature. In order to accomplish this,
we use the energy balance at stationary state to write a given measurable heat flux
J ′
q,c in terms of another measurable heat flux:

J ′
q,0 = J ′

q,c +

n∑
j=1

Δ0cHjJj (7.10)

Here, Hj are the partial molar enthalpies of the components. The subscript 0 refers
to a certain reference point. When we assume that the partial molar enthalpies are
independent of temperature within the temperature interval that is considered, we
can write a difference in chemical potentials evaluated at a given temperature Td in
terms of a difference in chemical potentials evaluated at another temperature using:

− Δabμj (T0)

T0
= −Δabμj (Td)

Td
+ΔabHjΔ0d

1

T
(7.11)

When applying Equations (7.10) and (7.11) to the force–flux relations, we obtain the
following generalized expressions:

Δab
1

T
= rabqqJ

′
q,0 +

n∑
j=1

(
rabqj + rabqqΔ0bHj

)
Jj (7.12)

−Δabμi (T0)

T0
= rabiq J

′
q,0 +

n∑
j=1

(
rabij + rabiq Δ0bHj

)
Jj +ΔabHiΔ0a

1

T
(7.13)
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Figure 7.1: A schematic of a system containing three control volumes;
one liquid volume, the vapour–liquid interface and one vapour volume.

Contrary to the sets of force–flux relations in Section 7.2.2, the fluxes and forces of
the generalized expression are non-conjugate and the resistivity matrix is no longer
symmetric.

7.2.4 Total resistivities

The next step is to use the generalized force–flux equations for the description of
a series of connected control volumes. We will apply them to the system shown in
Figure 7.1, consisting of three control volumes. We chose the reference temperature T0

at the liquid boundary of the system, so at T1. And we chose the reference measurable
heat flux J ′

q,0 at the vapour boundary of the system, so at J ′
q,4. The generalized force–

flux equations of the three control volumes are now given by

Δ12
1

T
= rIqqJ

′
q,4 +

n∑
j=1

(
rIqj + rIqqΔ42Hj

)
Jj (7.14)

−Δ12μi (T1)

T1
= rIiqJ

′
q,4 +

n∑
j=1

(
rIij + rIiqΔ42Hj

)
Jj (7.15)

Δ23
1

T
= rIIqqJ

′
q,4 +

n∑
j=1

(
rIIqj + rIIqqΔ43Hj

)
Jj (7.16)

−Δ23μi (T1)

T1
= rIIiq J

′
q,4 +

n∑
j=1

(
rIIij + rIIiq Δ43Hj

)
Jj +Δ23HiΔ12

1

T
(7.17)

Δ34
1

T
= rIIIqq J ′

q,4 +

n∑
j=1

rIIIqj Jj (7.18)

−Δ34μi (T1)

T1
= rIIIiq J ′

q,4 +

n∑
j=1

rIIIij Jj +Δ34HiΔ13
1

T
(7.19)
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All driving forces of the control volumes can directly be added to yield the total
driving forces of the system. Because we are considering a steady state, the molar
fluxes are constant throughout the system. And since we have replaced all measurable
heat fluxes with one single measurable heat flux, all fluxes are constant in the cur-
rent description. Furthermore, it is important to note that the inverse temperature
difference on the right-hand side of Figure 7.1 is given by Figure 7.1, and that the
inverse temperature difference on the right-hand side of Figure 7.1 is given by the sum
of Figures 7.1 and 7.1. Our last step is to find an expression for the total resistivity
matrix of the system that corresponds to the fluxes and total driving forces. We can
do this by calculating the sum of each matrix element over the control volumes:

rtotqq = rIqq + rIIqq + rIIIqq =

III∑
k=I

rkqq (7.20)

rtotqj =

III∑
k=I

rkqj + rIqqΔ24Hj + rIIqqΔ34Hj (7.21)

rtotjq =

III∑
k=I

rkjq + rIqqΔ23Hj +
(
rIqq + rIIqq

)
Δ34Hj

=

III∑
k=I

rkjq + rIqqΔ24Hj + rIIqqΔ34Hj = rtotqj (7.22)

rtotij =

III∑
k=I

rkij + rIiqΔ24Hj + rIIiq Δ34Hj +
(
rIqj + rIqqΔ24Hj

)
Δ23Hi

+
(
rIqj + rIIqj + rIqqΔ24Hj + rIIqqΔ34Hj

)
Δ34Hi

=
III∑
k=I

rkij + rIiqΔ24Hj +
(
rIqj + rIqqΔ24Hj

)
Δ24Hi

+rIIiq Δ34Hj +
(
rIIqj + rIIqqΔ34Hj

)
Δ34Hi = rtotji (7.23)

These equations show that the total resistivity matrix is symmetric again. The de-
scription can be extended to any number of connected control volumes. The number
of control volumes can be increased by splitting up the liquid and vapour control
volumes, see for example Figure 7.2.

7.3 Calculating resistivities

The air that is fed to an air distillation column can in practise be considered to be a
mixture of nitrogen, oxygen and argon. Because the fraction of argon is very small,
air is often assumed to be a mixture of nitrogen and oxygen only. In this work, we
will model air as a binary mixture of nitrogen and oxygen.
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Figure 7.2: A schematic of a system containing five control volumes;
two liquid volumes, the vapour–liquid interface and two vapour volumes.

7.3.1 Liquid and vapour phase resistivities

The resistivities of both homogeneous phases can be calculated from the thermal con-
ductivity λ, the heat of transfer q∗ and the Maxwell–Stefan interdiffusion coefficient
� [Kjelstrup and Bedeaux, 2008]. The required formulae, applied to a binary mixture
of nitrogen and oxygen, are:

rqq =
1

λT 2
(7.24)

rqN2
= rN2q = −q∗N2

rqq (7.25)

rqO2 = rO2q = −xN2

xO2

rqN2 (7.26)

rN2N2
=

R

c�

xO2

xN2

+
rqN2

rN2q

rqq
(7.27)

rN2O2
= rO2N2

= −xN2

xO2

rN2N2
(7.28)

rO2O2
=

x2
N2

x2
O2

rN2N2
(7.29)

Here, xj is the mole fraction of component j, R is the universal gas constant and c
is the total molar concentration. These expressions are similar to the ones Kjelstrup
and De Koeijer [2003] used, with two exceptions. The first exception is the use of the
heat of transfer; Kjelstrup and De Koeijer used the Soret-coefficient ST multiplied
with a thermodynamic non-ideality factor instead. In a binary mixture, these two
quantities are related to each other by

q∗1 = x2STRT 2

(
1 + x1

∂ ln γ1
∂x1

)
= x1x2STT

∂μ1

∂x1
(7.30)

where γj is the activity coefficient of component j. The second exception is that we
do take into account the coupling between thermal and molar fluxes in the vapour
phase. Kjelstrup and De Koeijer neglected this coupling effect because the Soret-
coefficient is much smaller in the vapour phase than in the liquid phase. However, the
calculation of rqj also involves rqq. Because the latter is larger in the vapour phase,
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the difference in rqj is smaller than the difference in Soret-coefficients. Especially in a
vapour controlled system, where the vapour film is much thicker than the liquid film,
setting rvqj equal to zero can be a poor approximation.

Thermal conductivities

Thermal conductivities in the liquid phase can be calculated as a function of temper-
ature, density and composition using the work of Lemmon and Jacobsen [2004] and
Shan et al. [2000]. Lemmon and Jacobsen [2004] give formulae for calculating the
pure component thermal conductivities of nitrogen, oxygen and argon. Shan et al.
[2000] describe how these pure component thermal conductivities can be combined to
yield the thermal conductivity of a mixture.
The vapour phase thermal conductivities can be calculated using the kinetic theory
of gases, as described in the book by Hirschfelder et al. [1964]. Based on a 6-12
Lennard-Jones potential model, various mixture properties can be calculated as func-
tion of temperature, pressure and composition. More information on the calculation
of the required collision integrals and related quantities is presented in Section 7.A.

Heats of transfer

The heats of transfer of both the liquid and the vapour phases are calculated based
on the work of Kempers [2001]. He provides a relation for the thermal diffusion factor
αT = STT in terms of thermodynamic quantities:

αT =
V1V2

x1V1 + x2V2

H2−H0
2

V2
− H1−H0

1

V1

x1

(
∂μ1

∂x1

)
p,T

+
RTα0

T

x1

(
∂μ1

∂x1

)
p,T

(7.31)

where Vj is the partial molar volume of component j and the superscript 0 refers to
the ideal gas state. The ideal gas thermal diffusion factor can be calculated from the
thermal diffusion ratio kT = αTx1x2 using the kinetic theory of gases, see Section 7.A
for more details. When we compare Equations (7.30) and (7.31), we see that the heat
of transfer is given by

q∗1 =

⎛
⎝ V1V2

x1V1 + x2V2

H2−H0
2

V2
− H1−H0

1

V1

1
+

RTα0
T

1

⎞
⎠x2 (7.32)

Equation (7.31) requires accurate input values for the partial molar enthalpies and
volumes. These quantities have been calculated using a thermodynamic model for
mixtures of nitrogen, oxygen and argon by Lemmon et al. [2000]. This empirical
thermodynamic model describes the Helmholtz energy of any mixture of the three
components as a function of temperature and density. Combinations of derivatives of
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the Helmholtz energy with respect to the temperature and density yield other ther-
modynamic quantities of the mixture, for example the enthalpy, the Gibbs energy or
the entropy. Partial molar quantities of component j can be calculated by numerically
evaluating the derivatives of these quantities with respect to the number of moles of
component j, at constant temperature, pressure and numbers of moles of all other
components. Some typical values of the quantities involved in the calculation of heats
of transfer are given in Section 7.B.

Maxwell–Stefan diffusion coefficients

Liquid phase Maxwell–Stefan interdiffusion coefficients can be calculated following
the work of Rutten [1992]. He proposes to use a modified Stokes–Einstein equation
to calculate the diffusion coefficients at infinite dilution � i→0

ij :

�
i→0
ij =

kT

no
SEπηjRi

Rj

Ri
(7.33)

Here, k is the Boltzmann constant, no
SE is an empirically determined constant which

depends on the type of molecules involved, ηj is the viscosity of component j and
Rj is its molecular diameter. The value of no

SE for non-associating mixtures is 2.40,
based on critical molecular diameters. The viscosities of the pure components can
be calculated based on the work of Lemmon and Jacobsen [2004]. The viscosity of
a mixture can again be calculated using the mixture model of Shan et al. [2000].
Critical molecular diameters can be calculated from the critical volumes of the pure
components. The diffusion coefficients at infinite dilution can subsequently be used
to calculate the diffusion coefficient as function of the composition. Rutten [1992]
describes the following interpolation scheme:

� =
x1

(
�

2→0η1R2

)
+ x2

(
�

1→0η2R1

)
η (x1R2 + x2R1)

(7.34)

Vapour phase Maxwell–Stefan diffusion coefficients have been calculated using both
the kinetic theory of gases and the thermodynamic model by Lemmon et al. [2000].
Kinetic theory has been used to calculate the more common Fick diffusion coefficients
D. The thermodynamic model has been used to calculate the thermodynamic non-
ideality factor that is required to relate Maxwell–Stefan diffusion coefficients to Fick
diffusion coefficients:

D = �

(
1 + x1

∂ ln γ1
∂x1

)
(7.35)

7.3.2 Interface resistivities

Obtaining the resistivities of the interface needs a different approach, because proper-
ties like the thermal conductivity and Maxwell–Stefan diffusion coefficients are gener-
ally not known for interfaces. Instead, the resistivities are calculated directly using the
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kinetic theory gases. Kjelstrup and De Koeijer [2003] list the necessary equations for a
binary mixture, they are derived from the more general formula for multi-component
mixtures by Cipolla Jr. et al. [1974]. We use the relations given by Kjelstrup and De
Koeijer with one modification. The temperature at the liquid side of the interface is
used instead of the temperature at the vapour side of interface, as suggested by Kjel-
strup and Bedeaux [2008, Chapter 22]. The vapour phase thermal conductivity values
that are required in the calculations are obtained using kinetic theory, see Section 7.A
for more details.

7.4 Solving the model

Now that we know how to model the vapour–liquid region using irreversible thermo-
dynamics and how to calculate all resistivities required for a nitrogen–oxygen mixture,
the final step is to combine this knowledge in a calculation.

7.4.1 Calculating fluxes

The main aim of the calculations is to find the values of the molar fluxes and the
measurable heat flux, when the conditions at the liquid and vapour boundaries of the
system are known. In order to do so, we have developed the following calculation
routine:

1. Define the liquid and vapour boundary conditions.

2. Calculate the total driving forces ΔXtot
i from the boundary conditions.

3. Choose a vapour film thickness, the number of control volumes per film,
and an initial film thickness ratio.

4. Calculate initial guesses for the temperature profile T ,
and mole fraction profiles xj .

5. Calculate the resistivities rcvij of all control volumes
and the partial molar enthalpies Hj at all control volume boundaries,
using T , xj and the control volume thicknesses.

6. Calculate the total resistivity matrix Rtot, using rcvij and Hj .

7. Calculate the fluxes J ′
q,0, JN2

and JO2
, using ΔXtot

i and Rtot.

8. Calculate the measurable heat flux profile J ′
q, using J ′

q,0 and Hj .

9. Calculate the control volume driving forces ΔXcv
i , using rcvij , J

′
q, JN2

and JO2
.

10. Calculate a new temperature profile T , using ΔXcv
T .

11. Calculate new mole fraction profiles xj , using ΔXcv
μj

, T and Hj .
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12. Repeat steps 5 to 11 until the fluxes have converged.

13. Calculate the total entropy production, using ΔXcv
i , J ′

q, JN2
and JO2

,
and using the entropy balance.

14. Determine a new film thickness ratio that reduces the difference
between the two total entropy productions.

15. Repeat steps 5 to 14 until the two total entropy productions are equal.

16. The model is now consistent.

Linear profiles between the two system boundaries are used as initial guesses for the
temperature and mole fraction profiles. The control volume resistivities are calculated
as described in Section 7.3. The liquid and vapour phase resistivities are calculated
using the average control volume temperatures and mole fractions. They are subse-
quently multiplied with their control volume thicknesses. The interface resistivities
refer to the interface thickness already, so they do not need to be multiplied with any
thickness. Because we have assumed that the partial molar enthalpies are indepen-
dent of temperature, we must evaluate all of them at the same temperature. We have
chosen to use the average system temperature in our calculations.
The total resistivity matrix is calculated as described in Section 7.2.4. The flux vector
can then easily be calculated by multiplying the inverse total resistivity matrix with
the total driving force vector. Once the reference measurable heat flux is known,
Equation (7.10) can be used to calculate the measurable heat flux profile. In com-
bination with the molar fluxes and the control volume resistivities, the measurable
heat flux profile can subsequently be used to obtain the driving forces of all control
volumes using the equations in Section 7.2.2. A new temperature profile can then be
calculated using the thermal driving forces.
The calculation of new mole fraction profiles consists of two sub-steps. First, the
temperature at which the chemical potential differences are evaluated is changed from
the control volume boundary temperature to the system boundary temperature that
is used as reference temperature using Equation (7.11). This is the sub-step that
requires the temperature and partial molar enthalpy profiles as input. During the
second sub-step, the new composition profiles are obtained from the chemical poten-
tial differences by interpolation. We use a pre-generated table of chemical potentials
as function of mole fractions. A one-dimensional interpolation is sufficient because
there are only two components and because the temperature and pressure at which
the chemical potentials are calculated are constant.
The fluxes are considered to have converged when the maximum relative change in
the fluxes between to subsequent iterations is below a certain threshold value:

max

∣∣∣∣1− Jnew
i

Jold
i

∣∣∣∣ < 10−4 (7.36)

The entropy production of each control volume can be calculated using the final values
of the fluxes and the control volume driving forces, as given by Equation (7.3). The
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total entropy production can be calculated both using the final values of the fluxes
and the total driving forces, and by summing over the entropy production of the sep-
arate control volumes. Because the entropy production can be calculated using these
two methods, we have a way to check the consistency of the calculations.
A third way to calculate the total entropy production is by using the entropy bal-
ance, as given by Equation (7.5). In a consistent model, all calculated total entropy
productions should be equal. We are using the difference between Equations (7.4)
and (7.5) to find the film thickness ratio that results into a consistent model. The
results of these two equations are considered to be equal when:∣∣∣∣∣1− σtot

balance

σtot
force−flux

∣∣∣∣∣ < 10−4 (7.37)

7.4.2 Input data

The calculation requires the system pressure and the temperatures and compositions
at the system boundaries as input. We have obtained estimates for these values by
simulating a simple one column design for the separation of air, using a standard
equilibrium stage model. The maximum driving forces of a stage are defined by
the temperatures and compositions of the incoming liquid and vapour streams. The
minimum driving forces are related to the outgoing streams; they are zero in the case
of an equilibrium stage. For each phase, we have used the average stage temperatures
and compositions as input to our calculations. We have selected a stage around the
centre of the top part of the column, where the driving forces are relatively constant.
The vapour film thickness, the number of control volumes per film and the initial film
thickness ratio need to be set as well. Taylor and Krishna [1993] give estimates for
both film thicknesses; the vapour phase film thickness usually varies between 10−3

and 10−4 m, and the liquid film thickness between 10−4 and 10−5 m. The thickness of
the interface is several orders of magnitude smaller. Kjelstrup and De Koeijer [2003]
use a film thickness ratio of 1000 for the case of a vapour controlled system.
In this work we fix the vapour film thickness at a value of 5 · 10−4 m and use an
initial film thickness ratio of 500. The sensitivity of the final film thickness ratio to
the chosen vapour film thickness is discussed in Section 7.5.3. The number of control
volumes per film will be varied in order to investigate the effect that non-uniform film
resistivities have on the results. The input data are summarized in Table 7.1.

7.4.3 Three model modifications

We will use three modifications to the routine that is described in Section 7.4.1. In
the first modification, we set all control volume resistivities that couple a thermal
and a molar flux to zero. This does not mean that the total resistivities coupling
thermal and molar fluxes are zero, however, see Figures 7.1 and 7.1. We will use
this modification to investigate the effect of neglecting coupling between thermal and
molar fluxes. Because we want to investigate the effect it has on a given system, and
not the effect it has on the solution method, the film thickness ratio must be the same
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Table 7.1: Calculation input data

Input quantity Value
System pressure 1.40 (bar)
Liquid boundary temperature 82.05 (K)
Liquid boundary N2 mole fraction 0.759 (-)
Vapour boundary temperature 82.61 (K)
Vapour boundary N2 mole fraction 0.893 (-)
Vapour film thickness 5.00 · 10−4 (m)
Initial liquid film thickness 1.00 · 10−6 (m)

when comparing systems with and without coupling. This means that steps 14 and
15 from the routine described in Section 7.4.1 are skipped. The entropy production
calculated using Equation (7.4) and using Equation (7.5) are not equal any more as
a result.
In the second modification, we set all interface resistivities equal to zero. This will
allow us to investigate the effect of neglecting the interface resistance. The film
thickness ratio must again be the same when comparing systems with and without
interface resistivities.
In the third modification, we invert the order of the control volumes. Instead of going
from the liquid boundary to the vapour boundary, as shown in Figure 7.2, we now
go from the vapour boundary to the liquid boundary. In theory, this change should
not influence the results. So this modification offers us another way of checking
the consistency of the calculations. The third modification will always be combined
with the second modification. The reason for this is that the interface resistivities
calculated from the kinetic theory of gases are only compatible with a description
that is going from the liquid to vapour boundary, as given by Section 7.2.2. When
going from the vapour to the liquid, we cannot use the same resistivities. So in order to
make a fair comparison, we must compare descriptions that both neglect the interface
resistance.

7.5 Results

The results of the calculations are divided into three parts. The first part discusses
the characteristics of a base case system. In the second part, the base case system is
used to investigate the effects of changing the number of control volumes, neglecting
the coupling between thermal and molar fluxes and neglecting the interface resistance.
In the third part we assess the sensitivity of the results with respect to the vapour
film thickness, with respect to the transport properties that are used to calculate the
resistivities and with respect to the order of the control volumes.
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7.5.1 Base case system

The base case system is modelled as described in Section 7.4.1 and using the data
presented in Section 7.4.2. The resulting film thickness ratio is dependent on the
number of control volumes per film that is used. As will be shown in Section 7.5.2,
the value of the ratio converges to a fixed value when increasing the number of control
volumes. The base case system uses a number of 32 control volumes per film for both
the liquid and the vapour film. This number ensures that the film thickness ratio
deviates from its final value of 154.1 with less than 0.1%.

Transport properties and resistivities

Table 7.2 presents average values of the transport properties and resistivities in the
homogeneous liquid and vapour phases. In order to facilitate a comparison between
the two phases it also contains the V/L-ratios, which are the ratios between the values
that the properties have in the vapour phase and the values they have in the liquid
phase. When we compare the transport properties of the two phases, we see that they

Table 7.2: Typical values of the transport properties and resistivities in the liquid
phase and in the vapour phase. The last column gives a comparison of these

properties in the two phases, by showing the ratios between them.

Property Liquid Vapour V/L-ratio

λ
(

J
mKs

)
1.4 · 10−1 8.6 · 10−3 1/16

q∗N2

(
J

mol

) −7.4 · 102 −2.1 · 100 1/350

�

(
m2

s

)
4.3 · 10−9 1.3 · 10−6 300

rqq
(
ms
JK

)
1.0 · 10−3 1.7 · 10−2 17

rqN2

(
ms

molK

)
7.7 · 10−1 3.5 · 10−2 1/22

rqO2

(
ms

molK

) −2.4 · 10−0 −3.4 · 10−1 1/7.1

rN2N2

(
Jms

mol2K

)
2.9 · 104 3.1 · 103 1/9.4

rN2O2

(
Jms

mol2K

) −9.0 · 104 −3.0 · 104 1/3.3

rO2O2

(
Jms

mol2K

)
2.8 · 105 2.9 · 105 1.0

differ by several orders of magnitude. The ratios between the resulting resistivities
are much smaller. The V/L-ratios of the rqj are much smaller than the V/L ratio
of the heats of transfer because of the multiplication with the thermal conductivity.
The V/L-ratios of the rij are much smaller than the V/L-ratio of the Maxwell–Stefan
diffusion coefficients because the two phases have very different total molar concen-
trations. The local resistance against heat transfer is the highest in the vapour phase.
The local resistance against diffusion and the local coupling resistances are the highest
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in the liquid phase.
The second Law of thermodynamics imposes two bounds on the value of the resis-
tivities. The first bound requires that all diagonal resistivity matrix elements are
non-negative. It can easily be verified that this is indeed the case. The second bound
requires that the product of two diagonal elements is not smaller than the product of
the corresponding off-diagonal elements: riirjj ≥ rijrji. All resistivities calculated in
this work satisfy this bound as well.
Table 7.3 presents the total resistivities of the three sub-systems: the liquid film, the
interface and the vapour film. We see that all resistivities are largest in the vapour

Table 7.3: Comparison between the total resistivities
of the liquid film, the interface and the vapour film.

Property Liquid Interface Vapour

rcvqq

(
m2s
JK

)
3.4 · 10−9 1.3 · 10−8 8.5 · 10−6

rcvqN2

(
m2s
molK

)
2.5 · 10−6 3.5 · 10−6 1.8 · 10−5

rcvqO2

(
m2s
molK

)
−7.9 · 10−6 4.8 · 10−6 −1.7 · 10−4

rcvN2N2

(
Jm2s
mol2K

)
9.3 · 10−2 1.8 · 10−2 1.6 · 100

rcvN2O2

(
Jm2s
mol2K

)
−2.9 · 10−1 6.1 · 10−4 −1.5 · 101

rcvO2O2

(
Jm2s
mol2K

)
9.2 · 10−1 2.1 · 10−1 1.5 · 102

film. The fact that the rcvqj are the largest in the vapour phase shows that neglecting
them can introduce serious errors. The magnitudes of the liquid film and interface
resistivities are of the same order, with the exception of rcvN2O2

. Contrary to the liquid
and vapour film resistivities, all interface resistivities are positive.

Fluxes, forces and entropy production

For the selected input data, the fluxes amount to JN2
= 14.1 mmol/m2s, JO2

= −14.9
mmol/m2s and J ′

q,0 = −9.98 J/m2s. The reference measurable heat flux is the flux at
the vapour boundary of the system. The measurable heat flux at the liquid boundary
of the system amounts to J ′

q,l = −35.9 J/m2s. A positive sign means that a flux is
going from the liquid to the vapour phase and a negative sign indicates the opposite
direction. The total molar flux is negative, so condensation is the overall effect. At the
vapour boundary thermal energy is entering the system and at the liquid boundary
it is leaving the system. So overall, thermal energy is leaving the system. Thermal
energy is usually being released during condensation, so the thermal and molar fluxes
are in agreement with each other.
Table 7.4 presents the driving forces of the three separate sub-systems and of the total
system. This table suggests that the vapour film controls the system; the changes in
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Table 7.4: Comparison between the driving force of the liquid film,
the interface, the vapour film and the total system.

System Δ 1
T

(
1
K

) −ΔμN2

T0

(
J

molK

) −ΔμO2

T0

(
J

molK

)
Liquid film 3.13 · 10−8 5.58 · 10−3 −1.75 · 10−2

Interface −1.47 · 10−7 3.79 · 10−4 −2.91 · 10−3

Vapour film −8.25 · 10−5 2.46 · 10−1 −2.40 · 10−0

Total −8.26 · 10−5 2.52 · 10−1 −2.42 · 10−0

the temperature and chemical potentials are almost completely located in the vapour
film. The liquid film accounts for a small part of the total diffusional driving forces,
but its contribution to the thermal driving force is practically zero. For the interface
it is the other way around; its influence on the diffusional forces is negligible and it
accounts for a small part of the total thermal force.
The total entropy production in the system amounts to σtot = 4.04 · 10−2 J/sKm2.
Table 7.5 presents how it is distributed over the three sub-systems and over the
three entropy production components. When comparing the total contributions of

Table 7.5: Distributions of the total entropy production
over its three components and over the three sub-systems.

System σcv
q σcv

N2
σcv
O2

σcv
tot

Liquid film −0.00 % 0.19 % 0.65 % 0.84 %

Interface 0.00 % 0.00 % 0.12 % 0.13 %

Vapour film 2.04 % 8.58 % 88.42 % 99.04 %

Total 2.04 % 8.78 % 89.18 % 100.00 %

the three components, we see that the thermal component amounts to only 2% of
the total entropy production. The oxygen component seems to contribute the most,
but since the two molar fluxes are dependent it is probably better to consider their
contributions as one single diffusion contribution. When we look at the contributions
of the three sub-systems, we see that the interface hardly produces entropy and that
the entropy production in the liquid film is small as well. The vapour film controls
the entropy production, as expected from Tables 7.3 and 7.4. Diffusion in the vapour
film is responsible for the major part of the entropy production, it produces 97% of
the total production.

7.5.2 System modifications

The film thickness ratio was fixed at the base case value while assessing the effects of
increasing the number of control volumes and of the first two system modifications
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Figure 7.3: The measurable heat flux at the liquid boundary and the nitrogen flux
as percentage of the values they attain when increasing the number of control

volumes to a very high value. The inset shows a magnification of the region between
10 and 100 control volumes per film.

presented in Section 7.4.3.

Increasing the number of control volumes

Figure 7.3 shows how the measurable heat flux at the liquid boundary and the nitro-
gen flux change when the number of control volumes per film is increased from one
up to 1024. The values of the fluxes converge to constant values when the number
of control volumes is increased. Using only one control volume per film yields values
that are a factor two different from the converged values. So using a small number of
control volumes can cause serious errors in the results, because the dependency of the
resistivities on temperature and composition is not properly accounted for. Using 32
control volumes per film ensures that the difference between the results and the final
values is within 0.1%. This number has been used in all other calculations.
The measurable heat flux at the vapour boundary and the oxygen flux are not shown
in Figure 7.3. They show similar trends, but the magnitude of the deviation is smaller.
The values of these fluxes when using one control volume per film are 99.85% and
105.4% of the values they attain when using 1024 control volumes per film.
Figure 7.4 illustrates how increasing the number of control volumes affects the profiles
of the film resistivities, rvqq has been used as example. When only one control volume
per film is used, the resistivities have constant values throughout a film. Upon in-
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Figure 7.4: Typical resistivity profiles in systems consisting of
1, 4 or 1024 control volumes per film.

creasing the number of control volumes, the resistivity profiles adopt a stairlike shape
as is the case for a system with 4 control volumes per film. When the number of
control volumes reaches a very high value, for example 1024, the stairlike shape starts
looking like a continuous, but no longer horizontal, line.

Neglecting coupling and interface resistances

Table 7.6 presents the effects of neglecting the coupling between thermal and molar
fluxes and neglecting the interface resistance. Neglect of coupling in the films has a

Table 7.6: The molar and measurable heat fluxes for systems
with and without coupling and interface resistances.

Coupling? Y es No Y es No

Interface? Y es Y es No No

JN2

(
mmol
m2s

)
14.1 18.3 13.8 18.7

JO2

(
mmol
m2s

) −14.9 −14.4 −15.0 −14.4
J ′
q,l

(
J

m2s

) −35.9 −9.43 −38.1 −7.36
J ′
q,v

(
J

m2s

) −9.98 −9.65 −10.0 −9.67
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big effect on the calculated fluxes. The nitrogen flux becomes 30% bigger and the
measurable heat flux at the liquid boundary decreases with 75%. Both the oxygen flux
and the measurable heat flux at the vapour boundary decrease with 3%. The sign of
the total molar flux changes from negative to positive in the systems without coupling,
so the net effect is now evaporation instead of condensation. The measurable heat flux
at the vapour boundary is bigger than the measurable heat flux at the liquid boundary
in these systems. So thermal energy is added, which corresponds to evaporation.
Neglecting the interface resistances also has a considerable effect on the calculated
fluxes, but it is less profound than the effect of neglecting coupling. The nitrogen flux
decreases with 2% and the measurable heat flux at the liquid boundary increases with
6%. The oxygen flux and the measurable heat flux at the vapour boundary increase
with less than half a percent.
In both system modifications, the change in nitrogen flux has the opposite sign of the
changes in the other three fluxes.

7.5.3 Sensitivity analysis

We have investigated the dependency of the results shown in Sections 7.5.1 and 7.5.2
on the values of the transport properties, on the vapour film thickness and on the
order of the control volumes.

Transport properties

The film thickness ratio is fixed at the base case value while assessing the effects of
possible errors in the values of the transport properties of the homogeneous phases
and in the interface resistivities. Table 7.7 presents the deviations of the calculation
results with respect to the base case values when errors of +5% are introduced. The

Table 7.7: Sensitivity of the results to +5 % deviations in the transport properties.

JN2 JO2 J ′
q,l J ′

q,v σtot

λl −0.3 % 0.0 % 0.8 % 0.0 % 0.0 %

λv −0.4 % 0.0 % −0.3 % −4.8 % −0.1 %

q∗N2,l
1.7 % −0.2 % −4.1 % 0.0 % 0.0 %

q∗N2,v
−0.0 % 0.0 % −0.0 % −0.2 % −0.0 %

� l −6.8 % 0.6 % 16.2 % −0.0 % −0.0 %

�v 2.4 % −5.7 % −21.4 % −0.1 % −4.9 %

rs,vij −0.1 % 0.0 % 0.3 % 0.0 % 0.0 %

results are relatively insensitive to errors in the interface resistivities and in the vapour
phase heat of transfer. Errors in the thermal conductivities of both phases mainly
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influence their corresponding measurable heat fluxes, but they also have a small effect
on the nitrogen flux. Errors in the liquid phase heat of transfer and in both Maxwell–
Stefan diffusion coefficients have considerable effects on the molar fluxes and on the
measurable heat flux at the liquid boundary. The value of the measurable heat flux
at the vapour boundary is almost only dependent on the vapour phase thermal con-
ductivity. The total entropy production practically only depends on the vapour phase
Maxwell–Stefan diffusion coefficient.
Kempers [2001] estimates the uncertainty in the vapour phase thermal diffusion factor
around 25% and the uncertainty in the liquid phase thermal diffusion factor is even
higher. The accuracy of the calculated thermal diffusion factors is highly dependent
on the accuracy of the thermodynamic model that is used, especially in the liquid
phase. This work uses a very accurate thermodynamic model, uncertainties in the
thermodynamic properties are below 0.1% [Lemmon et al., 2000]. So it can be ex-
pected that the uncertainty in the calculated heats of transfer is lower.
The uncertainties in the interface resistivities are not important, because the results
are relatively insensitive to errors in these resistivities. The uncertainty in the liquid
phase Maxwell–Stefan diffusion coefficient is around 5%. This has a considerable ef-
fect on the accuracy of the nitrogen flux and of the liquid boundary measurable heat
flux. The uncertainties in the other transport properties are around 2%. This means
that accurate values of the vapour phase Maxwell–Stefan diffusion coefficient are still
important for the quality of the results.
Overall, it is most important to use accurate values of the liquid phase heat of transfer
and of the two Maxwell–Stefan diffusion coefficients. The liquid boundary measurable
heat flux is most sensitive to errors in the transport properties.

Vapour film thickness

Taylor and Krishna [1993] estimate the vapour film thickness to be in between 10−4

and 10−3 m. The base case system presented in Section 7.5.1 uses a value of 5 · 10−4

m, resulting in a final film thickness ratio of 154.1. Figure 7.5 shows how the film
thickness ratio changes when other vapour film thicknesses are used. Doubling the
vapour film thickness increases the film thickness ratio with 1% and halving it de-
creases the film thickness ratio with 2%. The vapour film thickness range estimated
by Taylor and Krishna [1993], which spans one order of magnitude, corresponds to
a film thickness ratio range from 145 to 155. So the film thickness ratio is relatively
insensitive to the chosen vapour film thickness.
Figure 7.6 shows how the effects of neglecting coupling and neglecting the interface
resistance depend on the vapour film thickness. Only the two fluxes that are most
sensitive to these neglects are shown. The effect of neglecting the coupling between
the thermal and molar fluxes becomes smaller as the vapour film thickness decreases,
but it is considerable in the entire range of vapour film thicknesses. Combining this
observation with the trend shown in Figure 7.5 leads to the conclusion that the cou-
pling is mainly located in the vapour film. The effect of neglecting the interface
resistance increases when the vapour film thickness becomes smaller. This is logical,
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for a system without coupling and a system without interface resistance. The fluxes
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because the contribution of the interface resistance to the total resistance increases
as the vapour phase resistivity decreases. Neglecting the interface resistivity might
be acceptable in the case of a large vapour film thickness, but the coupling between
thermal and molar fluxes should never be neglected.

Inverting the control volume order

As explained in Section 7.4.3, the order of the control volumes should not influence the
results. Table 7.8 presents a comparison between calculations using the two possible
control volumes orders. The film thickness ratio is not fixed during these calculations.
Systems with and without coupling between the thermal and molar fluxes are consid-
ered. Table 7.8 presents that changing the control volume order, so starting at the

Table 7.8: Comparison between the results of systems with a control volume order
going from the liquid boundary to the vapour boundary (L-V) and systems with a
control volume order going from the vapour boundary to the liquid boundary (V-L).

Order: L− V V − L L− V V − L

Coupling? Y es Y es No No

JN2

(
mmol
m2s

)
14.11 14.11 14.07 14.07

JO2

(
mmol
m2s

) −14.92 −14.92 −14.87 −14.87
J ′
q,l

(
J

m2s

) −35.94 −35.94 −35.52 −35.52
J ′
q,v

(
J

m2s

) −10.00 −10.00 −9.652 −9.652
dv/dl (−) 156.6 156.6 125.1 125.0

vapour boundary and going to the liquid boundary (V-L) instead of the other way
around (L-V), does indeed not influence the results. This confirms the consistency of
the calculation method. The results of the L-V systems are different from the ones
presented in Table 7.6 because the film thickness ratio is fixed to the base case value
during the calculations of the latter.

7.6 Discussion

7.6.1 Comparison with the work of Kjelstrup and de Koeijer

The current work can be seen as a continuation of the work of Kjelstrup and De
Koeijer [2003]. It is therefore useful to give a clear overview of the main similarities
and differences between the two works. This work concerns the vapour–liquid region
of a nitrogen–oxygen mixture at one single location in a distillation column. Starting
from values for the bulk-phase properties next to the vapour–liquid region, we have
been able to calculate the thermal energy and molar fluxes through the interface.



7.6 Discussion 147

Using the values of these fluxes, we have subsequently been able to calculate the local
entropy production in the system.
The calculations done by Kjelstrup and De Koeijer were based on experimental data
of an ethanol–water separation column. Starting from measured values for all compo-
sitions, the vapour and liquid rates and the temperatures in the liquid, they calculated
the resistivities and entropy productions of all trays in the column.

Calculating local fluxes instead of average tray forces

The first big difference between the two works is the size of the system that is modelled.
In the current work we consider the vapour–liquid region at one single location only,
while Kjelstrup and De Koeijer considered entire trays. The aim of their calculations
was to find average tray driving forces, starting from the total transfer rates on a
tray. We do the calculation the other way around; starting from the driving forces,
we calculate the fluxes. Both approaches require values for the resistivities as input,
and both allow the calculation of the entropy production from the fluxes and forces
in the end.

Film thickness ratio

Another important difference is the method used for calculating the film thicknesses
and the film thickness ratio. Kjelstrup and De Koeijer fixed the film thickness ratio
and used the difference between the entropy production from an entropy balance and
from the fluxes and forces to find a liquid film thickness. They used vapour-to-liquid
film thickness ratios of 1000 and 0.1, resulting in vapour film thicknesses of 2 · 10−4

and 1 · 10−3 m.
In this work, we fix the vapour film thickness and find the film thickness ratio using
the difference between the entropy production from an entropy balance and from the
fluxes and forces. We use a vapour film thickness of 5 · 10−4 m. The resulting film
thickness ratio was about 150, and a sensitivity analysis showed that it hardly changes
when varying the vapour film thickness.
The vapour film thicknesses used in both works are comparable, but the dependencies
between the film thickness ratio and the vapour film thickness are very different. This
difference is probably related to the sizes of the systems that are considered. In
this work we are considering one vapour–liquid region only. We calculate the film
thickness ratio for this specific region by requiring the entropy productions calculated
from the entropy balance and from the fluxes and forces to match exactly. Kjelstrup
and De Koeijer considered a series of trays. They calculated one liquid film thickness
for all trays by minimising the sum of the squared differences between the entropy
productions calculated from the entropy balance and from the fluxes and forces. As a
result, the entropy productions do not match exactly for any of the trays. So by using
one single liquid film thickness for all trays, they were forced to allow inconsistencies
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in the entropy productions on every tray. These inconsistencies translate into wrong
film thicknesses, which can explain the difference in dependencies between the film
thickness ratio and the vapour film thickness.

Including coupling in the vapour phase

As has already been discussed in Section 7.3.1, Kjelstrup and De Koeijer neglect
the coupling between thermal and molar fluxes in the vapour phase. In this work
we include this coupling effect as well. In Section 7.5.1 we show that the resistivity
coefficient that is coupling these two fluxes can be bigger in the vapour phase than in
the liquid phase. This supports our choice for including it in the model.

Varying film resistivities

One of the research aims of this work was to investigate the influence of modelling the
film resistivities as function of the position in the film. In Section 7.5.3 we show that
allowing varying film resistivities can make a big difference on the calculated fluxes,
compared to fixing them at constant values as was done by Kjelstrup and De Koeijer.

Common conclusions

Both works agree very well on what the main contributions to the total entropy
production in the system are. Diffusion was the most important entropy producing
process in both system, the contribution of heat was small. And in both cases, the
entropy production of the interface was very small. Another important shared conclu-
sion is that the coupling between thermal and molar fluxes should not be neglected.

7.6.2 Sensitivity of the measurable heat fluxes

The results presented in Sections 7.5.1 to 7.5.3 show that especially the measurable
heat flux at the liquid boundary is very sensitive to the correctness of the model and
the accuracy of input data. As explained in the introduction, accurate values of the
heat fluxes are important when optimising distillation columns designs. Especially in
the case of heat-integrated and diabatic columns it is essential to accurately predict the
local thermal effects. This underlines the importance of using a model that properly
captures all contributions to the heat fluxes.

7.6.3 Alternative interface resistivities

Recent work by Glavatskiy [2009] suggests that the off-diagonal interface resistivities
given by kinetic theory are underestimates. In addition, he predicts that the off-
diagonal resistivity that is coupling the two molar fluxes is negative instead of positive.
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As can be seen in Table 7.3, this corresponds well with the relative magnitudes and
the signs of these resistivities in the homogeneous phases. Table 7.9 presents the effect
of neglecting the interface resistances for the base case system and for a system in
which rs,vqN2

and rs,vqO2
are 5 times their base case values and rs,vN2O2

is -50 times its
base case value. When using the changes in off-diagonal resistivities suggested by the

Table 7.9: The molar and measurable heat fluxes of systems without interface
resistances, relative to their values in systems with interface resistances.

System JN2
JO2

J ′
q,l J ′

q,v

Base case 97.6% 100.4% 106.1% 100.2%

Adjusted rs,vnm 108.2% 99.3% 80.9% 100.3%

results of Glavatskiy, the influence of the interface resistance on the fluxes becomes a
factor two larger. The effect of neglecting the interface resistance is still smaller than
the effect of neglecting coupling, but it is now significant even in the case of a large
vapour film thickness.

7.6.4 Predictive use of the model

In this work, the presented model is used to assess the contribution of coupling. The
model uses the vapour film thickness as input. Although the vapour film thickness
has little influence on the coupling contribution, it does influence the magnitude of
the calculated fluxes. In order to use the model as a predictive tool, an empirically
determined value for the vapour film thickness is required.
Current rate-based models use empirical relations to calculate mass-transfer and heat-
transfer coefficients. When using a film model, these coefficients can be used to obtain
values for the film thicknesses. The current empirical relations can not directly be
used to calculate film thicknesses for the presented model. The existing relations must
account for the effects of coupling, but in the presented model these contributions
are brought out specifically. This means that new empirical relations for the film
thicknesses are required. Relations for only one film thickness are required, however,
because the thickness of the other film is an output of the model.

7.6.5 Applicability of the model

The model presented in this work describes one single point in a distillation column.
A logical next step is to extend the model to an entire tray or column. Such an
extension requires the interfacial area and the liquid and vapour flow rates as addi-
tional variables. The variation in these variables depends on the type of contacting
equipment that is used. When using structured packing, the variables are relatively
well-defined. In the case of trayed columns, the situation becomes more complicated.
The different flow regimes that can be observed make it much harder to accurately
predict these variables at every point on the tray.
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In this work, the presented model is used to describe transport through a vapour–
liquid interface. The model can also be used to describe transport through liquid–
liquid interfaces. So when the model is extended from a single point to an entire tray
or column, it will be possible to model a wide variety of separation columns.
Similar to other rate-based models, the current model is most useful in situations
where the transfer processes are too slow to reach equilibrium within the available
time frame. This means that it is useful for all packed columns. In the case of trayed
columns, it depends on the tray design. If the trays are designed in such a way that
the outgoing streams are practically at equilibrium, the use of a rate-based method
is not necessary.

7.7 Conclusions

A calculation method has been presented that can be used to model the coupled
transfer of mass and thermal energy in the vapour–liquid region of a binary mixture.
The entropy production calculated as the product-sum of the conjugate fluxes and
driving forces and the entropy production calculated from the entropy balance is used
to determine ratio between the vapour and liquid film thicknesses. Both the vapour
and liquid films are modelled as series of multiple connected control volumes.
The calculation method has been applied to a nitrogen–oxygen mixture, using bound-
aries conditions based on simplified air distillation data. The calculated values of the
thermal and molar fluxes are highly dependent on the coupling between the thermal
and molar fluxes. They are slightly dependent on the interface resistance. By increas-
ing the number of control volumes that is used to represent the liquid and vapour
films, it has been shown that the resistivity profiles in the films can have a large
influence on the calculated values of the fluxes.
The resistivities in the vapour film dominate the system; the vapour film resistivities
that are coupling the thermal and molar fluxes should not be neglected. Diffusion in
the vapour phase is responsible for most of the entropy production. The calculated
film thickness ratio of 154 is insensitive to changes in the vapour film thickness. The
effects of neglecting coupling and neglecting the interface resistance depend on the
vapour film thickness. The latter might be acceptable in the case of a large vapour
film thickness, but the former should never be done.
The accuracy of the calculation results is especially sensitive to uncertainties in the
Maxwell–Stefan diffusion coefficients and in the liquid phase heat of transfer. The
measurable heat flux at the liquid boundary of the system is the flux that is most
sensitive to uncertainties in the transfer properties, to the neglect of coupling and
to the neglect of the interface resistance. These results provide useful insights for
the modelling and optimisation of air distillation columns, especially in the case of
heat-integrated and diabatic designs.

Notation

c total molar concentration, mol/m3

D Fick diffusion coefficient, m2/s
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� Maxwell-Stefan diffusion coefficient, m2/s
dl liquid film thickness, m
dv vapour film thickness, m
Hj partial molar enthalpy of component j, J/mol
Jj molar flux of component j, mol/s m2

J ′
q measurable heat flux, J/s m2

k Boltzmann constant, 1.3807 · 10−23 kg m2/s2 K
kT thermal diffusion ratio, dimensionless
m number of control volumes per film, dimensionless
n number of components, dimensionless
no
SE empirical constant of 2.40, dimensionless

Sj partial molar entropy of component j, J/K mol
ST Soret coefficient, 1/K
q∗ heat of transfer, J/mol
R universal gas constant, 8.3145 J/K mol
Rj molecular diameter of component j, m
Rtot resistivity matrix of the total system
rmn local resistivity coupling driving force m with flux n, where m,n ∈ q,N2, O2

rk resistivity of control volume k
T temperature, K
Vj partial molar volume of component j, m3/mol
x spatial coordinate, m
xj mole fraction of component j, dimensionless
ΔXi driving force of type i

Greek symbols
αT thermal diffusion factor, dimensionless
γj activity coefficient of component j, dimensionless
ΔabY difference in property Y : Yb − Ya

η viscosity, kg / m s
λ thermal conductivity, J/s K m2

μj chemical potential of component j, J/mol
σ local entropy production, J/K m3 or J/K m2

Sub- and superscripts
0 reference point or ideal gas state
a, b, c, d points on the x-axis
cv control volumes
i, j component indices
k control volume index
l liquid
q thermal energy
s interface
T (constant) temperature
tot total
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7.A Polynomial fits for kinetic theory calculations

We calculate the vapour phase thermal conductivities, thermal diffusion ratios and
Fick diffusion coefficients using the kinetic theory of gases, as described in the book by
Hirschfelder et al. [1964]. A 6–12 Lennard-Jones potential model is used to calculate
these properties as function of temperature, pressure and composition. In order to
obtain values for the required collision integrals and related quantities, Hirschfelder
et al. provide tables with their values as function of the reduced temperature Tr.
The reduced temperature is given by the actual temperature divided by the force
constant of a component. To facilitate the interpolation of these data, we have fitted
polynomial functions through the data points as functions of the natural logarithm of
the reduced temperature. Use of the natural logarithm was suggested by Shan et al.
[2000] and proved to give a more accurate fit through the data points. The fitting
was done using Excel. Five polynomial term were needed to represent the values of
Hirschfelder et al. satisfactory. All of the quantities Q that were required for the
transport property calculations can be calculated using the following equation:

Q = c0 + c1 lnTr + c2 (lnTr)
2
+ c3 (lnTr)

3
+ c4 (lnTr)

4
(7.38)

The values of the coefficients ci are given in Table 7.10 along with the R2 values
provided by Excel. We only used the data points for the reduced temperature range
from 0.5 to 5.0 as a basis for the fit, which corresponds to 61 values of the reduced
temperature. All temperatures relevant for our calculations are within this range.
Figure 7.7 shows how the polynomial functions of the two fits with the lowest R2

values match the data points from Hirschfelder et al..

7.B Contributions to the heats of transfer

In Section 7.3.1 we present an equation that can be used for the calculation of heats
of transfer. Applied to a nitrogen–oxygen mixture, this equation looks as follows:

q∗N2
=

⎛
⎜⎝ VN2VO2

xN2
VN2

+ xO2
VO2

HO2
−H0

O2

VO2
− HN2

−H0
N2

VN2

1
+

RTα0
T

1

⎞
⎟⎠xO2

(7.39)

Calculating heats of transfer is not very common and in order to provide more insight
into the contributions to the heats of transfer, we have listed values of all input
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Figure 7.7: Comparison between the polynomial functions and data points
of the quantities A� and B�.

Table 7.11: Typical values of the properties that are required when calculating heats
of transfer in a nitrogen–oxygen mixture at a pressure of 1.40 bar.

Property Liquid Vapour

T (K) 8.21 · 101 8.23 · 101
xN2

(−) 7.59 · 10−1 9.06 · 10−1

xO2
(−) 2.41 · 10−1 9.37 · 10−2

VN2

(
m3

mol

)
3.56 · 10−5 4.65 · 10−3

VO2

(
m3

mol

)
2.65 · 10−5 4.59 · 10−3

HN2

(
J

mol

) −3.14 · 103 2.29 · 103
HO2

(
J

mol

) −1.33 · 104 −6.41 · 103
H0

N2

(
J

mol

)
2.38 · 103 2.39 · 103

H0
O2

(
J

mol

) −6.30 · 103 −6.29 · 103
α0
T (−) −2.05 · 10−3 −2.02 · 10−3

VN2
VO2

xN2
VN2

+xO2
VO2

(
m3

mol

)
2.82 · 10−5 4.59 · 10−3

HO2
−H0

O2

VO2
− HN2

−H0
N2

VN2

(
J
m3

) −1.09 · 108 −4.52 · 103
RTα0

T

(
J

mol

) −1.40 · 100 −1.38 · 100
q∗N2

(
J

mol

) −7.41 · 102 −2.07 · 100
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properties in Table 7.11. The thermodynamic term is the most important one in both
phases. In the vapour phase, the ideal gas term represents 6% of the total heat of
transfer. In the liquid phase, the ideal gas term is negligible; it represents only 0.05%
of the total heat of transfer.
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Abstract

A model for the transfer of mass and thermal energy in a vapour–liquid region is
used to investigate the influence of neglecting coupling on the transfer rates. As
an example, we studied a nitrogen–oxygen distillation column. Using a combination
of stage and point boundary conditions, a nitrogen transfer profile is obtained that
shows the same trend as a profile based on an equilibrium stage distillation model.
The distribution of the total transfer over the two column halves is not in agreement,
however. This disagreement can be expected to decrease when the dependency of
the vapour film thickness on the vapour flow rate and the vapour viscosity is in-
cluded in the model. The effect of neglecting coupling on the calculated transfer rates
changes along the length of the column. The total effect is considerable and should
be taken into account in models for the transfer of mass and thermal energy through
an interface.

8.1 Introduction

The energy and exergy efficiencies of conventional distillation columns can be in-
creased by distributing the thermal energy addition and removal over the entire length
of the column, instead of concentrating it at the top and the bottom [Fonyó, 1974a,b].
When optimizing the efficiencies of such columns, it is essential to model the thermal
energy flows inside the column as accurately as possible. According to the theory
of irreversible thermodynamics, a thermal flux is not only dependent on a tempera-
ture difference, but also on concentration differences. In general, each flux is a linear
combination of all driving forces. More details on the theory of irreversible thermo-
dynamics can be found, for example, in the monograph by Kjelstrup and Bedeaux
[2008].
Current non-equilibrium distillation models do not explicitly include the coupling be-
tween thermal and mass fluxes [Taylor and Krishna, 1993]. Using an ethanol–water
distillation column as case study, De Koeijer and Kjelstrup showed that coupling can
have a considerable effect [De Koeijer and Kjelstrup, 2004, Kjelstrup and De Koeijer,
2003]. This is confirmed by a recent study by Van der Ham et al. [2010] based on a
single point in a cryogenic nitrogen–oxygen column.

8.1.1 Objectives

The aim of the current work is to gain more insight into the influence of coupling
between thermal and mass fluxes on the calculated transfer rates in a nitrogen–oxygen
distillation column. We investigate how this influence changes along the length of the
column. We also provide more premises on the thermodynamic description of the
transfer of mass and thermal energy through an interface.

8.2 Model of the interface region

The model we use to characterize the coupled transfer of mass and thermal energy
in a vapour–liquid region is described by Van der Ham et al. [2010]. In this model,
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the interface region is located in between the bulk liquid and bulk vapour phases;
the conditions at its boundaries are equal to the properties of the adjacent bulk
phases. The region itself consists of an interface layer in between a liquid and a vapour
film. Both the liquid and the vapour film can be represented by multiple control
volumes, but the interface is always given by a single control volume. Figure 8.1 gives
a schematic representation of a system consisting of five control volumes.

1 3 4 6

I II III

L iqu id V apourIn te rface
IV V

2 5

I II III
Jq
J1
J2

Figure 8.1: Schematic a vapour–liquid interface region consisting of five control
volumes: two liquid volumes (I and II), the vapour–liquid interface (III) and two

vapour volumes (IV and V). Point 1 is the liquid boundary of the system and point
6 is its vapour boundary.

The model uses the interface frame of reference, which is also know as the laboratory
frame of reference. This corresponds to a system with a non-moving center-of-volume.
Using a matrix of total resistivity coefficients, the model can be used to calculate the
thermal and molar fluxes for a given set of boundary conditions, or driving forces.
This section elaborates on the model formulation that was chosen in Van der Ham
et al..

8.2.1 Choosing the set of fluxes and forces

The basis of the model is an expression for the local entropy production σ of a control
volume that is located between points a and b. According to the theory of irreversible
thermodynamics, the local entropy production is given by the product-sum of con-
jugate fluxes and driving forces. Different sets of fluxes and driving forces can be
used. Bedeaux and Kjelstrup [2004] describe two possible sets for a system with only
thermal and molar fluxes. One can choose to use the total heat flux Jq in combination
with the chemical potentials μj divided by temperature T , as shown in Equation (8.1),
or one can use the measurable heat flux J ′

q in combination with the chemical poten-
tials, evaluated at a constant temperature, divided by the temperature, as shown in
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Equations (8.2) and (8.3).

σ = Jq

(
Δab

1

T

)
+

n∑
j=1

Jj

(
−Δab

μj

T

)
(8.1)

σ = J ′
q,b

(
Δab

1

T

)
+

n∑
j=1

Jj

(
−Δabμj (Ta)

Ta

)
(8.2)

σ = J ′
q,a

(
Δab

1

T

)
+

n∑
j=1

Jj

(
−Δabμj (Tb)

Tb

)
(8.3)

From a theoretical perspective, the three sets of fluxes and forces are equivalent. But
from a practical perspective, there are some clear differences. The measurable heat
flux, also known as the sensible heat flux, is a quantity that can be measured in
practise. Experimental values for resistivities are always related to the measurable
heat flux. The measurable and total heat fluxes are can related via the partial molar
enthalpies Hj multiplied by the molar fluxes Jj :

Jq = J ′
q +

n∑
j=1

HjJj (8.4)

In practise we calculate enthalpy differences, or relative enthalpies, rather than abso-
lute enthalpies. It is therefore very hard to link the total heat flux to practical situa-
tions. Similar to the enthalpy, we also calculate chemical potential differences rather
than absolute chemical potentials. The driving forces in Equations (8.2) and (8.3)
are therefore more practical to use than the ones in Equation (8.1). These are three
reasons to favour the measurable heat flux formulation over the total heat flux for-
mulation.

The system consists of at least three control volumes: one liquid control volume, one
interface control volume and one vapour control volume. It was found by Van der
Ham et al. [2010] that more control volumes should be used to describe the liquid and
vapour films. The driving forces and fluxes in a control volume can be gathered by a
driving force vector and a flux vector. The driving force vector of each control volume
is then given by the product of a resistivity matrix and the flux vector. The sum of
the driving force vectors of all control volumes yields the total driving force vector
of the system. If the flux vector is exactly the same in all control volumes, which
means that the fluxes are constant throughout the system, it is straightforward to
calculate them once the total resistivity matrix is known. The differences in chemical
potential divided by temperature can be summed directly. But this is not possible for
the differences in chemical potential evaluated in Equations (8.2) and (8.3), because
they are all evaluated at different constant temperatures. At steady state, the total
heat flux is constant throughout the system, similar to the molar fluxes. But the
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measurable heat flux is not constant. These are two reasons to favour the total heat
flux formulation over the measurable heat flux formulation.

Instead of selecting one of these two formulations, a new formulation is introduced
that uses the measurable heat flux at a certain reference location J ′

q,0 and evaluates
all chemical potential differences at a certain reference temperature T0. The choice of
using such reference points must be compensated for in the resistivity matrix of the
control volume. Replacing the measurable heat flux at one location by the measurable
heat flux at another location can be done using the energy balance shown given by
Equation (8.4):

J ′
q,a = J ′

q,b +

n∑
j=1

ΔabHjJj (8.5)

8.2.2 Assuming constant enthalpy

Replacing a chemical potential difference at one temperature by a chemical potential
difference at another temperature requires an assumption. First, the difference in
chemical potential divided by temperature is rewritten in terms of a chemical potential
difference at a constant temperature Ta:

−Δab

(μj

T

)
=−

(
μj (Tb, xj,b)

Tb
− μj (Ta, xj,a)

Ta

)

=−
(
μj (Ta, xj,b)

Ta
− μj (Ta, xj,a)

Ta

)

+
μj (Ta, xj,b)

Ta
− μj (Tb, xj,b)

Tb

=− Δabμj,Ta

Ta
−
∫ Tb

Ta

d

dT

(μj,xj,b

T

)
dT

(8.6)

The partial derivative of the chemical potential divided by temperature with respect
to temperature is given by the Gibbs–Helmholtz equation:

∂

∂T

(μj

T

)
= −Hj

T 2
(8.7)

The partial enthalpy is a function of temperature. Including this temperature depen-
dency into the equations will eventually result into third order temperature difference
terms in the entropy production expression. The theory of irreversible thermodynam-
ics only uses terms up to the second order. So in order to avoid introducing any third
order term, we assume that the partial enthalpies are independent of temperature
within the control volume we are considering. If we introduce Equation (8.7) into
Equation (8.6) with this in mind we obtain:

−Δab

(μj

T

)
= −Δabμj,Ta

Ta
−Hj,xj,b

Δab
1

T
(8.8)
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Instead of going to an expression containing the chemical potential at constant tem-
perature Ta, we can also go to an expression at constant temperature Tb. The differ-
ence between the expressions for the two constant temperatures is the composition
at which the partial enthalpy is evaluated. Equation (8.8) will be used to obtain an
expression for going directly from one constant temperature to another:

− Δabμj,Tb

Tb
= −Δabμj,Ta

Ta
−ΔabHjΔab

1

T
(8.9)

Although the partial enthalpies are considered to be independent of temperature
within the control volume, we still need to choose at which constant temperature we
evaluate them. This temperature must be the same for all volumes.

8.2.3 Formulae for total resistivities

Based on Equation (8.3), the following force–flux relations can be written for a single
control volume:

Δab
1

T
= rabqqJ

′
q,a +

n∑
j=1

rabqj Jj (8.10)

−Δabμi (Tb)

Tb
= rabiq J

′
q,a +

n∑
j=1

rabij Jj (8.11)

Here, rabmn represents the resistivity in the control volume between points a and b that
is coupling driving force m with flux n, where m,n ∈ q, i, j. The subscript q indicates
the thermal driving force or flux, and the subscripts i and j indicate component
driving forces or fluxes. The resistivity rqq is related to the thermal conductivity, the
resistivities rij = rji, rii, and rjj are related to diffusion, and the resistivities riq = rqi
and rjq = rqj are related to the coupling between thermal and component fluxes, also
known as the Soret and Dufour effects.
Equations (8.10) and (8.11) can be rewritten using Equations (8.5) and (8.9) in order
to replace J ′

q,a with the measurable heat flux at the vapour boundary of the system
(J ′

q,v) and in order to evaluate the chemical potential differences at the temperature
of the liquid boundary of the system (Tl) instead of at Tb:

Δab
1

T
= rabqqJ

′
q,v +

n∑
j=1

(
rabqj + rabqqΔvbHj

)
Jj (8.12)

−Δabμi (Tl)

Tl
= rabiq J

′
q,v +

n∑
j=1

(
rabij + rabiq ΔvbHj

)
Jj (8.13)

+ ΔabHiΔla
1

T
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Kjelstrup and De Koeijer [2003] and Bedeaux and Kjelstrup [2004] give formulae for
the total resistivities of a system that consists of three connected control volumes. It
is shown by Van der Ham et al. [2010] how the force–flux relations given by Equa-
tions (8.12) and (8.13) can be used to derive general formulae for the total resistivities
of a system consisting of a series of m connected control volumes:

rtotqq =

m∑
k=1

rkqq (8.14)

rtotqj = rtotjq =

m∑
k=1

rkqj+ rkqqΔkvvHj (8.15)

rtotij = rtotji =

m∑
k=1

rkij + rkiqΔkvvHj + rkqjΔkvvHi (8.16)

+ rkqqΔkvvHjΔkvvHi

Where Δkvv indicates the difference between the vapour boundary of the system and
the boundary of control volume k that is closest to the system vapour boundary.

8.3 Calculations

The routine described by Van der Ham et al. [2010] allows the calculation of values for
the molar fluxes and the measurable heat flux when the conditions at the liquid and
vapour boundaries of the system are known. A thermodynamically consistent solution
is found by requiring the entropy productions calculated using both irreversible ther-
modynamics and the entropy balance to be equal. This requirement is used to find
the liquid film thickness for a fixed vapour film thickness. All calculations reported
in this work were done using this calculation routine.

It is discussed in detail by Van der Ham et al. how to calculate all relevant resistivities.
The influence of inaccuracies in their values on the calculation results was described
in a sensitivity analysis. The influence of the number of control volumes per film,
of the interface resistances, of the chosen vapour film thickness and of the order of
the control volumes was also investigated. In the current study we always: used a
minimum of 32 control volumes per film, included the interface resistances, used a
vapour film thickness of 5× 10−4 m and described the system from the liquid to the
vapour boundary.

8.3.1 Distillation column design

The work by Van der Ham et al. discussed the influence of coupling between thermal
and mass fluxes on the transfer rates in a nitrogen–oxygen mixture at one single point
in a distillation column. In this work, we investigated how this influence changes along
the length of the distillation column. In order to obtain sets of boundary conditions
that represent positions along the entire length of the column, we started by defining
a base case distillation column design.
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Column specifications

The distillation column design we used as base case is separating a binary nitrogen–
oxygen mixture with a nitrogen mole fraction of 0.80 into products with purities of
0.99. The feed and the top product are vapours at their dew points and the bottom
product is a liquid at its bubble point. It is assumed that the column operates at
a constant pressure of 1.4 bar. The total number of stages is 18, excluding reboiler
and total condenser. At stage 11, counting from top to bottom, a feed with a flow
rate of 1 mol/s enters the column. An equilibrium stage model was used to simulate
the column; it was solved using the bubble point method as described by Seader
and Henley [1998]. A high accuracy thermodynamic model was used to calculate the
required thermodynamic properties; it is described by Lemmon et al. [2000]. This
model was used for all thermodynamic calculations that were done in this work.

Column profiles

Table 8.1 gives an overview of how the characteristic column properties change within
the column. The temperature, liquid mole fraction x, vapour mole fraction y, liquid
flow rate L and vapour flow rate V are given as function of the stage number n. The
condenser and reboiler are represented by stage numbers C and R.

Stage and point boundary conditions

The point in the distillation column that was used as base case by Van der Ham et al.
was defined by calculating average temperatures and mole fractions for a certain stage.
The considered stage was located around the centre of the top part of the column,
which corresponds to a position in between stages 5 and 6 in the column that was
used in this work. The vapour and liquid boundary conditions based on stage n can
be calculated using the following formula:

Tn,s
l =

1

2

(
Tn−1 + Tn

)
(8.17)

Tn,s
v =

1

2

(
Tn + Tn+1

)
(8.18)

xn,s
N2

=
1

2

(
xn−1
N2

+ xn
N2

)
(8.19)

yn,sN2
=

1

2

(
ynN2

+ yn+1
N2

)
(8.20)

Instead of using boundary conditions based on average stage values, it is also possible
to select boundary conditions based on the point in between two stages. In a packed
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Table 8.1: Column profiles of the temperature, the nitrogen mole fractions, the
liquid flow and the vapour flow.

n T xN2
yN2

L V

(-) (K) (-) (-) (mol/s) (mol/s)

C 80.28 0.9900 − 0.639 −
1 80.45 0.9652 0.9900 0.634 1.445

2 80.72 0.9289 0.9791 0.627 1.440

3 81.09 0.8793 0.9633 0.618 1.433

4 81.57 0.8174 0.9420 0.607 1.424

5 82.13 0.7485 0.9159 0.595 1.413

6 82.72 0.6812 0.8874 0.585 1.401

7 83.25 0.6237 0.8602 0.576 1.391

8 83.68 0.5798 0.8373 0.570 1.382

9 83.99 0.5492 0.8201 0.565 1.376

10 84.20 0.5291 0.8082 0.563 1.372

11 84.34 0.5165 0.8005 0.561 1.369

12 84.62 0.4907 0.7839 0.558 0.367

13 85.23 0.4380 0.7468 0.551 0.364

14 86.39 0.3478 0.6702 0.541 0.357

15 88.17 0.2322 0.5363 0.530 0.347

16 90.15 0.1290 0.3603 0.523 0.337

17 91.71 0.0618 0.1991 0.519 0.329

18 92.64 0.0265 0.0926 0.517 0.325

R 93.11 0.0100 0.0364 0.194 0.323



166 Chapter 8. Importance of coupling in a N2–O2 distillation column

column, the liquid flowing down from a stage meets the vapour rising up from the
stage below at this point. These point boundary conditions are given by:

Tn,p
l = Tn−1 (8.21)

Tn,p
v = Tn (8.22)

xn,p
N2

= xn−1
N2

(8.23)

yn,pN2
= ynN2

(8.24)

A schematic overview of stage n is shown in Figure 8.2, including the quantities that
are required to determine the boundary conditions sets for stage n and for points n
and n+ 1.

stage n

point n+1

point n

T n-1,x n-1

T n,x n T n+1,y n+1

T n,y n

Figure 8.2: Schematic overview of stage n, depicting the quantities that are required
to calculate the boundary conditions sets for stage n and for points n and n+ 1.

Using the column design presented in this section, it is possible to calculate 18 sets of
stage boundary conditions. Because the points above stage 1 and below stage 18 can
also be used as a set of boundary conditions, there exist 19 sets of point boundary
conditions. When plotted as function of position in the column, each of the stage
boundary conditions is located in between two point boundary conditions.

8.4 Results and discussion

8.4.1 Nitrogen flux profile

Using the temperature and mole fraction data given in Table 8.1 and using Equa-
tions (8.17) to (8.20) and Equations (8.21) to (8.24), 37 sets of system boundary
conditions have been determined; 18 sets of stage boundary conditions and 19 sets
of point boundary conditions. Each of these sets has been used as input to the cal-
culation model for coupled transfer of mass and thermal energy. Figure 8.3 gives an
overview of the calculated nitrogen fluxes as function of position in the column.
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Figure 8.3: Comparison between the calculated nitrogen flux as function of the
position in the column for both point and stage boundary conditions.

Only the profile of the nitrogen flux is shown in Figure 8.3; the profiles of the other
fluxes and of the entropy production are comparable. Although we used 37 sets of
boundary conditions as input, the figure contains only 31 data points. It proved
impossible to find a liquid film thickness that yielded a thermodynamically consistent
system for the other 6 sets of boundary conditions.
There can be different reasons why it might be impossible to solve the model for
some specific cases. It might be caused by the fixed vapour film thickness we use,
or it could be related to possible inaccuracies in the calculated resistivities. It can
also be related to the fact that we are using boundary conditions originating from
an equilibrium stage model as input to our rather rate-based like model. At the
moment we do not have sufficient understanding to predict beforehand which cases
are impossible to solve.
The data points from the two different types of boundary conditions are very well in
agreement with each other. The combination of the two gives a good representation
of how the calculated nitrogen flux changes along the entire length of the column.

8.4.2 Nitrogen transfer profiles

Based on the mole fraction and flow data in Table 8.1, it is possible to calculate how
much nitrogen is transferred on each of the stages. It does not make any sense to make
a direct comparison between the amounts of transferred nitrogen and the calculated
nitrogen fluxes shown in Figure 8.3. The calculated fluxes are values at a single point
and they are given per amount of interfacial area, while the transferred amounts are
the totals of complete stages. But if we assume that the interfacial area is constant
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along the length of the column and express the fluxes and transferred amounts as
percentages of their column averages, we can still compare how the two quantities
change along the length of the column. This comparison is shown in Figure 8.4.

1 3 5 7 9 11 13 15 17 19
0

50

100

150

200

250

300

350

Position in column   /  −

N
itr

og
en

 tr
an

sf
er

  /
  %

 o
f c

ol
um

n 
av

er
ag

e Current model
Equilibrium stage model

Figure 8.4: Comparison between the nitrogen fluxes calculated with the model
presented in this work and the total amounts of transferred nitrogen calculated from

the equilibrium stage model.

The comparison between the two nitrogen transfer profiles shows that they follow the
same trend; both have a minimum around the feed stage and maxima around the
centres of the top and bottom parts. But the relative magnitudes of the two maxima
are different. The maxima are comparable in the equilibrium stage model profile. But
in the profile based on the calculations done in this work, the bottom part maximum
is almost seven times bigger than the top part maximum. A part of this difference can
be related to the constant vapour film thickness that we have used in our calculations.
An increase in the vapour film thickness would translate into an increase in the total
resistivities, which means that a fixed set of boundary conditions yields smaller fluxes.
There are two reasons why we expect the vapour film thickness to be larger in the
bottom part of the column. The first one is related to the vapour flow rates in the
column. As can be seen in Table 8.1, the vapour flow rate is about four times larger
in the top part of the column. A larger vapour flow rate corresponds to a larger
superficial vapour velocity, which means a smaller vapour film thickness. The second
reason is related to the viscosity of the vapour phase. When going from the top to
the bottom of the column, the temperature and the oxygen fraction increase. Because
oxygen has a higher viscosity than nitrogen and because the viscosity increases with an
increasing temperature, the viscosity must be higher in the bottom part of the column.
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A higher vapour viscosity corresponds to a larger vapour film thickness. How much
these two effects exactly affect the vapour film thickness should be investigated in
future studies.

8.4.3 Neglecting coupling resistances

Similar to Van der Ham et al. [2010], we have investigated the effect of neglecting
coupling between thermal and molar fluxes. This can be done by setting all control
volume resistivities that couple a thermal and a molar flux equal to zero, while fixing
the film thickness ratio at the value found for the coupled case. We have done this for
all data points shown in Figure 8.3 and calculated the relative differences between the
fluxes obtained from uncoupled systems and the fluxes obtained from coupled systems.
Table 8.2 gives the averages and standard deviations of these relative differences,
summarizing the effect of neglecting coupling for the entire column.

Table 8.2: The average and standard deviation of the influence that neglecting
coupling resistances has on the different fluxes.

JN2
JO2

J ′
q,l J ′

q,v

Average (%) 11 −4.2 −39 −3.3
Standard deviation (%) 11 5.4 29 0.2

Similar to what was found by Van der Ham et al. for a single stage, the neglect of
coupling mostly affects the nitrogen flux and the measurable heat flux at the liquid
boundary. The column average values are lower than the values found for the single
stage investigated by Van der Ham et al.. The standard deviations in the effects
on the molar fluxes and on the measurable heat flux at the liquid boundary are of
the order of their averages. There is no clear relation between these effects and the
position in the column. The deviations are mainly caused by deviations in the liquid
film thicknesses that were found. The vapour film thickness was fixed at the same
value for all systems, which partly explains the relatively constant and small effect
that neglecting coupling has on the measurable heat flux at the vapour boundary.
Figure 8.5 shows how this effect changes along the length of the column.

The effect that neglecting coupling between thermal and molar fluxes has on the
measurable heat flux at the vapour boundary is relatively constant along the length
of the column. It increases slowly in the top part of the column, but towards the
bottom of the column it starts decreasing.

The thermal and molar fluxes are central variables in the minimization of entropy
production in distillation columns. It is therefore essential to have accurate models
to calculate them.
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Figure 8.5: Effect of neglecting coupling on the measurable heat flux at the vapour
boundary, as function of the position in the column.

8.5 Conclusions

Calculating fluxes from a combination of stage and point boundary conditions yields
a consistent representation of how the fluxes vary along the length of the entire dis-
tillation column. The trend in the obtained nitrogen flux profile is similar to the one
based on an equilibrium stage model, but the distribution of the nitrogen transfer over
the two column halves does not agree. This disagreement can be partly explained by
the use of a constant vapour film thickness. Including a dependency of the vapour
film thickness on the vapour flow rate and viscosity is an important next step in the
development of the model. The effect of neglecting coupling between thermal and
mass fluxes on their calculated magnitudes is smaller when averaged for the entire
column than it is for the single stage investigated earlier, but it is still considerable
and should be considered in models used for optimization studies.

Acknowledgements

The research leading to these results has received funding from the European Commu-
nity’s 7th Framework Programme (FP7/2007-2013) under grant agreement number
211971 (The DECARBit project).

Nomenclature

Hj partial molar enthalpy of component j, J/mol



8.5 Conclusions 171

Jj molar flux of component j, mol/(s m2)
Jq total heat flux, J/(s m2)
J ′
q measurable heat flux, J/(s m2)

L liquid flow rate, mol/s
m number of control volumes, dimensionless
rmn resistivity coupling driving force m with flux n, where m,n ∈ q,N2, O2

Sj partial molar entropy of component j, J/(K mol)
T temperature, K
V vapour flow rate, mol/s
x liquid mole fraction, dimensionless
y vapour mole fraction, dimensionless
ΔabY difference in property Y : Yb − Ya

Greek symbols
μj chemical potential of component j, J/mol
σ local entropy production, J/(K m2)

Subscripts and superscripts
0 reference point
a, b location indices
i, j component indices
k control volume index
l liquid
n stage index
N2 nitrogen
O2 oxygen
p point
q thermal energy
s stage
tot total
v vapour





Chapter 9

Cryogenic total reflux experiments

in a packed concentric HIDiC

Part A: Background and design

L.V. van der Ham1 and M. Drescher2

1. Department of Chemistry
Norwegian University of Science and Technology

7491 Trondheim, Norway

2. SINTEF Energy Research
Kolbjørn Hejes vei 1D

7465 Trondheim, Norway

This chapter has been prepared for submission to
Separation and Purification Technology

Parts of this chapter have been published in
Book of abstracts of Trondheim CCS conference 2011, Trondheim, Norway

and
Proceedings of ICR 2011, Prague, Czech Republic



174 Chapter 9. HIDiC experiments: Background and design

Abstract

Intensifying the heat integration of the distillation columns in a cryogenic air separa-
tion unit can yield a considerable reduction in its inefficiencies. Accurate predictions
of the achievable reduction require more-detailed experimental input on the thermal
energy transfer and the separation efficiency of a heat-integrated distillation column
(HIDiC). The current work presents the design of an experimental concentric HIDiC
that is separating a mixture of nitrogen and oxygen. Both the cylindrical inner col-
umn, having a diameter of 14 cm, and the ring-shaped outer column, having an outer
diameter of 22 cm, are equipped with 1.6 m of structured packing, corresponding
to approximately 6 theoretical equilibrium stages. The set-up is designed for total
reflux operation at cryogenic temperatures and pressures up to 20 bar. Evaporating
nitrogen is used in the condensers and electrical heaters are used as reboilers; the
maximum total heat duty amounts to 25 kW. More details on the instrumentation
and experiments are presented in part B of the publication series that the current
work belongs to.

9.1 Introduction

The work presented in the current study is part of the European collaboration project
DECARBit. The main aim of this project is to develop an Integrated Gasification
Combined Cycle (IGCC) with pre-combustion CO2 capture [Røkke and Langørgen,
2009]. An IGCC uses both purified oxygen and nitrogen, which are usually obtained
by separating air. Within the DECARBit project, three different air separation tech-
nologies are investigated: high-temperature ceramic membranes, pressure-swing or
temperature-swing adsorption, and cryogenic distillation. The current work is part of
an effort to improve the efficiency of cryogenic air separation processes.
An essential part of the DECARBit project is the construction of several experimental
set-ups. These set-ups, also called pilots, should bridge the gap between theoretical
improvements and their commercial implementation. Within this context, a set-up
has been developed that aims to enable the realistic design and evaluation of heat-
integrated distillation columns (HIDiC) for the cryogenic separation of air. The design
of this set-up is the main subject of the current work, being the first part in a series
of publications. More details on the instrumentation and experiments are presented
in the second part of this series [Van der Ham and Drescher, 2011b].

9.1.1 Cryogenic air separation

Cryogenic distillation of air is currently the most common technology for the produc-
tion of large volumes of high purity oxygen and/or nitrogen [Smith and Klosek, 2001,
Thorogood, 1991]. A cryogenic air separation unit (ASU) consists of four main pro-
cess sections: a feed purification and pressurization section, a main heat exchanger,
a distillation section, and a product pressurization section.
In the first section, air is compressed and stripped from water, carbon dioxide and
other hydrocarbon contaminants. The cleaned air subsequently enters the main heat
exchanger, where it is cooled to cryogenic conditions. The cryogenic air is fed to the
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Figure 9.1: Schematic of heat-integrated air distillation columns.

distillation section, where it is separated into two or more product streams using a
series of distillation columns that are equipped with structured packing. The products
pass again through the main heat exchanger and are pumped or compressed to their
desired final pressures.

9.1.2 Improving the distillation section efficiency

In a previous work, we compared the performance of two ASU designs using exergy
analysis [Van der Ham and Kjelstrup, 2010]. Both designs had the same feed and
product specifications, but they used a different number of distillation columns: either
two or three. The three-column design was found to destroy 12% less exergy than
the two-column design. Within the distillation section of the two-column design,
which accounted for about one-quarter of the total exergy destruction, 75% of the
exergy destruction was located in the distillation columns. Addition of the third
column reduced this amount by 44%. The use of heat-integrated distillation columns
(HIDiC) was suggested as another promising way to reduce the exergy destruction in
the distillation section.
A recent study [Van der Ham and Kjelstrup, 2011c] showed that the exergy destruction
in the distillation section of a two-column ASU can be reduced by approximately
25% when improving the heat integration between the distillation columns. In a
conventional two-column desgin, the low-pressure column (LPC) is positioned on top
of the high-pressure column (HPC). The combination of this configuration and the
difference in operating pressures enables the use of a single heat exchanger that is
functioning as reboiler for the LPC and as condenser for the HPC, the reboiler–
condenser (RC). Improving the heat integration between the columns can be realized
by moving the LPC down along or into the HPC, as schematically shown in Figure 9.1.
A similar configuration has previously been described by Nakaiwa et al. [1996], but
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using two reboiler–condensers that are enclosing the heat-integrated column part,
instead of one reboiler–condenser at the top of the HPC. They state that the energy
requirement of the air separation unit can be reduced by 29% using this configuration.
Iwakabe et al. [2006a] report a study that predicts an energy efficiency gain of 40%
when using a plate-fin type HIDiC as part of a cryogenic air separation unit.

9.1.3 Heat-integrated distillation columns

The main characteristic of a heat-integrated distillation column (HIDiC) is that ther-
mal energy is transferred between two column parts along an extended part of the
integrated columns height. This distribution of the heat duties over a larger part of
the column height can result into more reversible operation, as explained in detail
by, for example, Nakaiwa and Ohmori [2009]. An extensive overview of numerically
predicted reductions in the net energy input of a HIDiC, compared to a conventional
distillation column, is given by Van der Ham [2011, section 3.2.1]. The possible reduc-
tions vary between 20% and 90%. So far, only two experimental investigations of a
complete HIDiC have been done, both as part of a Japanese national research project.
They showed reductions in the net energy input of 40% using a benzene–toluene mix-
ture [Naito et al., 2000], and of 60% when using a 12-component hydrocarbon mixture
[Horiuchi et al., 2008].
The thermal integration of the two column parts can in practise be realized using sev-
eral types of configurations, an overview is given by De Rijke [2007]. The two Japanese
HIDiCs are both based on concentrically-integrated columns that are equipped with
structured packing. In such a configuration, a cylindrical inner column is surrounded
by a ring-shaped outer column. The heat-transfer area is defined by the inner column
wall. In order to provide for a sufficient amount of heat-transfer area, multiple parallel
columns with a small diameter are used, instead of one column with a large diameter.
For example, the second Japanese set-up contained seven parallel columns [Horiuchi
et al., 2008].
As described in detail by Van der Ham [2011, section 3.2.4-6], there are several prop-
erties of a packed concentric HIDiC that might have a considerable effect on its per-
formance but that have not yet been investigated experimentally. They are related
to the overall heat-transfer coefficient that can be realized for varying operating con-
ditions, to the performance of an annular distillation column, and to the effect that a
radial heat flux has on the column performance. In previous numerical studies [Van
der Ham et al., 2010, Van der Ham and Kjelstrup, 2011d], it was concluded that the
interdependency of the diffusion and the heat fluxes should be explicitly included in
distillation models, especially when modelling a HIDiC.

9.1.4 Objective

The main objective of the current work is to develop a design for an experimental
set-up that can be used to investigate the following properties of an air separating
HIDiC:
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• Heat flux through the inner column wall

• Separation efficiency of the two column parts

• Radial temperature and composition gradients

• Interdependency of thermal and molar fluxes

The experimental results will provide data that is required for a detailed feasibility
evaluation of using the HIDiC principle in a cryogenic ASU. The results will also
yield insights that are valuable for the design and operation of packed HIDiCs and
separation columns in general.

9.1.5 Outline

The current work is divided in three parts. In the first part, Section 9.2, the con-
ceptual design of the set-up is defined along with a few key design variables. Next,
the performance of this design is simulated in Section 9.3, in order to estimate the
characteristics of several limiting operating cases. In the third part, the found opera-
tional characteristics are used to define the detailed dimensions and properties of the
equipment that is part of the experimental set-up. They are described in detail in
Section 9.4. More details on the instrumentation, the measurement strategy, and the
experiments are included in Part B of this series of publications [Van der Ham and
Drescher, 2011b].

9.2 Conceptual design

The main objective of the current experimental set-up is to gain more insight into
various phenomena that occur inside a packed HIDiC. The two Japanese HIDiCs
have already proven that it is possible to operate and control a complete HIDiC
configuration, including compressor and throttle valve. The current set-up will not
be used to repeat this.

9.2.1 Structural layout

In order to increase the operational freedom of the two HIDiC parts, it has been de-
cided to operate the inner and the outer columns as two separate systems. Therefore,
although they are integrated thermally, their mass streams are completely separated.
The performance of structured packing is commonly evaluated using a column oper-
ating at total reflux [Olujić, 2009]. The current set-up will be based on total reflux
operation as well. Figure 9.2 shows a schematic overview of the structural layout of
the experimental HIDiC set-up.
The main components of the experimental set-up are the high-pressure column (HPC)
and the low-pressure column (LPC). Each of them is equipped with a reboiler, a total
condenser and a reflux drum. The reboilers are electrical heaters, and the condensers
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Figure 9.2: Schematic of the experimental HIDiC set-up.
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use evaporating nitrogen as coolant. The liquid nitrogen is withdrawn from a com-
mon pressurized nitrogen storage tank. It is throttled to an ambient pressure before
it enters the condensers.

9.2.2 Control strategy

The control structure is comparable for both columns and it consists of three parts.
During normal operation, the absolute pressure is controlled using the condenser duty,
by means of the coolant flow rate. A pressure relief valve is installed on top of each
column as additional safety measure in case of a pressure build-up. The flow rates in
the columns are controlled using the reboiler duties. The temperatures are directly
related to the compositions; they will be controlled using the reflux flow rates.
The temperature control is based on the fact that each column contains a fixed amount
of mass, which is divided over the reflux drum, the sump of the column (including the
reboiler), and the column itself. The liquid in the reflux drum is enriched in nitrogen
and the liquid in the sump of the column is enriched in oxygen. By adjusting the
distribution of these amounts of liquid, it is possible to control the composition range
inside the columns, and thus the temperatures. The temperature is used instead
of the composition because temperature measurements are available continuously.
Composition measurements are done periodically using gas chromatography and are
therefore not continuously available.

9.2.3 Key design variables

This section discusses the most important design variables of the set-up: the column
diameters and the structured packing that is used.

Column diameters

The column diameters have a big influence on the flow rates in the columns, which
determine the required condenser and reboiler duties and thus the operating costs. In
order to keep the operating costs at an acceptable level, the column diameters should
not be too big. However, if they are designed too small, liquid maldistributions in the
wall zones might become a serious issue. Small diameter columns might also be more
difficult to construct accurately and equip with sufficient measurement instrumenta-
tion.
The inner column diameter determines how much heat-transfer area is available per
cross-sectional area of the inner column. A smaller diameter results into more heat-
transfer area per cross-sectional area, which is advantageous for the thermodynamic
efficiency of a HIDiC. In order to keep the thermal energy transfer effect compara-
ble for the inner and the outer columns, the ratio between their cross-sectional areas
should not be too far away from unity.
Industrial pipes and flanges are readily available in certain standard dimensions. With
the considerations above in mind, an outer column diameter of DN200 and an inner
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column diameter of DN125 have been selected from the available standard diameters.
The outer column has a wall thickness of 6.0 mm and the inner column has a wall
thickness of 4.0 mm. These numbers result in an inner cross-sectional area that is
equal to 74% of the outer cross-sectional area. The inter-wall distance between the
inner and the outer walls is 33.7 mm. The chosen diameter characteristics are sum-
marized in Table 9.1.

Table 9.1: Overview of the chosen inner-column and outer-column diameters.

Quantity Inner column Outer column

Inner wall-diameter m 0.1317 0.2071

Outer wall-diameter m 0.1397 0.2191

Cross-sectional area m2 0.0136 0.0184

Characteristics of the two previously built Japanese HIDiCs are given in Table 9.2 for
comparison. The wall thicknesses that they used are unknown and neglected in the
table.

Table 9.2: Dimensional characteristics of the two Japanese HIDiCs, given in mm.
The top ones are for the first HIDiC [Naito et al., 2000], and the bottom ones for

the second HIDiC [Horiuchi et al., 2008].

Column section Top Middle Bottom

Outer column diameter 254 254 254

Inner column diameter 140 165 190

Inter wall distance 57.0 44.5 32.0

(Inner area / Outer area) 0.44 0.73 1.27

Outer column diameter 406 406 406

Inner column diameter 165 216 267

Inter wall distance 120.5 95.0 69.5

(Inner area / Outer area) 0.20 0.39 0.76

Structured packing

The most important design decisions with respect to the structured packing are the
type of packing that is used and the total packing height. The combination of these
two determines the total number of theoretical equilibrium stages in the column and
column height.
A higher number of equilibrium stages means that higher top and bottom purities
are obtained. The concentration difference corresponding to one equilibrium stage
decreases towards the top and the bottom of a column. It is generally easier (more
accurate) to measure large concentration (and temperature) differences than small
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ones. So from this point of view is it advantageous to use a low number of equilib-
rium stages.
Using a low total packing height limits the construction costs related to the structured
packing and the column walls. But using a low packing height (per theoretical stage)
also means that there is less heat-transfer area available (per theoretical stage), which
is disadvantageous for the thermodynamic efficiency of a HIDiC.
Sulzer Mellapak 250.Y and Montz B1-250 are types of structured packing that are
commonly used for industrial air separation columns. They have about 3 theoretical
stages per meter of packing. In consultation with Montz, it has been decided to use
the B1-500 packing for the current set-up. The higher specific surface area is achieved
by closer packed sheets, which results in a higher number of sheets in between the
inner and outer walls. It also results into a lower maximum vapour flow rate. Ta-
ble 9.3 gives an overview of the characteristics of the selected structured packing and
Figure 9.3 shows a picture of the packing.

Table 9.3: Overview of the structured-packing characteristics.

Type of packing Montz B1

Specific surface area m2/m3 500

Corrugation angle degrees 45

Height per element mm 100

Wall wipers per element - 2

Approximate efficiency stages/m 4

Maximum F-factor
√
Pa 2.0

Number of elements - 16

Total packing height m 1.60

Total number of stages - 6

The performance characteristics of structured packing are often given as function of
the F-factor, which is defined by the square root of the vapour density multiplied by
the superficial gas velocity. The superficial gas velocity is given by the volumetric
vapour flow divided by column cross-sectional area. Up the maximum F-factor, the
separation efficiency is relatively constant. However, above this maximum, the effi-
ciency diminished rapidly due to loading and flooding of the packing.
The dependency of the pressure drop over the packing on the F-factor is approxi-
mately linear on a log–log plot. In addition, the pressure drop depends slightly on the
liquid load, which is given by the volumetric liquid flow rate divided by the column
cross-sectional area. For a liquid load of 20 m3/(m2h), the pressure drop is approxi-
mately 0.1 mbar/m at an F-factor of 0.3

√
Pa, and approximately 3.0 mbar/m at an

F-factor of 2.0
√
Pa.
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Figure 9.3: Picture of two packing elements: an element for the inner column
that is partly placed inside an element for the outer column.

The scale shown at the bottom is in cm.
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9.3 Simulations

In order to determine the maximum volumetric flow rates and the reboiler and con-
denser duties, several operating cases of the HIDiC set-up have been simulated. The
distillation columns are simulated in HYSYS using a basic equilibrium stage model,
which is described in more detail in Section 9.3.1. Section 9.3.2 describes how the
maximum and minimum flow rates and operating pressures are determined. In Sec-
tion 9.3.3, the combination of flow rates and pressures that minimizes the required
total cooling duty is found, yielding the base case design. Three more extreme oper-
ating cases are identified as well. Some characteristic column profiles of the base case
design are shown in Section 9.3.4. Based on the operating characteristics of all four
cases, the volumetric flow rate limits and the maximum reboiler and condenser duties
are finally determined in Section 9.3.5.

9.3.1 HYSYS model

The HIDiC set-up is simulated using a standard equilibrium stage model in HYSYS
2006. The model uses a fixed number of 6 equilibrium stages in both columns. The
heat integration of the two columns is simulated by adding or removing amounts
of thermal energy to the stages that are proportional to the difference in the stage
temperatures of the two columns. Total reflux is mimicked by specifying a feed flow
rates that is about 106 times smaller than the internal flow rates.
A constant overall heat-transfer coefficient of 500 W/(m2K) is used in the simulations.
The amount of heat-transfer area per equilibrium stage can be calculated using the
diameter of the inner column wall and the number of theoretical stages per meter of
packing. Possible vertical open spaces between packing elements are not included in
the current model, neither is the thermal energy transfer between the sumps of the
two columns. The loss of low temperature thermal energy to the surroundings is also
neglected.
The use of a binary mixture of nitrogen and oxygen is assumed. This makes it
easier to compare the experimental results with the numerical results obtained from
theoretical models. The thermodynamic properties of this nitrogen–oxygen mixture
are calculated using the Peng–Robinson equation of state modified by Stryjek and
Vera and using Lee–Kessler vapour pressures (PRSV-LK).
The compositions at the top and bottom of a column are modelled such that the
nitrogen stream at the top is as pure as the oxygen stream at the bottom. Operating
around the centre of the total concentration range is advantageous because it results in
bigger composition differences along the column height, which are easier to measure.
In practise, this situation can be approximated by enforcing a purity of 50% half-way
the column height.

9.3.2 Operating ranges

The detailed design of the experimental set-up requires estimates for the maximum
required volumetric flow rates and reboiler and condenser duties. Those quantities
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are mainly determined by four operating variables: the flow rates in the inner column,
the flow rates in the outer column, the pressure in the outer column, and the pressure
ratio. This section discusses the minimum and maximum flow rates and operating
pressures that will be used during experiments.

Flow rates

As explained in Section 9.2.3, the maximum vapour flow rate is defined by the crit-
ical F-factor, above which regular operation becomes impossible. For Montz B1-500
packing, it is around 2.0

√
Pa. The vapour flow rate is always equal to the liquid

flow rate in a column that is operating at total reflux. So the upper operating limit
of the liquid flow rate is also determined by the critical F-factor. However, the lower
operating limit is determined by the liquid phase rather than the vapour phase.
The liquid flow rate is usually given as the amount of volumetric liquid flow per col-
umn cross-sectional area per unit of time, and is referred to as the liquid load. The
use of structured packing makes is possible to operate within a very wide liquid load
range, from about 0.2 to over 200 m3/(m2h). The lower limit of the operating range
is related to dewetting of the packing. When the liquid load becomes too low, dry
spots might be formed, causing a drop in the available vapour–liquid interface area
and thus in the separation efficiency. Therefore, it is important that the liquid load
is always above the minimum limit, at every location in the column. In a HIDiC, the
liquid load varies significantly throughout the column, both in the longitudinal and
radial directions. The variations in the longitudinal direction, caused by condensation
and evaporation, can be estimated using conventional distillation column models. But
the variations in the radial direction are harder to predict accurately. It is therefore
important not to design too close to the regular minimum liquid load. The minimum
allowable liquid load has been set at 1 m3/(m2h) for the current study. A preferred
value of 5 m3/(m2h) will be used.

Pressure ratio

The pressure ratio between the two columns is responsible for the thermal energy
transfer through the inner column wall. The amount of transferred energy is propor-
tional to the temperature difference between the two columns, which has been found
to be approximately proportional to the pressure ratio.
Pressure ratios used for HIDiC designs are typically in the order of 2 to 3. At higher
ratios, the compression work that is required to create the pressure difference is be-
coming unfeasibly high. At lower ratios, the required amount of heat-transfer area is
becoming too high. The optimal pressure ratio is different for each application. In a
conventional air separation plant, the high-pressure and low-pressure columns operate
with a pressure ratio of about 4.
With the above in mind, it has been decided to vary the pressure ratio between 1 and
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4 during operation. A pressure ratio of 1 is included in order to enable comparisons
with columns that do not involve heat integration.

Absolute pressures

In industrial processes, air is entering the distillation section at a pressure of about 5
bar. This pressure is defined by the air pre-purification step upstream of the distilla-
tion section. To keep the design as close to a practical implementation as possible, it
has been decided to operate around this pressure level.
The minimum column operating pressure is related to the temperature level in the
condensers. At an atmospheric pressure, liquid nitrogen evaporates at a temperature
of about 77.3 K. In order to ensure a minimum temperature difference, we set the
minimum operating pressure at 1.5 bar. This corresponds to a minimum temperature
difference of about 4 K.
The maximum operating pressure is defined by the 5 bar pressure level and a maxi-
mum pressure ratio of 4, resulting in a maximum pressure of 20 bar.

Summarizing overview

Table 9.4 gives a summary of the conditions that define the minimum and maximum
values of the flow rates and pressures in the inner and outer columns.

Table 9.4: Overview of the operating limits of the flow rates and pressures.

Variable Minimum Maximum

Fo & Fi B = 1 m3/(m2h) F-factor = 2.0
√
Pa

PR 1.0 4.0

Po 1.5 bar 5.0 bar

Pi 3.0 bar 20.0 bar

9.3.3 Four operating cases

Because the operating costs of the set-up largely depend on the condenser duties, it
is useful to get more insight in how the total cooling duty varies as function of the
operating variables. This makes it possible to choose the combination of operating
variables that yields the lowest cooling duties. It also allows for an estimation of the
average required cooling duty.
In order to determine the optimal combination of operating variables, it needs to
be decided at what pressures the flow rates will be varied, and vice versa. In Sec-
tions 9.A.1 and 9.A.2, the variation of the total condenser duty as function of both the
inner and outer column flow rates is presented for several combinations of operating
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pressures. It shows that the condenser duty is a linear function of the flow rates. That
is why it is best to operate at low flow rates. In addition, it is best to operate at low
absolute pressures and that the pressure ratio should be low but larger than unity.
Based on these findings, four typical operating cases have been identified, which are
listed in Table 9.5.

Table 9.5: Four typical operating cases.

Case Fmin Fmax Pmin Pmax

Min. liquid load m3/(m2h) 1.0 - 5.0 5.0

Max. F-factor
√
Pa - 2.0 - -

PR - 2.0 2.0 2.0 4.0

Po bar 1.5 1.5 1.5 5.0

Pi bar 3.0 3.0 3.0 20.0

The operating ranges of the flow rates and of the pressures have one shared point:
the minimum pressure case shown in Table 9.5. This operating case will be used as
base case in the current study. The other three cases represent the most-extreme
deviations from the base case conditions.

9.3.4 Base-case column profiles

Figures 9.4 to 9.7 show some characteristic column profiles for the base-case operating
conditions. In these figures, the top of the column is given by position 1 and its bottom
by position 7. The intermediate position numbers represent the locations in between
two subsequent theoretical equilibrium stages.

Mass flow rates and compositions

Figure 9.4 shows how the mass flow rates and the nitrogen mole fractions in the inner
and outer columns change along the height of the column. The shown profiles are by
definition the same for the liquid and vapour phases, due to total reflux operation.
When considering the liquid that is flowing down from the top to the bottom of
the inner column, we see that the mass flow rate is increasing. This means that
condensation is taking place in the inner column. Similarly, it can be seen that
evaporation is taking place in the outer column. This makes sense because the inner
column is operating at a higher pressure, and therefore at a higher temperature, than
the outer column. As a result, thermal energy is transferred from the inner column to
the outer column. The removal of thermal energy from the inner column is realized by
the condensation of vapour, and the addition of thermal energy to the outer column
causes liquid to evaporate.
The difference between the nitrogen mole fraction profiles of the inner and outer
columns is caused by their different operating pressures. The shown influence of the
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Figure 9.4: Column profiles of the mass flow rates and nitrogen mole fractions
in the inner and outer columns. Position 1 represents the top of the column

and position 7 its bottom.

pressure suggests that the product purities in general decrease when the operating
pressure increases.

Liquid loads and F-factors

Figure 9.5 shows how the liquid loads and F-factors in the inner and outer columns
change along the height of the column. The F-factor profiles are relatively linear
and very similar to the mass flow rate profiles shown in Figure 9.4. The liquid load
profiles have different trends; they are caused by the temperature and composition
dependencies of the density. Using the F-factors shown in Figure 9.5 and the pressure
drop characteristics of the structured packing, the total pressure drop in the two
columns can be estimated: in the inner column it is approximately 0.25 mbar, and in
the outer column approximately 0.70 mbar.

Liquid temperatures

Figure 9.6 gives an overview of how the liquid temperatures in the inner and outer
columns change along the height of the column. The temperature difference between
the top and the bottom of a column part is approximately 12 K. The profile of the
difference between these two temperatures profiles is also shown in Figure 9.6; it
varies between 7.2 and 7.6 K for the base case. However, the total radial temperature
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Figure 9.5: Column profiles of the liquid loads and the F-factors
in the inner and outer columns. Position 1 represents the top of the column
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Figure 9.7: Column profiles of the temperature differences between the liquid and
vapour phases in the inner and outer columns. Position 1 represents the top of the

column and position 7 its bottom.

difference might be larger, because the temperature profiles represent averages of the
total liquid phases.

Interphase temperature differences

Figure 9.7 shows the differences in temperature between the liquid and vapour phases
in the two columns. It can be seen that these differences are the smallest at the top
and bottom of the columns, about 0.5 K, and that they are the largest around the
centre of the columns, about 3.5 K. The difference between the profiles of the inner
and outer columns is caused by their different operating pressures. Extrapolating the
influence of the pressure suggests that the temperature difference profile will be more
constant at higher operating pressures.

9.3.5 Operating limits

The four operating cases described in Section 9.3.3 have been simulated using the
model described in Section 9.3.1. Detailed simulation results are listen in Section 9.B.
For each of the four cases, values for the mass flow rates, the liquid loads, the F-
factors, the heat duties, the temperatures, the compositions, the vapour and liquid
densities, and the vapour and liquid viscosities are listed for the top and the bottom
of both the inner and outer columns.
Using these data, the operating limits of the volumetric vapour and liquid flow rates
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and the maximum condenser and reboiler duties can be determined. The volumetric
flow rates are arbitrative for dimensioning of piping, flow meters and control valves.
The maximum heat duties are required for the design of the nitrogen supply system,
the condensers and the reboilers. An overview of the volumetric vapour and liquid
flow rates and the heat duties at the top and bottom of both the inner and outer
column for all four operating cases is given in Table 9.6.
All volumetric liquid flow rates limits are defined by the maximum and minimum flow
cases. The minimum volumetric vapour flow rates in the inner column are defined by
the maximum pressure case. All other volumetric vapour flow rate limits are defined
by the maximum and minimum flow conditions.
Because the flows in the two columns can be controlled independently, it is possible to
combine any of the low-pressure inner column flow cases with any of the low-pressure
outer column flow cases. As a result, it can be concluded that the total heat duties will
vary between 8.5 and 25 kW when varying the inner column flow rate, and between
5.2 and 21 kW when varying the outer column flow rate. So overall, the total heat
duties vary between 5.2 and 25 kW.

9.4 Detailed design

Based on the operating limits of the volumetric flow rates and the heat duties found in
Section 9.3.5, detailed designs of all required components have been made. Their main
properties and the rational behind them are presented in this section. A schematic of
the entire set-up is shown in Figure 9.8.

9.4.1 Liquid nitrogen supply

The liquid nitrogen that is used as coolant in the condensers originates from a pres-
surized nitrogen tank. It is flowing through approximately 14 m of vacuum insulated
piping, after which it is split in two streams, throttled down in pressure using two
control valves (described in more detail in Section 9.4.8), and finally fed to the con-
densers where it is evaporated. Before being vented into the atmosphere, the two
vaporized nitrogen streams are joined again and heated in a large heat exchanger in
order to level the nitrogen temperature with the ambient temperature. The inner
diameters of the vacuum insulated pipe are 26 mm for the process line and 60 mm
for the vacuum jacket.

Storage tank

In order to determine the size of the nitrogen storage tank, the storage pressure and an
estimate for the monthly nitrogen demand are required. The tank pressure determines
what amount of liquid nitrogen is required for a given amount of cooling. A tank
pressure of approximately 5 bar is used, which corresponds to a nitrogen requirement
of 21.8 kg per kWh of cooling. A lower pressure results in a lower nitrogen demand,
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Figure 9.8: Three-dimensional schematic of the experimental set-up.
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but it also increases the loss of low temperature thermal energy to the surroundings.
Based on the cooling duties found in Section 9.A, three types of operating days can
be identified: operation at the maximum duty of 25 kW, operation at a base case
duty of 11 kW, and operation at a stand-by duty of 0.5 kW. The stand-by duty is
the estimated cooling that is required to compensate for the loss of low temperature
thermal energy to the surroundings when not operating. Assuming operating days of
8 hours, the daily cooling duty demands for the three types of days become 208, 96
and 12 kWh respectively, corresponding to daily nitrogen demands of 4.53, 2.09 and
0.26 ton.
In order to estimate the monthly nitrogen demand, one of the three operating day
types needs to be assigned to each of the 30 days. It is assumed that 8.5 days are
weekend days, which are stand-by days. For the remaining 21.5 days, it is assumed
that one-fifth is maximum operating days, that two-fifths are base case operating
days, and that the last two-fifths are stand-by days. This results in an approximate
monthly nitrogen demand of 42 ton. Based on this estimate, a nitrogen storage tank
with a volume of 11 m3 has been installed.

Volumetric nitrogen flow rates

Using a nitrogen demand of 21.8 kg per kWh of cooling and the maximum condenser
duties given in Section 9.3.5, the maximum nitrogen mass flow rate can be estimated to
be 360 kg/h for the inner column, 401 kg/h for the outer column, and 544 kg/h for the
combination of the two columns. Four different locations in the nitrogen circuit can be
distinguished: (1) between the storage tank and the two cryogenic control valves, (2)
between the control valves and the two condensers, (3) between the condensers and
the after-heater, and (4) downstream of the after-heater. Table 9.7 gives an overview
of the pressure, temperature, density, and resulting maximum volumetric flow rates
at these four locations.

Table 9.7: Maximum volumetric nitrogen flow rates
for four different locations in the nitrogen circuit.

Location 1 2 3 4

Pressure bar 5.0 1.1 1.0 1.0

Temperature K Tbub Tbub Tdew Tamb

Phase L L(+V) V V

Mass density kg/m3 723 802 4.54 1.13

Inner column flow m3/h 0.498 0.449 79.3 319

Outer column flow m3/h 0.555 0.500 88.3 355

Combined flow m3/h 0.752 0.678 120 481
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9.4.2 Condensers

The condensers are copper-brazed plate heat exchangers from GEA of the type GBS
400H with 50 plates. Liquid nitrogen enters the heat exchangers at the bottom,
evaporates, and leaves at the top outlets. The vapour streams from the columns enter
at the top of the heat exchangers, condense, and leave at the bottom outlets. From
the 49 channels, 25 are used for nitrogen flow in order to maximize the cooling duty.
The condensers are sized based on the maximum flow rate conditions. During normal
operation, most of the column side volume of the condensers is occupied by vapour.

9.4.3 Reflux drums

Kister [1990] and Seader and Henley [1998] recommend to size reflux drums based on
a 2 to 5 minutes liquid residence time. In industrial installations, the main aims of a
reflux drum are to serve as buffer for process fluctuations and to facilitate control. In
the current set-up, its main aims are to provide a buffer volume required for changing
operating conditions and to provide a pressure difference that ensures liquid flow from
the reflux drum to the column.
Based on the maximum volumetric liquid flow rates listed in Table 9.6 and a residence
time of 60 s, a first estimate for the required liquid volume has been calculated.
Doubling this volume to ensure some buffer volume, and assuming vertical cylindrical
drums with a height-to-diameter ratio of 4, approximate drum diameters of 0.16 m
are found. Based on the available tube dimensions and on the expected liquid level
changes during operation, (which are discussed in Section 9.D.4), the following reflux
drum dimensions have been selected:

Table 9.8: Reflux drum dimensions.

Column Inner Outer

Liquid volume dm3 7.0 7.1

Drum diameter m 0.155 0.137

Drum height m 0.75 0.90

Total volume dm3 14.2 13.3

9.4.4 Liquid distributors

S-type liquid distribution systems from Montz are used for both columns. The dis-
tributor of the inner column has 20 drip points; 10 are located at distance of 32 mm
from the column centre and 10 are located at a distance of 47 mm from the column
centre. The distributor of the outer column has 36 drip points that are all located at
a distance of 86 mm from the column centre. The inner column has a drip point den-
sity of almost 1500 points/m2 and a maximum liquid capacity of about 400 dm3/h.
The outer column has a drip point density of almost 2000 points/m2 and a maximum
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liquid capacity of about 450 dm3/h. Figure 9.9 shows a picture of the outer column
distributor.

9.4.5 Column

High-pressure and low-pressure sides

It has been decided to operate the inner column at the high-pressure level and the
outer column at the low-pressure level. There are several reasons why this is best
configuration. Firstly, a column operating at a higher pressure requires a thicker
column wall. When the outer column operates at the highest pressure, both walls
need to be thick enough for the maximum operating pressure. If the inner column
operates at the highest pressure, only the inner wall needs to be thick enough and the
outer column can theoretically be thinner.
Secondly, the outer column is most sensitive to liquid maldistribution effects. It
is therefore best to locate the evaporating side of the inner wall, which is the low-
pressure side, at the outside. Because of condensation at the wall in the inner column,
additional wall wipers might be desirable. The packing in the outer column has no
wall wipers at the inner column wall, only at the outer column wall.
Another argument for locating the low-pressure side in the outer column is related to
the thermal energy transfer through the outer wall. The low-pressure column is the
column that needs to be heated along its height, and the high-pressure column needs
to be cooled. Since thermal energy is entering the system through the outer wall, it
is best to have it enter the low-pressure column.

Construction material

The material that is used to construct the inner column wall is important for the
thermal resistance between the inner and outer columns. This resistance should in
practise be as low as possible, because a lower resistance means that more thermal
energy is transferred at a given temperature difference, or that a lower temperature
difference (and thus pressure ratio) is needed to transfer the same amount of thermal
energy. In an experimental situation, it is not essential to have an as low as possible
resistance. It is more important to know the resistance accurately.
Industrial air distillation columns are nowadays constructed out of stainless steel or
aluminium alloy; in the past copper has been used as well. At a temperature of 100
K, the thermal conductivity of copper, aluminium alloy and stainless steel are about
450, 200 and 10 W/(mK) respectively. Their current prices are about 6.8 $/kg of
copper, 2.0 $/kg of aluminium, and 0.5 $/kg of stainless steel. In general, stainless
steel is roughly two times stronger than the other two materials. The exact values
depend on the types of copper, aluminium and stainless steel that are considered.
From a thermal conductivity and cost point of view, it would be best to construct
the inner wall out of aluminium alloy, and the outer column wall out of stainless
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Figure 9.9: Picture of the liquid distributor of the outer column.
The scale shown at the bottom is in cm.
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Figure 9.10: Schematic of the top and bottom flange configurations.

steel. However, the use of two construction materials with different thermal expansion
coefficients can lead to unwanted complications. Therefore, it is more practical to
construct the two columns walls out of the same material. Stainless steel has been
chosen as construction material for the current columns, because stainless steel parts
are more readily available in standard sizes and they are easier to process. For a
commercial HIDiC, the use of aluminium or copper should be considered because of
their superior thermal properties.

Top and bottom arrangements

Figure 9.10 shows how the top and the bottom of the set-up are arranged and how
the column internals can be mounted.
The bottom of the inner column is welded to the column wall. The structured packing
and other column internals are mounted from the top, where a flange is used. The
top of the outer column is welded to the inner column wall. The internals and the
shell of the outer column are mounted from the bottom. The bottom of the outer
column is a flange that is attached to both the outer column wall and the bottom
of the inner column. A metal bellows is used at the bottom of the set-up to prevent
stresses in the longitudinal direction from occurring.
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Column height

The total column height is defined by the total packing height, the space in between
packing sections, the height of the liquid distribution system, and some additional
open space at the top and the bottom of the column.
The 16 packing elements that are present in the column are installed in groups of four.
In between these four packing sections, an open space of 2 cm is present to allow for
instrumentation. The open spaces at the top of the column are approximately 0.50 m
in the inner column and 0.35 m in the outer column, including the liquid distributors.
The parts of the inner column wall that are located above and below the packing are
surrounded by a polymer tube with a low thermal conductivity, in order to limit the
thermal energy transfer to the packing section only.
Some guidelines for the open spaces in the bottom of a column are given by Kister
[1990]. The vapour inlet should be positioned at least 30 cm above the maximum
liquid level in the column sump, and the entering vapour should not be directed
towards the liquid, in order to prevent liquid entrainment. The bottom packing
section should be positioned at least 30 cm above the vapour inlet, to allow for proper
vapour distribution. In order to prevent vapour entrainment into the reboiler, it
is recommended that the liquid height in the sump of the column ensures a liquid
residence time of at least one minute. In Section 9.D.4 it is shown that this results in
a maximum liquid level of about 0.74 m in the inner column.
Combining all the above numbers results in a total column height of 3.5 m.

Support frame and insulation

The column, together with all other components, is positioned within a metal support
frame that has an approximate height, width, and depth of 5, 1.5, and 2 m. All cold
components are insulated by a layer of at least 15 cm of rockwool insulation. Parts
of the open space within the support frame are also filled with rockwool insulation.

9.4.6 Reboilers

The reboilers are horizontal kettles with submerged electrical heating elements, each
having a maximum duty of 20 kW. The heating compartment of each reboiler is a tube
with an inner diameter of 0.11 m and a length of 1.10 m. It is equipped with 12 U-
shaped heating elements with a length of about 1 m and an approximate diameter of
1 cm. The horizontal position of the reboiler is chosen such that the heating elements
are always completely below the minimum liquid level in the column sumps.
The vapour flow rate at the outlets of the reboilers is measured in order to quantify
the flow rates of the liquid and vapour that are leaving and entering at the bottom of
the structured packing. Therefore, it is important that no entrainment is occurring
in the streams that are entering and leaving the reboilers. If vapour is entrained in
the liquid that is entering the reboiler, than a part of the vaporized liquid is recycled
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back to the reboiler instead of flowing up through the packing. If liquid is entrained
in the vapour that is leaving the reboiler, than a part of the flow through the reboiler
leaves as liquid, which flows immediately back into the column sump. Both cases
result in measured flow rates that are higher than the actual ones at the bottom of
the structured packing.
Vapour entrainment is minimized by allowing for sufficient liquid residence time in the
sump of the column and by sizing the liquid pipes for self-venting flow, as is discussed
in more detail in Section 9.4.7. In order to limit the amount of liquid entrainment, the
reboilers are equipped with vertical gravity separators having diameters and heights
of approximately 0.14 m and 0.45 m. The sizing of these vapour–liquid separators
is discussed in more detail in Section 9.C. Between the separators and the heating
compartments, there is a height of about 0.30 m available to accommodate liquid level
variations. This is slightly more than the expected maximum liquid level changes
calculated in Section 9.D.4.

9.4.7 Piping

The properties of the piping going in and out of the columns have been determined
based the maximum volumetric flow rates given in Section 9.3.5. Different criteria
are used for vapour flow and the liquid flow, as explained in more detail below.

Vapour flow

The maximum volumetric vapour flow rates can be used to determine the diameter of
the vapour tubes. Using a maximum allowable vapour velocity of 10 m/s [Simpson,
1968], the minimum inner diameters for the vapour tubes can be calculated. Based on
the minimum inner diameters and an estimate for the wall thickness, tube sizes can
be selected from the standard tube dimensions. For the annular outer column, two
vapour inlets are used in order to promote a good vapour distribution. The results
are shown in Table 9.9.

Table 9.9: Vapour tube characteristics, based on the maximum flow rate conditions
given in Table 9.6.

Column Location Tubes Dmin (mm) D (mm)

Inner Top 1 30.0 35 x 2.0

Inner Bottom 1 31.5 38 x 2.5

Outer Top 1 42.7 60 x 2.0

Outer Bottom 2 27.5 35 x 2.0

The vapour inlets and outlet of the outer column are positioned at the side of the
column. For the inner column, the vapour inlet enters at the bottom and the vapour
outlet leaves at the top. Because this vapour inlet tube passes through the liquid in
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the sump of the column, some of the vapour might condense on the wall of the inlet
tube. In order to prevent this from occurring, a tube with a slightly larger diameter
is positioned around the inlet tube. In this way, the inlet tube is no longer in direct
contact with the liquid. The top of the vapour inlet tube is shaped such that it directs
the vapour flow to the side, instead of directing it upwards to the packing.

Liquid flow

In order to determine the size of the liquid tubes, the concept of self-venting flow has
been used. This ensures that the bubbles that are present in a downflowing liquid are
not entrained, but they flow up automatically. The absence of vapour bubbles in the
liquid phase is important for correct flow measurements at the top and bottom of the
column. In order to ensure self-venting flow, the following criterion should be obeyed
[Simpson, 1968]:

vL√
gDi

√
ρL

ρL − ρV
< 0.31 (9.1)

Here, vL is the superficial velocity of the liquid phase, based on a completely filled tube
cross-section. The resulting minimum inner tube diameters are shown in Table 9.10,
along with the selected standard tube types.

Table 9.10: Liquid tube characteristics, based on the maximum flow rate conditions
given in Table 9.6.

Column Location Dmin (mm) D (mm)

Inner Top 29.9 35 x 2.0

Inner Bottom 26.7 35 x 2.0

Outer Top 30.0 35 x 2.0

Outer Bottom 24.0 30 x 2.0

The liquid enters both columns at the top. In the inner column, it is directly fed to
the liquid distributor. However, in the outer column the liquid first enters a horizontal
ring-shaped tube, from which it is transported into the liquid distributor using twelve
vertical tubes.

9.4.8 Valves

The experimental set-up contains several types of valves. At the top of each column, a
cryogenic ball valve is present that allows for the filling of working fluid. At both the
top and the bottom of the two columns, a combination of a cryogenic ball valve and
a needle valve is present that can be used to adjust the inventory of the columns. In
addition, the set-up is equipped with several control valves and pressure relief valves.
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Control valves

Four cryogenic control valves are used in the set-up. Two of them control the liq-
uid flow from the reflux drums to the columns, the other two control the flow and
throttling of the liquid nitrogen before it enters the condensers. The valves have been
sized based on the International Standard IEC 60534-2-1 [IEC, 1998] and in corre-
spondence with their manufacturers. The valves controlling the reflux are of the type
WEKA PM-TGQV and have flow coefficient values of Kv = 3.0 for the inner column
and Kv = 2.6 for the outer column. They have 1:20 modified equal percentage flow
characteristics. The liquid nitrogen valves are of the type Samson Micro-flow Valve
Type 3510. They have 1:50 equal percentage flow characteristics and Kv values of
0.63 for the inner column circuit and 1.6 for the outer column circuit.

Pressure relief valves

Both the inner and outer columns are equipped with pressure relief valves that de-
signed using a maximum allowable operating pressure of 26 bar. The required dis-
charge capacity of the valves is calculated based on EN 13648-3 [CEN, 2002], assuming
fire conditions. Based on the dimensions and insulation configuration described in Sec-
tion 9.4.5, minimum discharge capacities of 151 and 243 kg/h have been calculated
for the inner and the outer columns. The dimensions of the valve have been decided
on the bases of EN ISO 4126-1 [CEN, 2004]. The selected valves are all of the type
Herose Type 06002, having a maximum discharge capacity of 587 kg/h, an orifice
diameter of 6 mm, and a discharger coefficient of Kd = 0.42.

9.4.9 Mass inventory and liquid level limits

In order to determine the maximum and minimum liquid levels in the reflux drums
and in the reboilers and column sumps, first the total amount of working fluid that is
present in the system must be calculated. As part of this calculation, the total system
volume must be calculated using the dimensions of the reflux drums, the columns,
and the reboilers given in Sections 9.2.3, 9.4.3, 9.4.5 and 9.4.6. By evaluating the
mass inventory in all these volumes at different operating conditions, the minimum
amount of total mass inventory can be determined. The details of this calculation are
presented in Sections 9.D.1 to 9.D.3. A summary of the results is shown in Table 9.11.

The liquid level limits can subsequently be determined by examining which liquid level
changes are required in order to accommodate the total mass inventory at varying
operating conditions. The details of this calculation are presented in Section 9.D.4
and the results are summarized in Table 9.12.
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Table 9.11: Total system volume and mass inventory
in both the inner and outer columns.

Column Inner Outer Combined

Volume dm3 78.6 92.7 171

Nitrogen inventory kg 6.98 7.18 14.2

Oxygen inventory kg 18.6 18.5 37.1

Total inventory kg 25.6 25.7 51.3

Table 9.12: Liquid level limits in the top and bottom of the inner and outer columns.

Column Inner Outer

Maximum top level m 0.40 0.54

Minimum top level m 0.14 0.48

Maximum bottom level m 0.74 0.32

Minimum bottom level m 0.46 0.22

9.5 Conclusions

The detailed design of an experimental set-up for the performance assessment of heat-
integrated air distillation columns has been developed. First, a basic design was chosen
that consists of two concentrically-integrated distillation columns with diameters of 14
and 22 cm. The high-pressure inner column operates between 1.5 and 20 bar and the
low-pressure outer column operates between 1.5 and 5.0 bar. Both columns operate at
total reflux and contain 6 theoretical stages of structured packing. Electrical heaters
are used as reboilers and evaporating nitrogen provides cooling in copper-brazed plate
heat exchangers that function as condenser. Using HYSYS simulations of several
operating cases, the maximum volumetric flow rates have been determined at various
locations in the set-up. The maximum total heat duty has been estimated to be 25
kW. Based on these operational limits, the dimensions of all other components have
been selected. The resulting total column height is approximately 3.5 m. More details
on the instrumentation and experiments are presented in the second part of this series
of publications.

Notation

a specific surface area, m2/m3

Ac cross-sectional area, m2

ASU air separation unit
B liquid load, m3/(m2h)
CD drag coefficient, dimensionless
D diameter, m
f volume fraction, dimensionless
F flow rate, various units
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g gravitational constant, 9.81 m/s2

hp packing height, m
HIDiC heat-integrated distillation column
HPC high-pressure column
IGCC integrated gasification combined cycle
Kd relief valve discharge coefficient, dimensionless
Kv control valve flow coefficient
L liquid
LPC low-pressure column
m mass inventory, kg
P pressure, bar
RC reboiler–condenser
v velocity, m/s
V vapour

Greek symbols
β corrugation angle, degrees
δ film thickness, m
ε void fraction, dimensionless
η viscosity, kg/(s m)
ρ mass density, kg/m3

Sub- and superscripts
amb ambient conditions
bub bubble point
dew dew point
i inner
L liquid
max maximum
min minimum
o outer
R ratio
t terminal
V vapour
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Figure 9.11: The cooling duty as function of the inner column top liquid load,
using a fixed pressure ratio of 2 and for several outer column pressures.

9.A Cooling duties

9.A.1 Flow rates and outer column pressure

Figures 9.11 and 9.12 show how the cooling duty varies as function of the flow rate
and the pressure in the outer column, for a fixed pressure ratio of 2. For each of
the outer columns pressures, a black dot is used to indicate the point at which the
F-factor is 2.0

√
Pa. The figures show that the lowest condenser duty at which the

critical F-factor value is reached corresponds to the lowest outer column pressure. So
in order to minimize the condenser duty requirements during the experiments, it is
best to operate at low absolute pressures.

9.A.2 Flow rates and pressure ratio

Figures 9.13 and 9.14 show how the cooling duty varies as function of the flow rate
and the pressure ratio for an outer column pressure of 1.5 bar. The black dots
indicate again the points at which the F-factor is 2.0

√
Pa. Figure 9.13 suggests to

use a pressure ratio as low as possible, and Figure 9.14 suggests to use a pressure ratio
that is bigger than unity. From a practical point of view, it is also not desirable to
operate at pressure ratio close to unity. The amount of thermal energy transfer will
be very low in this case, making it more difficult to investigate the effects related to
the heat integration.
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Figure 9.12: The cooling duty as function of the outer column bottom liquid load,
using a fixed pressure ratio of 2 and for several outer column pressures.
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Figure 9.13: The cooling duty as function of the inner column top liquid load,
at varying pressure ratios.
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Figure 9.14: The cooling duty as function of the outer column bottom liquid load,
at varying pressure ratios.

9.A.3 Variations from base case operation

The total base case cooling duty amounts to approximately 11 kW. In this section,
it is investigated how this value changes for different operating conditions and for
different values of some selected design variables.
Figure 9.15 shows how the condenser duty changes for different combinations of op-
erating pressures. Based on all pressure combinations, the condenser duty will be
between 8.7 and 14 kW.
Figure 9.16 shows the effect of varying the product purities on the required condenser
duty. A general conclusion from this figure is that changing the composition ranges
in the columns will slightly reduce the required condenser duties. This is related to
a less constant temperature difference, and a decrease in the average temperature
difference. The decrease in condenser duty is in the order of 1 to 2 kW.
Figure 9.17 shows how the cooling duty depends on the number of theoretical equi-
librium stages, and thus on the separation efficiency of the packing. It can be seen
that the cooling duty is practically independent of the the separation efficiency of the
packing.
Figure 9.17 shows how the cooling duty depends on the overall heat-transfer coeffi-
cient of the inner wall. At very low values of the overall heat-transfer coefficient, the
cooling duty is practically constant around 10 kW. At overall heat-transfer coefficients
above 300 W/(m2K), the condenser duty start to increase linearly with the overall
heat-transfer coefficient. An increase of 100 W/(m2K) in the overall heat-transfer
coefficient corresponds to an increase of about 0.50 kW in the cooling duty.
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Figure 9.15: The cooling duty as function of the pressure ratio,
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Figure 9.16: The cooling duty as function of the product purities.
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Figure 9.17: The cooling duty as function of the number of theoretical equilibrium
stages, relative to the base case cooling duty.
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9.B Characteristics of the four operating cases

9.B.1 Flow rates and duties

This section summarizes the operating conditions of the four operating cases described
in Section 9.3.3 in more detail.
Table 9.13 gives an overview of the base case operating conditions. The base case
uses an inner column pressure of 3.0 bar, an outer column pressure of 1.5 bar, and it
is based on minimum liquid loads of 5.0 m3/(m2h) in both columns.

Table 9.13: Overview of the base case operating conditions
for the inner and outer columns.

Quantity Unit Inner part Outer part

Top flow rate kg/h 52.1 155.6

Top liquid load m3/(m2h) 5.00 10.67

Top F-factor
√
Pa 0.300 0.918

Condenser duty kW 2.68 8.45

Bottom flow rate kg/h 93.0 102.7

Bottom liquid load m3/(m2h) 6.36 5.00

Bottom F-factor
√
Pa 0.544 0.616

Reboiler duty kW 5.16 5.97

Table 9.14 shows the operating conditions of the inner and outer columns at their
maximum flow conditions. They are defined by the maximum F-factor of 2.0

√
Pa.

Table 9.14: Overview of the maximum flow operating conditions
for the inner and outer columns.

Quantity Unit Inner part Outer part

Top flow rate kg/h 320.7 338.9

Top liquid load m3/(m2h) 30.79 23.23

Top F-factor
√
Pa 1.845 2.000

Condenser duty kW 16.50 18.41

Bottom flow rate kg/h 341.8 274.1

Bottom liquid load m3/(m2h) 23.39 13.35

Bottom F-factor
√
Pa 2.000 1.640

Reboiler duty kW 18.98 15.92

Table 9.15 shows the operating conditions of the inner and outer columns at their min-
imum flow conditions. They are defined by a minimum liquid load of 1.0 m3/(m2h).
Table 9.16 gives an overview of the maximum pressure operating conditions. The
design uses an inner column pressure of 20.0 bar, an outer column pressure of 5.0 bar,
and it is based on minimum liquid loads of 5.0 m3/(m2h) in both columns.
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Table 9.15: Overview of the minimum flow operating conditions
for the inner and outer columns.

Quantity Unit Inner part Outer part

Top flow rate kg/h 10.4 67.7

Top liquid load m3/(m2h) 1.00 4.64

Top F-factor
√
Pa 0.060 0.399

Condenser duty kW 0.54 3.68

Bottom flow rate kg/h 54.4 20.5

Bottom liquid load m3/(m2h) 3.72 1.00

Bottom F-factor
√
Pa 0.318 0.123

Reboiler duty kW 3.02 1.19

Table 9.16: Overview of the maximum pressure operating conditions
for the inner and outer columns.

Quantity Unit Inner part Outer part

Top flow rate kg/h 42.2 257.5

Top liquid load m3/(m2h) 5.00 19.02

Top F-factor
√
Pa 0.092 0.862

Condenser duty kW 1.46 12.53

Bottom flow rate kg/h 223.3 94.5

Bottom liquid load m3/(m2h) 19.78 5.00

Bottom F-factor
√
Pa 0.506 0.323

Reboiler duty kW 8.98 5.01
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9.B.2 Physical properties

The physical properties of the base case, the maximum flow case, and the mini-
mum flow cases are all equal, because they all use the same inner and outer column
pressures. Table 9.17 gives an overview of the physical properties for the minimum
pressure operating cases. The maximum operating pressure case, does involve differ-
ent values for the physical properties. Table 9.18 gives an overview of the physical
properties for the maximum pressure operating case.

Table 9.17: Overview of the base case physical properties
for the inner and outer columns.

Quantity Unit Inner part Outer part

Top temperature K 88.9 81.5

Top N2 fraction mol/mol 0.965 0.980

Top L density kg/m3 765 795

Top V density kg/m3 12.6 6.58

Top L viscosity Pa·s 1.18·10−4 1.42·10−4

Top V viscosity Pa·s 6.37·10−6 5.76·10−6

Bottom temperature K 101.1 93.5

Bottom O2 fraction mol/mol 0.965 0.980

Bottom L density kg/m3 1073 1119

Bottom V density kg/m3 12.2 6.39

Bottom L viscosity Pa·s 1.46·10−4 1.76·10−4

Bottom V viscosity Pa·s 7.85·10−6 7.24·10−6

Pressure bar 3.0 1.5

9.C Sizing of the vapour–liquid separators

When designing a vapour–liquid separator, the required separator diameter can be
determined using the terminal velocity (vt) of a liquid droplet, which is given by

vt =

√
4gD

3CD

√
ρL − ρV

ρV
(9.2)

Here, CD is the drag coefficient, which can be estimated for flow around a sphere and
Reynolds numbers below 2 · 105 by:

CD =
24

Re
+

6

1 +
√
Re

+ 0.4 (9.3)

The first term of Equation (9.2) is sometimes referred to as the K-factor. In order
to provide a margin of safety, it is recommended that the K-factor is at maximum
between 0.05 and 0.1, depending on the properties of the system that is considered.
The separator diameter can be determined by first assuming a certain value for the
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Table 9.18: Overview of the maximum pressure physical properties
for the inner and outer columns.

Quantity Unit Inner part Outer part

Top temperature K 119.2 95.4

Top N2 fraction mol/mol 0.831 0.948

Top L density kg/m3 620 738

Top V density kg/m3 88.2 20.5

Top L viscosity Pa·s 5.11·10−5 9.30·10−5

Top V viscosity Pa·s 9.73·10−6 6.94·10−6

Bottom temperature K 128.9 107.5

Bottom O2 fraction mol/mol 0.831 0.948

Bottom L density kg/m3 828 1029

Bottom V density kg/m3 80.8 19.7

Bottom L viscosity Pa·s 6.89·10−5 1.24·10−4

Bottom V viscosity Pa·s 1.06·10−5 8.38·10−6

Pressure bar 20.0 5.0

diameter. Based on this assumed diameter and the maximum volumetric vapour flow
rate, the maximum superficial vapour velocity can be calculated. Next, the droplet
size for which the terminal velocity equals the maximum vapour velocity is deter-
mined . This is called the critical droplet size: all droplets that are smaller than this
critical size are entrained in the vapour, all droplets that are larger are pulled down by
gravity back into the liquid phase. The K-factor that is calculated using the critical
droplet size should be below 0.1. If it is higher, a larger separator diameter should be
selected.
Once a suitable value for the separator diameter has been chosen, the critical droplet
size can be used to calculate the maximum vertical distance that the droplet trav-
els. This height gives an indication for the minimum required separator height. The
calculation requires a value for the initial velocity of the droplet as input. A straight-
forward value would be to use the vapour velocity. In the current calculation, twice
the vapour velocity is used in order to make a safe estimate.
For an inner separator diameter of 0.135 m, the following values are calculated:
The above calculation is based on the assumption that the vapour velocity is the
same across the entire cross-section of the separator. An additional 0.30 m of height
is added to make sure that this indeed is the case, similar to the design of the vapour
inlets at the bottom of the columns. This results in a total separator height of about
0.45 m.

9.D Mass inventory and liquid level calculations

In order to calculate the required amount of working fluid in the columns and the
liquid level limits during operation, first an estimate for the total volume of the system
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Table 9.19: Vapour–liquid separator calculation characteristics.

Column Outer Outer Inner Inner

Pressure Min Max Min Max

Flow rate Max Base Max Base

Vapour velocity m/s 0.832 0.093 0.544 0.054

Droplet diameter mm 0.277 0.051 0.238 0.058

K-factor - 0.063 0.013 0.058 0.018

Maximum height mm 131.3 1.7 56.3 0.6

must be made. Using this volume, the maximum amount of required mass can be
calculated. By evaluating the distribution of this amount of mass over the different
parts of set-up for varying operating conditions, the maximum and minimum liquid
levels in the reflux drums and column sumps can be determined.

9.D.1 System volumes

Table 9.20 gives an overview of the most important volumes that are needed for calcu-
lating the total mass inventory. The liquid in the system has the largest contribution
to the total amount of mass, but large volumes of vapour should also be taken into
account, especially at elevated pressures.

Table 9.20: System volumes, given in dm3.

Column Inner Outer

Reflux drum 14.2 13.3

Column 43.3 58.4

Top 6.8 6.4

Packing 20.4 27.4

Packing to V-inlet 4.1 5.5

V-inlet to bottom 12.1 19.0

Reboiler 19.7 19.7

V/L-separator 6.4 6.4

Liquid buffer 2.9 2.9

Heating compartment 10.5 10.5

Piping 1.4 1.3

Column to reboiler 0.6 0.5

Condenser to column 0.8 0.8

Total 78.6 92.7

The reflux drum volumes are based on the dimensions described in Section 9.4.3. The
column volumes are calculated using the properties described in Section 9.2.3. The
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bottom part of the inner column contains the vapour inlet tube, which has an outer
diameter of 50 mm and reduces the cross-sectional area of the column by about 15%.
The reboiler volumes are based on the dimensions described in Section 9.4.6; the in-
ner diameter of the liquid buffer volume is equal to the inner diameter of the heating
compartment. The piping volumes are based only on the tubes containing liquid,
their diameters are given in Section 9.4.7. Tube lengths of 1 m are assumed. The
volumes of the vapour tubes and the condensers are not included. They are relatively
small and contain mostly vapour, which results into relatively small contributions to
the total mass inventory.

9.D.2 Mass inventory at maximum flow conditions

The maximum amount of working fluid is required at maximum flow conditions. This
is related to the minimum liquid residence time requirements that are used for both
the reflux drums and the column sumps. The first step of calculation the total mass
inventory is to determine how much vapour and liquid is present in each of the volumes
listed in Table 9.20. Once the volumes of vapour and liquid are know, the next step
is to multiply them by the mass densities that correspond to their location and the
operating pressure.
The top sections of the columns are assumed to contain vapour only. The packing
sections contain both vapour and liquid, in addition to the packing itself. In the
current calculations, it is assumed that the packing has a void fraction of 0.9. The
vapour volume below the packing contains vapour and liquid that is falling down.
In Section 9.D.3, it is described in detail how to calculate the amount of liquid that
is present in a packing section and the vapour volume below it. The bottoms of
the columns are occupied by liquid only. At the maximum flow conditions, half of
the reflux drums is filled with liquid, and the liquid buffer volume of the reboilers is
completely filled with vapour.
The physical properties in all volumes above the structured packing are assumed to
be equal to the top conditions, as listed in Tables 9.17 and 9.18. In all volumes below
the structured packing, they are equal to the bottom conditions. Average values are
used for the packing section.
Table 9.21 gives an overview of the mass inventory in the different parts of the system
at the maximum flow operating conditions.
The inner column contains 6.98 kg nitrogen and 18.62 kg oxygen, the outer column
contains 7.18 kg nitrogen and 18.49 kg oxygen.

9.D.3 Mass inventory of the packing

During operation, the mass inventory in the structured packing and the vapour section
below it consists of both vapour and liquid. The mass inventory of the vapour phase
can be estimated by multiplying the total volume by the (average) vapour phase mass
density and the void fraction of the structured packing (ε) minus the liquid fraction
(fL).

mV = Achp (ε− fL) ρV (9.4)
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Table 9.21: Mass inventory at maximum flow conditions, given in kg.

Column Inner Outer

Reflux drum 5.43 5.70

Vapour 0.09 0.04

Liquid 5.34 5.65

Column 7.61 7.02

Top 0.09 0.04

Packing 1.15 1.35

Packing to liquid 0.67 1.07

Liquid in sump 5.70 4.57

Reboiler 11.33 11.75

V/L-separator 0.08 0.04

Liquid buffer 0.03 0.02

Heating compartment 11.21 11.70

Piping 1.24 1.19

Column to reboiler 0.66 0.59

Condenser to column 0.58 0.60

Total 25.61 25.67

Estimating the liquid inventory is more complicated, because it depends on the oper-
ating conditions. In order to get a reasonable estimate, we assume laminar flow of the
liquid over the packing surface. At low liquid Reynolds numbers, the liquid film has
negligible rippling, which means that the liquid film thickness is practically constant.
The liquid film thickness can than be calculated using the Nusselt expression [Olujić
et al., 2006]:

δL = 3

√
3Bη

aρLg sinβ
(9.5)

Here, B is the liquid load, η is the liquid viscosity, a is the specific surface area of
the packing, ρL is the liquid density, g is the gravitational constant, and β is the
corrugation angle of the packing with respect to the horizontal plane. The volumetric
liquid fraction can subsequently be obtained by multiplying the calculated liquid film
thickness by the specific surface area of the packing. In order to obtain the liquid mass
inventory, multiplying by the total packing volume and the liquid density is required.

mL = Achp (δLa) ρL (9.6)

Because especially the liquid load is changing along the height of the column, the
average of the top and bottom values of all variables have been used.
Table 9.22 gives an overview of the amounts of mass that are present in the struc-
tured packing section for the maximum flow and maximum pressure operating cases
described in Section 9.3.3. The vapour, liquid and total amounts are shown, for both
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Table 9.22: The liquid and vapour mass inventories in the structured packing
section at the maximum flow and the maximum pressure operating conditions, for

the inner and the outer columns.

Case Fmax Pmax

Column Inner Outer Inner Outer

Liquid fraction - 0.050 0.046 0.032 0.035

Liquid mass kg 0.93 1.20 0.47 0.85

Vapour mass kg 0.21 0.15 1.49 0.48

Total mass kg 1.15 1.35 1.96 1.33

the inner and outer columns. A packing void fraction of 0.90 has been used.
The vapour mass inventory is practically independent of the flow rate. This is related
to the fact that the liquid fraction is much smaller than the void fraction of the pack-
ing. Therefore, changes in the liquid fraction hardly influence the vapour volume.
The vapour mass inventory does depend a lot on the operating pressure, because of
the effect that is has on the vapour density.

9.D.4 Liquid level limits

It is important that the combination of the reflux drum, column sump and reboiler
liquid buffer can accommodate the liquid level changes that are involved with differ-
ent operating conditions. In order to investigate the maximum and minimum liquid
levels in the system, the calculation performed in Section 9.D.2 has been repeated for
different operating conditions. During these calculations, the top and bottom liquid
levels were varied until the amounts of required nitrogen and oxygen were equal to
ones found in Section 9.D.2.
Three additional operating cases have been investigated for both columns: maximum
pressure operating conditions, stand-by operation at 5 bar, and stand-by operation
at 1.5 bar. Tables 9.23 and 9.24 give an overview of the mass distribution and the
liquid levels for these three cases. The maximum flow operating conditions are also
shown for comparison.
It can be concluded that bottom liquid level limits in the inner column are 0.46 and
0.74 m, in the outer column they are 0.22 and 0.32 m. The maximum difference in
bottom liquid level is 0.28 m. The reflux drum liquid level limits in the inner circuit
are 0.14 and 0.40 m, in the outer circuit they are 0.48 and 0.54 m.
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Table 9.23: Mass inventory and liquid levels in the inner column
at various flow conditions.

Flow - max base off off

Pressure bar 3 20 5 1.5

Reflux drum kg 5.43 2.67 5.61 6.10

Column kg 7.61 10.53 7.11 6.33

Reboiler kg 11.33 11.43 11.69 11.88

Piping kg 1.24 0.98 1.19 1.29

Top liquid level m 0.37 0.14 0.39 0.40

Bottom liquid level m 0.46 0.74 0.53 0.47

Table 9.24: Mass inventory and liquid levels in the outer column
at various flow conditions.

Flow - max base off off

Pressure bar 1.5 5 5 1.5

Reflux drum kg 5.70 5.36 5.77 6.29

Column kg 7.02 7.65 6.94 5.90

Reboiler kg 11.75 11.55 11.85 12.28

Piping kg 1.19 1.10 1.10 1.19

Top liquid level m 0.48 0.49 0.53 0.54

Bottom liquid level m 0.22 0.29 0.32 0.27
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Abstract

Intensifying the heat integration of the distillation columns in a cryogenic air separa-
tion unit can yield a considerable reduction in its inefficiencies. Accurate predictions
of the achievable reduction require more-detailed experimental input on the thermal
energy transfer and the separation efficiency of a heat-integrated distillation column
(HIDiC). Part A of the current series of publications [Van der Ham and Drescher,
2011a] presents the detailed design of a packed concentric HIDiC that has been de-
veloped for this purpose. The current work describes in detail what instrumentation
and experiments are required in order to obtain the desired experimental data on the
overall heat-transfer coefficient, the performance of a ring-shaped distillation column,
and the effects of a radial heat flux. The results of these experiments will be added
to the publication series as soon as they become available.

10.1 Introduction

The current work is the second part of a series of publications concerning an ex-
perimental set-up that is used to investigate the properties of a packed concentric
heat-integrated distillation column (HIDiC). This research is part of the DECARBit
project, which is a European collaboration project that aims to enable the use of an
Integrated Gasification Combined Cycle (IGCC) with pre-combustion CO2-capture
[Røkke and Langørgen, 2009].
One of the research topics of the DECARBit project is the application of novel dis-
tillation techniques to a cryogenic air separation unit (ASU), which is typically used
to supply the purified oxygen and nitrogen that are required in an IGCC. Within
this context, the use of heat-integrated distillation stages is being investigated. As
explained in more detail by, for example, [Nakaiwa and Ohmori, 2009], the use of a
HIDiC can improve the thermodynamic efficiency of a distillation process by allowing
more reversible operation. Detailed simulations of a two-column ASU have shown
that the irreversibilities in its distillation section can be reduced by approximately
25% due to the use of heat-integrated distillation stages [Van der Ham and Kjelstrup,
2011c].
Integration of the two distillation columns is realized by using a concentric configu-
ration, meaning that a cylindrical inner column is surrounded by a ring-shaped outer
column. A difference in operating pressure causes thermal energy to be transferred
from the high-pressure column (HPC) through the inner column wall to the low-
pressure column (LPC). This type of integration has also been used in the only two
experimental HIDiCs that have been constructed so far [Horiuchi et al., 2008, Naito
et al., 2000]. These two set-ups have proven the technical feasibility of a packed con-
centric HIDiC, but the detailed performance properties of such a configuration have
not been reported. Therefore, the detailed design of such a HIDiC is still subject to
several uncertainties in its thermal energy and mass transfer performance.
The main aim of the experimental set-up that is presented in the current series of
publications is to try and remove those uncertainties. The development and the prop-
erties of the design for the set-up are discussed in detail in the first part of the series
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[Van der Ham and Drescher, 2011a]. The current work focuses on the instrumentation
that is used and on the required experiments. The experimental results will be added
to the series of publications once they become available.

10.1.1 Uncertain design properties

The uncertainties that are currently present in the design of a packed concentric
HIDiC are discussed in more detail by Van der Ham [2011, Section 3.2]. They are
here summarized for the sake of convenience.

Overall heat-transfer coefficient

The amount of thermal energy that is transferred between the two column parts of
a HIDiC is one of the key design parameter. In order to model this thermal energy
transfer, current HIDiC models often assume a value for the overall heat-transfer co-
efficient, which is used for the entire column. At the moment, there are only three
experimental values of the overall heat-transfer coefficient that can be used as basis
for this estimation. Typically, an estimate based on the average value is used.
In reality, the value of the overall heat-transfer coefficient depends on quantities like
the liquid flow rates on both sides of the inner column wall, the pressures, the tem-
peratures, and the compositions. These quantities are different for each distillation
process and, in addition, most of them vary significantly along the height of a HIDiC.
Therefore, more experimental investigations are required on the value of the overall
heat-transfer coefficient as function of the operating variables.

Performance of a ring-shaped column

Two important properties of a distillation column that is equipped with structured
packing are the separation efficiency per amount of packing height and the maximum
allowable vapour flow rate. These quantities might be lower in a ring-shaped column
than in a conventional cylindrical column. This is related to an increase in the amount
of wall area per column volume, and to a higher sensitivity for angular maldistribu-
tions. The extent of these potential performance reductions is unknown and it should
thus be quantified.

Effects of a radial heat flux

The heat integration of the two column parts causes a heat flux in the radial direction
of the columns that is not present in a conventional column. The heat flux can affect
the performance of both column parts in two ways. Firstly, it creates radial tempera-
ture gradients in the columns, which might lead to radial composition gradients that
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can affect the separation performance of the columns. The severity of these gradients
should be assessed.
The second effect is related to the interdependency that exists between the thermal
and molar fluxes, as given by the theory of irreversible thermodynamics (see, for ex-
ample, Kjelstrup and Bedeaux [2008]). Numerical studies [Van der Ham et al., 2010,
Van der Ham and Kjelstrup, 2011d] have shown that the influence of this coupling ef-
fect is considerable. Therefore, a change in the heat flux might have a significant effect
on the diffusion fluxes. The extent of this effect must be investigated experimentally.

10.1.2 Objective

The main objective of the current work is to describe in detail what instruments and
experiments are required in order to characterize the following aspects in a packed
concentric HIDiC:

• Heat flux through the inner column wall

• Separation efficiency of the two column parts

• Radial temperature and composition gradients

• Interdependency of thermal and molar fluxes

The experimental results will provide data that is required for a detailed feasibility
evaluation of using the HIDiC principle in a cryogenic ASU. The results will also
yield insights that are valuable for the design and operation of separation columns in
general.

10.1.3 Outline

This work starts with a presentation of the theory background that is needed when
quantifying the heat flux through the inner wall, the separation efficiency, the radial
gradients, and the interdependency of thermal and molar fluxes. In order to do so,
first a simplified representation of a packed concentric HIDiC is introduced in Sec-
tion 10.2, describing three different types of sub-systems. Each of these sub-systems
is subsequently discussed in more detail. After that, they are used in Section 10.3 to
explain how to calculate the heat flux and the coupling effect based on experimental
measurements. The required experimental and theoretical inputs are identified. Sec-
tion 10.4 discusses in more detail what kind of experimental instrumentation is used.
The required experiments are finally explained and listed in Section 10.5.

10.2 Simplified HIDiC model

Figure 10.1 shows a very simplistic representation of a HIDiC. In this representation,
the HIDiC consists of an inner wall, two liquid phases that are flowing down along the
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Figure 10.1: Schematic of the different types of sub-systems within HIDiC.

inner wall, and two vapour phases that are rising up next to the liquids. The side at
the left of the wall represents the outer column, and the side at the right represents
the inner column. For the vapour and liquid properties, values are used that are
averages over the entire cross-sections of the columns. This means that in the current
representation, the vapour and liquid properties only change along the height of the
columns.
The system shown in Figure 10.1 consists of four sections, which are separated by
horizontal dotted lines. Experimental measurements are typically performed in be-
tween these sections, and at the top and bottom of the columns. The use of four
sections results in a total of five measurement heights. Three types of sub-systems
are indicated in the schematic: an inner-wall region W©, a vapour–liquid section S©,
and a vapour–liquid interface region I©.

10.2.1 Inner-wall region

The inner-wall region has a width equal to the wall thickness, and a height equal to
a differential element of the height of the column. Figure 10.2 shows a more detailed
overview of the inner-wall region.
The inner-wall region is characterized by four quantities: the wall temperatures at
the sides of the outer (TW,o) and the inner (TW,i) columns, the wall thickness (dW ),
and the local thermal flux through the wall (Jq,W ).

10.2.2 Vapour–liquid section

A vapour–liquid section has a height that is equal to the vertical distance between two
measurement locations; its width is representing the entire cross-section of a column.
Figure 10.3 shows a more detailed overview of a vapour–liquid section.
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Figure 10.2: Schematic of an inner-wall region.
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Figure 10.3: Schematic of a vapour–liquid section.

In case of a binary mixture, a vapour–liquid section is characterized by seventeen
quantities. The first six are related to the vapour phase: the vapour flow rates in and
out of the section (V i and V o), their temperatures (T i

V and T o
V ), and their compo-

sitions (yij and yoj ). The second six are related to the liquid phase: the liquid flow

rates in and out of the section (Li and Lo), their temperatures (T i
L and T o

L), and their
compositions (xi

j and xo
j). The next three are the total amounts of thermal energy

(QI), nitrogen (IN2
), and oxygen (IO2

) that are transferred through the vapour–liquid
interface. And the last ones are the total amount of thermal energy that is transferred
through the inner-wall (QW ), and the pressure (P ). The pressure drop over a section
is relatively small, meaning that the pressure is practically constant.

10.2.3 Vapour–liquid interface region

A vapour–liquid interface region has a height equal to a differential element of the
height of the column, and a width equal to the sum of the vapour and liquid interface
film thicknesses. These interface films are hypothetical regions in which it is assumed
that all transfer processes between the vapour and liquid phases take place. The
properties at the outer boundaries are equal to the properties of the adjacent bulk
phases. Figure 10.4 shows a more detailed overview of an interface region.
A vapour–liquid interface region is characterized by ten quantities: the vapour bound-
ary temperature (TV ) and composition (yj), the liquid boundary temperature (TL)
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Figure 10.4: Schematic of a vapour–liquid interface region.

and composition (xj), the local total energy flux (Jq,I), the local molar nitrogen flux
(JN2

), the local molar oxygen flux (JO2
), the thicknesses of the vapour (dV ) and liquid

(dL) interface films, and the pressure.

10.3 Calculations

This section explains how the four aspects listed in Section 10.1.2 are being quantified
based on measurements of the quantities introduced in Section 10.2. The calculations
make use of the fact that the vapour and liquid flow rates are by definition equal to
each other at every height in a column that is operating at total reflux. This is also
true for the vapour and liquid compositions. Applied to the top and bottom of a
column (section), this is written as:

V o = Li = F top (10.1)

yo = xi = ztop (10.2)

V i = Lo = F bot (10.3)

yi = xo = zbot (10.4)

The most important prerequisite for equal flow rates and compositions is steady state
operation. It is important to realize that only the total flow rates and the average
compositions are equal. Local variations might still occur in the radial and angular
directions.

10.3.1 Thermal energy transfer

The transfer of thermal energy through the inner wall is evaluated at two levels of
detail: the total amount of transferred energy and the local flux of thermal energy
through the inner wall. The first one is easier to measure accurately, but the second
one provides more insight in what exactly is happening inside the column.
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Total amount of transferred energy

The total amount of thermal energy that has been removed from a column through the
inner column wall (Qtot

W ) can be calculated in two ways. It is given by the difference
between the reboiler and condenser duties (QR andQC), and by the difference between
the enthalpy contents of the ingoing and outgoing vapour and liquid streams:

Qtot
W = QR − QC (10.5)

= (F botHbot
V + F topHtop

L ) − (F topHtop
V + F botHbot

L ) (10.6)

When considering the outer column, the cold that is lost through the outer wall to the
environment (Qlost) should also be taken into account. Since this is equivalent to the
addition of thermal energy, this term appears with a positive sign on the right-hand
side of the equation.
The reboiler duty is obtained by direct measurements of the duty of the electrical
heater. The condenser duty is calculated based on the coolant flow rate and values
for the temperatures and pressures both upstream and downstream of the condenser.
In the current set-up, the coolant is evaporating nitrogen that is supplied from a
pressurized storage tank. Before it is fed to the condenser it is first throttled down
in pressure. The upstream temperature and pressure are measured before the liquid
nitrogen is being throttled. Assuming that the coolant circuit is adiabatic and that
the upstream and downstream measurements do not involve two-phase conditions,
the condenser duty is given by:

QC = FN2

(
HN2

V −HN2

L

)
(10.7)

In order to calculate the total vapour and liquid enthalpies at the top and bottom of
the column, the compositions are being be measured in addition to the temperatures,
pressures and flow rates. At steady state conditions, the compositions of the vapour
and liquid streams are equal, similar to their flow rates.
The difference between the vapour and liquid enthalpies at the column top should
be equal to the condenser duty. Similarly should the reboiler duty be equal to the
difference between the vapour and liquid enthalpies at the bottom of the column:

QC = F top
(
Htop

V −Htop
L

)
(10.8)

QR = F bot
(
Hbot

V −Hbot
L

)
(10.9)

The energy transfer through the wall can be determined in two independent ways per
column. So in total, there are four independent sets of measurements that all yield
a value for the total amount of transferred energy. The consistency of these values
gives an indication of the accuracy of the measurements.

Local thermal energy flux

The local thermal energy flux through the column wall is relatively easy to calculate
using the inner-wall region shown in Figure 10.2. Going from the inner to the outer
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column, it is given by:

Jq,W =
λW

dW
(TW,i − TW,o) (10.10)

Here, λW is the thermal conductivity of the wall material, which is obtained from
literature. The wall thickness is specified as part of the design. The two wall temper-
atures are measured during operation. This allows for the calculation of the thermal
energy flux at the height where the temperature measurements are done.
By measuring the wall temperatures at several locations along the height of the wall,
profiles can be constructed that represent the wall temperatures along the entire
height of the column. Consequently, a profile can be obtained for the local thermal
energy flux through the wall.
Integrating this local thermal energy flux profile over a part of the column height yields
the amount of thermal energy that is transferred in that part of the column. When
integrating over the entire column height, the total amount of transferred energy can
again be calculated:

Qtot
W = πD

∫ top

bot

Jq,W (h) dh (10.11)

10.3.2 Separation efficiency

The separation efficiency of structured packing is often characterized using the pack-
ing height that corresponds to a single theoretical stage (HETP). Calculating the
separation efficiency of an entire column follows the same procedure as calculating
it for a section of a column. Measurements of the compositions at the top and the
bottom of the column or section are the main inputs for determining the total number
of theoretical stages (N). For a binary mixture, this number is given by the Fenske
equation:

N =

ln

[(
x

1−x

)top (
1−x
x

)bot]
lnα

(10.12)

Here, x is the mole fraction of the most volatile component, which is nitrogen in
a nitrogen–oxygen mixture, and α is the relative volatility of the two components
[Seader and Henley, 1998]. Because the relative volatility changes along the height of
a column or section, the geometric mean of the top and bottom values is often used
as representative value:

α =
√
αtopαbot (10.13)

Relative volatilities are calculated using thermodynamic models. So temperature and
pressure measurements are required in addition to the composition measurements.
The average HETP of a column or section is calculated by dividing the packing height
(hp) by the corresponding number of theoretical stages:

HETP =
hp

N
(10.14)
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10.3.3 Radial and angular gradients

The radial and angular gradients in the vapour and liquid temperatures and composi-
tions are investigated by direct measurements of these variables at several locations on
a single height of the column. In order to determine at which locations it is most useful
to measure, first the most common reasons for these gradients, or maldistributions,
are considered.

Common maldistribution causes

In a heat integrated column, the presence of an additional heat flux can cause maldis-
tribution in both the vapour and the liquid phases. Kister [1990] lists various reasons
for vapour and liquid maldistributions in regular packed distillation columns.
Vapour maldistributions have two major causes. They are caused either by a bad
initial feed distribution, or by the combination of a liquid maldistribution and a high
flow rate. A bad initial vapour distribution usually flattens out within a few packing
elements. A higher pressure drop over the packing promotes a more uniform vapour
distribution.
Liquid maldistributions have more possible causes. Similar to vapour maldistribu-
tions, they can be caused by a bad initial feed distribution. In the case of structured
packing, liquid tends to accumulate in the wall-zones at the ends of the corrugated
sheet channels. Another reason for liquid maldistributions is a possible non-verticality
of the entire column. Liquid maldistributions are usually more persistent than vapour
maldistributions. They can be partly countered by using liquid wall-wipers, and by
positioning subsequent packing elements with an angular difference of 90 degrees.

Measuring vapour maldistributions

A bad initial vapour distribution can cause maldistributions in both the radial and
the angular directions, but the additional heat flux will only cause maldistributions
in the radial direction. So in case of a proper initial vapour distribution, only radial
maldistributions can be expected along the column height. Therefore, the vapour
temperature and composition are measured at several locations in the radial direction
at all measurement heights. To ensure a proper initial distribution, it is sufficient to
check the variation in the angular direction at only one height, preferably above the
bottom packing section. It is not necessary to investigate the angular variation in the
radial variation.

Measuring liquid maldistributions

Similar to the vapour, the liquid temperature and compositions are measured at
several locations in the radial direction at all measurement heights. Angular liquid
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maldistributions can be caused by a bad initial distribution, by the packing geometry
and by column non-verticality. Therefore, they can occur even in case of a proper
initial liquid distribution. It is therefore also useful to investigate the angular variation
in the radial variation. Maldistributions in the liquid flow tend to increase rather than
decrease when going down, so the angular variation is best evaluated near the bottom
of a packed bed.

Combined measurement strategy

Summarizing, the vapour and liquid properties are measured at several locations in
the radial direction at all measurement heights. At least three locations are measured
per height, in order to detect non-linear gradients. The measurements are done in
the same angular direction at all heights. It is sufficient to investigate the angular
variation in the vapour and liquid properties only at the height level above the bottom
packing section. The radial variation in the liquid properties is measured in all angular
measurement directions at this height. It is sufficient to measure the radial variation
in the vapour properties in only one angular direction.

Measurement locations

The experimental set-up contains five measurements heights. At height levels 1, 2, 3
and 5, counting from top to bottom, only one angular measurement direction is used
for all measurement types. At height level 4, six angular measurement directions
are used for all liquid measurements and for the vapour measurements in the outer
column. For the vapour measurements in the inner column, only three measurement
directions are used.
At the top measurement height, all liquid has the same properties because it all origi-
nates from the same source and it has not passed through any packing yet. Therefore,
the liquid temperature and composition only need to be measured once per column
at this height, including the measurement at the outer wall. Similarly, all vapour has
the same properties at the bottom measurement height, requiring only one vapour
temperature and composition measurement per column at this height. The inner wall
temperatures is measured at all measurement heights, because they are used to cal-
culate the energy transfer through the wall.
The temperature measurement locations for all five measurement heights are schemat-
ically shown in Figure 10.5. The grey squares are measurement locations that are in
the wall zone of the inner column wall. They are located directly at the wall and
are positioned in the liquid phase during normal operation. The white squares are
regular liquid phase measurements locations. White circles represent locations where
both liquid and vapour properties are measured and white diamonds are vapour phase
measurement locations.
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1 2 & 3

4 5

Figure 10.5: Cross-sectional overviews of the internal temperature measurement
positioning at each of the five measurement heights, counting from top to bottom.
Each dashed line represents an angular measurement direction and the symbols on

the lines indicate measurement locations.
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The locations of the composition measurements are the same as those for the tem-
perature measurements, with one exception: there is no need to measure the liquid
phase compositions at the inner wall of measurement height 1.

10.3.4 Interdependency of thermal and molar fluxes

Determining the extent of coupling between thermal and molar fluxes requires the
most complicated calculation. It is based on the vapour–liquid interface region that
is shown in Figure 10.4 and uses the theory of irreversible thermodynamics [Kjelstrup
and Bedeaux, 2008]. The aim of the calculation is to find the values of the resistivities
that are coupling the thermal and molar fluxes. In case of a binary mixture of nitrogen
and oxygen, the force-flux relations for the vapour–liquid interface region are given
by [Van der Ham and Kjelstrup, 2011d]:

ΔLV
1

T
= rtotqq J

′
q,V + rtotqN2

JN2
+ rtotqO2

JO2
(10.15)

−ΔLV μN2
(TL)

TL
= rtotN2qJ

′
q,V + rtotN2N2

JN2 + rtotN2O2
JO2 (10.16)

−ΔLV μO2
(TL)

TL
= rtotO2qJ

′
q,V + rtotO2N2

JN2
+ rtotO2O2

JO2
(10.17)

Here, μj (T ) is the chemical potential of component j evaluated at constant tempera-
ture T , J ′

q,V is the local measurable heat flux at the vapour boundary of the interface
region, and rmn represents the resistivity that is coupling driving force m with flux
n. The notation ΔLV is used to indicate the difference between the liquid and vapour
boundaries of the system, and the superscript tot indicates the total resistivity of the
entire vapour–liquid interface region. The matrix containing all the total resistivities
is symmetric, which means that rmn = rnm. Formulae for the total resistivities are
given by Van der Ham and Kjelstrup [2011d]. The resistivities that we would like to
calculate from our measurements are rqN2 = rN2q and rqO2 = rO2q. The other resis-
tivities can be obtained relatively accurately from theoretical relations for the thermal
conductivity (rqq) and the diffusion coefficients (rN2N2

, rO2O2
and rN2O2

= rO2N2
).

The calculation of these resistivities is explained in more detail by Van der Ham et al.
[2010].
The bulk vapour and liquid temperatures should both be measured. The bulk compo-
sition needs to be measured in only one phase, because it is the same in both phases
under total reflux conditions. When the pressure is also known, the driving forces
can be calculated using a suitable thermodynamic model. The local fluxes through
the interface are calculated using evaluations of the vapour–liquid sections. This is
discussed below in more detail.
In addition to the coupling resistivities, the experimental results will also yield cal-
culated values for the vapour and liquid interface film thicknesses. An additional
relation between the relevant variables is obtained by requiring the entropy produc-
tion calculated both using an entropy balance and using irreversible thermodynamics
to be the same [Van der Ham et al., 2010].
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Finding the local fluxes

Values for the local fluxes are derived from values for the total amounts of thermal
energy and components that are transferred in the vapour–liquid sections. These total
amounts can be determined using an energy balance around a vapour–liquid section.
The energy balance can be rewritten in such a way that it allows for the calculation
of the bottom flow rate of a column or section, when the top flow rate is known:

F bot =
F top

[
HL

(
T i
L

)−HV (T o
V )

]
ztop −QW[

HV

(
T i
V

)−HL (T o
L)
]
zbot

(10.18)

The energy transferred through the wall is here positive when it is added to the
section. If we subsequently consider one of two phases separately, it is possible to
determine the amounts of energy and components that are transferred through the
vapour–liquid interface. Based on the vapour phase and defining transfer from the
liquid to the vapour phase as positive, they become:

QI = F topHV

(
T o
V , z

top
) − F botHV

(
T i
V , z

bot
)

(10.19)

Ij = F topztopj − F botzbotj (10.20)

Once the total amounts of transferred energy and components are determined for all
sections of a column, the final step is to construct flux profiles based on them. This
step requires a value for the vapour–liquid interfacial area, which can be calculated
from the specific surface area of the structured packing in combination with the col-
umn geometry. These flux profiles give the values of the local fluxes at every location
along the height of the column.

Calculation routine

The routine for calculation of the coupling coefficients can be summarized as follows,
using a bold font for quantities that are varying along the column height:

1. Determine Jq,W and QW as described in Section 10.3.1.

2. Measure zj , TV , TL, P , and F top or F bot.

3. Calculate HV and HL for TV , TL, zj and P .

4. Calculate F using Equation (10.18).

5. Calculate QI and Ij using Equations (10.19) and (10.20).

6. Determine J ′
q,I and Jj from QI and Ij .

7. Calculate μj,V and μj,L for TV , TL, zj and P .
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8. Calculate λV , λL, �V and �L for TV , TL, zj and P .

9. Calculate rqj , dV and dL using Equations (10.15) to (10.17),
and the entropy balance.

10.3.5 Theoretical inputs

The calculations require several thermodynamic and transport properties as input.
The thermal conductivity of the wall material should be provided by the column
manufacturer and verified experimentally. The thermodynamic properties α, H, S
and μj can be calculated very accurately using the reference equation of state for
nitrogen–argon–oxygen mixtures by Lemmon et al. [2000]. The thermal conductivity
and viscosity of these mixtures can be calculated using the works of Shan et al.
[2000] and Lemmon and Jacobsen [2004]. The liquid phase Maxwell-Stefan diffusion
coefficient can be calculated using a modified Stokes–Einstein relation proposed by
Rutten [1992]. And the vapour phase Maxwell–Stefan diffusion coefficient can be
calculated by combining kinetic theory, see for example Hirschfelder et al. [1964], and
the thermodynamic model by Lemmon et al. [2000]. These relations often require the
temperature, pressure and composition as input.

10.4 Instrumentation

All measurements are done during steady state operation. The experimental instru-
mentation that is used in the set-up is divided in two groups: instrumentation that
is present inside the two columns, and instrumentation that is located outside the
columns. This section presents the details of all the instruments that are used.

10.4.1 Internal instrumentation

The instrumentation inside the HIDiC is used for measurements of the pressure (drop),
the temperature and the composition. The required instrumentation is positioned in
between structured packing sections. A number of four sections results into five
possible measurement heights. The temperature and composition are measured at
several locations at each measurement height, in order to investigate their radial
and angular variations. The pressures are only measured once per column at each
measurement height, so the radial and angular variation in the pressure (drop) is
not investigated. A more detailed overview of the measurement locations is given
in Section 10.3.3. A quantitative summary of the internal measurements is given in
Table 10.1.
When measuring properties of the vapour phase, it is important to ensure that indeed
the vapour phase properties are measured, and not the liquid phase properties. In
order to do so, the vapour phase measurements are shielded from the down-flowing
liquid using a umbrella-like configuration. Similarly, the liquid phase measurements
are shielded from up-flowing vapour. This configuration is shown in Figure 10.6.
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Table 10.1: Number of internal measurements locations for all measurement heights
(from top to bottom) and measurement types.

Height level 1 2 3 4 5 Total
Inner column

TW,i 1 1 1 6 1 10
TL 1 2 2 7 2 14
TV 2 2 2 4 1 11
x 1 3 3 13 3 23
y 2 2 2 4 2 11
(Δ)P 1 1 1 1 1 5

Outer column
TW,i 1 1 1 6 1 10
TW,o 0 1 1 6 1 9
TL 1 2 2 12 1 19
TV 2 2 2 7 2 14
x 1 4 3 24 4 37
y 2 2 2 7 1 14
(Δ)P 1 1 1 1 1 5

Total
T 8 11 11 48 9 87
x+ y 6 11 11 48 9 85
(Δ)P 2 2 2 2 2 10
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Figure 10.6: Picture of measurement level 4 in the inner column,
showing the umbrella-like and cup-like configurations that are

designed for performing single phase measurements.
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Temperature sensors

The temperature sensors that are used for the internal temperature measurements
are Type E thermocouples (chromel–constantan) supplied by Omega. They have un-
grounded junctions, a stainless steel sheath with a diameter of 0.020 inch, and varying
wire lengths. These thermocouples have a high voltage output per unit of temper-
ature. They have a tolerance of approximately 1.5% within the relavant operating
range of the set-up.
In the set-up, the temperature measurements are used to obtain temperature profiles
in the longitudinal, the radial and the angular directions of the two columns. They
are also used to measure differences between the vapour and liquid phases at the
same location, and differences between the temperatures at the two sides of the inner
wall. These temperature differences might be as small as the tolerance of a single
temperature measurement, resulting in inaccurate values for the differences. In order
to improve the accuracy of the relative values, temperature differences can also be
measured directly.
A temperature sensor can only be used to measure one relative temperature at the
same time, so either relative to a reference temperature, or relative to another tem-
perature sensor. It is possible to switch between different relative measurements by
changing the connections to the signal interpreter, so without requiring any actions
inside the columns.

Composition measurements

The composition measurements are done by withdrawing very small samples of work-
ing fluid from the columns and analysing them using gas chromatography (GC). An
Agilent 3000 Micro GC is used with a PLOT U/MS-5A column, using argon as carrier
gas, and using a backflush injector. It can detect concentrations below 20 ppm for
many components.

Absolute pressure measurements

The absolute pressures in the two columns are measured above the packing section
using Cerabar S PMP71 pressure transmitter supplied by Endress+Hauser. They
have a recommended measuring range up to 100 bar and an accuracy of 0.075% of
the set measuring span. Using a span of 0 to 25 bar, which corresponds to a turndown
of 4, results in an accuracy of approximately +/- 19 mbar.

Pressure difference measurements

The pressure differences over the four sections of structured packing are measured us-
ing Deltabar S PMD75 differential pressure transmitters supplied by Endress+Hauser.
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They have an operating range between 0 and 10 mbar and an accuracy of approxi-
mately 0.15% of the set measuring span.

10.4.2 External instrumentation

The external instrumentation is similar for both columns. It can be divided into three
groups: one related to the coolant circuit, one related to the column top flow, and
one related to the column bottom flow.
Three properties of the coolant flow are measured: the temperature of the liquid
before it enters the control valve, the temperature of the vapour after it has passed
through the condenser, and the vapour flow rate.
At the top of the column, five quantities are measured: the vapour composition, the
vapour flow rate, the temperature of the vapour before it enters the condenser, the
temperature of the liquid after it has passed through the condenser, and the pressure
difference between the top and bottom of the reflux drum.
At the bottom of the column, six quantities are measured: the pressure difference
between the bottom of the packing and the bottom of the column, the liquid compo-
sition, the temperature of the liquid before it enters the reboiler, the reboiler duty,
the vapour flow rate, and the temperature of the vapour after it has passed through
the reboiler.
Figure 10.7 shows the piping and instrumentation diagram of the experimental set-up,
indicating all external instrumentation. Unfortunately, the full details of the diagram
are only observable when viewed as a digital document.

Volumetric gas flow meters

The volumetric gas flows at the top and bottom of the columns and of the vaporized
nitrogen streams are measured using vortex flow meters supplied by Endress+Hauser.
All meters are of the type Proline Prowirl 72W, but different sizes are used at different
locations, depending on the expected flow rates.
The meters in the nitrogen circuits have a size of DN25, allowing a maximum flow
rate of approximately 110 m3/h. The top of the inner column is equipped with both
a DN15 and a DN40 meter in parallel, in order to cover the entire expected flow rate
range. The maximum flows of these meters are approximately 35 and 270 m3/h. The
bottom of the inner column and both the top and bottom of the outer column are
equipped with DN50 meters, allowing a maximum flow rate of approximately 430
m3/h.
The minimum flow rates depend on the density of the vapour streams and on the
Reynolds numbers. The vapour velocity should be higher than seven divided by the
square root of the density, and the Reynolds number should be higher than 4000. For
Reynolds numbers above 20000 the accuracy of the measurements increases, resulting
in a maximum deviation of 1% of the reading.
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Electrical duty transmitters

The electrical duty that is used by the reboilers is measured using clamp-on power
analysers supplied by Hioki, type 3166. They have an accuracy of 0.6% of the reading
plus 0.4% of the selected measurement range.

Temperature sensors

The external temperature measurements are done using Class A RTD-PT100 sensors
with a diameter of 3 mm, supplied by Teck-Skotselv.

Composition measurements

The composition of the streams entering and leaving the top and bottom of the two
columns is measured as described in Section 10.4.1.

Pressure difference measurements

The pressure differences over the liquid levels in the reflux drums and the column
sumps are measured using Deltabar S PMD75 pressure sensors supplied by En-
dress+Hauser. They have an operating range between 0 and 100 mbar and an accu-
racy of approximately 0.15% of the set measurement span. For a span of 0 to 50 mbar,
the accuracy becomes +/- 0.075 mbar. The main function of these measurements is
to provide high and low levels alarms.

10.5 Experiments

The experiments can be considered as specific combinations of the six operating vari-
ables that can be controlled in the set-up: the flow rates, the pressures and the
compositions (or temperatures) in the two columns. The experiments have been di-
vided into fifteen items, which are summarized in Table 10.2 and discussed in more
detail in Section 10.5.1 to 10.5.10.

10.5.1 Experiment 1

The first experiment is mainly used to characterize the angular and radial gradients
under operation without energy transfer. In case of proper initial liquid and vapour
distributions, no angular gradients should be detected. This will be verified. Radial
gradients might be present because of wall flow. The extent of these gradients will
be determined, so that it can be used for comparison with operating cases that do
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involve energy transfer, such as experiment 4.
In case of considerable radial gradients, it will be assessed whether there is a direct cor-
relation between the temperature and composition gradients, both for the liquid and
the vapour phases. It will also be investigated in what way the cross-sectional average
temperatures and composition can best be derived from the available measurements.
The coupling effect in the absence of thermal integration can be determined as part
of these experiments.

10.5.2 Experiments 2 & 3

These experiments are used to assess the structured packing performance as function
of the column shape: either cylindrical or angular. The performance will be evaluated
by measuring the separation efficiency and the pressure drop of the packing as function
of the column loading. As part of the experiments, the minimum and maximum
operable column loadings are determined: the dewetting and the flooding points.
Because the columns are not influencing each other in the absence of a pressure
difference, it is possible to perform experiments in one of the columns while the other
column operates at zero or minimum column loading. This limits the required heat
duties of the set-up. The found column loading limits are used to decide on the
base-case column loadings for the subsequent experiments.

10.5.3 Experiment 4

This experiments is similar to the one described in Section 10.5.1. The main differ-
ence is the presence of thermal energy transfer. The radial gradients and the best
representation of the cross-sectional averages are again determined. A comparison
with the results of experiment 1 is made. The findings from experiments 2 & 3 can
be used as basis for the column loadings.

10.5.4 Experiments 5 & 6

These experiments are similar to the ones described in Section 10.5.2, again with the
presence of thermal energy transfer as the main difference. The performance of the
structured packing in both columns is evaluated as function of the column loading.
Because the columns are now thermally coupled, the column loadings should always
be sufficiently large to ensure proper thermal energy transfer.
A comparison between the findings from experiments 3 and 6 gives more insight into
the effect of heat integration on the column loading limits and packing performance
of the outer column. Experiments 2 and 5 cannot be compared to each other to assess
the same effect, because the operating pressure of the inner column is different for the
two experiments.

10.5.5 Experiment 7

This experiment investigates the effect of the pressure ratio, and thus the temperature
difference, on the thermal energy transfer and separation efficiency. The column
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loadings will be based on a combination of the results from experiments 2 & 3 and 5
& 6. At the maximum pressure ratio, the radial gradients and the coupling effect will
be determined.

10.5.6 Experiments 8 & 9

These experiments are again done in the absence of thermal energy transfer. They
are similar to the ones described in Section 10.5.2, but at an elevated pressure. A
comparison between the findings from experiments 5 and 8 gives more insight into
the effect of heat integration on the column loading limits and packing performance
of the inner column. Comparing the results of experiments 8 and 9 can again be used
to assess the influence of the different column geometries.

10.5.7 Experiments 10 & 11

These experiments are similar to the ones described in Section 10.5.6, but at an even
higher pressure. The main aim of the experiments is to serve as comparison for the
maximum pressure ratio results from experiment 7. The influence of the different
column geometries is assessed as well.

10.5.8 Experiment 12

In this experiment, the influence of the absolute pressure in the presence of a thermal
energy transfer is assessed. Its effect on the thermal energy transfer and the separation
efficiency is investigated. The findings from experiments 5 & 6 can be used as basis
for the column loadings.

10.5.9 Experiments 13 & 14

These experiments serve to investigate the influence of having different composition
profiles in each of the columns. Different composition profiles result in a less constant
temperature difference profile throughout the set-up. The findings from experiments
5 & 6 can be used as basis for the column loadings.

10.5.10 Experiment 15

The last experiment is mimicking an industrial implementation of the set-up. This
means that the pressure ratio is around 3 and that the composition profiles are shifted
towards pure products. The column loadings are as high as is achievable with the
set-up.

10.6 Conclusions

The instrumentation and experiments that are required to investigate the uncertain
properties currently present in the designs of packed concentric HIDiCs have been
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presented. These uncertainties are related to: the value of the overall heat-transfer
coefficient, the performance of a ring-shaped column, and the effects of a radial heat
flux. It has also been discussed how the uncertain design properties can be quantified
based on the measurements that are performed.
Radial and angular temperature and composition gradients inside the columns will
be measured directly in both the vapour and liquid phases. The separation efficiency
of the columns will be calculated using composition measurements at their tops and
bottoms. The total amount of thermal energy transfer will be determined based on two
independent measurements of the condenser and reboiler duties of both the column
parts. In combination with measurements at several height levels of the temperature
difference over the inner column wall, a heat flux profile can be determined. Based
on this heat flux profile and on several other previously mentioned measurements, the
effect of coupling between thermal and mass fluxes can be assessed.

Notation

ASU air separation unit
D inner-column diameter, m
d (film) thickness, m
F molar flow rate, mol/s
h height, m
H molar enthalpy, J/mol
HETP height equivalent to a theoretical stage, m
HIDiC heat-integrated distillation column
HPC high-pressure column
I interfacial transfer rate, mol/s
IGCC integrated gasification combined cycle
J molar flux, mol/s m2

Jq total heat flux, J/(s m2)
J ′
q measurable heat flux, J/(s m2)

L liquid flow rate, mol/s
LPC low-pressure column
N number of theoretical stages, dimensionless
P pressure, bar
Q heat rate, J/s
rmn local resistivity coupling driving force m with flux n, where m,n ∈ q,N2, O2

T temperature, K
V vapour flow rate, mol/s
x liquid mole fraction, dimensionless
y vapour mole fraction, dimensionless
ΔLV Y difference in property Y between the liquid and vapour boundaries: YV − YL

z mole fraction, dimensionless

Greek symbols
α relative volatility, dimensionless
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λ thermal conductivity, J/(s K m)
μ chemical potential, J/mol

Sub- and superscripts
bot bottom of a column (section)
C condenser
I interface
i in(ner)
j component index
L liquid
N2 nitrogen
O2 oxygen
o out(er)
p (structured) packing
q thermal energy
R reboiler
top top of a column (section)
tot total
V vapour
W wall
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Chapter 11

Discussion and future work

11.1 Air separation unit design

In Chapters 5 and 6, two possible changes in the design of a cryogenic air separation
unit (ASU) have been investigated. The potential performance improvement of these
changes depends on the required product pressures of the ASU. When an ASU has to
deliver high-pressure products, the required product pressure can be obtained either
by the compression of gas at an ambient temperature or by the pumping of liquid at
a cryogenic temperature. The second option is known as a pumped liquid cycle; this
is the option used in the ASUs studied in Chapters 4 and 6.
Compared to the total energy requirement of a vapour compression cycle, a pumped
liquid cycle performs comparable or slightly worse. The pumping energy is much
less than the compression energy, but because the pumping occurs at a cryogenic
temperature, additional refrigeration is required. This refrigeration is often provided
for by the compression and expansion of a part of the feed air. When high-pressure
oxygen is produced, the use of a pumped liquid cycle is nowadays preferred because
it results in safer operation of the air separation unit [Dawson et al., 2004].

11.1.1 Hot heat exchanger

In Chapter 6, it is shown that the addition of a hot heat exchanger can significantly
improve the efficiency of the studied ASU. This efficiency improvement is the largest
for ASUs that use a pumped liquid cycle. In a pumped liquid cycle, the high pres-
sure of the product(s) require that a part of feed is compressed to a high pressure,
in order to maintain proper temperature profiles in the main heat exchanger. This
compression step generates the heat of compression that the hot heat exchanger is
transferring from the feed to the products. In case of vapour compression instead of
liquid pumping, the energy is directly added to the products, so no additional hot
heat exchanger is required for this purpose.
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However, in the pre-purification step of an ASU, air is usually compressed to approx-
imately 5 bars. This compression step also involves heat of compression that can be
used to pre-heat some of the ASU products. In case of a pumped liquid cycle, this
heat of compression should be used before the products are heated against the heat
of compression of the booster, because it has a lower temperature.

11.1.2 Lowering the pressure in the HPC

In Chapter 5 it is shown that the use of HI stages in combination with a lower
operating pressure in the high-pressure column (HPC) can considerably reduce the
irreversibilities in the distillation section of an ASU. However, in Chapter 6 it was
found that not all of these efficiency gains are translated into an efficiency increase
of the entire ASU. Section 6.6.2 discusses several possible reasons for this. Another
reason is related to the use of a pumped liquid cycle, which requires the compression
of a part of the feed to a fixed pressure level. Only the part of the feed that is directly
fed to the HPC involves less compression. This is why the use of HI stages is most
attractive in ASUs that do not have a pumped liquid cycle, for example the ASU of
an oxy-fuel combustion process, which requires oxygen at a low pressure.

11.2 Heat-integrated distillation stages

The overview of reported efficiency gains given in Section 3.2.1 shows that the use
of heat-integrated distillation stages and columns has a large potential for efficiency
improvements in various applications. The results presented in Chapter 5 confirm
that this is also the case for air distillation. The further development of these HI
stages should focus at two important subjects, in order to accelerate their industrial
implementation. They are related to the modelling of HIDiCs and to the value of the
heat-transfer capacity.

11.2.1 More-accurate HIDiC models

Before HIDiCs can be used in industrial processes, it is important to have reliable
models that can give an accurate prediction of their performance. The work presented
in Chapters 7 to 10 shows good examples of efforts that aim to achieve this. In addition
to the four aspects that the experimental efforts presented in Chapters 9 and 10 focus
on, attention should also be paid to the pressure drop characteristics of a HIDiC. It
is of course imperative to use the obtained model as basis for economic evaluations.

11.2.2 Increasing the heat-transfer capacity

In order to increase the efficiency of a HIDiC as much as possible, it is important to
maximize the heat-transfer capacity of the HI stages. This means that both the heat-
transfer area and the overall heat-transfer coefficient should be increased. Several
possible options to achieve this are discussed in detail in Section 5.6.2. These options
should be investigated in more detail, preferably both numerically and experimentally.
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11.3 Integrated-interface transfer model

Chapters 7 and 8 concern the further development of the integrated-interface transfer
model introduced in Section 3.3.2. The theoretical background and mathematical
description that are required to represent the interface region by a series of connected
control volumes have been given. In Chapter 7, the model is used to simulate the
transfer processes at a single position in a nitrogen–oxygen distillation column. In
Chapter 8, it has been applied to sets of boundary conditions that represent the entire
height of a distillation column.
The final goal of developing this model is to predict the performance of an entire sep-
aration column with a higher accuracy and flexibility than currently existing models
can do. Several further developments of the model are required before this goal can
be reached; they are related to the simulation of a complete column, to the simulation
of different types of systems, and to the experimental verification of the model.

11.3.1 Simulating a complete separation column

The calculations that have been performed so far all focus on the transfer at a single
height or cross-section of a packed column. Those single heights need to be connected
to each other, transforming the model to a one-dimensional form. This will involve
the use of differential height elements, representing small parts of the total column
height. As shortly discussed in Sections 7.6.4 and 8.4.2, there are several quantities
that need to be added to the model, because they vary along the height of the column.
They can affect both the thickness of the interface region and the effective interface
area.

Thickness of the interface region

In rate-based distillation models, it is assumed that the resistance against mass and
energy transfer between the well-mixed vapour and liquid bulk phases is completely
located in the vapour–liquid interface region, as explained in Section 3.3.2. So the
thickness of the interface region is an important model parameter. The vapour–liquid
interface region consists of a vapour film, the interface, and a liquid film, as discussed
in Section 7.2.
In the conventional rate-based models by Agrawal et al. and Egoshi et al., which
are discussed in more detail in Section 3.3.3, the mass transfer relations contain the
Reynolds and Schmidt numbers. These dimensionless numbers depend amongst others
on the velocity, density, and viscosity: quantities that typically change along the
height of a distillation column.
The liquid velocity depends mainly on the liquid flow rate and the type of packing
that is used; it also depends slightly on the liquid density and viscosity. The vapour
velocity depends on the vapour flow rate, the vapour density, and the free cross-
sectional area of the column, which is given by the total area minus the area occupied
by the packing and by the liquid phase. Both the densities and viscosities of the two
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phases vary mainly due to the changing composition and temperature. Pressure drop
in the column can also have a minor influence on mainly the vapour density.
Figure 11.1 shows a first crude attempt to include some of these dependencies in the
results presented in Section 8.4.2. As shown in Section 7.5.1, most of the transfer
resistance is located in the vapour film. In addition, Table 9.17 shows that the vapour
density is relatively constant, compared to the vapour viscosity and the vapour flow
rates shown in Table 8.1. Therefore, the original results have been adjusted based on
changes in the vapour flow rate and the vapour viscosity only. The relative nitrogen
transfer has been multiplied by the change in viscosity and it has been divided by the
change in vapour flow rate.
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Figure 11.1: Comparison between the nitrogen fluxes calculated with the original
model and the adjusted model, and the total amounts of transferred nitrogen

calculated from the equilibrium stage model.

The resulting adjusted nitrogen transfer profile shows much closer resemblance with
the transfer profile of the equilibrium stage model than the profile of the original model
does. This confirms that including dependencies of the interface region thickness on
quantities like the velocities, viscosity, and density can yield a more realistic transfer
profile. Of course, the model should be based on and compared to experimental data
rather than other models. This is discussed in more detail Section 11.3.3.

Effective interface area

Another important variable that should be included in the model is the effective
interface area per column volume. This variable is also required in conventional
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rate-based models. It was recently concluded by Tsai et al. [2011] that the effective
interface area mainly depends on the type of packing that is used and on the liquid
flow rate, it also slightly depends on the surface tension. The liquid viscosity and gas
velocity were reported to have little influence on the effective interface area. The ratio
between the effective interface area and the packing area was found to vary between
0.5 and 1.2. At values below unity, the packing is thought to be not entirely wetted.
Values above unity can be related to ripples in the liquid surface and to the presence
of droplets.

Minimizing the difference in entropy production

In Section 8.4.1, it is discussed that for some sets of boundary conditions it was
impossible to find a liquid film thickness that yields a thermodynamically consistent
solution for the fluxes. When simulating an entire distillation column, it is important
to obtain values for the fluxes for every set of boundary conditions. In order to achieve
this, it is possible to minimize the absolute difference between the entropy production
calculated using the fluxes and forces and entropy production calculated using the
entropy balance, instead of requiring this difference to be exactly zero. For the sets
of boundary conditions that already did yield a solution, this change will not have
any effect. However, for the other ones, it will now yield a solution too. Naturally,
the value of the difference should be monitored in those cases, to ensure that it is not
getting too big.

11.3.2 Simulating different systems

So far, the use of the integrated-interface transfer model has been focussed on a packed
distillation column that is separating a binary mixture. The range of systems that
the model is applied to should be extended in order to include trayed columns and
other (types of) mixtures.

Trayed columns

The main differences between applying the integrated-interface transfer model to a
packed column and applying it to a trayed column are the same as for a conven-
tional rate-based model. They are mainly related to the different flow patterns of the
two phases and the different models used for the effective interface area. In packed
columns, the two phases are flowing counter-currently throughout the entire column,
but in trayed columns the two phases flow cross-currently over the trays.
In a packed column, the interface area is related to the specific area of the packing.
On a tray, the interface area is provided by bubbles in the liquid phase and droplets
in the vapour phase. The amount of interface area depends on the amounts and sizes
of the bubbles and droplets, and on the height of the liquid and the froth on a tray.



250 Chapter 11. Discussion and future work

Therefore, the model for a trayed column is more elaborate than the model for a
packed column, but this is not related to type of transfer model that is used.

Other mixtures

So far, the integrated-interface model has only been applied to binary vapour–liquid
mixtures of either water and ethanol [De Koeijer and Kjelstrup, 2004, Kjelstrup and
De Koeijer, 2003, Mendoza and Kjelstrup, 2011] or nitrogen and oxygen [Chapters 7
and 8]. It should be applied other binary mixtures, also including liquid-liquid mix-
tures, and multi-component mixtures as well. Compared to binary mixtures, the only
complication involved with simulating multi-component mixtures is related to the
heats of transfer calculation. How to perform this calculation is described in detail by
Kempers [2001]. Adding argon as the third component to a nitrogen–oxygen mixture
could be an interesting system to start with.

11.3.3 Experimental verification

In Sections 8.4.2 and 11.3.1, the integrated-interface transfer model is compared to
an equilibrium stage model. This can be used as a first assessment of the model
performance. A better comparison would be to a four-film transfer model. However,
the only correct comparison that can be made should be based on experimental data.

Model for the thickness of the interface region

In order to compare the model to experimental data, three steps need to be taken.
Firstly, experimental data needs to be used as basis for the development of a model
that relates the thickness of the interface region to the flow rates, temperatures,
compositions, and pressures of the two phases (which then also define the densities,
viscosities and surface tension). The second step is to simulate various other distil-
lation column cases, based on the developed model for the thickness of the interface
region. Finally, the simulation results can be compared to experimental data. The
columns cases used in the second and third step should be different from the ones
used in the first step.

Coupling between heat and diffusion fluxes

One of the main differences between the integrated-interface transfer model and the
four-film transfer model is the inclusion of the direct coupling between heat and
diffusion fluxes. In Sections 5.6.1 and 7.6.2, it is discussed that the influence of
this coupling effect can be especially significant when modelling a heat-integrated
distillation column (HIDiC). Experimental investigations using a HIDiC can be used
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to verify the importance of the coupling effect. In Section 10.3.4, it is explained
how the coupling effect can be quantified using the experimental set-up described in
Chapters 9 and 10. It is also possible to perform a more-qualitative evaluation.
Experimental distillation columns often operate at total reflux. From a modelling
perspective, this is advantageous because it results in very well-defined vapour and
liquid phase compositions. In the experimental HIDiC set-up described in Chapters 9
and 10, it is possible to control the pressure ratio, and thus the temperature difference,
between the two column parts. The experimentally observed relation between the
temperature difference and the separation efficiency of the two columns (experiment
7, described in Section 10.5.5) can be compared to simulation results. The required
simulations should calculate the molar fluxes for changing values of the temperature
driving force, both including and excluding the coupling effect and using equal values
of the vapour and liquid compositions. Comparing the experimentally observed trend
to the coupled and non-coupled ones can give a qualitative indication about which of
the two is closest to reality.
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Chapter 12

Conclusions

Several options to improve the Second law efficiency of a cryogenic air separation unit
(ASU) as part of an integrated gasification combined cycle (IGCC) have been inves-
tigated. Based on the exergy analysis of two state-of-the-art ASUs with a pumped
liquid cycle, three process parts have been identified as the most inefficient ones:
the compressor after-coolers, the distillation section, and the main heat exchanger.
In a conventional two-column ASU design, their contributions to the overall exergy
destruction amount to 39%, 26%, and 17%. Within the distillation section, approx-
imately 75% of the destruction is located in the distillation columns. The exergy
efficiency, defined by the desired change in exergy content of the products divided by
the net added work, is 35% for this process.

The exergy destruction in the compressor after-coolers is caused by the use of cooling
water. By replacing the cooling water with the ASU product streams, it is possi-
ble to almost completely eliminate this contribution, increasing the exergy efficiency
of the process towards 70%. This ASU performance improvement is translated via
increased product temperatures to an increased hydrogen production in the gasifier
and water-gas shift unit of the IGCC and to an increased net work output in the
turbines of the combined cycle. The reduction in exergy destruction of 1.6 kJ/mol
air corresponds to a 0.74% increase in the net electric efficiency of the IGCC. The
performance improvement caused by the use of this hot heat exchanger is the largest
for ASUs that use a pumped liquid cycle.

Two alternatives for decreasing the exergy destruction of the distillation section have
been examined: the addition of a third distillation column, and the combination of
using heat-integrated stages (HI stages) and decreasing the ratio between the pres-
sures in the two columns. The first option can reduce the exergy destruction in the
distillation section by approximately 30%, resulting in a 7% reduction in the ASUs
work input. When applying the second option, reductions in the distillation section
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exergy destruction of 20% to 30% are possible, depending on the amount of heat-
transfer capacity that is present per theoretical equilibrium stage.
In addition to this uncertainty in the heat-transfer capacity, which is partly related
to the absence of detailed knowledge on the overall heat-transfer coefficient, three
other uncertainties exist in the model that has been used to perform the numerical
evaluations. They are related to the use of a ring-shaped distillation column, to the
presence of radial gradients in the HI stages, and to the interdependency of heat and
diffusion fluxes.

In order to assess these four aspects experimentally, a concentric heat-integrated dis-
tillation column (HIDiC) has been designed that can be used to perform total reflux
experiments at cryogenic temperature and elevated pressures. The designed set-up
has inner and outer column diameters of 14 and 22 cm, and a total column height
of approximately 3.5m. Both the inner and the outer column will be equipped with
electrical reboilers that have a maximum duty of 20 kW. Copper-brazed plate heat
exchangers will be used as condensers. They will be fed with up to 550 kg/h of liquid
nitrogen as coolant.
The total amount of thermal energy that is being transferred from the high-pressure
column to the low-pressure column will be quantified by two independent measure-
ments of the reboiler and condenser duties of both column parts. Over 80 composition
and temperature measurements will enable characterization of the phenomena that
are occurring inside the columns. These measurements will cover the longitudinal,
the radial, and the angular directions of the columns, in both the vapour phase and
the liquid phase.
The experimental results obtained with this set-up will not only be useful for more-
detailed feasibility evaluations of heat-integrated air distillation columns, but they
will be beneficial for the accurate design and simulation of separation columns in gen-
eral. Various other distillation processes can benefit from using HI stages. In addition
to the mentioned experimental investigations and the development of more-accurate
models, future research on the use of HI stages should focus on maximization of the
heat-transfer capacity.

As another way to improve the accuracy of models for (heat-integrated) distillation
columns, efforts have been used on the further development of the integrated-interface
transfer model. A new formulation has been developed, that represents the interface
region by a series of 2n + 1 connected control volumes. Based on this formulation,
a calculation method has been developed that can be used to obtain values for the
thermal and molar fluxes based on input values for the overall driving forces. The
ratio between the thicknesses of the vapour and liquid films is found by requiring
consistency between the entropy production calculated using the entropy balance and
using the product-sum of conjugate fluxes and driving forces.
A nitrogen–oxygen mixture has been used to investigate the properties of this new
model. It was found that the calculated values of the fluxes converge when increasing
the number of control volumes per film (n). For the lowest possible value of n = 1,
some of the calculated fluxes differed by a factor of 2 from their converged values. In
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order to ensure that the deviation from the converged values is within 0.1%, a value
of at least n = 32 should be used.
Most of the transfer resistivities are located in the vapour film. Uncertainties in the
calculation results are mainly caused by uncertainties in the Maxwell–Stefan diffusion
coefficients and in the liquid phase heat of transfer. The calculated value for the
measurable heat flux at the liquid boundary of the interface region is most sensitive
to these uncertainties, as well as to the effects of neglecting the interface resistance
and neglecting the direct coupling between heat and diffusion fluxes. Accurate values
for the heat flux are especially important when modelling HIDiCs and diabatic dis-
tillation columns.
The importance of the coupling effect has been found to be significant along the en-
tire height of a distillation column. It should always be included in accurate models
for the simultaneous transfer of thermal energy and mass. The effect of the inter-
face resistivities is relatively small. Further developments of the integrated-interface
transfer model should focus on three main points: simulation of an entire separation
column, simulation of more various types of systems, and experimental verification of
the model.

This work has presented several options to improve the Second law efficiency of a
cryogenic ASU. Some of them are mainly applicable to cryogenic ASUs, or even only
to a special type of cryogenic ASU. The use of HI stages, however, has the potential
to improve the efficiency of many other separation processes. All of the options can
contribute to limit future CO2 emissions and climate changes.
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Abstract

A Matlab model has been created that can be used to calculate various single phase
thermodynamic properties and vapour–liquid equilibrium conditions of nitrogen–
argon–oxygen mixtures. The model can be used during the design of cryogenic air
distillation columns. It is based on an empirical equation of state that is explicit in
Helmholtz energy and describes the real mixture properties as an excess contribution
to the Helmholtz energy. The accuracy of the Matlab model is around 0.1% for the
relevant single phase thermodynamic properties and around 0.5% for vapour–liquid
equilibrium conditions.

A.1 Air distillation

Distillation of air is currently the most commonly used technique for the production
of pure oxygen and nitrogen on an industrial scale. Atmospheric air is a mixture of
nitrogen, oxygen, argon, carbon dioxide, water and other trace elements. In an air
separation process, carbon dioxide and water are typically removed from this mixture
before it enters the distillation unit. The air that is fed to a distillation column can
therefore be properly considered as a mixture of nitrogen, oxygen and argon only;
their mole fractions are given in Table A.1 [Hausen and Linde, 1985].

Table A.1: Composition of air

Component Mole fraction

N2 0.7812

O2 0.2096

Ar 0.0092

Total 1.0000

The design of a distillation column depends heavily on the thermodynamic data that
is used as basis. It is therefore desired to use thermodynamic data that is as accurate
as possible. The aim of this essay is to present a model for the calculation of accurate
thermodynamic data for nitrogen–argon–oxygen mixtures.

A.2 Equations of state

The thermodynamic state of a pure component is defined when its temperature (T ),
pressure (P ) and specific volume (v) are defined. These three variables are often
referred to as the state variables. The relation between three state variables can be
captured in an equation of state, which allows calculating the third variable when the
other two are known. All other thermodynamic properties, like the entropy (S) and
the enthalpy (H), can be determined using the equation of state as well.
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A.2.1 Early equations of state

Classically, an equation of state gives the pressure as a function of the temperature
and specific volume, or alternatively its reciprocal; the density (ρ). Various functional
forms of such a pressure explicit equation of state have been developed in the course of
time [Hausen and Linde, 1985, Jacobsen et al., 1997]. The simplest and less accurate
one is the ideal gas law

P =
RT

v
= ρRT (A.1)

Here, R is the universal gas constant. Other well-known pressure explicit functional
forms are the virial equation, with temperature dependent constants B, C, D, . . .,
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the Van der Waals equation, with constants a and b,

P =
RT

v − b
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v2
(A.3)

the Soave–Redlich–Kwong equation, with constant b and temperature dependent a,
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RT
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(A.4)

the Peng–Robinson equation, with constant b and temperature dependent a,
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(A.5)

and the Benedict–Webb–Rubin equation, with constants A0, A0, A0, a, b, c, α and γ,
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The virial equation of state describes the deviation from ideal gas behaviour as an
infinite power series expansion in terms of the volume. The Van der Waals, Soave–
Redlich–Kwong and Peng–Robinson equations of state are also knows as cubic equa-
tions of state, because they describe the non-ideal part with a term that is cubic in
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the specific volume.
These equations of state can also be used to describe mixtures, although the results
are generally less accurate than for pure components. For mixtures, the constants
that are used become composition dependent. They can be calculated using certain
mixing rules and additional binary interaction parameters.

A.2.2 Modern equations of state

During the development of the early equations of state, the main aim was to obtain
more accurate expressions without increasing the complexity too much, because cal-
culations were often still executed without a computer. The wide-spread availability
of computational speed opened they way for more complex and accurate equations of
state, based on an empirical rather than an analytical approach [Jacobsen et al., 1997,
Span, 2000]. The number of model parameters increased to more than 30, which re-
sulted in the name multi-parameter equations of state. This name is a bit misleading
though, because the early equations of state also use multiple parameters, although
less. The term ‘empirical equations of state’ will be used in this work.
Along with the change to empirical equations of state came the change from a pres-
sure explicit functional form to a Helmholtz energy explicit functional form. The main
advantage of using the Helmholtz energy is that all other thermodynamic properties
can be determined by differentiation only, which makes the equation of state a funda-
mental equation. If a pressure explicit expression is used, integration is required too.
When translating this difference into practise, it means that more complex functional
forms can be used if an equation of state is explicit in Helmholtz energy.
The first developments in the field of empirical equations of state were aimed at opti-
mising the function form that was used. The goal was to obtain a very high accuracy
while using as less parameters as possible. When developing a high accuracy equa-
tion of state for a wide range of conditions, a large number of experimental results is
required to fit it to. The first efforts were therefore mainly focused on well-measured
substances, and several very high accuracy equations of state have been developed in
this way. Because the accuracy of calculated thermodynamic properties is within the
experimental error of experiments, they can be used as reference for these properties.
This is why these equations of state are also called reference equations of state.
The functional forms of reference equations of state are rather substance specific. Be-
cause there is also a desire for equations of state for less well-measured substances,
more general functional forms have been being developed as well. This has been
done by optimising the functional form using the experimental data of a group of
relatively similar and well-measured substances, and applying this functional form to
other less well-measured substances of the same group. These equations of state are
called technical equations of state. Their accuracy is still high, but not as high as
is the case for the reference equations of state. The number of parameters used in
technical equations of state is typically less than for reference equations of state.
Another development within field of empirical equations of state is the extension of its
application from pure substances to multi-component mixtures, again using certain
mixing rules and additional binary interaction parameters.
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A.2.3 Equations of state for N2, Ar, O2 and mixtures thereof

In the near past, early equations of state for nitrogen, argon, oxygen and mixtures of
these components still received some attention in literature; see for example the work
of Asami and Ebisu for the pure components [Asami, 1990, Asami and Ebisu, 1989,
1990], and the work of Hwang for mixtures [Hwang, 1987]. But today, publications on
the subject concern empirical equations of state only. In contrary, most commercial
simulation software still uses the early equations of state as basis for its calculations.
Both technical as well as reference equations of state are available for pure nitrogen,
argon and oxygen [Schmidt and Wagner, 1985, Span and Wagner, 2003a,b, Stewart
et al., 1991, Tegeler et al., 1999]. Technical equations of state are easier to implement
in calculations because the functional form is exactly the same for each substance
and because less parameters are involved. This makes them more attractive than the
reference equations of state. On the other hand, the reason for developing technical
equations of state was to provide an equation of state for substances that are less
well-measured, not because the calculations involved with reference equations of state
are too demanding. So if both are available, one should always choose to use reference
equations of state. They are simply more accurate.
Several empirical equations of state for air and mixtures of nitrogen, argon and oxy-
gen in general have been published. The first ones modelled the mixture properties
based on an extended corresponding states approach. This means that the mixture is
modelled as if it is a pure substance, using mixing rules and composition dependent
shape factors to relate the mixture to a reference substance [Clarke et al., 1993]. Later
equations of state quantify the deviation of the real mixture properties from the ideal
mixture properties in terms of an excess contribution, again using mixing rules and
composition dependent shape factors.
Some of the most recent equations of state are limited to a fixed ternary mixture
composition [Panasiti et al., 1999], to variable compositions for binary mixtures only
[Estela-Uribe, 2006], or to the liquid phase only [Goharshadi and Moosavi, 2008].
This makes them unsuitable for use in the current work, since variable ternary mix-
ture compositions for both liquid and vapour phase are required during distillation
column modelling. There are only two publications that satisfy these criteria; one
is focused on nitrogen–argon–oxygen mixtures only [Lemmon et al., 2000], and the
other is a more general model that can be used for mixtures of more varied substances
[Lemmon and Jacobsen, 1999]. The former one can be interpreted as the reference
equation of state for the nitrogen–argon–oxygen mixture, and the latter as a technical
equation of state for this mixture. It is therefore the former one that is used as basis
for the current work.

A.3 A Helmholtz energy based mixture model

As explained in Section A.2.2, modern equations of state are typically explicit in
Helmholtz energy. The independent variables that are used in the chosen model are
the temperature and density. In addition, the model uses reduced variables instead
of normal ones. It relates the dimensionless Helmholtz energy of a pure component
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(αi) to the reciprocal reduced temperature (τ) and the reduced density (δ),

αi (τ, δ) = αi

(
Tc,i

T
,

ρ

ρc,i

)
=

ai (T, ρ)

RT
(A.7)

Here, Tc,i is the critical temperature, ρc,i the critical pressure and ai the molar
Helmholtz energy of a pure component. The dimensionless Helmholtz energy of a
mixture (αmix) is built up out of two parts; a part that is related to the ideal mixture
properties and a part that is related to the non ideal mixture properties:

αmix =

n∑
i=1

xi (αi + lnxi) + αE (A.8)

Here, xi are the mole fractions of the n components. The last term is called the excess
dimensionless Helmholtz energy (αE) and is discussed in more detail in Section A.3.2.
The dimensionless Helmholtz energy of a pure component is also built up out of an
ideal and a non-ideal part:

αi = α0
i + αr

i (A.9)

Here, α0
i is the dimensionless ideal gas Helmholtz energy and αr

i the dimensionless
residual Helmholtz energy of a pure component. They are discussed in more detail in
Section A.3.1.
The dimensionless Helmholtz energy of a mixture can also be split up into an overall
ideal part, containing the ideal mixture as well as the ideal gas parts, and an overall
real part, containing the residual as well as the excess parts:

αmix = αideal
mix + αreal

mix =

(
n∑

i=1

xi

(
α0
i + lnxi

))
+

(
n∑

i=1

xiα
r
i + αE

)
(A.10)

A.3.1 Pure component contributions

As discussed in Section A.1, distillation of air involves three pure components; nitro-
gen, argon and oxygen. The equations of state used to model their thermodynamic
properties have big similarities, but because reference equations of state are used they
are still slightly different. Each equation of state is discussed in detail in Section A.3.1.
First, some fixed physical properties of these components are presented in Table A.2.
Throughout this work, the components are ordered based on their normal boiling
points.
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Table A.2: Fixed physical properties of the pure components

Physical property (unit) Nitrogen Argon Oxygen

Molecular mass (g/mol) 28.0135 39.9480 31.9988

Critical temperature (K) 126.192 150.687 154.581

Critical pressure (MPa) 3.396 4.863 5.043

Critical density (mol/dm3) 11.184 13.407 13.630

Triple point temperature (K) 63.151 83.806 54.361

Triple point pressure (kPa) 12.523 68.891 0.1463

Triple point liquid density (mmol/dm3) 24.07 101.5 0.3237

Triple point vapour density (mol/dm3) 30.957 35.465 40.816

Normal boiling point (K) 77.355 87.302 90.188

Nitrogen

The equation of state used for nitrogen is described by Span et al. [2000]. The
dimensionless ideal gas Helmholtz energy is given by

α0 = ln δ +N1 ln τ +N2 +N3τ +
N4

τ
+

N5

τ2
+

N6

τ3
+N7 ln

(
1− e−N8τ

)
(A.11)

Here, Nk are empirical parameters. The dimensionless residual Helmholtz energy is
given by

αr =

6∑
k=1

Nkδ
ikτ jk +

32∑
k=7

Nkδ
ikτ jke−δlk +

36∑
k=33

Nkδ
ikτ jke−φk(δ−1)2−βk(τ−γk)

2

(A.12)

Here, Nk, ik, jk, lk, φk, βk and γk are empirical parameters. Terms 33 till 36 are used
to improve the accuracy in the critical region.

Argon

The equation of state used for argon is described by Tegeler et al. [1999]. The dimen-
sionless ideal gas Helmholtz energy is given by

α0 = ln δ +N1 +N2τ + 1.5 ln τ (A.13)
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Here, Nk are empirical parameters. The dimensionless residual Helmholtz energy is
given by

αr =

12∑
k=1

Nkδ
ikτ jk +

37∑
k=13

Nkδ
ikτ jke−δlk +

41∑
k=38

Nkδ
ikτ jke−φk(δ−1)2−βk(τ−γk)

2

(A.14)

Here, Nk, ik, jk, lk, φk, βk and γk are empirical parameters.

Oxygen

The equation of state used for oxygen is described by Schmidt and Wagner [1985].
The dimensionless ideal gas Helmholtz energy is given by

α0 = ln
δ

δ0
+N1τ

1.5 +
N2

τ2
+N3 ln τ +N4τ

+N5 ln
(
eN7τ − 1

)
+N6 ln

(
1 +

2

3
e−N8τ

)
+N9 (A.15)

Here, Nk are empirical parameters. Further, δ0 is the reduced density, evaluated at
the standard temperature and pressure of T0 = 298.15 K and P0 = 1.01325 bar. The
dimensionless residual Helmholtz energy is given by

αr =

13∑
k=1

Nkδ
ikτ jk +

24∑
k=14

Nkδ
ikτ jke−2 +

32∑
k=25

Nkδ
ikτ jke−4 (A.16)

Here, Nk, ik and jk are empirical parameters.

Ancillary equations

In addition to the equations of state described above, also some ancillary equations
are given that can be used to determine thermodynamic properties at phase changes.
The values of these pure component properties can be used to obtain initial guesses
for vapour–liquid equilibrium calculations of mixtures. The ancillary equations for
nitrogen and argon are described in the references given above; those for oxygen are
described by Stewart et al. [1991]. The ancillary equations can be used to calculate the
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saturated vapour pressure (Pσ), the saturated liquid density (ρ′) and the saturated
vapour density (ρ′′):

ln
Pσ

Pc
=

Tc

T

n∑
k=1

Nkθ
ik (A.17)

ln
ρ′

ρc
=

n∑
k=1

Nkθ
ik (A.18)

ρ′

ρc
= 1 +

n∑
k=1

Nkθ
ik (A.19)

ln
ρ′′

ρc
=

Tc

T

n∑
k=1

Nkθ
ik (A.20)

Equations (A.17) and (A.20) can be used for nitrogen, argon as well as oxygen. Equa-
tion (A.18) should be used for nitrogen and argon only, and Equation (A.19) for
oxygen only. Here, Nk and ik are empirical parameters, and further

θ = 1− T

Tc
(A.21)

A.3.2 Mixture contributions

The equation of state for mixtures of nitrogen, argon and oxygen is described by
Lemmon et al. [2000]. It is based on Equation (A.10), with the dimensionless excess
Helmholtz energy given by

αE =

⎛
⎝ 2∑

i=1

3∑
j=i+1

xixjFij

⎞
⎠(

0.00871334δ2τ1.5 − 0.00195245δ2τ−1.4
)

(A.22)

Here, Fij are empirical mixture parameters. Equation (A.22) involves the reduced
density and reciprocal reduced temperature. When considering pure components
the calculation of these quantities uses the critical density and critical temperature.
But when considering mixtures, composition dependent reducing parameters for the
density (ρred) and for the temperature (Tred) should be used:

Tred =

3∑
i=1

xiTc,i +

2∑
i=1

3∑
j=i+1

xixjζij (A.23)

ρred =

⎛
⎝ 3∑

i=1

xi

ρc,i
+

2∑
i=1

3∑
j=i+1

xixjξij

⎞
⎠

−1

(A.24)

Here, ζij and ξij are empirical mixture parameters. Only the real part of Equa-
tion (A.22) should be evaluated using these reducing parameters to calculate the
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reduced density and temperature. The ideal part still uses the critical densities and
temperatures, resulting into

αmix =

n∑
i=1

xi

[
α0
i

(
Tc,i

T
,

ρ

ρc,i

)
+ lnxi

]

+
n∑

i=1

xiα
r
i

(
Tred

T
,

ρ

ρred

)
+ αE

(
Tred

T
,

ρ

ρred

)
(A.25)

A.4 Calculation routines

The model explained in Section A.3 gives the Helmholtz energy as a function of tem-
perature and density. As described in Section A.2, all thermodynamic properties can
be calculated using derivatives of the Helmholtz energy. The calculation of some
common single phase thermodynamic properties is discussed in more detail in Sec-
tion A.4.1. Section A.4.2 focuses on calculations involving vapour–liquid equilibrium
in mixtures.

A.4.1 Single phase thermodynamic properties

The single phase thermodynamic properties that are most relevant when modelling
a distillation column are the pressure, the molar enthalpy (h) and the molar entropy
(s); they are given by

P

ρRT
= 1 + δ

(
∂αr

∂δ

)
τ

(A.26)

h

RT
= τ

((
∂α0

∂τ

)
δ

+

(
∂αr

∂τ

)
δ

)
+ δ

(
∂αr

∂δ

)
τ

+ 1 (A.27)

s

R
= τ

((
∂α0

∂τ

)
δ

+

(
∂αr

∂τ

)
δ

)
− α0 − αr (A.28)

Other thermodynamic properties that are often used to verify calculation routines
are the molar internal energy (u), the isochoric molar heat capacity (Cv), the isobaric
molar heat capacity (Cp) and the speed of sound (w). They are given by

u

RT
= τ

((
∂α0

∂τ

)
δ

+

(
∂αr

∂τ

)
δ

)
(A.29)

Cv

R
= −τ2

((
∂2α0

∂τ2

)
δ

+

(
∂2αr

∂τ2

)
δ

)
(A.30)
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Cp

R
= −τ2
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∂2α0

∂τ2

)
δ

+

(
∂2αr

∂τ2

)
δ

)
+

(
1 + δ

(
∂αr

∂δ

)
τ
− δτ

(
∂2αr

∂δ∂τ

))2

1 + 2δ
(
∂αr

∂δ

)
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∂δ2
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(A.31)

w2Mw

RT
= 1 + 2δ
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∂αr

∂δ

)
τ

+ δ2
(
∂2αr
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)
τ

−
(
1 + δ

(
∂αr

∂δ
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(
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∂2α0

∂τ2
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δ
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(
∂2αr

∂τ2

)
δ

) (A.32)

Equations (A.26) to (A.32) concern the calculation of thermodynamic properties of a
pure component, they are written using α0 and αr. If a mixture is concerned instead
of pure component, the structure of all equations remains the same, but all α0 and
αr should be replaced by αideal

mix and αreal
mix, and the derivatives should be taken at

constant composition.

A.4.2 Vapour–liquid equilibrium

The basic principle on which the distillation concept is built, is that the most volatile
component in the mixture concentrates in the vapour phase and the least volatile
component in the liquid phase. It is therefore essential for the modelling of a dis-
tillation column to know how each of the components gets distributed over the two
phases. In practise this distribution is often expressed using equilibrium constants
(Ki), they are defined as the ratios between the mole fractions in the vapour phase
(yi) and the mole fractions in the liquid phase (xi)

Ki =
yi
xi

(A.33)

A three component two phase system involves ten variables, namely a temperature,
a pressure and three mole fractions in each of the phases. Since the mole fractions in
a single phase must add up to one, there are only eight independent variables. When
two phases are at chemical equilibrium, this means that the temperature, pressure
and chemical potentials of the components (μi) are equal in both phases. These five
dependencies leave three degrees of freedom. This derivation is known as the phase
rule for non-reacting systems. It can be used to determine four practical equilibrium
calculations. In each of the calculations, the composition of one phase is fixed in
combination with either the temperature of the pressure. The result of the calculation
is given by the composition of the other phase and the pressure if the temperature
was fixed or the temperature if the pressure was fixed. Each type of calculation has
been given a name based on the quantities that are calculated; an overview is given
in Table A.3.

As can be seen in Table A.3, a fifth common calculation type exists; the flash cal-
culation. In this calculation, the total mole fractions (zi) are fixed in addition to
the temperature and pressure, and the vapour and liquid phase mole fractions are
calculated in combination with the molar vapour fraction (fv).
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Table A.3: Five types of vapour–liquid equilibrium calculations

Calculation type Fixed quantities Calculated quantities

Dew point temperature P, yi T, xi

Dew point pressure T, yi P, xi

Bubble point temperature P, xi T, yi
Bubble point pressure T, xi P, yi
Flash T, P, zi xi, yi, fv

General solving strategies

Unfortunately, the equilibrium calculations are not as straightforward as the single
phase thermodynamic property calculations. An iteration scheme is required to find
the solution. Two iteration schemes are often used in practise; one is based on a
direct substitution method and is known as the K-value method, the other is based
on Newton’s method. The K-value method is especially useful for mixtures that
have constant K-values, but the more the K-values start to differ as a function of
composition the worse this methods works. Newton’s method works for both constant
as well as varying K-values, but its disadvantage is that a good initial guess of the
solution has to be provided. It can be difficult to find a routine that always yields
sufficient accurate initial guesses. Because the K-values of the nitrogen–argon–oxygen
mixture are not constant, Newton’s method has been chosen as the method to use in
this work.
The primary aim of Newton’s method is to adjust the compositions of the phases
in such a way that the chemical potentials of all components become equal in both
phases. In terms of Helmholtz energy (A), the chemical potential of a component is
defined as the partial derivative with respect to the number of moles of the component
(ni) at constant temperature, total volume (V ) and number of moles of all other
components (nj)

μi =

(
∂A

∂ni

)
T,V,nj

(A.34)

All derivatives with respect to the numbers of moles are calculated numerically in this
work, as suggested by Lemmon et al. [2000].
Using Newton’s method, the numbers of moles of the components are continuously
updated until the chemical potentials are equal. In the case of a flash calculation, the
total composition is given and the distribution of the components over both phases is
solved for. The vector containing the changes in number of moles for each iteration
step (Δni) is then given by
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Δnv
i = −Δnl

i = −
(
∂μv

i

∂nv
j

+
∂μl

i

∂nl
j

)−1 (
μv
i − μl

i

)
with i = j = 3 (A.35)

Here, the first right-hand side term is a three-by-three matrix containing the partial
derivatives of the chemical potentials with respect to all components. Similar to the
change vector, the second right-hand side term is a vector with length three.
In the other four types of calculations listed in Table A.3 the composition of one
phase is fixed and the composition of the other phase is solved for. If the vapour
phase composition is fixed, the changes in number of moles for the liquid phase can
be calculated using

Δnl
i = −

(
∂μl

i

∂nl
j

)−1 (
μl
i − μv

i

)
with i = j = 3 (A.36)

A complication for all calculations is that the total number of moles in one or both
phases changes, which changes the pressures of the affected phases. An obvious way
to obtain or keep the desired pressure is to vary the volumes (or densities) of the
affected phases. In theory it is possible to include the required volume changes in the
iteration scheme as well. The additional partial derivatives that are needed are those
for the chemical potentials and pressures with respect to the volumes.
However, in practise this approach proves to require a very accurate initial guess,
making it unsuitable for the current work. Therefore a different solution strategy
has been used. It is explained in more detail for the case of a bubble point pressure
calculation below; and it can be applied to all calculations except the flash. But, with
the results of the other calculations, an accurate initial guess can be made for a flash
calculation based on Newton’s method with simultaneous updates in all numbers of
moles and volumes, as is discussed below.

Bubble point pressure calculation

The aim of a bubble point pressure calculation is to find the pressure and liquid phase
composition that are in equilibrium with a given vapour phase composition at a given
temperature.
The chosen strategy to find the solution is to start by picking two pressures, based
on an estimation of the mixture its saturated vapour pressure. At these two chosen
pressures, Newton’s method is used to find the numbers of moles in the liquid phase
that result into chemical equilibrium. Next, the found liquid composition is normal-
ized and the chemical potentials in the liquid phase are calculated using this new
composition. The difference between these chemical potentials and the fixed chemical
potentials in the vapour phase can then be translated into a quantity that represents
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the overall deviation (d). At the bubble point pressure this deviation is zero. It is
relatively easy to find the zero point, because the deviation is almost a perfect lin-
ear function of the pressure. A schematic of the calculation routine is shown below,
Matlab code for this routine can be found in Section A.A.

1. Estimate Pσ at T, yi using Equation (A.17).

2. Find nl
i at equilibrium for Pσ + dP1 and Pσ + dP2, using Equation (A.35).

3. Normalize nl
i.

4. Calculate d =
∑

i

(
1− μv

i

μl
i

)
5. Estimate P at which d = 0

6. Find nl
i at equilibrium for P , normalize nl

i, and calculate d.

7. Check whether |d| < ε at P ; return to step 5 if needed.

8. Pbub = P and xi = nl
i

In practise, an accurate bubble point pressure is often found after a single iteration.
The accuracy of this value is checked by calculating the overall deviation at this esti-
mated pressure. If the accuracy is too low, the first estimation can be used to obtain
a more accurate estimate for the bubble point pressure. The accuracy can continu-
ously be improved by adding more pressures, but in practise the maximum number
of required iterations for ε = 10−4 is two.
For a dew point pressure calculation, the liquid and vapour phase compositions should
simply be swapped. If a bubble point temperature calculation is performed, the pres-
sure and temperature should be swapped. And in the case of a dew point temperature
calculation, both liquid and vapour phase compositions, and pressure and temperature
should be swapped.

Flash calculation

Using routines for bubble and dew point temperature calculations similar to the rou-
tine discussed above, a flash calculation becomes straightforward. A schematic of the
calculation routine is shown below, Matlab code for the entire routine can be found
in Section A.B.

1. Calculate Tbub and Tdew at P, zi.

2. Check whether Tbub < T < Tdew; if not, stop.

3. Estimate fv using Equation (A.37).
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4. Estimate nv
i and nl

i using Equations (A.38) to (A.41).

5. Calculate V v and V l.

6. Find nv
i , n

l
i, V

v and V l at equilibrium for P and T .

7. Calculate yi, xi and fv.

The first step is to check whether the specified input lies in the two-phase region of the
mixture. This is done by calculating the bubble and dew point temperatures of the
mixture at the specified pressure. If the specified temperature does not lie in between
these two temperatures the calculation is terminated because the specified conditions
lie in a single phase region. Otherwise, an estimation for the vapour phase fraction is
made based on the calculated and specified temperatures, using an empirical equation

fv =

(
T − Tbub

Tdew − Tbub

)0.6

(A.37)

Using this vapour phase fraction, estimations for the vapour and liquid phase com-
positions are made. The composition of the smallest phase is estimated using the
difference between the overall composition and the bubble or dew point composition.
The composition of the largest phase is then obtained by subtracting the smallest
phase from the total composition. If the vapour phase is the smallest one, the com-
positions are estimated using

nv
i = fv

(
zi +

(
ybubi − zi

)
(1− fv)

)
(A.38)

nl
i = zi − nv

i (A.39)

Here it is assumed that the total number of moles equal unity. If the liquid phase is
the smallest phase, the compositions are estimated using

nl
i = (1− fv)

(
zi +

(
xdew
i − zi

)
fv
)

(A.40)

nv
i = zi − nl

i (A.41)

Using these estimates for the compositions, estimates for the volumes of the phases
can be calculated via the densities. Then the final step is to find the compositions and
volumes at which the two phases are at equilibrium, using Newton’s method for all
the compositions and volumes simultaneously. The result of this iteration step then
simply leads to the desired values of the vapour phase fraction and the vapour and
liquid phase mole fractions.
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A bubble point data table

A common method to solve distillation columns models is the bubble-point method.
This iterative method is especially useful for mixtures with relatively constant equilib-
rium constants. Each iteration step requires the calculation of all stage temperatures
using bubble point data. A bubble point temperature calculation as described above
takes about 1.4 seconds. This means that it would take about 14 minutes to obtain
the solution of a column with 20 trays that requires 30 iterations. A strategy to
substantially decrease the simulation time is to use a table with pre-generated bubble
point data. Instead of calculating the bubble point data numerous times during the
simulation, they can be obtained from the pre-generated table by interpolation, which
is much faster.
A bubble point temperature calculation of air requires three independent variables
as input; the pressure and two of the three liquid mole fractions. If the distillation
column is assumed to operate at a constant pressure, a simple two-dimensional table
is sufficient to cover the required range of possible input data. But if the pressure drop
over the stages is taken into account, a three-dimensional table is required, resulting
in a three-dimensional interpolation to obtain the bubble point data.
Matlab contains the ‘interpn’-function to perform multi-dimensional interpolations.
This function does not allow extrapolation and it needs an equally spaced grid, typ-
ically created using the ‘meshgrid’-function. The nitrogen and oxygen mole fraction
range from 0 to 1 and the argon mole fraction typically ranges from 0 to 0.2. The
combination of the grid requirements and the mole fraction ranges causes the sum of
the mole fractions to exceed 1 in some cases. In order to constrain the bubble point
to data to realistic values, a normalisation of the mole fractions is executed prior to
the calculation of the bubble point. It is therefore also necessary to ‘un-normalize’ the
input mole fractions before they are used as input to interpolate in the pre-generated
table. It has been verified that this procedure does not affect the accuracy of the bub-
ble point data. Interpolation at the grid point values yielded exactly the tabulated
values of the grid points.
The strategy proves to decrease the simulation time considerably in practise. The sim-
ulation of a distillation column with 18 trays requiring 41 iterations now takes only
23 seconds. So the simulation is about 50 times faster if a table with pre-generated
bubble point data is used. A three-dimensional table with 7 pressure grid points, 21
argon mole fraction grid points and 51 oxygen (and nitrogen) grid points has been
used for this particular simulation. The average difference between interpolated off-
grid values and their corresponding calculated values is 5 · 10−4% of the calculated
value, so the interpolated values are fairly accurate. If desired, the accuracy of the
interpolation results can be increased by adding more grid points, but this will also
slow the simulation somewhat down.

A.5 Comparing Matlab model results to literature

This section compares the results of the Matlab model that has been developed to
execute the calculation discussed in Section A.4 to literature values of the calculated
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properties as reported by Lemmon et al. [2000], and to two cubic equations of state.
Section A.5.1 compares the results for the single phase thermodynamic properties of
air and Sections A.5.2 and A.5.3 compare vapour–liquid equilibrium results of air. In
order to compare calculated values to reference values, Lemmon et al. use the average
absolute deviation (AAD), which is defined as

AAD =
1

n

n∑
i=1

∣∣∣∣∣1− Xcalc
i

Xref
i

∣∣∣∣∣ (A.42)

Here, X is any thermodynamic property. When fitting a model to experimental
data, the superscript ref refers to the experimental value. In the current work, this
superscript refers to the literature values reported by Lemmon et al..

A.5.1 Single phase thermodynamic properties of air

The performance of the developed Matlab model has been assessed in the state space
region that is most relevant for air distillation; temperatures between 60 and 120 K,
at intervals of 10 K, and pressures of 1 atm, 2 bar, 5 bar and 10 bar. Because the
model is explicit in density and not in pressure, the first step of each calculation was
to find the density that corresponds to the required pressure and temperature. The
next step was to calculate the isochoric heat capacity, the isobaric heat capacity, the
speed of sound, the internal energy, the enthalpy and the entropy at the specified
temperature and the found density. All calculations use the composition of air as
given in Table A.1. An overview of the calculation results is given in Section A.C. A
summarized comparison of these results to the literature values is shown in Table A.4.

Table A.4: Overview of the average absolute deviations
for thermodynamic properties of air

P (Pa) 101325 200000 500000 1000000 Combined Literature

AAD in ρ 0.0004 0.0004 0.0004 0.0003 0.0004 0.0010

AAD in u 0.0009 0.0007 0.0005 0.0004 0.0006 0.0010

AAD in h 0.0007 0.0006 0.0005 0.0004 0.0005 0.0010

AAD in s 0.0005 0.0005 0.0004 0.0004 0.0004 0.0010

AAD in Cv 0.0067 0.0096 0.0116 0.0108 0.0097 0.0078

AAD in Cp 0.0051 0.0074 0.0082 0.0067 0.0069 0.0175

AAD in w 0.0033 0.0031 0.0035 0.0039 0.0035 0.0045

AAD 0.0025 0.0032 0.0036 0.0033 0.0031 0.0048

Table A.4 shows the average absolute deviations for each thermodynamic property
at different pressures. Each value is the average over the entire temperature range,
including both liquid and vapour phases. The average over all thermodynamic prop-
erties is given in the last column. At the bottom of the table, the averages over all
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pressures are given as well; they can be compared to the shown literature values. The
AADs of the isochoric heat capacity and the velocity of sound are comparable, but
the AADs for the other calculated thermodynamic properties are about half of the
literature values. This means that in the worst case the accuracy of the Matlab model
calculations is only slightly lower than the accuracy of the literature values.

A.5.2 Bubble and dew point pressures of air

The performance of the vapour–liquid part of the developed Matlab model has been
assessed by comparing calculated bubble and dew point pressures to literature values.
These literature values are not obtained by a method similar to the method used in this
work; they are obtained using ancillary equations that have been fitted to experimental
data. Table A.5 shows a comparison between the literature and calculated values of
the bubble and dew point pressures at various temperatures, along with the absolute
deviations (AD), which is the non-averaged AAD.

Table A.5: Overview of the literature (Lit.) and calculated (Calc.)
bubble and dew point pressures

T (K)
Pbub (MPa) Pdew (MPa)

Lit. Calc. AD Lit. Calc. AD

60 0.00555 0.00555 0.0008 0.00258 0.00261 0.0106

65 0.01432 0.01432 0.0003 0.00776 0.00781 0.0063

70 0.03191 0.03191 0.0000 0.01943 0.01950 0.0036

75 0.06333 0.06333 0.0000 0.04228 0.04231 0.0007

80 0.11462 0.11461 0.0001 0.08232 0.08223 0.0012

85 0.19262 0.19266 0.0002 0.14665 0.14627 0.0026

90 0.30475 0.30478 0.0001 0.24320 0.24226 0.0039

95 0.45886 0.45882 0.0001 0.38047 0.37887 0.0042

100 0.66313 0.66319 0.0001 0.56742 0.56484 0.0046

105 0.92606 0.92534 0.0008 0.81341 0.80952 0.0048

110 1.25642 1.25441 0.0016 1.12824 1.12265 0.0050

115 1.66327 1.65902 0.0026 1.52226 1.51475 0.0050

120 2.15573 2.14825 0.0035 2.00674 1.99777 0.0045

AAD - - 0.0008 - - 0.0044

The absolute deviations averaged over all temperatures are given at the bottom of
the table. The accuracy of the literature values for the bubble point pressures that
is given by Lemmon et al. amounts 0.0057. So the Matlab model, which is based on
the mixture model described in Section A.3, performs well compared to the literature
values, which are obtained from an equation explicitly fitted for the bubble point
pressure of air as a function of temperature.
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A.5.3 Comparison to SRK and PRSV-LK equations of state

It is also interesting to get an idea about how the empirical Helmholtz based model dis-
cussed in this work behaves compared to cubic equations of state that are commonly
used in commercial simulation software. Therefore, a comparison has been made to
the Soave–Redlich–Kwong equation of state (SRK), and to the Peng–Robinsons equa-
tion of state modified by Stryjek and Vera and using Lee–Kessler vapour pressures
(PRSV-LK).
A basic air distillation column is used as basis for the comparison. In this way, a
good representation of the compositions and temperatures relevant for air distillation
is obtained. The column is modelled using Aspen HYSYS 2006. It has 16 trays, a
total condenser (tray 0) and a reboiler (tray 17). It operates at a constant pressure
of and the vapour phase feed is added to the column at tray 10. An oxygen recovery
of 98% and an oxygen purity of 95% are used as specifications.
First, the column is solved twice in HYSYS, using the SRK and the PRSV-LK equa-
tions of state. The resulting liquid and vapour phase compositions are then used to
calculate bubble and dew point temperatures and compositions using the Matlab rou-
tines discussed in Section A.4.2. The differences between the calculated temperatures
give an indication about how the models differ.
Figure A.1 shows the temperature differences for the liquid and vapour phases be-
tween the empirical Helmholtz based equation of state and the SRK equation of state,
Figure A.2 shows the differences between the Helmholtz based equation of state and
the PRSV-LK equation of state.
Both figures show the largest temperature differences in the middle part of the col-
umn, at the columns’ tops and bottoms the differences are the smallest. At the feed
stage, the compositions inside the column are almost equal to the composition of air.
Because the empirical Helmholtz based model is especially accurate for this compo-
sition, it is most likely that the temperature differences are caused by the inaccuracy
of the cubic equations of state when used for multi-component mixtures. Near the
columns’ tops and bottoms the compositions change towards a binary mixtures and
pure components, this is why the temperature differences can become smaller.

A.6 Conclusion

A modern empirical equation of state for mixtures of nitrogen, argon and oxygen has
successfully been implemented in a Matlab model. The equation of state is explicit
in Helmholtz energy and describes the real mixing properties as an excess Helmholtz
energy. The Matlab model can be used to calculate various single phase thermo-
dynamic properties and vapour–liquid equilibrium conditions. The accuracy of the
Matlab model is comparable to the accuracy of the literature model that is used
as basis. The average absolute deviation of the relevant single phase thermodynamic
properties is below 0.1% and the average absolute deviation of the vapour–liquid equi-
librium conditions is below 0.5%. The Matlab model is suitable for use during the
design of an air distillation column. The differences between the empirical equations
of state and cubic equations of state are the largest for multi component mixtures.
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Figure A.1: Comparison between vapour and liquid phase temperatures
of the empirical Helmholtz based equation of state

and the Soave–Redlich–Kwong equation of state.
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Figure A.2: Comparison between vapour and liquid phase temperatures of the
empirical Helmholtz based equation of state and the modified Peng–Robinsons

equation of state by Stryjek & Vera with Lee–Kessler vapour pressures.
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A.A Matlab code for a bubble point pressure calculation

function [ Pbub, yi ] = FIND_Pbub( T, zi )
%Bubble point pressure and vapour composition
% This function calculates the bubble point pressure [Pa] and mole fractions
% in the vapour phase [-] for a given temperature [K] and overall mole
% fractions [-] (which are equal tot the mole fractions in the liquid phase).

global k

% A rough estimate for the mixture's boiling pressure at the given
% temperature is obtained using the saturated vapour pressures. This 
% pressure is used to generate estimates for the bubble point pressure.
xi = zi;
Pb = sum(CALC_Psati(T).*xi);

% A quite accurate value for the bubble point pressure is obtained by 
% calculating the errors in chemical potentials for multiple pressure 
% estimates, and interpolating at which pressure the error becomes zero.
% Because the error is an almost linear function of the pressure, two
% estimates are sufficient. More estimates can be added to increase the
% accuracy, but it also increases the calculation time.
Pb = linspace(0.8*Pb,Pb,2);
for i = 1:length(Pb)
    [yi(i,:),dx(i)] = FIND_yi(T,Pb(i),xi);
end
Pbub = spline(dx,Pb,0);

% The accuracy of the estimated bubble point pressure is checked, and if
% needed a more accurate value is obtained. In practice only one or even
% zero updates are required.
iter = 0;
cnv = 0;
while iter < 5 && ~cnv
   [yi,dx] =  FIND_yi(T,Pbub,xi);

if abs(dx) < 1E-4
        cnv = 1;

else
        Pbub(2) = Pbub*1.01;
        [yi(2,:),dx(2)] =  FIND_yi(T,Pbub(2),xi);
        Pbub = spline(dx,Pbub,0);

end
   iter = iter + 1;
end

% Display a warning message if the calculation did not converge properly
if dx > 1E-4
    disp('Warning: unconverged bubble point pressure.')
end
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function [ yi, dx ] = FIND_yi( T, P, xi )
%Vapour phase mole fractions and total deviation in chemical potentials
% This function finds the vapour phase composition that is in equilibrium with
% given liquid phase mole fractions [-] at given temperature [K] and
% pressure [Pa]. The found numbers of moles in the vapour phase are normalised
% to yield the vapour phase mole fractions [-] and the total deviation between
% the chemical potential of the liquid and vapour phase [-] is calculated.
% This function is used in FIND_Pbub and FIND_Tbub.

global k

% Initialise some variables
n_l = xi;     % number of moles in the liquid phase
rho_l = FIND_rhol(T,P,xi);  % molar density in the liquid phase
V_l = sum(n_l) / rho_l;   % volume of the liquid phase
mu_l = CALC_dAdni(T,V_l,n_l)'; % chemical potential of the liquid phase
yi = xi;     % vapour phase mole fractions
n_g = yi;     % number of moles in vapour phase
rho_g = FIND_rhog(T,P,yi);  % molar density in the vapour phase
V_g = sum(n_g) / rho_g;   % volume of the vapour phase

% Find the equilibrium compositions using Newton steps
iter = 0;
cnv = 0;
while iter < 10 && ~cnv
    mu_g = CALC_dAdni(T,V_g,n_g)';

if max(abs(1-mu_g./mu_l)) < 1E-4
        cnv = 1;

else
        d2Adn2 = CALC_d2Adni2(T,V_g,n_g);
        dn = -(d2Adn2\(mu_g-mu_l));

for i = 1:length(dn)
while n_g(i) ~=0 && n_g(i)+dn(i) <= 1E-8

                  dn = dn*0.2;
disp('reduce step size to 20 percent of old value');

end
end

        n_g = n_g + dn';
        iter = iter + 1;

end
end
% Normalise the found solution
yi = n_g / sum(n_g);

% Calculate the error when using new mole fractions
n_g = yi;
rho_g = FIND_rhog(T,P,yi);
V_g = sum(n_g) / rho_g;
mu_g = CALC_dAdni(T,V_g,n_g)';
dx = sum(1-mu_g./mu_l);
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A.B Matlab code for a flash calculation

function [ yi, xi, f_g, cnv ] = FLASH( T, P, zi, varargin )
%Vapour and liquid phase mole fractions, and molar gas fraction
% This function finds the equilibrium compositions for a mixture of given
% total composition at specified temperature [K] and pressure [Pa]. First a
% rough initial guess of the molar gas fraction is calculated, using the
% bubble and dew point temperatures. An initial guess for the distribution
% of a fixed number of moles over the phases and components is made, as 
% well as for the volumes. Equilibrium conditions are solved based on equal 
% chemical potentials and that both pressures should be equal to the target
% pressure. The volumes and mole numbers are updated using newton steps.

global k

% The total number of moles in the system
ntot = 1000;

% The bubble and dew point conditions can either be provided as input to
% the function in order to save time or they can be calculated.
if nargin > 3
    Tbub = varargin{1};
    yi_bub = varargin{2};
    Tdew = varargin{3};
    xi_dew = varargin{4};
else
    [Tbub, yi_bub] = FIND_Tbub(P,zi);
    [Tdew, xi_dew] = FIND_Tdew(P,zi);
end

% Check whether the given conditions are inside the two-phase region. If
% so, estimates for the vapour and liquid phase mole compositions are
% calculated, based on the estimated molar gas fraction.
if T < Tbub 
    disp('Warning: conditions out two-phase region, single liquid phase');
    yi = [0,0,0];
    xi = zi;
    f_g = 0;
    cnv = -1;

return
elseif T > Tdew
    disp('Warning: conditions out two-phase region, single gas phase');
    yi = zi;
    xi = [0,0,0];
    f_g = 1;
    cnv = -1;

return
else
    f_g = ((T - Tbub) / (Tdew - Tbub))^0.6;

if f_g < 0.5
        yi = zi + (yi_bub-zi)*(1-f_g);
        n_g = ntot*yi*f_g;
        n_l = ntot*zi - n_g;
        xi = n_l / sum(n_l);

else
        xi = zi + (xi_dew-zi)*(f_g);
        n_l = ntot*xi*(1-f_g);
        n_g = ntot*zi - n_l;
        yi = n_g / sum(n_g);

end
end



280 Appendix A. Thermodynamic properties of N2–Ar–O2-mixtures

% Estimates for the volumes using the molar densities
rho_g = FIND_rhog(T,P,yi);
rho_l = FIND_rhol(T,P,xi);
V_g = sum(n_g) / rho_g;
V_l = sum(n_l) / rho_l;

% Find the equilibrium volumes and compositions at the specified pressure,
% using Newton steps.
iter = 0;
cnv = 0;
while iter < 15 && ~cnv
    P_g = -CALC_dAdV(T,V_g,n_g);
    P_l = -CALC_dAdV(T,V_l,n_l);
    mu_g = CALC_dAdni(T,V_g,n_g)';
    mu_l = CALC_dAdni(T,V_l,n_l)';

if abs(P-P_g) < 1 && abs(P-P_l) < 1 && iter > 0 && max(abs(1-mu_g./mu_l)) < 1E-3
        cnv = 1;

else
        g1 = [-P_g;-P;mu_g];
        H1 = [CALC_d2AdV2(T,V_g,n_g),0,CALC_d2AdVdni(T,V_g,n_g); ...
              0,0,0,0,0,; ...
              CALC_d2AdVdni(T,V_g,n_g)',[0;0;0],CALC_d2Adni2(T,V_g,n_g)];
        g2 = [-P;-P_l;mu_l];
        H2 = [0,0,0,0,0,; ...
              0,CALC_d2AdV2(T,V_l,n_l),CALC_d2AdVdni(T,V_l,n_l); ...
              [0;0;0],CALC_d2AdVdni(T,V_l,n_l)',CALC_d2Adni2(T,V_l,n_l)];
        dg = (g1 - g2);
        H = H1 + H2;
        dx = -(H\dg);
        st1 = [V_g,V_l,n_g];
        st2 = [V_g,V_l,n_l];

for i = 3:length(dx)
while st1(i)+dx(i) <= 1E-8 || st2(i)-dx(i) <= 1E-8

                  dx = dx*0.2;
                  disp('reduce step size to 20 percent of old value');

end
end

        V_g = V_g + dx(1);
        V_l = V_l - dx(2);

if V_g < 0 || V_l < 0
            disp('Warning: negative volume encountered');

end
        n_g = n_g + dx(3:end)';
        n_l = n_l - dx(3:end)';
        iter = iter + 1;

end
end

% Return results
yi = n_g / sum(n_g); % vapour phase mole fractions
xi = n_l / sum(n_l); % liquid phase mole fractions
f_g = sum(n_g) / ntot; % molar gas fraction

% Display a warning message if the calculation did not converge properly
if ~cnv
    disp('Warning: unconverged flash calculation')
end
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A.C Single phase thermodynamic properties

Table A.6: Single phase thermodynamic properties of air at P = 1 atm.

T ρ u h s Cv Cp w

(K)
(
mol
dm3

) (
J

mol

) (
J

mol

) (
J

molK

) (
J

molK

) (
J

molK

) (
m
s

)
60.00 33.039 -6566.7 -6563.6 26.807 33.74 54.92 1043.8

70.00 31.590 -6016.0 -6012.8 35.298 31.76 55.31 952.2

78.90 30.220 -5520.9 -5517.6 41.957 30.27 56.07 867.6

81.72 0.15504 -241.3 412.2 116.094 21.35 31.01 177.4

90.00 0.13938 -60.9 666.0 119.053 21.11 30.39 187.3

100.00 0.12446 153.7 967.8 122.233 20.99 29.99 198.3

110.00 0.11256 366.1 1266.3 125.078 20.91 29.74 208.6

120.00 0.10281 577.2 1562.8 127.658 20.85 29.57 218.3

Table A.7: Single phase thermodynamic properties of air at P = 2 bar.

T ρ u h s Cv Cp w

(K)
(
mol
dm3

) (
J

mol

) (
J

mol

) (
J

molK

) (
J

molK

) (
J

molK

) (
m
s

)
60.00 33.044 -6567.5 -6561.4 26.795 33.75 54.90 1044.4

70.00 31.597 -6017.0 -6010.7 35.283 31.77 55.29 952.8

80.00 30.053 -5460.6 -5453.9 42.716 30.11 56.18 857.7

85.39 29.165 -5155.9 -5149.0 46.405 29.34 57.03 804.7

87.99 0.29156 -148.9 537.0 112.192 21.71 32.36 181.5

90.00 0.28376 -103.1 601.7 112.919 21.59 32.04 184.1

100.00 0.25111 120.2 916.7 116.239 21.28 31.06 195.9

110.00 0.2258 338.5 1224.2 119.171 21.11 30.50 206.8

120.00 0.20545 553.8 1527.3 121.808 21.00 30.13 216.9
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Table A.8: Single phase thermodynamic properties of air at P = 5 bar.

T ρ u h s Cv Cp w

(K)
(
mol
dm3

) (
J

mol

) (
J

mol

) (
J

molK

) (
J

molK

) (
J

molK

) (
m
s

)
60.00 33.060 -6569.8 -6554.6 26.756 33.76 54.87 1046.1

70.00 31.617 -6020.1 -6004.3 35.239 31.79 55.24 954.7

80.00 30.079 -5464.8 -5448.2 42.663 30.13 56.10 860.1

90.00 28.401 -4896.8 -4879.2 49.363 28.75 57.91 760.9

96.12 27.270 -4537.6 -4519.3 53.232 28.06 59.88 695.8

98.36 0.69445 -35.8 684.2 106.834 22.66 36.30 185.5

100.00 0.67801 5.7 743.2 107.429 22.47 35.67 187.9

110.00 0.59595 247.9 1086.8 110.706 21.81 33.36 200.9

120.00 0.53467 478.6 1413.8 113.551 21.47 32.13 212.5

Table A.9: Single phase thermodynamic properties of air at P = 10 bar.

T ρ u h s Cv Cp w

(K)
(
mol
dm3

) (
J

mol

) (
J

mol

) (
J

molK

) (
J

molK

) (
J

molK

) (
m
s

)
60.00 33.085 -6573.6 -6543.4 26.692 33.78 54.82 1048.9

70.00 31.649 -6025.3 -5993.7 35.165 31.81 55.16 957.8

80.00 30.122 -5471.8 -5438.6 42.575 30.16 55.96 864.0

90.00 28.461 -4906.6 -4871.5 49.254 28.78 57.67 766.1

100.00 26.581 -4317.0 -4279.4 55.489 27.70 61.18 659.2

106.22 25.224 -3926.7 -3887.0 59.294 27.21 65.37 584.3

108.10 1.38310 6.9 730.0 102.412 24.08 43.69 185.8

110.00 1.33793 63.8 811.2 103.157 23.63 41.90 189.2

120.00 1.15664 336.6 1201.2 106.554 22.46 36.89 204.3



Bibliography

Agrawal, R., Woodward, D. W., 1991. Efficient cryogenic nitrogen generators: An
exergy analysis. Gas Separation and Purification 5, 139–150.

Agrawal, R., Woodward, D. W., Ludwig, K. A., Bennett, D. L., 1993. Impact of low
pressure drop structure packing on air distillation. Institution of Chemical Engineers
Symposium Series 128, A125–A138.

Arman, B., Nguyen, T. C., Bonaquist, D. P., Wong, K. K., 2001. Cryogenic air
separation system using an integrated core. US Patent 6237366.

Asami, T., 1990. Thermodynamic properties of argon calculated from the BWR
equation of state with eight newly determined coefficients. Cryogenics 30, 968–971.

Asami, T., Ebisu, H., 1989. Thermodynamic properties of nitrogen calculated from
the BWR equation of state. Cryogenics 29, 995–997.

Asami, T., Ebisu, H., 1990. Thermodynamic properties of oxygen calculated from
the BWR equation of state with eight newly determined coefficients. Cryogenics 30,
113–115.

Asano, K., 2006. Mass transfer. From fundamentals to modern industrial applica-
tions. Wiley-VCH.

Bedeaux, D., Kjelstrup, S., 2004. Irreversible thermodynamics – a tool to describe
phase transitions far from global equilibrium. Chemical Engineering Science 59, 109–
118.

Bejan, A., 1982. Entropy generation through heat and fluid flow. Wiley, New York,
United States of America.

Bejan, A., Tsatsaronis, G., Moran, M., 1996. Thermal design and optimization.
Wiley, New York, United States of America.

Biddulph, M. W., 1975. Multicomponent distillation simulation – distillation of air.
AIChE Journal 21, 327–335.



284 Bibliography

Bolland, O., Booth, N., Franco, F., Machhi, E., Manzoli, G., Naqvi, R., Pfeffer,
A., Rezvani, S., Abu Zara, M., May 2009. Common framework definition document.
Deliverable 1.4.1, DECARBit project, public report.

Briesch, M. S., Deen, P. G., Sullivan, T. B., 2007. Advanced integration for improved
integrated gasification combined cycle efficiency. US Patent 20070181854.

Brugerolle, J. R., Ha, B., 2009. Thermal integration of oxygen plants. US Patent
20090178408.
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– Part 1: Safety valves. Comité Européen de Normalisation, Brussels, Belgium.

Chen, H., Huang, K., Wang, S., 2010. A novel simplified configuration for an ideal
heat-integrated distillation column (ideal HIDiC). Separation and Purification Tech-
nology 73, 230–242.

Cipolla Jr., J. W., Lang, H., Loyalka, S. K., 1974. Kinetic theory of condensation
and evaporation II. Journal of Chemical Physics 61 (1), 69–77.

Clarke, W., Jacobsen, R., Beyerlein, S., Penoncello, S., 1993. An Extended corre-
sponding states model for predicting thermodynamic properties of the N2-Ar-O2
mixture. Fluid Phase Equilibria 88, 13–24.

Cornelissen, R. L., 1997. Thermodynamics of sustainable development - The use of
exergy analysis and the reduction of irreversibility. Ph.D. thesis, Universiteit Twente,
Enschede, The Netherlands.

Darde, A., Prabhakar, R., Tranier, J. P., Perrin, N., 2009. Air separation and flue gas
compression and purification units for oxy-fuel combustion systems. Energy Procedia
1, 527–534.



Bibliography 285

Dawson, B. K., Siegmund, S. C., Yonggui, Z., 2004. Flowsheet optimization for multi-
product air separation units. In: Proceedings of the 1st Baosteel Annual Academic
Conference; Shanghai, China, 27-28 May 2004.

De Groot, S. R., Mazur, P., 1962. Non-equilibrium thermodynamics. North-Holland
publishing company, Amsterdam, the Netherlands.

De Koeijer, G. M., 2002. Energy efficient operation of distillation columns and a
reactor applying irreversible thermodynamics. Ph.D. thesis, Norwegian University
of Science and Technology, Trondheim, Norway.

De Koeijer, G. M., Kjelstrup, S., 2004. Application of Irreversible Thermodynamics
to Distillation. International Journal of Thermodynamics 7 (3), 107–114.

De Koeijer, G. M., Kjelstrup, S., Salamon, P., Siragusa, G., Schaller, M., Hoffmann,
K. H., 2002. Comparison of Entropy Production Rate Minimization Methods for
Binary Diabatic Distillation. Industrial & Engineering Chemical Research 41, 5826–
5834.

De Koeijer, G. M., Røsjorde, A., Kjelstrup, S., 2004. Distribution of heat exchange
in optimum diabatic distillation columns. Energy 29, 2425–2440.

De Rijke, A., 2007. Development of a concentric internally heat integrated distillation
column. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.

Egoshi, N., Kawakami, H., Asano, K., 1999. Mass transfer in ternary distillation
of nitrogen–argon–oxygen system in wetted-wall column. Journal of Chemical Engi-
neering of Japan 32, 409–416.

Egoshi, N., Kawakami, H., Asano, K., 2000. Mass transfer in binary distillation
of nitrogen–oxygen and argon–oxygen systems by packed column with structured
packings. Journal of Chemical Engineering of Japan 33, 245–252.

Egoshi, N., Kawakami, H., Asano, K., 2001. Heat and mass transfer model approach
to prediction of separation performance of cryogenic air separation plant by packed
columns with structured packing. Journal of Chemical Engineering of Japan 34,
22–29.

Egoshi, N., Kawakami, H., Asano, K., 2002. Heat and mass transfer model approach
to optimum design of cryogenic air separation plant by packed columns with struc-
tured packing. Separation and Purification Technology 29, 141–151.

Egoshi, N., Kusuno, T., Kawakami, H., 1997. Mass transfer in binary distillation
of nitrogen–oxygen and argon–oxygen systems in a wetted-wall column. Journal of
Chemical Engineering of Japan 30, 7–12.

Emun, F., Gadalla, M., Majozi, T., Boer, D., 2010. Integrated gasification com-
bined cycle (IGCC) process simulation and optimization. Computers and Chemical
Engineering 34, 331–338.



286 Bibliography

Estela-Uribe, J., 2006. A Helmholtz energy model for air and binary mixtures of
nitrogen, oxygen and argon. Fluid Phase Equilibria 243, 171–182.
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