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Abstract: This article presents a Cramér-Rao lower bound for the discrete-time filtering
problem under linear state constraints. A simple recursive algorithm is presented that extends
the computation of the Cramér-Rao lower bound found in previous literature by one additional
step in which the full-rank Fisher Information matrix is projected onto the tangent hyperplane
of the constraint set. This makes it possible to compute the constrained Cramér-Rao lower
bound for the discrete-time filtering problem without reparametrization of the original problem
to remove redundancies in the state vector, which improves insights into the problem. It is
shown that in case of a positive-definite Fisher Information Matrix the presented constrained
Cramér-Rao bound is lower than the unconstrained Cramér-Rao bound. The bound is evaluated
on an example.

1. INTRODUCTION

Discrete-time state estimation arise in adaptive control,
identification as well as in model-based control, where it
is usually prior to the control prediction step. In general,
it is challenging to build an optimal estimator for such
systems. Hence, it is necessary to turn to one of the many
suboptimal filter techniques (Galdos, 1980).
A common strategy to design such an estimator is to use
the Bayesian approach. Closed form solutions exist only for
a few cases, and often it is necessary to approximate the
Bayesian solution numerically. However, filters based on
such approximations lead to estimates that deviate from
the ideal solution (Šimandl et al., 2001). Lower bounds on
the mean-square error of an estimate can give an indication
of performance limitations. Consequently, it can be used
to determine whether imposed performance requirements
are realistic or not (Galdos, 1980; Šimandl et al., 2001;
Tichavsky et al., 1998). The Cramér-Rao bound (CRB)
given as the inverse of the Fisher information matrix
(FIM) presents such a lower bound for dynamic models.
However, in time-varying systems the estimated parame-
ter vector (the estimated state vector) has to be consid-
ered random since it corresponds to an underlying non-
linear, randomly driven model (Tichavsky et al., 1998).
In Van Trees (1968) the CRB was extended for random
parameter estimation. The CRB was successfully applied
in state estimation for discrete-time non-linear stochastic
dynamic systems in Galdos (1980) and Bobrovsky and
Zakai (1975). The basic principle for both bounds is to
construct a suitable Gaussian system for which the mean-

1 This work was supported by Statoil ASA, and in part by Centre
for Autonomous Marine Operations and Systems (CoE AMOS, RCN
project no. 223254)

square estimation error is a lower bound to that of the
original system. Another approach to compute the CRB
for filtering problems in discrete-time non-linear systems
was proposed by Tichavsky et al. (1998). They assume the
state history as random parameter and obtain the CRB for
the state as lower right block of the CRB for the complete
state history (Šimandl et al., 2001). They referred to the
obtained bound as posterior CRB (PCRB).
In some applications, prior knowledge in form of linear
equality constraints is available. This information should
result in improved estimates and a lower CRB (Marzetta,
1993). One way to find the CRB under constraints is to re-
parametrize the original problem and remove redundancies
in the parameter vector. However, this approach may be
difficult to implement, and may hinder insights into the
original unconstrained problem (Stoica and Ng, 1998).
Gorman and Hero (1990) proposed a convenient way to
compute the constrained CRB for static problems. The
bound equals the bound of the original unconstrained
problem minus a correction matrix. The same result with a
different proof was presented by Marzetta (1993). Another
constrained CRB, which also holds for singular Fisher
Information matrices, was presented by Stoica and Ng
(1998). This theory was extended for complex parameters
by Jagannatham and Rao (2004) and biased estimators by
Ben-Haim and Eldar (2009).
This article connects the theory about constrained CRB
with the PCRB for discrete-time systems presented by
Tichavsky et al. (1998).
The article proceeds as follows: An overview over the
PCRB is given in Section 2. In Section 3 the constrained
CRB is introduced. How to compute the constrained CRB
recursively is established in Section 4. In Section 5 it
is proven that the constrained CRB is smaller or equal
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than the unconstrained CRB, while in Section 6 it is
demonstrated how to compute the constrained CRB for
a linear Gaussian case. A numerical example is discussed
in Section 7 followed by a conclusion.

2. THE CRB FOR THE NON-LINEAR FILTERING
PROBLEM

This section follows mainly the posterior CRB presented
in Tichavsky et al. (1998), which was also summarized
in Šimandl et al. (2001). Consider the discrete-time non-
linear filtering problem

xk+1 = fk (xk,wk ) (1a)

zk = hk (xk, vk ), (1b)

where k is the time index, and xk ∈ R
n and zk ∈ R

y repre-
sent the state and measurement vectors, respectively. The
vectors wk ∈ R

n and vk ∈ R
y are mutually independent

white processes and fk and hk are non-linear functions.
They may depend on the time k. The white noise processes
are described by known probability density functions (pdf)
p(wk ) and p(vk ). Furthermore, it is assumed that the
initial state x0 has a known pdf p(x0).
Let the complete state and measurement histories up to
the time instant k be denoted as Xk = [xT0 , x

T
1 , . . . , x

T
k

]T and

Zk = [zT0 , z
T
1 , . . . , z

T
k

]T , respectively. The joint pdf of state
and measurement histories p(Xk,Zk ) may be written as
p(Xk,Zk ) = p(Zk |Xk )p(Xk ). Respecting that, the stochas-
tic system (1) is a Markov process, the logarithm of this
pdf can be expressed as

ln p(Xk,Zk ) = ln p(x0) +
k∑
i=0

ln p(zi |xi) +
k∑
i=1

ln p(xi |xi−1).

(2)
If the expectation and derivatives exist, the FIM for this
system can be computed as

Jk |k (Xk ) = −E
(
∇Xk

[∇Xk
ln p(Xk,Zk )]T

)
, (3)

where we know that the mean-square error matrix
(MSEM) is bounded by the inverse of the FIM

Σk |k = E
{
(Xk − X̂k )(Xk − X̂k )T

}
≥ J−1k |k . (4)

Following the notation used in Šimandl et al. (2001) and
in order to simplify the derivation of the filtering estimate
let us introduce the following n × n matrices

Kk
k+1 = E{−∇xkxk ln p(xk+1 |xk )T ]}, (5a)

Kk,k+1
k+1

= E{−∇xk+1xk ln p(xk+1 |xk )T ]} = [Kk+1,k
k+1

]T , (5b)

Kk+1
k+1 = E{−∇xk+1xk+1 ln p(xk+1 |xk )T ]}, (5c)

Lk
k = E{−∇xkxk ln p(yk |xk )]T }, (5d)

where we will define

Dk = Lk
k +K

k
k +K

k
i+1. (6)

The lower index in (5) is the time instant of the state
described by the transition pdf, while the upper index
represents the states for which the derivatives of the
transition pdf are performed.
Using (2) and the introduced notations (5) the FIM (4)
decomposes into four blocks

Jk |k (Xk ) =



D0 K0,1
1

K1,0
1

. . .
. . .

. . . Dk−1 Kk−1,k
k

Kk,k−1
k

Lk
k
+Kk

k



=



J1,1
k |k

J1,2
k |k

J2,1
k |k

J2,2
k |k


, (7)

where the zero elements have been left empty and for
k = 0 it holds J0 |0(x0) = L0

0 + K0
0. The blocks of the

FIM represent the state history decomposed as Xk =
[XT

k−1
, xT

k
]T . Following this notation, we can see that the

time update can be expressed as (Šimandl et al., 2001)

Jk+1 |k (Xk+1) =



J1,1
k |k

J1,2
k |k

0

J2,1
k |k

J2,2
k |k
+Kk

k+1
Kk,k+1

k+1

0 Kk+1,k
k+1

Kk+1
k+1


(8)

and the measurement update as

Jk |k (Xk ) =


J1,1
k |k−1

J1,2
k |k−1

J2,1
k |k−1

J2,2
k |k−1

+ Lk
k


. (9)

The dimension of the FIM (8) and (9) increase at each it-
eration. Furthermore, it can be easily seen that Jk |k−1(Xk )
and Jk |k (Xk ) are equal except for the lower-right corner
block, which is Kk

k
compared to Kk

k
+ Lk

k
.

Applying (4) to (9) a formulation for the inequality for the
MSEM of a filtering estimate at time k can be obtained

E
{
(xk − x̂k )(xk − x̂k )T

}
≥ Ck |k = [J−1k |k (Xk )]22, (10)

where Ck |k is the PCRB of an estimate x̂k |k . Using the

matrix inversion lemma (A.1)-(A.2) and J2,2
k |k−1

= Kk
k

we

obtain

C−1k |k = Lk
k +K

k
k − J

2,1
k |k−1

[J1,1
k |k−1

]−1J1,2
k |k−1

(11)

for the measurement update. For the time-update with
the same matrix inversion lemma the following can be
obtained

C−1k+1 |k = Kk+1
k+1 −

(
0 Kk+1,k

k+1

) *
,

J1,1
k |k

J1,2
k |k

J2,1
k |k

J2,2
k |k
+Kk

k+1

+
-

−1 (
0

Kk,k+1
k+1

)
= Kk+1

k+1−

Kk+1,k
k+1

(
J2,2
k |k
+Kk

k+1 − J
1,2
k |k

[J1,1
k |k

]−1J2,1
k |k

)−1
Kk,k+1

k+1
.

(12)

With (11) and J1,1
k |k−1

= J1,1
k |k

, J1,2
k |k−1

= J1,2
k |k

and J2,2
k |k−1

= Kk
k

this can be reduced to

C−1k+1 |k = Kk+1
k+1 −K

k+1,k
k+1

(
Kk

k+1 + C
−1
k |k

)−1
Kk,k+1

k+1
. (13)

With (12) the measurement update can also be reduced to

C−1k |k = C−1k |k−1 + L
k
k, (14)

which completes the recursion to compute the CRB for the
time and measurement update.

3. CONSTRAINED CRB

In this section, the constrained CRB is introduced. This
section will closely follow the derivation presented in
Stoica and Ng (1998). However, the difference between
this paper and Stoica and Ng (1998) is that Stoica and Ng
(1998) assumed that a vector of non-random parameters
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is estimated. In this paper, on the other hand, a vector of
random parameters X based on a vector of observations Z
is estimated. It is required that the estimate X̂ satisfies l
(l < n) continuously differentiable constraints,

f (X̂) = 0. (15)

It is further assumed that the set {X| f (X) = 0} is non-
empty. The gradient matrix of the constraints can be
defined as

F =
∂f (X)
∂XT

, (16)

where it is assumed that (16) has full rank for any X
satisfying (15). Thus, there exist an n × (n − l) matrix U
such that

FU = 0, UTU = I, (17)

where it is assumed that U is independent of X. While
this is restrictive, it always holds for linear constraints.
The likelihood function is given by (2), and let us denote

∆ = ∇X ln p(X,Z). (18)

In that case, the FIM (3) is alternatively given as

J = E(∆∆T ). (19)

If the following conditions exist

(1) ∂
p(X,Z)
∂x

j
i

is absolutely integrable with respect to X and

Z for i = 0, . . . , k and j = 0, . . . , n.

(2) ∂2
p(X,Z)
∂x

j
i

is absolutely integrable with respect to X and

Z for i = 0, . . . , k and j = 0, . . . , n .
(3) The conditional expectation of the error, given X, is

B(X) =
∫ ∞

−∞

[X̂ −X]p(Z|X)dZ, (20)

where B(X) denotes the bias of the estimate. It is
assumed that

lim
x
j
i→∞

B(X)p(X) = 0, for i = 0, . . . , k
lim

x
j
i→−∞

B(X)p(X) = 0, and j = 0, . . . , n (21)

With the conditions it can be shown that the following
holds (Van Trees and Bell, 2013)

E((X̂ −X)∆T ) = I, (22)

which is the fact that is required such that

E((X̂ −X)∆T )UUT = UUT . (23)

Lemma 1. If the condition holds, with U defined in (17)
and in case UTJU is non-singular the constrained CRB is
given as

E
{
(X − X̂)(X − X̂)T

}
≥ U(UTJU)−1UT . (24)

Proof. Let W be an arbitrary n × n matrix. Then

E
{
(X − X̂ −WUUT∆)(X − X̂ −WUUT∆)T

}

= E
{
(X − X̂)(X − X̂)T

}
−WUUT−

UUTWT +WUUTJUUTWT ≥ 0, (25)

where the equality follows from (23) and the fact that U
is independent of X. The inequality is a consequence of
the positive semi-definiteness of the covariance matrix of
X − X̂ −WUUT∆. For the rest of the proof the derivation
in Stoica and Ng (1998) can be followed.

4. THE CONSTRAINED CRB FOR THE
NON-LINEAR FILTERING PROBLEM

Theorem 2. The constrained CRB for the non-linear fil-
tering problem can be computed by a time update

C−1k |k−1 = Kk
k −K

k,k−1
k

(
Kk−1

k + C̃−1k−1 |k−1
)−1

Kk−1,k
k

, (26)

a measurement update

C−1k |k = C−1k |k−1 + L
k
k, (27)

and a constraint update

C̃k |k = Uk (UT
kC
−1
k |kUk )−1UT

k . (28)

Proof. It will be shown that the constrained CRB of the
whole system (4) results in the same CRB as given by the
recursion (26)-(28). This will be shown for the first time
step and afterwards in will be shown that this holds also
for every following time step.
The FIM for whole state and measurement history after
the first time step is given by the following 2n× 2n matrix

J1 |1(X1) =
(
K0

0 + L
0
0 +K

0
1 K0,1

1

K1,0
1 L1

1 +K
1
1.

)
(29)

It is assumed that the constraints (15) depend only on the
states at each time step. This gives a 2n × 2(n − l) matrix

U(X1) =
(
U(x0) 0

0 U(x1)

)
=

(
U0 0
0 U1,

)
(30)

where the matrix Ui of each state is on the diagonal while
all other entries are zero. Using (24), (30) and the matrix
inversion lemma (A.1) on (29) to compute the constrained
CRB for state x1 we obtain

C̃1 |1 = U1

[
UT

1

(
L1
1 +K

1
1

)
U1−

UT
1K

1,0
1 U0

[
UT

0

(
K0

0 + L
0
0 +K

0
1

)
U0

]−1
UT

0K
0,1
1 U1

]−1
UT

1 .

(31)

With the recursion (26)-(28) the constrained CRB for state
x1 is

C̃1 |1 =U1·
[
UT

1

(
L1
1 +K

1
1 −K

1,0
1

[
J0 |0 +K

0
1

]−1
K0,1

1

)
U1

]−1
UT

1 .

(32)

Comparing (31) and (32) it can be seen that the only thing
left to prove is

U0

[
UT

0

(
K0

0 + L
0
0 +K

0
1

)
U0

]−1
UT

0 ≡
[
J0 |0 +K

0
1

]−1
(33)

The left-hand side of (33) is rewritten slightly and the
binomial inverse theorem (B.1) applied

U0

[
UT

0

(
K0

0 + L
0
0

)
U0 +U

T
0K

0
1U0

]−1
UT

0

=U0

[(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
−

(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
UT

0 ·(
I +K0

1U0

(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
UT

0

)−1
K0

1U0·(
UT

0

(
K0

0 + L
0
0

)
U0

)−1 ]
UT

0 ,

(34)

where B = UT
0 , D = K0

1 and C = U0. Given that

[J0 |0]−1 = U0

(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
UT

0 , (35)
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the binomial inverse theorem (B.1) is also applied to the
right-hand side of (33)
[
J0 |0 +K

0
1

]−1

=U0

(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
UT

0 −U0

(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
UT

0 ·

B
(
I +DCU0

(
UT

0

(
K0

0 + L
0
0

)
U0

)
B
)−1

DCU0

U0

(
UT

0

(
K0

0 + L
0
0

)
U0

)−1
UT

0 ,

(36)

where B = I, D = K0
1 and C = I. Comparing (34) and (36)

we see that (33) holds.
For k time steps it can be obtained in a similar fashion as
before (29) - (32) that

Uk−1

[
UT

k−1 |0J
1,1
k |k−1

Uk−1 |0

]
UT

k−1 ≡ [Jk−1 |k−1 +K
0
|
]−1. (37)

Applying the matrix inversion lemma to the left-hand side
plus the fact that the matrix U is block-diagonal and
setting in the recursive equations to the right-hand side,
(37) can be reduced to (33).

5. REDUCTION OF THE CONSTRAINED CRB

In this section, it is established that the unconstrained
CRB (4) is never smaller than the constrained CRB
(24). Consequently, adding information about constraints
reduces the CRB. This can be shown in case Jk |k is positive
definite. In that case as shown in Stoica and Ng (1998);
Khatri (1966) the constrained CRB (24) can be written as

U(UTJU)−1UT =
(
I − J−1FT (FJ−1FT )−1F

)
J−1 = QJ−1,

(38)
where F is given in (16) and indices and arguments were
omitted for national convenience. It can be shown that Q
is idempotent which means

Q = QQ. (39)

Furthermore, I −Q is idempotent and J−1 as well as QJ−1

are symmetric. With the conditions, it can be proven
that the constrained CRB reduces in the sense that the
subtraction of constraint from the unconstrained CRB is
non-negative definite (Gorman and Hero, 1990).

QJ−1 = J−1 − (I −Q)J−1

= J−1 − (I −Q)(I −Q)J−1

= J−1 − (I −Q)J−1(I −Q)
≤ J−1 (40)

6. COMPUTATION OF THE CONSTRAINED CRB

The constrained CRB can be computed with the matrices
(5) and the recursive equations (26) - (28). In case of a
positive definite FIM Jk |k (28) can be exchanged with (38)
which may reduce the computational burden. Important to
consider is that the constrained CRB is singular. Conse-
quently, the constrained CRB is not invertible. This is not
an issue in the recursion, but (26) can only be computed
with the help of a matrix inversion lemma like (A.3).

6.1 Linear Gaussian case

Let us consider the linear system with additive Gaussian
state and measurement noise with linear equality con-
straints

xk+1 = Fkxk + wk (41a)

zk = Hkxk + vk, (41b)

0 = Akxk, (41c)

where Ak is the gradient matrix of the constraints. The
process covariance and measurement covariance is given
by the positive definite matrices Qk and Rk , respectively.
For this special case, the matrices (5) have an analytical
solution

Kk
k+1 = FT

kQ
−1
k Fk, (42a)

Kk,k+1
k+1

= −FT
kQ
−1
k = [Kk+1,k

k+1
]T , (42b)

Kk+1
k+1 = Q−1k , (42c)

Lk
k = HT

kR
−1H. (42d)

Using the matrix inversion lemma (A.3) the recursive
equations (26) and (27) can be computed as

Ck |k−1 = Qk + FkC̃k−1 |k−1F
T
k , (43a)

Ck |k = Ck |k−1 − Ck |k−1H
T

(
R +HCk |k−1H

T
)−1

HCk |k−1,

(43b)

which are the Kalman filter time and measurement update
equations (Simon, 2006). The constrained update step (28)
should be computed using the right-hand side of (38)

C̃k |k = Ck |k − Ck |kA
T
k

(
AkCk |kA

T
k

)−1
AkCk |k, (44)

since it avoids the otherwise needed inversion of (43b).

7. NUMERICAL EXAMPLE

In Simon (2010) a four state navigation problem with
equality constraints is presented. The first two states
present the positions and the last two states the velocities
in north and east direction, respectively. The velocity of
the vehicle is in the direction of θ, an angle measured
anti-clockwise from the east axis. A sensor provides noisy
measurement of the vehicle’s north and east positions. The
equations for this system can be written as

xk+1 =
*...
,

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

+///
-

xk +
*...
,

0
0

T sin θ
T cos θ

+///
-

uk + wk, (45a)

yk =

(
1 0 0 0
0 1 0 0

)
xk + vk, (45b)

where T is the discretization step size and uk is the accel-
eration input. The covariance of process and measurement
noise are

Q = diag(4, 4, 1, 1), R = diag(900, 900) (46)

and the initial estimation error covariance is

P+0 = diag(900, 900, 4, 4), (47)

where it holds
[P+0 ]−1 = L0

0 +K
0
0. (48)

Since we know that the vehicle is on a road with a heading
angle θ the following holds

tan θ =
x(1)
x(2)

=
x(3)
x(4)

. (49)

The constraints of the system can be expressed in the form
Dixk using either

D1 =

(
1 − tan θ 0 0
0 0 1 − tan θ

)
(50)
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Fig. 1. Constrained and unconstrained CRB for the state components of the navigation example.
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Fig. 2. Constrained CRB for the state components of the navigation example using either D1 or D2.
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Fig. 3. Constrained CRB and error covariance of constrained Kalman filter (cKL) using system projection method. The
system is constrained using D1.

or

D2 =
(
0 0 1 − tan θ

)
. (51)

Consequently, the system has either one or two equality
constraints.
The recursive equations (43)-(44) are used to compute the
constrained CRB for the system with D1 as constrained
gradient matrix of the system. The CRB for all states is

shown in Fig. 1. The CRB for the constrained system re-
duces since the constrained information is used to compute
the bound. In a similar way the constrained CRB for the
system using D2 as gradient matrix of the constraints can
be computed. Since D1 provides more information about
the constraints on the position while the same information
as D2 about the velocities, the constrained CRB using
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D1 is lower as the one using D2 for the position esti-
mates (Fig. 2a) while the same for the velocity estimates
(Fig. 2b).
The computed constrained CRB can be reached with
equality if the constrained Kalman filter using the sys-
tem projection method presented by Simon (2010) is used
(Fig. 3). In this case, the initial estimation error covariance
and the process noise covariance are projected onto the
constrained surface such that they are consistent with the
state constraints. Of all constrained linear estimators con-
sidered in Simon (2010) the Kalman filter using the system
projection method reached the lowest error covariance for
the presented problem.
Consider the problem where the sensor has a fault and
only is able to provide a measurement of the vehicle’s
north position. It can be easily seen that the unconstrained
problem becomes unobservable. This is not the case for the
constrained problem using D1. However, the problem is
also unobservable if D2 is used since the constrained CRB
of x(2) grows without bounds (Fig. 4). The CRB of x(2)
of the unconstrained case grows quickly, while the CRB of
x(2) using D2 considerably slower to infinity.

8. CONCLUSION

A simple recursive algorithm to compute the CRB for the
non-linear filtering problem under linear state constraints
was presented. The CRB version of previous literature
was extended by one additional step that projects the
unconstrained CRB onto the tangent hyperplane of the
constrained set. Two different equations were presented
to perform the constraint update. It was shown that
this update step reduces the CRB compared to the un-
constrained CRB. The constrained CRB was illustrated
on a navigation problem, where it was shown that the
constrained CRB reduces compared to the unconstrained
one. Moreover, it was shown that a Kalman filter using a
system projection method reaches the constrained CRB for
the considered example. In addition, it was demonstrated
that the constrained CRB can easily be used to investigate
observability of a constrained problem.

Appendix A. MATRIX INVERSION LEMMA

The inverse of a 2 × 2 block matrix is given by(
A B
C D

)−1
=

(
F−1 −A−1BE−1

−D−1CF E

)
, (A.1)

where

E = D − CA−1B,

F = A − BD−1C. (A.2)

Furthermore, the following holds

(A+BDC)−1 = A−1 −A−1B(D−1 +CA−1B)−1CA−1, (A.3)

provided A−1 exists.

Appendix B. BINOMIAL INVERSE THEOREM

The binomial inverse theorem is a more general formula
of (A.3), which also exist in cases of a singular matrix D
(Henderson and Searle, 1981)

(A−1 + BDC)−1 = A−1 −A−1B(I +DCA−1B)−1DCA−1.
(B.1)
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