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Abstract—The Modular Multilevel Converter (MMC), being
a complex system, requires a number of controllers to func-
tion properly. These range from low level switching pattern
generation to high level control loops. Among these controllers
are modulation techniques that calculate the insertion indices,
control inputs that decide the number of sub-modules inserted
in a given arm. One such technique is compensated modulation
which divides the reference voltages, generated by high level
controllers, by the respective arm voltages (sum of capacitor
voltages) when calculating the insertion indices. This prevents the
arm voltage ripple from affecting the generated output voltage.
For this purpose, the arm voltages can be measured (closed-
loop approach) or estimated (open-loop approach). This paper
presents an arm voltage estimation technique for compensated
modulation of MMCs. The proposed technique combines the
benefits of the open-loop approach with that of the closed loop
one.

Index Terms—Energy control, open-loop, closed-loop, MMC,
Modulation, Voltage estimation, Compensated modulation

I. INTRODUCTION

The Modular Multilevel Converter (MMC) is arguably one
of the most complex power converters ever built. It consists
of hundreds of Sub-Modules (SMs) when used in HVDC
applications. It has attracted a lot of research activity in recent
years. One of the research areas is the development of modu-
lation techniques which are strategies to select the number of
modules inserted in a given arm at a given time. Outputs of
these techniques are insertion indices. Among the modulation
techniques proposed [1], direct modulation is the simplest.
However, an MMC operating under direct modulation exhibits
substantial harmonic components in the circulating current
because it does not account for the ripples in the SM capacitor
voltages and the voltage drop on the arm inductance. A
better alternative is to use compensated modulation [2], [3].
Compensated modulation avoids unwanted harmonics from the
circulating current by accounting for the ripple in the sum of
the capacitor voltages (henceforth referred to as arm voltages).
This is achieved by dividing the reference voltages by the
respective arm voltages during the calculation of the insertion
indices [2]. This prevents arm voltage ripple from distorting
the generated voltage and hence the circulating current can be
controlled to have only a dc component. However, there are

two challenges with this approach; (1) arm voltage measure-
ment delay and (2) loss of inherent stability of the arm energy
[4]. Ref. [4] proposed an open-loop approach to overcome
these challenges. This approach was later proven to be globally
asymptotically stable [5] and extended to include current
control [6]. A shortcoming of this approach is that it relies
on accurate knowledge of parameters, such as capacitance.
Parameter errors can significantly impact its normal operation.
On-line estimation of parameters is proposed in [6] to counter
this shortcoming.

This paper proposes an alternative approach that uses the
average component of the measured arm voltage to close the
energy control loop. The main difficulties with arm voltage
measurement are distortion and delay. But, these only affect
the ripple and not the average components. So, the measure-
ment can be filtered and the average component can be used
in a closed loop controller. The ripple, on the other hand, will
be estimated from a closed form expression. This approach
combines the inherent stability of the open-loop approach with
reduced parameter sensitivity of the closed loop one.

The rest of this paper is organized as follows. Section II
presents the basic energy dynamic equations followed by
derivation of the arm voltage estimator in Section III. Imple-
mentation details are described in Section IV. Then analysis
of system is presented in Section V followed by simulation
results in Section VI.

II. ENERGY DYNAMICS

The equations in this section closely follow the nomencla-
ture in [7]. The symbols can be read from Fig. 1. All the
equations are per-phase and in per-unit to the bases given in
the Appendix. The ac voltages and currents are normalized
with ac base values while the remaining quantities are divided
by the dc side base values. The base value for the arm energy is
defined in such a way that Warm = v2arm in per-unit [3] where
Warm and varm are the arm energy and voltage, respectively.
For large number of sub-modules [7], insertion indices of the
upper and lower arms can be approximated by continuous
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Fig. 1. Per-phase MMC circuit diagram.
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where v∗d , v∗c , and v∗s are reference values for dc, common
mode, and ac voltages, respectively. v̂cu and v̂cl are estimates
of the upper and lower arm voltages. The insertion indices will
effectively be multiplied by the actual arm voltages to obtain
the inserted voltages vu and vl. Hence, the dynamics of energy
stored in the upper and lower arms is given by (2) where cp
is the per-unit equivalent arm capacitance in seconds.
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where Wu and Wl are the energy stored in the upper and
lower arms. iu and il are the upper and lower arm currents.
These currents can be decomposed in to common mode,
ic, and differential mode components, is [7]. Applying this
decomposition, the upper and lower arm energy equations can
be written as (3) and (4), respectively.
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The circulating current, ic, dynamics is given by (5).
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where ld and rd are per unit arm inductance and resistance
referred to the dc base values. Eqs. (3) to (5) represent detailed
third order energy dynamics of the MMC. Simplifications will
be made to these expressions in the derivation and analysis of
the estimation technique in subsequent sections.

III. ARM VOLTAGE ESTIMATOR

The main goal of the estimator is to provide an output
that will closely follow the measured value while fulfilling
two additional requirements; (1) Error in parameter value
should not critically affect the system, and (2) Average part
of the arm energy should be closed-loop controlled with
good dynamic response. The first requirement implies that if
there are errors in parameters, such as arm capacitance, the
converter should continue to operate normally with a slight
reduction in performance at worst. The second requirement
enforces consistent dynamic behaviour under various operating
conditions. Both requirements are fulfilled by incorporating
average energy controller as will be shown in subsequent
sections.

The following simplifying assumptions are made in the
derivation of the arm voltage estimator.

1) The ac side quantities are pure fundamental frequency
sinusoids as shown in (6) and (7).

is = îs cos (ωt+ φi) (6)

v∗s = v̂∗s cos (ωt+ φv) (7)

where îs and v̂∗s are peaks values of the ac current
and internal ac voltage reference, respectively. φi and
φv are phase angles of the ac current and voltage,
respectively, with respect to a common reference. ω is
the fundamental frequency in rad/sec.

2) The quantities îs, v̂∗s , v∗d , v∗c , and ic are assumed not
to change abruptly within a fundamental period, 20ms.
Therefore, they are considered to be constants in this
derivation.

3) A balanced symmetric three phase system is considered
in this paper.

4) The estimates of arm voltages closely follow the actual
ones. So they can be considered to be equal.

Assumptions 1 to 3 are reasonable for grid connected appli-
cations. The last assumption is claiming that the estimator is
ideal. While this is fine for the calculation of closed form
expression, it has a subtle consequence on the control tuning.
This will be investigated in Section V. With these assumptions
and equations, closed form expressions, (8) and (9), for arm
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Fig. 2. Block diagram of the proposed arm voltage estimation method.

energies can be derived by substituting (6) and (7) in (3) and
(4), and performing integration similar to [5].
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W0 is the average component of the arm energies. Ŵu and
Ŵl are estimated energies of the upper and lower arms,
respectively. Extension to three phase is a matter of adding
appropriate phase shifts since the system is balanced. Equa-
tions (8) and (9) are identical to the ones derived in [5] with
some minor difference in the phase angle notation, and scaling
factors due to the per-unit convention followed in this paper.
The main differences between the proposed estimator and the
one in [5] are on the calculation of the average component
and implementation details which are discussed in the next
section.

IV. IMPLEMENTATION

Under ideal conditions, i.e. all the parameters accurately
known and all the signals instantaneously available, the arm
energies can be perfectly estimated using (8) and (9) as was
shown in [4], [5], [7]. However, there will inevitably be
parameter errors and measurement lags in practical systems.

The approach followed in this paper aims to exploit the mea-
surements already available in achieving reduced sensitivity
to parameter variations and compensate for measurement lags.
This is done by closing the energy control loop using average
component of the arm voltage measurement. In this way the
average component will not be affected by parameter variation.
The complete scheme is shown in Fig. 2. The average value
is extracted by passing the arm energies through a low-pass
filter. The phase angle reference, ωt, is obtained from a Phase
Locked Loop (PLL). Filter lag compensations and control
design are presented in the following sections.

A. Filter Compensation

First order measurement filters are included in the block
diagram, (Fig. 2), to represent anti-aliasing and smoothing
filters that are present in practical implementations. These
filters result in phase and gain change in the ac signals. Under
steady-state and slowly changing conditions, these can be
compensated for by simple gain and phase compensation as
shown in (10) and (11), respectively. A similar approach can
be applied to compensate for communications delays on the
signals.

Gcomp =

√
(ωTx)

2
+ 1 (10)

φcomp = arctan (ωTx) (11)

where Tx is the filter time constant and ω is the ac frequency.
Gcomp multiplies the signal magnitude after the filter and
φcomp gets added to the phase angle. Uncertainty in Tx and
ω might prevent prefect compensation. However, as will be
shown in Section VI, its impact is not significant.

B. Control Design

A simplified model shown in Fig. 3, based on the assump-
tions in Section III and equations (3) to (5), is used for control
design. It is assumed that (v∗d − 2v∗c ) ≈ v∗d which is reasonable
under normal operation. The boldface letters above the blocks
will be used to refer to the transfer functions. This structure
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is well suited for Modulus and Symmetric optimum tuning
techniques [8]. Ci is tuned using modulus optimum while Cw

is designed using symmetric optimum method.

V. ANALYSIS

The analysis in this section is performed to study the
effect of assuming that the estimator is ideal (assumption (4)
Section III). In order to simplify the analysis, only the average
components will be considered. Furthermore, the difference
in average energies between the upper and lower arms is
considered to be zero following a similar argument as [7].
This permits the simplification in (12).

vcu
v̂cu
≈ v0

v̂0
≈ vcl
v̂cl

(12)

where v0 and v̂0 are average components of the actual and
estimated voltages. Taking this into consideration and averag-
ing the arm energies results in (13) and (14) where W 0 is the
average energy.
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Substituting the arm voltages, v0 and v̂0 with the correspond-
ing energies,
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where k is a positive linearisation constant. It can be seen that
there is an equivalent proportional energy controller with gain
k inherently in the system. This fact is the foundation of the
open-loop approach. The parameter k is a function of system
parameters and initial conditions. Therefore, the convergence
speed cannot be controlled. To solve this problem, a closed
loop control is needed. First, the current controller, Ci from
Fig. 3, is incorporated to the linear model of (15) and (16).
In doing so, the transfer function from current reference, i∗c to
the average energy, W 0, becomes:

W 0

i∗c
=

vdPiCi

cps (1 +PiCiFi) + k (1−G)Pi
(17)

where G is a transfer function relating Ŵ 0 to W 0, i.e.
Ŵ 0 = GW 0. When G = 1, (17) reduces to the transfer
function obtained from the block diagram of Fig. 3. Therefore,
the controller design presented in Section IV-B is valid only
when G = 1. This will affect the controller performance and
will be addressed here. From (Fig. 2) and definition of G, the
relation in (18) can be found.

Ŵ 0 = FwW
0 +Wcomp = GW 0 (18)

where Wcomp is compensation signal to improve the controller
performance. Fw is the energy filter transfer function, (Fig. 3).
The value of Wcomp that will result in G = 1 is given in
(19). This is equivalent to computing the derivative of W 0

multiplying it by the energy filter time constant, Tw, and
passing it through the energy filter.

Wcomp = (1− Fw)W 0 = TwsW
0Fw (19)

However, computing direct derivative leads to noise amplifica-
tion. So a better alternative is to estimate the derivative using
measurement already available. In such a way the complete
compensation signal is given by (20).
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·Fw

(20)
This value of Wcomp will cancel the effect of the energy

filter and improve performance of the controller. The next sec-
tion will present simulation results that support this analysis.

VI. SIMULATION RESULTS

Simulation results showing performance of the proposed
method are presented in this section. The system under test is a
three phase MMC HVDC terminal connected to a droop (1%)
controlled dc bus and a strong ac grid via a transformer. The
simulation is performed in Matlab/SIMULINK environment.
The parameters, Table I, and the modelling approach are
adopted from [9]. The dc voltage reference is set at v∗d = 1.0.
The average arm voltage is set to 15% above the nominal
dc voltage to account for redundant sub-modules. The results
show the effect of: (1) energy filter compensation, (2) ac
filter lag compensation, and (3) parameter error in capacitance
value. The simulation includes two disturbances, (1) a step
change in energy reference from W ∗ ≈ 1.31 to W ∗ ≈ 1.18 pu
at t = 2 sec, and (2) a step change in ac power from



TABLE I
PARAMETERS USED FOR SIMULATION

Parameter Value

Base apparent power, Sb 900 MVA
Base dc voltage, V dc

b 640 kV
Frequency, ω 2π50 rad/s
Arm capacitance, Carm 29 µF
Arm inductance, Larm 84 mH
Arm resistance, Rarm 0.885 Ω
Transformer reactance, Xt 17.7 Ω
Transformer resistance, Rt 1.77 Ω
Voltage filter time constant, Tv 500 µs
Current filter time constant, Ti 500 µs
Energy filter time constant, Tw 10 ms
Energy controller proportional constant, kpw 13.6
Energy controller integral constant, kiw 0.6
Circ. current controller proportional constant, kpcc 0.046
Circ. current controller integral constant, kicc 0.486
Simulation time step, Tsim 100 µs
Controller sampling time, Ts 200 µs

*Circ. = Circulating.

0.89 pu (800 MW ) to 0.45 pu (400 MW ) at t = 7 sec.
Fig. 4 shows a result of the basic implementation by using (8)
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Fig. 4. Arm voltage using the basic implementation of (8) and (9)

and (9) directly. The average energy exhibits poorly damped
oscillation. As discussed in Section V, this is caused by the
lag in the energy filter, Tw. It can be effectively damped
by applying the energy filter compensation proposed in the
previous section, Fig. 5. As can be seen from the insets of
Figs. 4 and 5 there is a clearly visible time delay in the
estimated signal which is caused by the ac filters, Ti and Tv .
As proposed in Section IV, a steady-state compensation for the
filter gains and phases is applied to obtain the result in Fig. 6
where the measured and estimated values are well matched.
Effect of error in capacitance value is displayed in Figs. 7
and 8 where the considered value is 20% lower than the actual
one. Despite a slight reduction damping, the average energy
is not affected by the parameter error, (Fig. 8). The effect is
visible on the circulating current, Fig. 9. The error has caused
as second harmonic circulating current with a magnitude
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approximately 30% of the dc value. The ripple is also present
when the ac filter delays are not compensated, Fig. 9. The
80% compensation case shows the impact of uncertainty in
Ti when it is known within ±20%. The result shows ±20%
that uncertainty in time constant does not significantly affect
the ripple in the circulating current. However, ignoring delays
caused significant ripple in the circulating current. Fig. 10
shows ac power and dc voltage signal when there is parameter
error. This confirms that the converter continues to operate
normally when parameter error occurs.
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VII. CONCLUSION

This paper proposes a technique for estimating the arm
voltage to be used for compensated modulation. Derivation
and analysis presented in this paper are supported by sim-
ulation results. The technique considers measurement filters
and the corresponding compensation required for successful
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estimation of the arm voltage. A compensation scheme that
avoids the impact of the delay introduced by the energy
filter has also been proposed and verified via simulation. The
results have shown that the estimator has very promising
performance both under normal conditions and with parameter
errors. However, further development is needed to avoid the
ripple when operating with parameter error.

APPENDIX

The base values used for per-unit calculations are depicted
in (21).
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REFERENCES

[1] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Oper-
ation, control, and applications of the modular multilevel converter: A
review,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 37–53, Jan.
2015.

[2] A. Antonopoulos, L. Angquist, and H. P. Nee, “On dynamics and voltage
control of the modular multilevel converter,” in Proc. 13th European Conf.
Power Electronics and Applications EPE ’09, Sep. 2009, pp. 1–10.

[3] G. B. Diaz, J. A. Suul, and S. D’Arco, “Small-signal state-space modeling
of modular multilevel converters for system stability analysis,” in Proc.
IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2015,
pp. 5822–5829.
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