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Abstract—In polar region operations, drift ice posi-
tioning and tracking is useful for both scientific and
safety reasons. Many sensors can be employed to
generate detections of sea ice, such as satellite-carried
Synthetic Aperture Radar (SAR) and, recently, im-
agery equipment carried by Unmanned Aerial Sys-
tems (UAS). Satellite-carried SAR has the advan-
tage of being able to cover large areas and provide
consistent imagery largely independent of weather,
albeit at a relatively coarse resolution. Using UAS, the
resolution and precision of the tracking can be locally
improved.
To track the large amount of individual objects

present in an area as large as the Arctic, it is necessary
to efficiently select and exclusively work with the
objects in the relevant field-of-view. In this paper,
a Spatially Indexed Labeled Multi-Bernoulli filter is
presented and applied to a tracking problem repre-
senting a mission setup for field-tests due this year.
In the setup, satellite and UAS imagery is combined
to provide real-time Multi-Target Tracking of sea ice
objects. A brief introduction is given to the imple-
mentation of the proposed Spatially Indexed Labeled
Multi-Bernoulli filter, which is made available under
an Open Source license.

I. Introduction
Work in the polar regions of our planet is unavoidably

linked with hazards such as drift ice. Increased pres-
ence fueled by economic interests in the Arctic, have
for several decades [19] called for research in the field
of Ice Management. A comprehensive overview of Ice
Management in practical use is provided in [5]. The field
deals with the forecast, detection and tracking of ice, but
also the physical actions taken to avoid collisions [5].
While managing ice is of great importance to polar
ventures, predicting ice movement has proven difficult [6],
concluding that observations are essential for tracking.

Ice Management is applicable not only for stationary
installations, but has also been studied for use in the
protection of ship routes in the Arctic [9]. A moving
object of protection may be not be able to rely solely
on satellite Synthetic Aperture Radar (SAR) imagery,
as these generally have limited availability and coverage,
with sample times in the order of days. Recent studies
have introduced the use of Unmanned Aerial Systems,

UAS’s, as a supplement to local sensors such as ship- or
stationary radar [10, 8, 14].

Figure 1: Sample Sentinel-1 satellite observation areas in
the Arctic.

Figure 2: Individual ice detections, even as here from
a small subset of a Synthetic Aperture Radar (SAR)
imagery, can be overwhelmingly numerous.

In the Arctic, objects are tracked over a geographi-
cally vast area. Each observation covers only a relatively
limited area — even for satellite observations as seen in
Figures 1 and 2 — but can contain a large number of sea
ice objects worth tracking. Since each observation’s field-
of-view is unique, and a majority of the Arctic can be
quickly discarded as being outside the observed area, it



Figure 3: Detections of ice can be extracted from infrared imagery from UAS-carried cameras. Left: Raw thermal
image; Middle: Enhanced features; Right: Segmented detected sea ice [14].

is desirable to dynamically limit any estimate correction
to the relevant area.

To enhance the observation detail and frequency, we
seek to fuse the ice tracking data available from a satellite
constellation, with that of imagery — exemplified in
Figure 3 — obtained from one or more UAS’s through
wireless datalinks. This challenge can be expanded to
e.g. that of optimal UAS path-planning, decision support
etc., but the focus of this paper is on the fusion of large,
widely spatially distributed, real-time data from multiple
data-sources - SAR and UAS imagery in particular.

After introducing the terminology of the paper in
Section II, clustering and spatial indexing is introduced in
Section III as it allows for the extraction of partial filters
suitable for the limited — as compared to the area of
interest — field-of-views provided by e.g. UAS imagery.
This allows the full filter to track sea ice over the entire
Arctic, while each update may focus on the area within
the specific sensor field-of-view.

Furthermore, as both ice motion prediction (sometimes
over large time intervals) and measurements are subject
to uncertainties, we elect a Bayesian, hypothesis based,
multi-target tracking technique in the Labeled Multi-
Bernoulli (LMB) filter, introduced in Section IV.

In Section V, we present the paper’s main contribu-
tion of an Open Source implementation of the Spatially
Indexed Labeled Multi-Bernoulli filter, which was devel-
oped for this paper and for the use in field-trials due in
Svalbard 2017. A scenario demonstrating the fusion of
data between satellite and multiple UAS agents, repre-
sentative for these trials, is presented in Section VI along
with simulation results, followed by concluding words in
Section VII.

II. Terminology and Notation
The terminology often employed in common Multi-

Target Tracking (MTT) literature, and consequently
here, is based on the following definitions;

At any given time instance, a sensor delivers a scan —
an unordered but enumerated set of reports (measure-
ments) detected at this instance. This set is exhaustive,
i.e. the scan set Zk contains all reports (indexed by i),
zk,i for time k. In the following, time indices are dropped
unless needed for clarity.

The purpose of MTT is to estimate a list of tracked
targets. Each true target follows a ”true track”, the
estimate of which is the result of filtering of data and
assignments to the target. These, hypothetical, assign-
ments can indicate association of the target to a specific
report, but also a missed detection or even alternative
motion models [13]. It is assumed that each true target
will yield at most one report in each scan. Each track
estimate starts with the event of a newly created target
as hypothesized by a target birth model.
The LMB filter follows the common filter pre-

dict/correct pattern shown in Figure 4. In the filter loop,
the prediction provides an estimate of what inputs are
expected during the correction step. As scans become
available, each sensor updates the estimate indepen-
dently, in order of availability.

Correction

Prediction

UAS 2UAS 1 Satellite

Targets

Figure 4: Filter overview. Each timestep in the filter
corresponds to one loop, and each loop results in a list
of target positions estimated to be present at that time.
The sensors displayed here mirrors that of the setup for
sea ice tracking described in Section VI.

To accomodate the uncertainty in which report belongs
to which target, the LMB filter considers multiple hy-
potheses. The definition for an hypothesis employed in
this paper, is that of a set of hypothetical assignments
which assigns each previously hypothesized target as
either 1) existing and associated with a report in the



incoming scan, 2) existing but missed in the scan (z∅
association), or 3) non-existent (indicated in equations
by the letter F ).

Each hypothesized target is assigned a label at its cre-
ation. The space of hypothetical associations (in the sense
of 1) and 2) above) — denoted ΘI — is parametrized by
the set I of labeled targets assumed to be existent. All
assignments in ΘI assign all targets in I to either of above
state 1 or 2. Thus, given a set L of labeled targets, I ∩L
are considered existing, and L − I non-existing.

Example: Given the set of tracked labeled targets
L = {`1, `2, `3}, hypothesis n at time k assigns target
with label `1 to report z1, presumes that `2 has been
missed, and that `3 does not exist:

θk,n = {(`1, zk,1) , (`2, z∅)} ,
I = {`1, `2} ,

L − I = {`3} .

The space of hypothetical associations is, for each
timestep, combinatorially large. It can, however, be enu-
merated in order of probability and truncated to the
k-best hypotheses. For each hypothesis, it is assumed
that each track can be modeled as a standard single-
target estimation problem, conditioned on the validity
of the hypothetical assignments, and that its evolu-
tion is described by the single-target transition density
fk (xk,`|xk−1,`, `).
Targets which, as decided through a probability gating

procedure [2, 23], no hypothesis will associate to the same
reports can be treated in separate clusters — independent
groups of targets which share ambiguous reports [20].

Notation: In the paper, notation common to the LMB
literature is used [21], including the inner product,

〈f, g〉 ,
∫
f (x) g (x) dx, (1)

as well as the multi-object exponential notation

hX ,
∏
x∈X

h (x) (2)

(h∅ = 1 by convention).
Further, the Kronecker delta function is defined by

δY (X) ,
{

1, if X = Y

0, otherwise
, (3)

and is used to select summands relevant to exactly the
set Y . Similarly, the inclusion function,

1Y (X) ,
{

1, if X ⊆ Y
0, otherwise

, (4)

is used to select summands relevant to a set Y of which
X is a subset. If X is singular, X = {x}, the notation
1Y (x) is used.

To exhaustively iterate all hypothetical report-target
associations, the operator F (X) is used to denote the
collection of all subsets of set X.

III. Clustering and Spatial Indexing
Hypothetically, any report can be associated with any

target, but in practice many of those associations will be
very unlikely to be true. As such, if the hypothesis search
would be limited, most associations would never be part
of any generated hypotheses. That is, targets and reports
which are unlikely to be associated are approximately
independent. We therefore wish to define a function and
a limit, such that — for a given report and target —
if the function is below the limit, the assignment need
not even be considered. This function is called a gate,
and the limiting process is called gating [20, 2]. Gating is
a standard technique for limiting the number of consid-
ered associations, and is further discussed below. Targets
which share connections a set of reports are considered
as a cluster, independent from the other targets.
If a report falls outside the gate for all targets in a clus-

ter, the report will not be associated with that cluster. If
a report is associated with several clusters, these need to
be merged such that each report is associated with a sin-
gle cluster [20]. Note that this can have a ”snowballing”
effect, leading to seemingly unrelated tracks belonging
to the same cluster, as they are indirectly connected by
ambiguous reports.

A. Target-Report Matching
The likelihood of association between a report and a

target is based on the probability density of a true report
being in the (estimated) target probability space [3].
In the case of Gaussian reports and targets, this is
synonymous with the probability density function (pdf)
of the innovation, itself a Gaussian [17].
As a general result, the area bounded by any Gaussian

(N (µ̄,Π)) iso-probability limit corresponds to an ellipse{
x : (x− µ̄)TΠ−1 (x− µ̄) ≤ K

}
, (5)

the size and orientation of which can be calculated from
the covariance matrix Π and the limit parameter K [22].
Hence, gating through a limit of the association prob-

ability is referred to as ellipsoidal gating [3], the cor-
responding ellipse being (with [transformed] target and
measurement covariance P and R respectively, in a com-
mon space){

x : (x− x̂)T (P +R)−1 (x− x̂) ≤ K
}
. (6)

In [3], Collins and Uhlmann show that a necessary con-
dition for Eq. (6) is that

∃x :
{

(x− x̂τ )TP−1 (x− x̂τ ) ≤ K
(x− x̂z)TR−1 (x− x̂z) ≤ K

, (7)

that is, that the ellipses enscribed respectively by the
covariances of the state estimate and the report overlap.



This motivates the use of intersections as a method for
gating, and since the ellipsoids of the tracks and reports
are independent, the gate equation in Eq. (6) does not
need to be recomputed for each association pair.

To further simplify the gating, we find the axis-aligned
bounding box of the ellipse in Eq. (5):

B =
[
px−, px+, py−, py+

]
. (8)

where the components are given by (for dimension d ∈
{x, y})

pd± = µd ±
√
a2
d + b2d. (9)

and ā = (ax, ay)T , b̄ = (bx, by)T are eigenvectors of
the position covariance, describing the ellipse axes of
symmetry [22, 17].

Since the association probability at the square bounds
of the ellipses in Eq. (7) is lower or equal than at the
ellipsoid edge, the intersection of their bounding boxes is
a conservative estimate of Eq. (7): if the bounding boxes
do not overlap, the ellipses do not either.

The concept may be extended to other unimodal dis-
tributions, as well as mixtures by using the minimum
bounding box of the desired probability limit.

B. Cluster Separation
From the matching of reports to targets, a connection

graph (visualized in Figure 5) can be formed by connect-
ing pairs of targets which both are a potential match for a
common report. The resulting graph will contain one or
more groups of connected components which represent
the targets which must be kept in the same cluster.
Algorithms for finding graph connected components are
studied in e.g. [25, 18].

Figure 5: Targets within the same group of connected
components must be kept in the same cluster.

The target labels in L+ = L ∪ B (the sets of old
and newborn target labels) is therefore correspondingly
partitioned into disjoint sets

L+ =
N⋃
n=1
L(n)

+

with L(n)
+ ∩L(m)

+ = ∅ for n 6= m. Similarly, the set of cur-
rent reports Z can be partitioned into the corresponding
clusters

Z = Z(0)
N⋃
n=1

Z(n)

with Z(n) ∩ Z(m) = ∅ for n 6= m, and Z(0) is the set of
measurements not associated with any previously known
target.

C. Spatial Indexing

Unlike in e.g. the Multiple Hypothesis Tracking (MHT)
filter, the targets in the Labeled Multi-Bernoulli filter
are not connected to each other through restrictions of
track history compatibility — each target is indepedent
following each update. This means that for an incoming
scan it can be easily be determined, on a target-level,
which targets that fall in the sensor field-of-view and
thus will be affected by the correction update, simply by
looking at the pdf’s of the current time-step. Similarly,
the associations between reports is a novel matching
process between the pdf’s of each report and that of each
target.
As previously noted, the area in which a report may

match a target may be limited through gating, and any
gate may be approximated by its axis-aligned bounding
box, as exemlified for the Gaussian case in Eq. (8). Such
rectangular areas are well suited for e.g. fast intersection
lookups, when stored in structures suitable for spatial
indexing, such as the R-tree [7]. By storing the targets in
a database indexed by their bounding-boxes, the affected
targets of each scan can as such be efficiently loaded using
bounding box intersections and grouped into clusters as
per the previous section — leaving unaffected targets
entirely unloaded from the database.

IV. The Labeled Multi-Bernoulli Filter

The Labeled Multi-Bernoulli filter was proposed in [21]
as a simplification of the δ-GLMB-filter [27, 26]. In this
section, we review its general formulation, as well as its
underlying algorithms and concepts.

A. Labeled Multi-Bernoulli Filter Outline

The Labeled Multi-Bernoulli filter is defined in the
framework of Finite Set Statistics (FISST) [21], of which
the Random Finite Set (RFS) is an integral part. An
RFS is a set with a probabilistic cardinality distribution,
i.e. each potential element is included in the set with
a given probability. Specifically, a Bernoulli RFS is a
random set which is empty with probability 1 − r, and



with probability r is a singleton. For an element x with
probability p (·), the Bernoulli RFS pdf is given by

π (X) =
{

1− r if X = ∅
r · p (x) if X = {x}

. (10)

A multi-Bernoulli RFS is the resulting set of the union of
M independent Bernoulli-distributed random finite sets
X(i): X =

⋃M
i=1X

(i). Consequently, the multi-Bernoulli
RFS is parametrized by the set

{(
r(i), p(i))}M

i=1, and its
pdf is given by [15]

π ({x1, . . . , xn}) =
M∏
j=1

(
1− r(j)

)
×

∑
1≤i1 6=···6=in≤M

n∏
j=1

r(ij)p(ij) (xj)
1− r(ij)

.

(11)

The labeled multi-Bernoulli is obtained by the augmen-
tation of each Bernoulli RFS with a unique label, ` ∈ L.
The Labeled Multi-Bernoulli (LMB) RFS can thus be
described by the set{(

r(`), p(`)
)}

`∈L
.

As this set fully describes a multi-target probability
density, π (X), in the following the shorthand notation
π =

{(
r(`), p(`))}

`∈L will be used.
The Labeled Multi-Bernoulli filter follows the classical

predict/correct filter recursion, each step outlined below.
1) LMB Prediction: Given a LMB pdf π (X), the

prediction step of the LMB filter and the updated
distribution, π+ (X), is obtained by the application of
the standard prediction update of a Bayesian filter, the
Chapman-Kolmogorov equation,

π+ (X+) =
∫
f (X+)π (X) δX. (12)

This gives the following set of surviving and new-born
targets [21],

π+ =
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L
∪
{(
r

(`)
B , p

(`)
B

)}
`∈B

, (13)

where

r
(`)
+,S = ηS (`) r(`) (14)

p
(`)
+,S = 〈pS (·, `) f (x|·, `) , p (·|`)〉

ηS (`) (15)

ηS (`) = 〈pS (·, `) , p (·, `)〉 (16)

and pS (·, `) is the distribution of target survival prob-
ability. The set

{(
r

(`)
B , p

(`)
B

)}
`∈B

is given by the birth
model, further discussed in Section IV-B.

2) LMB Correction: Drawn from the update of δ-
GLMB [27], the LMB correction is derived in [21].
In general, as noted in [21], the LMB distribution is

not closed under the Bayesian filter update. However, the
resulting δ-GLMB distribution — which can represent
multiple disjoint hypotheses — may be approximated as
in Eq. (18) with an LMB pdf through the collapse of its
hypotheses, weighted by their probability. That is, the
correction update updates the set

π+ =
{(
r

(`)
+ , p

(`)
+

)}
`∈L+

(17)

by the following approximation:

π (·|Z) ≈
{(
r(`), p(`)

)}
`∈L+

=
N⋃
i=1

{(
r(`,i), p(`,i)

)}
`∈L(i)

+

, (18)

in which parameters are given by

r(`,i) =
∑

(I+,θ)∈F
(
L(i)

+

)
×ΘI+

w(I+,θ)
(
Z(i)

)
1I+ (`)

(19)

p(`,i) (x) = 1
r(`,i)

∑
(I+,θ)∈F

(
L(i)

+

)
×ΘI+

w(I+,θ)
(
Z(i)

)
× 1I+ (`) p(θ) (x, `)

(20)

∑
(I+,θ)∈F

(
L(i)

+

)
×ΘI+

w(I+,θ)
(
Z(i)

)
= 1 (21)

where ΘI+ is the space of mappings of tracks θ : I+ →{
0, 1, . . . ,

∣∣Z(i)
∣∣} such that θ (ι) = θ (ι′) > 0 implies that

ι = ι′ i.e. the mapping is unique for all values except
those mapped to zero [21]. Also, for I+ ⊆ L(i)

+

w(I+,θ)
(
Z(i)

)
∝ w(I+)

+,i

[
η

(θ)
Z(i)

]I+
(22)

w
(I+)
+,i =

∏
`∈L(i)

+ −I+

(
1− r(`)

+

) ∏
`′∈I+

r
(`)
+ (23)

η
(θ)
Z(i) (`) = 〈p+,i (x, `) , ψZ(i) (·, `; θ)〉 (24)

ψZ(i) (x, `; θ) =


pD(x,`)pGg(zθ(`)|x,`)

κ(zθ(`)) , θ (`) > 0

qD,G (x, `) , θ (`) = 0
(25)

qD,G (x, `) = 1− pD (x, `) pG (26)

p(θ)
(
x, `|Z(i)

)
= p+,i (x, `)ψZ(i) (x, `; θ)

η
(θ)
Z(i) (`)

(27)

Note that while the δ-GLMB representation in [21] is an
intermediate representation in the theoretical derivation
of the filter, its construction in implementation is not
necessary to reach the collapsed LMB representation of
Eq. (18).
Also; In general MTT, if different hypothetical asso-

ciations assign the same report to different targets, the
resulting tracks will generally be incompatible. Through



the approximations of the LMB filter, assignment com-
patibility is only considered in the hypothesis generation,
but then lost in the summations in Eqs. (19)-(20).

To calculate the weight — from Eq. (22) — for an
hypothesis we start by making the distinction between
associated and non-associated targets by splitting the
hypothesis label set I+:

Ia+ = {` : θ (`) 6= z∅}`∈I+
, (28)

In+ = {` : θ (`) = z∅}`∈I+
, (29)

(implying I+ = Ia+ ∪ In+ and Ia+ ∩ In+ = ∅). We can then
rewrite Eqs. (22)-(26) as

w(I+,θ)
(
Z(i)

)
∝w(I+)

+,i

[
η

(θ)
Z(i)

]I+

=
∏

`∈L(i)
+ −I+

(
1− r(`)

+

)
×
∏
`′∈Ia+

r
(`′)
+ η

(θ)
Z(i) (`′)

∏
`′′∈In+

r
(`′′)
+ η

(θ)
Z(i) (`′′)

(30)
The product of Eq. (30) can be efficiently expressed using
the Negative Log Likelihoods (NLL’s), Λ`;

e−Λ` =


1− r(`)

+ if ` ∈ L(i)
+ − I+

r
(`)
+ η

(θ,a)
Z(i) (`) if ` ∈ Ia+

r
(`)
+ η

(θ,n)
Z(i) (`) if ` ∈ In+

(31)

yielding

w(I+,θ)
(
Z(i)

)
∝ exp

− ∑
`∈L(i)

+

Λ`

 . (32)

B. Adaptive Birth Model
To include new targets in the tracker, the LMB filter

relies on a birth distribution. Following [21], the selected
birth model for time k+1 is based on the reports of time
k:

πB,k+1 =
{(
r

(`)
B , p

(`)
B

)}
`∈Bk

(33)

for new labels in Bk generated for each report in Zk.
The existance probabilities of new targets in this model

are proportional to the probability of the report not
being associated with any previously known target. For
a report, the association probability is given by

rU,k (z) =
∑

(I+,θ)∈F
(
L(i)

+

)
×ΘI+

w(I+,θ)
(
Z(i)

)
1θ (z). (34)

Given an expected number of new targets in each scan,
λB,k+1, the existance probability of new targets is thus
given by

rB,k+1 (z) = min
(
rB,max,

1− rU,k (z)∑
ξ∈Zk 1− rU,k (ξ) · λB,k+1

)
.

(35)
Note that, for λB,k+1 > 1, the existance probability may
need to be limited by the min()-clause to a maximum
value of rB,max ≤ 1.

C. Hypothesis Generation

The combinatorial nature of report-target associations
employed in the correction step of the LMB filter results
in an explosion of possible hypotheses. Each hypothesis
weight, w(I+,θ)

(
Z(i)), controls its impact on Eqs. (19)-

(20), so an effective way to limit the computational cost
of the algorithm is thus to focus on generating and
evaluating only the most relevant association hypotheses,
with the highest weights.
The generation of the single best possible assignment

is known as the Linear Assignment Problem (LAP). The
problem can be formulated, using the elements the ele-
ments cij of the cost-matrix C, as follows [11] (assuming
more columns than rows):

min
∑
i,j

cijxij∑
j

xij = 1, ∀i,
∑
i

xij ≤ 1, ∀j

∀xij ∈ {0, 1}

(36)

The gist of this problem is to select the lowest sum of
costs from an assignment costs matrix C, for each row
selecting exactly one column value.
In the context of LMB, the cost matrix is created

for each target cluster, from the NLL’s of the track
assignments outlined in Eq. (31), resulting in a matrix
exemplified in Eq. (37) for a two-track hypothesis and a
two-report scan.

C =
(
z1Λ`1

z2Λ`1
nΛ`1 ∞ FΛ`1 ∞

z1Λ`2
z2Λ`2 ∞ nΛ`2 ∞ FΛ`2

)
(37)

Each solution to Eq. (36) corresponds to an assignment
hypothesis in the filter, and the ”cheapest” assignment is
the best guess of assignment of the reports received for
this given timestep. Several algorithms exist to solve the
LAP problem— the auction algorithm [1], the Hungarian
algorithm [12] and Jonker-Volgenant [11] being notable
mentions.
The task of finding the single best assignment was

extended in an algorithm due to Murty [16] to that of
finding the k best assignments, for a given assignment
matrix C. The Murty algorithm, with the underlying
LAP solver, is of polynomial complexity in the number
of tracks with which the reports can be associated [4],
and it is therefore of interest to limit the number of
tracks considered for association. Herein lies the value
of clustering — as the targets and reports of separate
clusters are independent, each cluster may be considered
as a separate LAP problem.
Truncation of the hypothesis list is achieved through

the termination of Murty’s algorithm based on either a
maximum number of drawn hypotheses, or a maximum
hypothesis NLL sum (minimum hypothesis probability).



V. Implementation
This section introduces the implementation of the Spa-

tially Indexed Multi-Bernoulli filter implemented for this
article. The implementation, in the Python language, is
available under a Free and Open-Source Software (FOSS)
license at https://github.com/jonatanolofsson/lmb.

A few remarks regarding the implementation;
Particle Implementation For now, the implementa-

tion is based on particle filter distributions, where
the general equations of Eq. (24)–(27) are specialized
as in [26].

Parallelization Due to restrictions in Python paral-
lelization, clusters are currently updated sequen-
tially. However, particle updates are vectorized using
the numpy package.

Target Storage and Indexing In the implementa-
tion, targets are serialized post-update and stored
in an SQLite database. The database is R-tree
indexed based on the axis-aligned bounding boxes
of each target pdf. This allows for a fast extraction
of relevant targets in the initial gating process,
allowing large parts of the filter to remain dormant
through correction updates.

Rectangular Gating The implementation makes use
of rectangular gating through the minimum bound-
ing box of reports and targets. As a first stage,
all targets within the sensor field-of-view’s mini-
mum axis-aligned bounding-box are loaded from the
database. Second, the bounding-box of each target is
tried for intersection with the bounding-box of each
report to establish the clusters, in accordance with
Section III-B. Notably, these bounding-boxes need
not be axis-aligned.

VI. Results
As a first result, we study the implementation of the

Spatially Indexed Labeled Multi-Bernoulli filter through
a linear simulated multi-target tracking scenario. Next
we present a simulated sea ice tracking scenario with the
collaboration between two UAS agents and a satellite.

A. Crossing Tracks
This scenario, detailed in Figure 6, shows the filter’s

ability to detect and track objects through a crossing by
considering the multiple likely association possibilities.
It also illustrates the track-keeping abilities of the LMB
filter and the clustering feature of the implementation.

We see, in Figure 6,
a) The crossing tracks scenario in which in total of

five targets are tracked through collision courses. To
simplify visual interpretation, each object was given
a velocity of 1 in the x-direction, to match the time
dimension of the following plots. Notably, all tracks re-
tain the correct association troughout the simulation,
as indicated by the consistent color of each straight
track.

b) Target cardinality, for both true, estimated and ver-
ified targets. A target is considered verified if its
existance probability exceeds 0.7.

c) Number of clusters which the algorithm separates.
Note that due to hypothetical new-born targets, this
can in fact exceed the number of estimated targets.

d) Number of hypotheses used. In sequences where mul-
tiple associations are possible, more hypotheses are
generated before iteration termination due to low
hypothesis probability. In particular, note the peak
between t = 5 and t = 10 corresponding to the period
where the two initial targets cross tracks.

Figure 6: Crossing tracks scenario.

https://github.com/jonatanolofsson/lmb


Figure 7: The sea ice tracking scenario is based on the collaboration of two UAS’s to loiter and explore respectively,
assisted by satellite radar measurements. 20 icebergs are simulated in this scenario. The (black) simulated icebergs
are here shown along with the (colored) estimates resulting from the joint observations.



B. Sea Ice Tracking

In preparation of upcoming sea ice tracking field-tests,
a scenario was devised to emulate the anticipated data. In
this scenario, shown in Figure 7, sea ice objects are caught
in a vortex which is initially observed in full by satellite
imagery. In the interest of protecting a fixed installation
— in the center of the figure — in the following sequence
the sea ice in the vortex is partially observed by two
independent UAS agents which report wirelessly to the
central filter. The central filter then continously fuses the
data received from each sensor into a joint estimate of the
sea ice flow field. The observation is also assisted by an
incoming processed satellite image at time 75 which span
the entire area of interest.

The detections from each UAS are drawn from a
field-of-view which in the UAS-local frame of reference
corresponds to the bounding box

BUAS =
[
−60, 60, −20, 60

]
(38)

in each UAS’s frame of reference at each time-step.

As sample values, detection probability of UAS reports
are set to 0.99, and for the satellite reports to 0.8. 20
icebergs are simulated. As it is unlikely that a verified
ice object disappears during the short timeframe of the
UAS flight, each track has a survival probability (in
the prediction step) of 0.999, uniformly. In practice,
disappearing objects are instead likely to be removed by
the correction step, as they will no longer yield reports
likely to be associated to the target.

The tracks of the UAS agents are a combination of a
loitering UAS with a specific area to guard, and a second
UAS track with the intention of more broadly exploring
the area.

In Figures 7, the ice objects (in black) are plotted with
their velocity vectors, togheter with the (colored) filter
estimates. UAS tracks are drawn red. In Figure 8, the
final output of the filter is displayed as a Gaussian field.

Notably, whereas position information is available from
the fully covering satellite imagery, velocity may only be
observed through repeated observations and associations.
New targets are initiated with a large variance in their
velocity estimate, which results in a large variety of ve-
locities considered within the individual filters. Although
only the mean velocity estimates are displayed in the
plots for clarity, this means a lot of options for future
associations will be considered as the uncertainty in
velocity is translated to uncertainty in position over time.

Figure 8: The tracker estimates may be used as an input
for current and wind estimates (track estimates shown in
red).

VII. Conclusions
In this paper, an implementation is presented of the

Spatially Indexed Labeled Multi-Bernoulli filter, and a
preview of its intended application is presented through
a simulated iceberg-tracking scenario, combining the in-
formation available from both satellite and multiple UAS
agents. The scenario is helpful in providing a testbench
with which to study the aspects of the LMB filter in
preparation for the acquisition of real data.
In this setup, the tracking methodology is limited to

point-target tracking. It is of interest, and for future
work, to extend this into extended target tracking —
in which the restriction of one report association per
target is leviated through the modelling of geometrical
extension. As much data is acquired in the form of
imagery, extension information about the tracked ice is
easily accessible and as such suits the tracking problem
well.
Another issue to be explored further in the case of

tracking ice is that of various death- and birth models. Ice
in available datasets often exhibits merging and splitting,
where several individual detections clump together in
what will appear as a single target. This behaviour has
been studied for other filters, e.g. in [24], but remains as
future research and a future extension in the implemen-
tation of the Spatially Indexed Multi-Bernoulli filter.
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