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Preface

This thesis has been submitted for the degree of Master of Science with
specialization in Structural Chemistry, at the Norwegian University of
Science and Technology, NTNU, Trondheim. The work has been car-
ried out under the supervision of Henrik Koch and Reidar Stølevik
between January 2010 and August 2011.

The thesis consists of three separate projects. This reports begins
with an Introduction that presents the general quantum mechanical
theory that is central to all three projects. Then each project is pre-
sented separately. Part A is called ”Investigations of sodium-graphite
interaction using quantum chemical methods”. This work is a pre-
liminary study for theoretical investigations that will be part of the
DURAMAT-project (Durable Materials in Primary Aluminium Pro-
duction).

Part B is an investigation of conformational energies and geometries
of 1,2-dihaloethanes, halo(halomethyl)silanes and 1,2-dihalodisilanes.

Part C, Development of ab initio computational methods based on
non-orthogonal Slater determinants, describes work done to imple-
ment and test a quantum chemical method developed by H. Koch and
E. Dalgaard in 1993 in Dalton.
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Abstracts

Part A

Cathode wear is the limiting factor in the lifetime of electrolytic cells
in aluminium production. One important reason for wear in carbon
cathode materials is the penetration and diffusion of sodium from the
melt, through the cathode materials. A long-term goal is to use quan-
tum chemistry methods to investigate this phenomenon on an atomic
scale. In order to investigate large systems, density functional the-
ory (DFT) must be applied. A small model system was considered,
and calculations using various density functionals were compared to
high level ab initio results. The comparison shows that TPSS is the
best suited functional for sodium-graphite interactions. Using this
functional, a larger system consisting of two coronene molecules and
a sodium atom has been investigated and diffusion coefficients have
been calculated based on harmonic transition state theory. Results
show that calculated diffusion coefficients match experimental obser-
vations well, but also confirm that the model system considered is not
large enough to describe bulk graphite.
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Part B

Halogenated alkanes is a group of molecules that has received much
attention, both in experiments and theoretical investigations. Here
we focus on the 1,2-dihaloethanes. The restricted rotation around
the C-C bond leads to a mixture of two rotamers, anti and gauche.
Experiments and previous theoretical results show which conformer
is lowest in energy depends on the substituted halogen, gauche is
the preferred conformer for fluoro-substituted molecules, while anti
is lowest in energy for the other halogens. This is attributed to steric
repulsion. In order to further investigate this phenomenon, the ge-
ometries of 1,2-difluoroethane and 1,2-dichloroethane are optimized
at the CCSD(T)/cc-pVDZ level. By replacing one or both of the car-
bon atoms by silicon, the corresponding halo(halomethyl)silane and
1,2-dihalodisilanes are formed. These molecules are also investigated
using the same methods. Structural parameters and conformational
energies are compared to experimental observations and theoretical
results from literature. Results from calculations correspond well with
experiments (for the molecules where experimental values are avail-
able) and with previous calculations (in the case of silane analogues).
As predicted, the accuracy of the calculations increase when includ-
ing electron correlation (MP2 and CCSD(T)) compared to the results
from HF.

Part C

A computational method using wave functions constructed as a linear
combination of non-orthogonal Slater determinants is proposed in an
article by Koch and Dalgaard in 1993. Removing the requirement of
orthogonality leads to a much more flexible wave function and more
electron correlation can be recovered by using fewer determinants. The
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method is implemented in Dalton. Test calculations for systems where
FCI results are available shows the method has favourable performance
compared to MP2 and CCSD(T).
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Sammendrag

Del A

Slitasje i katodematerialer er den begrensende faktoren i levetiden til
elektrolyseceller brukt i aluminiumsproduksjon. En årsak til slitasje er
inntrengning og diffusjon av natrium i karbonmaterialer i katoden. Et
langsiktig m̊al er å bruke kvantekjemiske metoder til å undersøke dette
fenomenet p̊a atom-niv̊a. For å gjennomføre beregninger p̊a store sys-
tem m̊a man ta i bruk tetthetsfunksjonal-metoder, DFT. Et lite mod-
ellsystem er undersøkt med b̊ade DFT og nøyaktige ab initio metoder.
En sammenligning mellom de ulike funksjonalene og CCSD(T) re-
sultatene er gjort og basert p̊a resultatene konkluderes det med at
TPSS er det funksjonalet som best beskriver natrium-grafitt interak-
sjoner. Med dette funksjonalet er beregninger p̊a et større modellsys-
tem best̊aende av to coronen-molekyl og et natrium atom gjennom-
ført. Fra potensialenergioverflate er diffusjonskonstanten bestemt ved
hjelp av harmonisk overgangstilstand teori (HTST). Resultatene viser
at estimerte diffusjonskonstanter stemmer godt overens med eksperi-
mentelle observasjoner, men bekrefter ogs̊a at et større system trengs
for å beskrive diffusjon gjennom bulk grafitt.
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Del B

Halogensubstituerte alkaner er en gruppe molekyl som har blitt grundig
undersøkt gjennom eksperiment og teoretiske beregnigner. I denne
studien fokuserer vi p̊a 1,2-dihaloetan. Rotasjon rundt C-C bindingen
fører til to isomerer, anti og gauche. Hvilken isomer som er lavest i en-
ergi har blitt undersøkt i b̊ade eksperiment og i teoretiske beregninger.
Resultatene viser at den energimessig laveste isomeren avhenger av
hvilket halogen som er subsitutert. I fluorsubsituterte molekyl er
gauche den viktigste rotomeren, mens for de andre halogenene er anti
den laveste i energi. Denne observasjonen forklares med sterisk frastøt-
ning mellom subsitutentene. For å videre undersøke dette fenomenet
er geometriene til 1,2-difluoroetan og 1,2-dikloroetan optimert med
CCSD(T)/cc-pVDZ. I tillegg er silane-ekvivalentene (halo(halometyl)silan
og 1,2-dihalodisilan) undersøkt for å avdekke mulige trender i konfor-
masjonsenergier. Bindingslengder, vinkler og energiforskjeller mellom
isomerene for hvert molekyl er beregnet og sammenlignet med eksper-
imentelle observasjoner (hvor tilgjengelig) og teoretiske beregninger i
literaturen. Resultatene viser god oversetmmelse i begge tilfeller. Som
forventer viser resultat fra CCSD(T) og MP2 høyere nøyaktighet enn
HF-beregningene.

Del C

En beregningsmetode hvor bølgefunksjonen konstrueres som en lineær
kombinasjon av ikke-ortogonale Slater determinanter (NOSD) er beskrevet
av Koch og Dalgaard in en artikkel fra 1993. Ved å ikke kreve at deter-
minantene m̊a være ortogonale oppn̊as en mer fleksibel bølgefunksjon
og elektronkorrelasjon kan beskrives ved bruk av færre determinanter
enn i andre metoder. Metoden er implementert i Dalton og testet.
Beregninger p̊a system hvor FCI-resultat er tilgjengelig viser at meto-
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den har fordeler sammenlignet med MP2 og CCSD(T).
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Chapter 1

Quantum mechanics of
molecular systems

In this section I will give a brief introduction to the theoretical basis
of this project. The nomenclature is adopted from Modern Quantum
Chemistry by Szabo and Ostlund [1] and Helgaker et al. [2]. The
majority of the theory is found in these two sources. Sections and
equations found elsewhere are referenced explicitly. Throughout the
thesis I will use atomic units to simplify the notation. A derivation of
atomic units can be found in [3].

1.1 The Schrödinger equation

In quantum mechanics, the state of a system is represented by a wave
function, denoted by Ψ. The evolution of the state with time follows
the time dependent Schrödinger equation (SE) [1]:

i
dΨ(r, t)

dt
= Ĥ(r, t) |Ψ(r, t)〉 (1.1.1)

3



Chapter 1. Quantum mechanics of molecular systems

Here, Ĥ is the Hamiltonian operator corresponding to the total en-
ergy of the system, including any applied external fields. |Ψ〉 is the
wave function, which according to the Copenhagen interpretation [4],
contains all the information about a given state. In many cases, the
Hamiltonian of a system is independent of time. One can then sepa-
rate the time- and space-dependence of Equation (1.1.1) to yield the
time independent Schrödinger equation:

Ĥ |Ψ〉 = E |Ψ〉 (1.1.2)

In Equation (1.1.2), E is the numerical value of the energy, given rela-
tive to the state where all electrons and nuclei are infinitely separated.
The Hamiltonian operator of a molecular system has to include terms
representing the kinetic energy of the electrons, Te, the kinetic energy
of the nuclei, Tn, potential energy from electron-electron repulsion, Vee,
nuclei-nuclei repulsion, Vnn and the electron-nuclei attraction, Vne. A
non-relativistic form of the Hamiltonian for a system with no external
field is given by:

Ĥ = −1

2

Ne∑
i=1

∇̂2
i −

1

2

Nn∑
I=1

∇̂2
I

mI

+
1

2

Ne∑
i,j=1

1

rij
+

1

2

Nn∑
I,J=1

ZIZJ
rIJ

−
Ne∑
i=1

Nn∑
J=1

ZJ
RiJ

(1.1.3)
Here, lower case indices are used for electrons and upper case for nu-
clei. Ne is the total number of electrons and Nn is the number of
nuclei. Z denote nucleic charges and m is the mass of a nucleus (rel-
ative to the mass of an electron).

For any system with more than two particles, Schrödingers equation
with the Hamiltonian operator given by Equation (1.1.3) becomes in-
tractable and almost impossible to solve analytically. The field of
molecular quantum mechanics rely heavily on approximations in or-
der to calculate the energy of even simple systems. Perhaps the most
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1.1. The Schrödinger equation

indispensable approximation in quantum mechanics was proposed in
1927 by Born and Oppenheimer.

1.1.1 The Born-Oppenheimer approximation

The Born-Oppenheimer (BO) approximation is based on the obser-
vation that the mass of the nuclei is much greater than that of an
electron (a proton is 1837 times heavier than an electron). It was
therefore proposed that the electrons are able to respond instanta-
neously to movement of the nuclei, while the nuclei will respond very
slowly to movement of the electrons. The wave function can then be
written as

Ψ(r, R) = φe(r;R)ΦN(R) (1.1.4)

The notation φe(r;R) means that the electronic wave function depends
on the nuclear position parametrically. The electronic Schrödinger
equation becomes

Teφe + V φe = Ee(R)φe (1.1.5)

Solving Equation (1.1.5) gives an electronic energy which depends on
the position of the nuclei. This can then be used to calculate the total
energy of the system

TNΦ + EeΦ = EΦ (1.1.6)

Using the procedure outlined here for many different conformations
will give a potential energy surface for a polyatomic molecule. Equi-
librium conformations and energies are found by locating the minima
on this surface.
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Chapter 1. Quantum mechanics of molecular systems

1.2 The electronic Schrödinger equation

Although the BO-approximation has simplified the problem of molecu-
lar calculations considerably, we are still left with the non-trivial task
of solving the electronic Schrödinger equation. The approaches to
solving the electronic Schrödinger equation are divided into two main
branches, ab initio (or first principles) and semi-empirical methods.
Semi-empirical methods use a simplified Hamiltonian and adjustable
parameters obtained from experiments. In ab initio methods, a model
wave function is chosen and the Schrödinger equation is solved using
this wave function as the only input. The accuracy of the result de-
pends on the quality of the chosen wave function. The computational
cost is higher for ab initio methods, but their accuracy exceeds that of
semi-empirical methods. In this project we use ab initio methods. A
brief description of the methods we have used is given in section 1.5.

1.2.1 Molecular orbitals

Many of the most used methods in quantum chemistry are based on
molecular orbital theory. Early discoveries in quantum mechanics gave
good expressions for atomic orbitals for many-electronic atoms. Molec-
ular orbital theory is based on using the atomic orbitals as starting
points for molecular orbitals. An example is the construction of the
molecular orbitals of H2 from the 1s-atomic orbitals from hydrogen.
The algebraic approach to solving the Schrödinger equation is based
on building approximations to the wave function from such molecular
orbitals.
Each electron in a molecule is assigned a one-electron function, called
a spin orbital χ. Spin orbitals are products of the spatial one-electron
functions and a spin-function, σ which is a function of one discrete
variable, ω. The spin orbitals then depend on four variables, spatial
coordinates and spin, which are usually gathered in the term x.

6



1.2. The electronic Schrödinger equation

χ(x) = χ(x, y, z)σ(ω) (1.2.1)

A molecular orbital is then constructed as a linear combination of
known one-electron functions

φi =
N∑
µ=1

cµiχµ (1.2.2)

1.2.2 The exact wave function

For any system larger than the hydrogen molecule ion, H+
2 , the form of

the exact wave function is unknown. However, certain characteristics
of the exact wave function is known. Any approximate wave function
should share these characteristics.

Anti-symmetry

The experimental atomic spectrum of Helium shows only half of the
states predicted by theory. The only states visible are those that
are anti-symmetric with respect to interchange of any two electrons.
This was recognized by Wolfgang Pauli, and is called Pauli’s principle
of anti-symmetry. From this, we know that the exact wave function
must be anti-symmetric with respect to interchange of electrons. For a
many-electron system, the simplest way of expressing a wave function
which obeys this principle is in the form of a determinant, usually
called a Slater determinant. A general form of such a determinant for
a system with N electrons is given by:
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Chapter 1. Quantum mechanics of molecular systems

Ψ(x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φi(x1) φj(x1) · · · φk(x1)
φi(x2) φj(x2) · · · φk(x2)

...
...

. . .
...

φi(xN) φj(xN) · · · φk(xN)

∣∣∣∣∣∣∣∣∣ (1.2.3)

Interchanging two electrons in the wave function will be equivalent to
switching two rows in the determinant, which results in a change of
sign. Slater determinants are adopted in many applications of quan-
tum mechanics for molecular systems today.

The variational principle

According to the variational principle, any normalized approximation
to the wave function, that fulfills the boundary conditions of the sys-
tem, will give an eigenvalue of the Hamiltonian that is an upper bound
of the exact ground state energy. In other words, the energy calculated
from an approximate wave function is always higher than the true en-
ergy. The variational method uses this principle, by employing a wave
function that depends on parameters. By changing these parameters
to minimize the energy, the best approximation to the wave function is
found. For a generic trial function, ψtrial, the Rayleigh ratio is defined
as

ε =

∫
ψ∗trialHψtrialdτ∫
ψ∗trialψtrialdτ

(1.2.4)

The minimum value of the Rayleigh ratio will create and upper bound
for the true ground state energy.
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1.3. Second Quantization

Size consistency

When describing a system built up of several non-interacting parts,
it is clear that the total energy of the system should be equal to the
sum of the individual particles. This has to hold because they are by
definition non-interacting. An example could be a dimer, consisting of
two monomers infinitely separated. Methods that obey this criterion
are said to be size consistent. The exact wave function is obviously
size consistent and therefore, any approximation should be as well.
For many methods, this requirement is fulfilled, such as Hartree-Fock,
but for others, it is not, such as truncated configuration interaction.

1.3 Second Quantization

In the original formulation of quantum mechanics, states are repre-
sented by functions, observables as operators and their numerical val-
ues as eigenvalues. An alternative formulation has been developed,
where the wave functions are also represented by operators. The con-
cept of a vacuum state is important. This is a state with no electrons.
The wave function of any state is represented by a series of creation
operators act on the vacuum state. A creation operator places an
electron in a given orbital. The adjoint of a creation operator is an
annihilation operator which removes an electron from the same orbital.

1.3.1 Second quantization states

A wave function in first quantization is typically represented by a
Slater determinant, as in Equation (1.2.3). The equivalent expression
in second quantization is considerably simplified. We introduce an
abstract linear vector space, the Fock space, where a determinant is
represented by a occupation number vector |k〉

9



Chapter 1. Quantum mechanics of molecular systems

|k〉 = |k1, k2, . . . , kM〉 , kp =

{
1 if φp is occupied
0 if φp is unoccupied

(1.3.1)

Above, kp is the occupation number of φp. It is 1 if φp is present in
the determinant and 0 if not.

1.3.2 Creation- and annihilation-operators

Any state |k〉 can be created by operating on the vacuum state with
a series of creation operators according to

|k〉 =
M∏
p=1

(
a†p
)kp |vac〉 (1.3.2)

Here, |vac〉 is |01, 02, . . . , 0M〉.

Acting on any vector |k〉 with any creation operator yields:

a†p |k〉 = δkp0Γ
k
p |k1, k2, . . . , 1p, . . . , kM〉 (1.3.3)

In Equation (1.3.3), Γkp =
∏p−1

q=1 (−1)kq , is a phase factor. It is apparent

that operating with a†p on |k〉 yields zero if the spin orbital φp is already
occupied, since two electrons cannot occupy the same orbital. If the
orbital was unoccupied, its occupation number changes from 0 to 1,
in the occupation number vector. Acting on an occupation number
vector with an annihilation operator is similarly defined

ap |k〉 = δkp1Γ
k
p |k1, k2, . . . , 0p, . . . , kM〉 (1.3.4)

Based on Equations (1.3.3)and (1.3.4), we can develop anti-commutator
relations for the creation and annihilation operators. Knowing these

10



1.3. Second Quantization

anti-commutators will greatly simplify many important equations en-
countered in molecular quantum mechanics.

a†pa
†
q + a†qa

†
p =

[
a†p, a

†
q

]
+

= 0 (1.3.5)

apaq + aqap = [ap, aq]+ = 0 (1.3.6)

a†paq + aqa
†
p =

[
a†p, aq

]
+

= δpq (1.3.7)

Some basic operators

All the important operators in quantum mechanics are derived from
creation and annihilation operators. Three of the most basic are the
occupation number operator, the particle number operator and the
excitation operator.

The occupation number operator is defined as N̂p = a†pap. When op-
erating on a vector, it returns the number of electrons occupying spin
orbital p, 0 or 1. The particle number operator is the sum of oc-
cupation number operators and returns the number of occupied spin
orbitals in the determinant (or entries equal to 1 in the occupation
number vector). The operator is given by:

N̂ =
M∑
p=1

a†pap (1.3.8)

The excitation operator excites an electron from spin orbital q to spin
orbital p.

X̂p
q = a†paq (1.3.9)

When the excitation operator operates on a vector, the result is zero
if the spin orbital q is unoccupied or if the spin orbital p is occupied.

11
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1.3.3 The Hamiltonian operator

The coordinate representation of first quantization and the operator
representation of second quantization leads to very different mathe-
matical expressions. However, the expectation values corresponding
to the same observable should be identical. In second quantization,
the expectation value of an operator is written as a sum of matrix el-
ements of operators. These values are required to be identical to their
first quantization counterparts. A molecular electronic Hamiltonian
operator in the Born-Oppenheimer approximation contains both one-
electron and two-electron operator terms. The following section will
outline how general one and two-electron operators are constructed.
In first quantization, a general one-electron operator for our system,
can be written as a sum of operators as follows

f c =
N∑
i=1

f c(xi) (1.3.10)

The superscript c indicates that we are working in the coordinate de-
scription of first quantization. The summation is over the N electrons
in the system, adding one operator for each electron. All the operators
in the sum depend only on their respective electron. Each term con-
tains only reference to one electron and therefore any matrix elements
between Slater determinants differing in more than one pair of spin
orbitals will vanish. Thus the second quantization expression can be
constructed as

f̂ =
∑
pq

fpqa
†
paq (1.3.11)

The two-electron equivalents are given as

12



1.3. Second Quantization

gc =
N∑
i 6=j

gc(xi,xj) (1.3.12)

in first quantization and as

ĝ =
1

2

∑
pqrs

gpqrsa
†
pa
†
rasaq (1.3.13)

in second quantization. These are the pieces needed to construct the
second quantization form of the molecular electronic Hamiltonian.

Ĥ =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

gpqrsa
†
pa
†
rasaq + hnuc (1.3.14)

The matrix elements hpq and gpqrs are found through the Slater-Condon
rules for evaluating matrix elements in first quantization [5, 6]. They
are given by

hpq =

∫
φ∗p(x)

(
−1

2
∇2 −

∑
I

ZI
rI

)
φq(x)dx (1.3.15)

gpqrs =

∫ ∫
φ∗p(x1)φ

∗
r(x2)

1

r12
φq(x1)φs(x2)dx1dx2 ≡ (pq|rs) (1.3.16)

And the nuclear contribution is given by

hnuc =
1

2

∑
I 6=J

ZIZJ
RIJ

In the rest of this thesis, we will adopt the second quantization for-
mulation and refer to states as occupation number vectors, or kets,
|〉.
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1.4 Orbital rotations

The choice of basis to express an occupation number vector is not
unique. If we have one complete orthonormal basis {φi}, it can be
used to express any other state in another complete orthonormal basis
{ϕj}. Since the basis {φi} is complete, we write a state in the basis
{ϕj} as follows

|ϕj〉 =
∑
i

|φi〉 〈φi|ϕj〉 =
∑
i

Uij |φi〉 (1.4.1)

U is then the matrix of the transformation. A reverse of the trans-
formation above, would use the conjugate transpose of U, U†. Since
the basis is orthonormal, the matrix U is unitary and we can write
UU† = 1. Using this we know that we can always perform unitary
transformations between different sets of spin orbitals, a feature that
proves necessary in many applications such as electronic optimizations.
In the following section we show that the matrix exponential of an
anithermitian matrix yields unitary matrices. First, the matrix expo-
nential is defined as

eA =
∞∑
n=0

An

n!
= I + A +

1

2!
A2 + . . . (1.4.2)

The matrix exponential is thus a matrix of the same dimensions as
A. Consider the antihermitian matrix ıκ and the relation from Equa-
tion (1.4.2)

eıκ [eıκ]† = eıκ
[
e−ıκ

†
]

= 1 (1.4.3)

Thus eıκ is a unitary matrix, since κ† = κ. The unitary matrix of a
transformation is equivalent to the operator eıκ̂. A unitary transfor-
mation of a reference state |Ψ〉, eıκ̂ |Ψ〉 = |Ψ̃〉, results in the following
expression
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1.4. Orbital rotations

eıκ̂ |Ψ〉 = eıκ̂a†1a
†
2 . . . a

†
n |vac〉 (1.4.4)

Since the exponential matrix is unitary, we can insert the product of
the transformation matrix and its conjugate transpose between the
creation operators

eıκ̂ |Ψ〉 = eıκ̂a†1
[
eıκ̂e−ıκ̂

]
a†2
[
eıκ̂e−ıκ̂

]
. . .
[
eıκ̂e−ıκ̂

]
a†n
[
eıκ̂e−ıκ̂

]
|vac〉
(1.4.5)

We can now introduce the definition

ã†r = eıκ̂a†re
−ıκ̂ (1.4.6)

Thus we can write the transformed state in terms of a new set of
transformed creation operators

eıκ̂ |Ψ〉 = ã†1ã
†
2 . . . ã

†
n |vac〉 (1.4.7)

Equation (1.4.6) can be expressed in terms of commutators, using the
Baker-Campbell-Hausdorff expansion [7–10],

eABe−A = B + [A,B] +
1

2!
[A, [A,B]]

+
1

3!
[A, [A, [A,B]]] + ... (1.4.8)

With the equations in this section, we are able to evaluate the trans-
formed state |Ψ̃〉 in terms of the untransformed creation operators.
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1.5 Computational methods

1.5.1 The Hartree-Fock self-consistent field
method

In Section 1.2.2 we introduced the concept of variationality and the
Rayleigh ratio (Equation (1.2.4)). Imagine a reference state |ref〉,
which is a single Slater determinant. If an orbital rotation eıκ is ap-
plied as described in Section 1.4, we obtain a wave function |κ〉. The
variational parameters in this state is the choice of spin orbitals, thus
we vary the matrix κ and minimize the energy

E = min
κ
〈κ|Ĥ|κ〉 (1.5.1)

Within the Born-Oppenheimer approximation, the complicating factor
in computational chemistry is the electron correlation. In the Hartree-
Fock (HF) method, each electron is considered to be moving in an
average potential field created by the nuclei and the n− 1 other elec-
trons. Thus, each spin orbital is assumed to be an eigenfunction of
the one-particle operator f̂ , the Fock operator.

f̂ = ĥ+ V̂HF (1.5.2)

where ĥ is the one electron term of the Hamiltonian from Equa-
tion (1.3.14) and V̂HF is the HF mean field potential given by

V̂HF =
all∑
pq

occupied∑
i

(gpqii − gpiiq)a†paq (1.5.3)

For a system of n electrons we thus have a system of n equations, that
depend on each other. Because of this dependence, the problem has
to be solved iteratively, i.e. in a self-consistent field (HF-SCF).
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1.5. Computational methods

The HF method is adopted as the basis of many more advanced com-
putational methods and it is therefore used to define the term electron
correlation energy. The electron correlation energy is defined as the
difference between the exact non-relativistic energy and the HF energy
of the system

Ecorr = Eexact − EHF (1.5.4)

Within the BO approximation, the only error in the HF-energy is the
electron correlation energy, and the goal of most post-HF methods is
to recover as much of the electron correlation as possible.

1.5.2 Møller-Plesset perturbation theory

Møller-Plesset perturbation theory is a variation of Rayleigh-Schrödinger
perturbation theory. The zero-order Hamiltonian is taken as the Fock
operator, Ĥ0 = f̂ . The first order perturbation of the Hamiltonian is
given by

Ĥ1 = Ĥ − f̂ − ĥnuc (1.5.5)

where H is the electronic Hamiltonian. If we use the groun dstate HF
wave function, Φ0 and standard perturbation theory we arrive at

E
(0)
0 = 〈Φ0|f̂ |Φ0〉 =

∑
i

εi (1.5.6)

E
(1)
0 = 〈Φ0|Ĥ1|Φ0〉 (1.5.7)

E
(2)
0 = −1

4

∑
ijab

|gaibj − gajbi|2

εa + εb − εi + εj
(1.5.8)

Second order Møller-Plesset perturbation theory (MP2) is one of the
simplest methods which includes electron correlation. Because of its
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simplicity, it is a popular method for large systems. The MP2 energy
is given by

EMP2 = EHF −
1

4

∑
ijab

|gaibj − gajbi|2

εa + εb − εi + εj
(1.5.9)

1.5.3 Configuration interaction

The method of configuration interaction, CI, is conceptually very sim-
ple. It is based on the fact that the exact ground state wave function
can be expressed as a linear combination of all the possible n-electron
Slater determinants, using a complete set of spin orbitals [11].

|CI〉 =
∑
i

Ci |i〉 (1.5.10)

Although the idea is quite simple, the method is not feasible in prac-
tice, since it involves a sum over all possible n-electron Slater determi-
nants and a complete infinite basis set. The number of determinants
needed for a system of n electrons using a basis set of M functions,

2M spin orbitals is given by

(
2M
n

)
. For a system with 10 electrons

and 20 basis set functions, which by today’s standards is considered a
small system, the number of determinants then reaches a total of(

2M
n

)
=

(
40
10

)
= 8.477× 108

Thus the number of states included in the sum in Equation (1.5.10)
is always truncated. Despite this truncation and the following devi-
ation from the exact wave function CI is a commonly used method.
Its biggest advantage is its description of bond breaking. However,
because of the truncation, the method is not size consistent and is
therefore not suitable for polymolecular systems, such as dimers.
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1.5. Computational methods

1.5.4 Coupled Cluster theory

The treatment of electrons without electron correlation is referred to as
the independent particle model. The description of a molecular system
consists of a wave function (a product of creation operators acting on a
vacuum state), represented by a set of occupied spin orbitals. Coupled
cluster (CC) theory attempts to improve this description by expressing
the interaction of electrons as excitations from occupied to virtual or-
bitals. Each excitation has its amplitude, or the probability of such an
excitation resulting from electron interactions. In the simplest sense,
we consider two electrons in a molecular system interacting, and the
interaction leading to an excitation of both to different spin orbitals

a†ia
†
j → a†ia

†
j +
∑
a>b

tabij a
†
aa
†
b (1.5.11)

For occupied orbitals, summation indexes i,j,k,. . . are usually used,
while a,b,c,. . . represent virtual orbitals. The quantity tabij is the am-
plitude associated with the pair excitation. We define the operator

τ̂abij = a†aaia
†
baj (1.5.12)

Coupled cluster uses the Hartree-Fock wave function as a reference
state, and we can thus write the coupled cluster wave function with
double excitations, CCD, as

|CCD〉 =

∏
a>b
i>j

(
1 + tabij τ̂

ab
ij

) |HF 〉 (1.5.13)

A more general form of the coupled cluster wave function with all
levels of excitation allowed (single, double, triple, etc) can be written
in terms of the previously defined excitation operator
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|CC〉 =

[∏
a,i

(
1 + X̂a

i

)][∏
a>b
i>j

(
1 + X̂ab

ij

)]
. . . |HF 〉 (1.5.14)

Since X̂a
i X̂

a
i = 0 and

[
X̂a
i , X̂

b
j

]
= 0, the expression above can be

rewritten as

|CC〉 = exp

∑
a,i

tai X̂
a
i +

∑
a>b
i>j

tabij X̂
ab
ij + . . .

 |HF 〉 = eT̂ |HF 〉

(1.5.15)
The coupled cluster operator T̂ is a non Hermitian operator, consisting
of a sum of terms each corresponding to excitations (single, double,
triple, ect)

T̂ = T̂1 + T̂2 + T̂3 + . . . (1.5.16)

The sum in T̂ can be truncated at any point and this has given rise to
a series of methods with increasing accuracy as the number of terms
included increase (coupled cluster singles (CCS), coupled cluster sin-
gles and doubles (CCSD), etc). CCSDT is a highly accurate method,
but the cost of including all the triple excitations is very high. In order
to capture some of electron correlation without the cost of including
all triple excitations, a hybrid method called CCSD(T) has been de-
veloped. Here, the single and double excitations are included in the
full extent, while the triple excitations are calculated using perturba-
tion theory. Because of this methods compromise between accuracy
and computational costs, it is considered the gold standard of com-
putational chemistry. For a more thorough discussion of the method,
see [12].
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1.6. Basis sets

1.6 Basis sets

In Section 1.2.1, we referred to known one-electron functions (Equa-
tion (1.2.2)). These known functions are collected in sets of functions
called basis sets, which contain atom-specific one-electron functions.
Basis sets are typically discussed in terms of their size, meaning the
number of functions used to describe each orbital. By using a large
basis set one can obtain increased accuracy, but the computational
cost will be increased. Basis sets are designed for specific applications
and many different types have been developed.
The first basis functions that were used, were Slater-type orbitals
(STOs). These were the first choice because of their excellent fit with
true atomic orbitals. However, STOs are computationally demanding
and today, the majority of the common basis sets use Gaussian type
orbitals (GTOs), where a number of Gaussian functions are fitted to a
Slater-type orbital. The smallest basis sets are referred to as minimal
basis sets. One common type of minimal basis set are the STO-nG
sets. Here, n Gaussian functions are fitted to a single STO. The small
basis sets are normally only used for very large systems, where compu-
tational restrictions demand it, or for preliminary calculations. They
are rarely good enough to obtain chemical accuracy, 1 kcal/mol.

1.6.1 Split valence basis sets

To increase the accuracy of a basis set, additional functions are in-
cluded in the description of each orbital. Adding functions makes the
wave function fit better with the true orbitals. Every function added
increases the computational cost. The improvement of the accuracy
relative to computational cost has been shown to be best when adding
functions to the valence orbitals. The effect of increasing the descrip-
tion of core orbitals leads to less gain in accuracy. Basis sets with
added functions for the valence orbitals are called split-valence ba-
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sis sets and these are most commonly used to day. In Part A of this
thesis we have used Dunning’s correlation-consistent-polarized valence
basis sets [13] with diffuse functions added. These sets are called aug-
cc-pVnZ. aug is short for augmented and implies the use of diffuse
functions. n is the cardinal number which denotes how many func-
tions are used for valence orbitals. Commonly used values of n is 2−6.
For n = 2, the basis set is denoted double zeta etc. In Part B, basis
sets of the type cc-pVnZ are used. These are the same as in Part A,
but without the diffuse functions.

1.6.2 Basis set extrapolation

In order to obtain an exact description of true spin orbitals, a complete
infinite basis set has to be used. This is called the basis set limit. It is
of course not feasible to use an infinite basis in an actual calculation,
and we always have to accept a certain basis-set truncation error.
Increasing the basis sets leads to an improvement of the calculated
energy and in the limit of an infinite basis set we approach the basis set
limit energy. If a series of calculations are performed with increasing
basis set size, it has been shown that the calculated energies converge
towards the basis set limit [14]. This has given rise to formulas for
basis set extrapolation. If the same calculation is carried out using a
double- and triple-zeta basis set, these energies can be used to predict
the quadruple-zeta energies [15]. In this project an extrapolation
scheme which extrapolates the electron correlation energy has been
used:
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x = D = 2

y = T = 3

xy = Q = 4

Ex = EHF
x + Ecorr

x

Ey = EHF
y + Ecorr

y

Ecorr
xy =

Ecorr
x × x3 − Ecorr

y × y3

x3 − y3
EHF
xy ≈ EHF

y

Exy = EHF
y +

Ecorr
x × x3 − Ecorr

y × y3

x3 − y3

Above, D and T denote the number of valence functions in the two
basis sets (double and triple zeta).

1.6.3 Basis set superposition error

Basis set superposition error (BSSE) is a common source of errors
when doing calculations on systems with multiple molecules. For such
systems, the property of interest is often the binding energy, or the rel-
ative energy of the system with atoms at a given separation, compared
to the sum of the atomic energies, infitely separated. As atoms on dif-
ferent molecules approach each other, their basis functions overlap and
are mixed. This mixing leads to an increased size of the effective basis
set for the monomers. This in itself is not an error, but it leads to an
inconsistency in the relative energy of the complex.

One common method for reducing the BSSE is counterpoise correction
(CP) [16]. The interaction energy of a dimer AB with monomers A
and B is typically calculated as
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∆Eint(AB) = EAB
AB (AB)− EA

A(A)− EB
B (B) (1.6.1)

Where the superscripts denotes which basis set is used, subscripts
denote the geometry considered, and the symbols in the parenthesis
is the chemical system considered. In other words, one does three
calculations, one of the dimer and one of each monomer by itself. For
each monomer the goal is to correct for the artificial stabilization from
the basis functions on the other monomer. This can be calculated as

EBSSE(A) = EAB
A (A)− EA

A(A) (1.6.2)

and similarly for B. Subtracting this correction from the uncorrected
interaction energy gives

∆ECP
int (AB) = EAB

AB (AB)− EAB
A (A)− EAB

B (B) (1.6.3)

In practice, the calculation of the dimer is done exactly as before, but
in the calculations of the respective monomers, the basis functions of
the other dimer is included as ghost functions. The nuclear charge and
the electrons of the ghost atoms are ignored.

1.7 Midbond functions

In ab initio calculations, there is always an error in the electron cor-
relation due to the limited basis set size. This is also true for in-
vestigations of multiple systems. When investigating systems of sev-
eral molecules, there is also intermolecular correlation to consider. A
method to solve this problem is the use of midbond functions. It has
been shown that placing a set of Gaussian functions at the centre of
a van der Waals bond, helps recover important electron correlation at
a low computational cost [17]. In cases of symmetric interactions, the
logical placement of the bond functions are at the centre of the bond.
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1.7. Midbond functions

For asymmetric interactions, one has to decide where to place the
functions. Fortunately, investigations have shown that the movement
of displacement of the midbond functions within reasonable limits has
only a negligible effect on the interaction energy [17].
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Density functional theory

The high computational cost of the ab initio methods described in 1,
has motivated the search for alternative methods. One branch is den-
sity functional theory (DFT). Instead of focusing on state functions,
DFT focuses on the electron probability density, ρ. The Hohenberg-
Kohn theorem presents the formal proof that the ground state energy
and other ground state properties can be uniquely described by the
electron density [18]. DFT is also based on the Born-Oppenheimer
approximation. The electronic energy is said to be a functional of
the electron density, E [ρ(r)]. However, the theorem only states that
such a functional exists, its form is unknown. From the postulates of
quantum mechanics, we know that the electron probability density is
given by the square of the wave function. In DFT, electronic density is
expressed as a linear combination of the squares of Kohn-Sham (KS)
orbitals

ρ(r) =
n∑
i=1

|ψi(r)|2 (2.0.1)

Using KS orbitals, the exact ground state energy can be expressed as
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E[ρ] =
n∑
i=1

∫
ψ∗1(r1)∇2

1ψ1(r1)dr1 − j0
N∑
I=1

ZI
rI1

ρ(r1)dr1

+
1

2
j0

∫
ρ(r1)ρ(r2)

r12
dr1dr2 + EXC [ρ] (2.0.2)

The term EXC is the exchange-correlation potential. The exact form
of this function is unknown. There are various types of DFT that use
different approximations to this potential.

Applying the variational principle to the equations above, gives the
Kohn-Sham equations, which yields the Kohn-Sham orbitals when
solved iteratively. The KS orbitals are usually expressed in terms
of a linear combination of known basis functions, similarly to HF. In
fact, the same type of basis sets can be used in DFT as in ab initio
methods.
The computational cost of DFT is much lower than that of post-HF
methods. Using DFT allows the investigation of systems much larger
than would have been possible with MP2 or CC, and it still accounts
for some electron correlation. However, the density functionals used
contain empirical elements in EXC . In HF or post-HF methods, we
know there is a hierarchy of methods with increasing accuracy. Con-
sider for example CC; the CC-operator contains an infinite sum of
excitations. The accuracy of the energy can systematically be im-
proved by including more terms in the series. In DFT there is no such
order because of the approximations in the exchange-correlation po-
tential. As a result of this, functionals have to be calibrated against
experimental results or first principles calculations. Calibration has to
be done for specific types of systems, so that a functional is known to
give good results for the system in question.
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2.1 Functionals

As mentioned above, the greatest challenge with DFT is finding a suit-
able density functional. Since the method was proposed in 1964 [18],
the development of density functionals has received much attention.
There are several different types of density functionals available for
DFT calculations today. The four most common types are

� Local density approximation - LDA

� Generalized gradient approximations - GGA

� meta-GGA

� Hybrid functionals

2.1.1 Local density approximation

The first functional to be suggested was the local density approxi-
mation, LDA. A functional of this type was proposed in one of the
first DFT-articles in 1965 [19]. The exchange-correlation potential is
expressed as

ELDA
XC [n] =

∫
n(r)εXC (n(r)) dr (2.1.1)

Within the approximation that the electron density is slowly varying,
the function εXC (n(r)) can be estimated as the exchange and corre-
lation energy per electron of a uniform electron gas. Methods based
on this approach are classified as LDA-functionals. Newer methods
that also depend on spin are called local spin-density approximations
(LSDA).

ELSDA
XC [n↑, n↓] =

∫
n(r)εXC (n↑(r), n↓(r)) dr (2.1.2)
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These two types of functionals were the first to be developed and are
the most primitive. We will not be using any of these types in this
project.

2.1.2 Generalized gradient approximation

An improvement to the LDA approach is generalized gradient approxi-
mation functionals, GGA [20,21]. Like LDA, these functionals consider
only the density at one point, but also depend on the gradient at this
location. These functionals are also spin-dependent. The exchange-
correlation potentials are of the form

EGGA
XC [n↑, n↓] =

∫
n(r)εXC

(
n↑(r), n↓(r), ~∇n↑(r), ~∇n↓(r)

)
dr (2.1.3)

2.1.3 Meta-GGA

Functionals of the type Meta-GGA depend on the same factors as
the GGA-functionals, but also include the second derivative of the
density. A common example of this type of functional is developed
by Tao, Perdew, Staroverov and Scuseria (TPSS) [22] in 2003. The
general expression of the exchange-correlation functional is

Emeta−GGA
XC [n↑, n↓] =∫

n(r)εXC

(
n↑(r), n↓(r), ~∇n↑(r), ~∇n↓(r), τ↑, τ↓

)
dr

(2.1.4)

2.1.4 Hybrid potentials

Hybrid potentials are potentials that incorporate exchange and corre-
lation energies from other methods, such as Hartree-Fock. The most
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common hybrid potential is B3LYP (Becke, 3-parameter, Lee-Yang-
Parr) [23]. This method uses the LDA exchange correlation potential
and adds corrections as a linear combination with terms from GGA,
LDA and HF

EB3LY P
XC = ELDA

XC +a0
(
EHF
X − ELDA

X

)
+

ax
(
EGGA
X − ELDA

X

)
+ aC

(
EGGA
C − ELDA

C

)
(2.1.5)

The coefficients {an} are empirical parameters fitted to experimental
results.

2.2 Dispersion corrections

In the description of multi-molecular systems, dispersion forces play
an important role. Unfortunately, van der Waals forces are one of
the weaknesses of DFT. A number of corrections to this problem are
suggested and one of the most promising are DFT-D corrections by
Grimme et al. [24]. The newest generations are called DFT-D3 and
these are used in our DFT calculations. This type of correction has
been tested for many systems, including graphene sheets [24], which is
particularly interesting for our calculations in Part A. The dispersion
potential is calculated adding pair wise contributions to the dispersion
forces. The dispersion coefficients are calculated from first principles
and are not semi-empirical, thus they do not have to be parametrized.
The total DFT energy including the dispersion correction can be writ-
ten as

EDFT−D3 = EKS−DFT − Edisp (2.2.1)

where EKS−DFT is usual DFT KS energy and Edisp is the dispersion
correction. The dispersion correction consists of two terms, the two-
and three-body contributions
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Edisp = E(2) + E(3) (2.2.2)

Of these two, the two-body term has the largest contribution. It is
given by

E(2) =
∑
AB

∑
n=6,8,10,...

sn
CAB
n

rnAB
fd,n(rAB) (2.2.3)

The first summation runs over all the atom pairs in the molecule,
while the second sums the nth order dispersion coefficients CAB

n (only
n = 6, 8, 10, . . .) for pair AB. sn are scaling factors for n > 6 that are
used to ensure asymptotic exactness. fd,n are damping functions that
define the range of each dispersion correction. They are given by

fd,n(rAB) =
1

1 + 6( rAB

(sr,nRAB
0 )

)−αn
(2.2.4)

In Equation (2.2.4), sr,n are order-dependent scaling factors that ad-
just the cutoff radii, RAB

0 . αn are ”steepness”parameters, which are set
manually. Typically, α6 = 14 and the other are given by αn+2 = αn+2.
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Chapter 3

Background and theory

3.1 Background for this project

The problems of cathode wear in aluminium production is the moti-
vation behind a research project titled DuraMat - Durable materials
in primary aluminium production. The project is a co-operation be-
tween Hydro, Sintef - Materials and Chemistry, and NTNU, with sup-
port from the Norwegian Research Council. Part of the project will
revolve around sodium penetration and diffusion in the cathode ma-
terials, and will involve micro scale simulations. Part A of this thesis
is a preliminary study for the DuraMat project.

3.2 Aluminium production

The dominating method for producing aluminium today, is the Hall-
Héroult process [25]. Aluminum is electrolyzed from a molten alu-
minium flouride (Na3AlF6) electrolyte, with dissolved AlF3 and Al2O3.
The overall cell reaction is given by
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Chapter 3. Background and theory

2Al2O3 + 3C(s)→ 4Al(l) + 3CO2(g) (3.2.1)

The operating temperature of the cell is approximately 900-1000oC.
A hanging block of carbon is the anode of the cell. Strictly speaking,
the molten metal pad is the cathode. However, throughout literature,
the container of the aluminium and the electrolyte is called the cath-
ode. This container is lined with prebaked carbon pieces, sealed with a
paste. The carbon blocks are usually made of graphitic or graphitized
carbon. The lifetime of a Hall-Héroult cell is limited by the lifetime
of these carbon blocks. The repair and replacement of degraded car-
bon blocks represents a major cost in aluminium production both due
to material costs and downtime. If the degradation and wear of the
carbon cathode materials could be prevented, the aluminum industry
could make considerable savings. Many measures have been investi-
gated, but none have been completely effective [26]. There are several
causes of the wear of the cathodes, one of them is the penetration and
diffusion of sodium atoms from the electrolyte into the carbon material
The mobility of sodium in carbon materials has been investigated both
experimentally [27,28] and simulated using mathematical models [29]
but the underlying mechanisms are still unknown. In order to achieve
a better understanding of the principles behind sodium diffusion in
graphite, atomistic modeling is needed.
The problem of sodium degradation of carbon materials, can be di-
vided into two parts: First, sodium adsorbed and penetrates into the
carbon material. Secondly, the atoms diffuse in through the bulk ma-
terial. Both aspects are of interest for the prevention of degradation
of cathodes, and it is very likely that the mechanisms are coupled, i.e.
once sodium has entered the graphite material, this lowers the energy
barrier for further penetration. The former problem is quite compli-
cated, involving an investigation of the interactions between sodium
atoms and the boundary of a graphite-like material. This requires a
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large model system and will be not be the focus in this project. In
this work, we focus on the diffusion of sodium through the cathode,
once it has entered.

3.3 DFT calibration

Using CC and MP2 theory as described in sections 1.5.4 and 1.5.2,
the size of the feasible model system is very restricted. To investigate
systems that are large enough to capture the nature of bulk graphite,
DFT (Section 2) must be used. In order for the results from DFT
calculations to be reliable, they must be calibrated. This will be the
first part of this project. With the smallest realistic model system,
we will calculate potential energy curves using high accuracy post-HF
methods. The same calculations will be carried out using different
types of DFT-functionals. The functional giving the best fit with the
ab initio results will be used for the larger model systems.

3.4 Sodium diffusion

The movement of a sodium atom in a graphite lattice, is restricted
to two dimensions, because sodium atoms are too large to penetrate
the graphite sheets. In addition, for preliminary purposes, it is suffi-
cient to assume that a sodium atom only interacts with the two closest
carbon sheets. Based on this, the problem can be investigated using
a simple model system, consisting of two graphite sheets and a few
sodium atoms. The first simulations will use only one sodium atom.
The model system will be expanded to include more sodium atoms at
a later stage.
In a graphite lattice, the sodium atoms are stabilized when they are
located in the sites formed by the six-membered carbon rings. The
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Chapter 3. Background and theory

movement from one site to a neighbouring one can be described by
transition state theory (TST) [30]. Although TST is an approxima-
tion, it has shown to describe solid diffusion very well [31]. The prin-
cipal idea behind TST is to locate a dividing surface, separating two
minima (reactants and products) and estimating the flux through this
surface. In a thermal ensemble, the TST rate constant, kTST , is pro-
portional to the probability of being at the dividing surface relative
to the probability of being everywhere else. This eliminates the need
to consider specific trajectories. A further approximation to TST is
harmonic transition state theory (HTST) or Vineyard theory. HTST
requires a defined saddle point along the reaction coordinate. The
dividing surface is then a hyperplane perpendicular to the reaction co-
ordinate at the saddle point. Further, one assumes that the vibrations
around the energy minima are approximately harmonic. This must
also hold for all the vibrational modes at the saddle point, except the
mode that lies parallel to the reaction coordinate. A jump between
sites requires an activation energy and the jump rate typically follows
an Arrhenius law [32]

kHTST = ν0exp

(
−∆Ebarrier

kBT

)
(3.4.1)

where, ∆Ebarrier is the barrier height associated with a jump, kB the
Boltzmann constant, T the absolute temperature and the prefactor ν0

is the attempt frequency. This frequency is of the order of the Debye
frequency of the system and can be approximated as

ν0 =

∏3N
i νmini∏3N−1
j νTSj

(3.4.2)

Here, νmin and νTS are the vibrational frequencies at the minimum and
the transition state, respectively. The prefactor can be calculated from
simulations or approximated. Throughout literature, the prefactor is
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3.4. Sodium diffusion

usually estimated to be of the order of 1012−1013 [33,34]. The diffusion
constant is then be given by

D =
kHTSTd2

6
(3.4.3)

Here, the factor 1
6

enters from the hexagonal symmetry of the graphite

lattice and d is the distance between two sites, known to be 1.4 Å. If
the prefactor is approximated based on the type of lattice, the only
value needed from simulations is the energy barrier. When the barrier
is known, the diffusion coefficient can be calculated.

3.4.1 Experimental diffusion coefficients

The field of sodium diffusion in carbon materials has received much
attention. There are many experimental studies that have measured
the diffusion constant of sodium through graphite. The model systems
considered in this study will be relatively small, and we do not expect
the results to be accurate enough to compare against experimental
results. However, we list some of the reported experimental values
here.

Table 3.1: Experimentally determined diffusion coefficients of sodium
in graphite and other carbon materials from literature

Reference Temperature
(K)

Material Diffusion
coefficient

Kozlov et al. [27] 773 Graphite 2.6− 5.0× 10−12

T. Naas [35] 1193 Semigraphite 0.4− 0.8× 10−9

T. Naas [35] 1243 Semigraphite 0.5− 1.2× 10−9

Houston et al. [36] 1003 Graphite 0.9× 10−9
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Chapter 3. Background and theory

3.5 Goals and hypothesis

An atomistic modeling of the penetration and diffusion of sodium
through graphite materials requires a large model system. For this
type of system, MP2 or CC calculations require too much computer
resources. To investigate large systems, one must use DFT. The first
goal of this part of the thesis is to conduct a calibration study. A
system consisting of a sodium dimer and a benzene ring will be used
for the calibration. This system is small enough to allow calculations
at the CCSD(T)/aug-cc-pVTZ level(Sections 1.5. The same calcula-
tions will be conducted using various DFT-functionals. These will be
evaluated against the CCSD(T)-results.

Once a suitable functional has been found, the second goal is to begin
simulations with larger model systems. Using graphite-like molecules,
we hope to find a good approximation of the energy barrier height
of lattice jumps for sodium in graphite (Equation (3.4.1)). The focus
will initially be on describing the movement of sodium through bulk
graphite. The first model system will be two rigid coronene molecules
with a sodium atom placed between them. The potential energy sur-
face will be calculated by moving the sodium atom in two dimensions,
while the coronene molecules are kept rigid at a fixed distance. This
distance is set to the equilibrium distance. Using HTST we will cal-
culate diffusion coefficients from the energy barriers.
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Computational methods

4.1 Calibration studies

4.1.1 Ab initio methods

The smallest system possible that would represent the graphite-sodium
interactions in a good way was chosen to be a benzene ring and a
sodium dimer. Although sodium is present in the electrolyte as both
single atoms and dimers, Na2 was used in the simulations. Calculations
are carried out using MP2, CCSD and CCSD(T) methods. Coupled
cluster methods are best suited for closed shell systems, while a ben-
zene ring and a sodium atom would be a doublet state. The CCSD(T)
calculation of such as system would result in a spin contamination
which we would have to correct for. Because of this we decided to use
the sodium dimer and thus eliminate spin contamination completely.
Three different geometries were used (Figure 4.1); the two molecules
in a parallel orientation with the center of the sodium-sodium bond
aligned with the center of the benzene ring (Figure 4.1(a)), perpendic-
ular orientation with the sodium-sodium bond pointing towards the
center of the benzene ring (Figure 4.1(b)), and a parallel offset geom-
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etry where the sodium-sodium bond parallel to the benzene ring, with
one sodium atom located directly above the center of the benzene ring
(Figure 4.1(c)).

(a) Parallel geometry (b) Perpendicular
geometry

(c) Parallel offset geome-
try

Figure 4.1: (a), (b) and (c) show the three orientations of benzene and
a sodium dimer that were investigated.

For all three geometries, the distance between the two molecules was
varied, while the bonds were kept fixed, and a potential energy curve
was plotted. Curves were plotted using MP2, CCSD and CCSD(T)
methods and aug-cc-pVDZ and aug-cc-pVTZ. For the parallel ori-
entation MP2/aug-cc-pVQZ energies were also calculated. For the
other methods, the quadruple zeta basis set energies were obtained by
extrapolations according to Equation (1.6.1). All result were coun-
terpoise corrected and midbond functions were placed midway be-
tween the two molecules. All calculations were carried out using
CFOUR [37].
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4.1.2 DFT calculations

The same potential energy curves that were described in Section 4.1.1
were calculated using DFT. Ten different functionals were investigated,
8 of them with D3-corrections (Section 2.2). The functionals used
are listed in Table 4.1. DFT calculations were carried out using the
Amsterdam density functional program (ADF) [38]. Calculations with
DFT on benzene and a sodium dimer in the parallel geometry were
carried out by Stefan Andersson, SINTEF [39].

Table 4.1: List of the functionals used in the DFT-calibration

Type Functional with D3
GGA BLYP Yes
GGA BP86 Yes
GGA PBE Yes
GGA PBEsol Yes
GGA revPBE Yes
GGA RPBE Yes

meta-GGA TPSS Yes
hybrid B3LYP Yes

meta-hybrid M06 No
meta-hybrid M06-2X No

4.2 Double coronene potential surface

The smallest model system showing sufficient resemblance to a graphite
lattice with intercalated sodium is a pair of coronene molecules with
one sodium atom placed in between (Figure 4.2). The two coronene
molecules were kept rigid at their equilibrium geometry during the
simulations. The distance between the two molecules was optimized,
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with a sodium atom placed right between the two centers of the mid-
dle benzene rings, and kept constant. The z-coordinate of the sodium
atom was also kept fixed, in the middle of the two coronene molecules,
while the position in the centre plane was varied. These calculations
were done with ADF using a TZ2P basis set and the TPSS functional
with D3 corrections (See Section 5.1 for a description of the perfor-
mance of the functionals and the selection of the best one).

Figure 4.2: The model system used to generate a potential energy
surface
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Results and discussion

5.1 DFT calibration

For each of the three geometries shown in Figure 4.1, potential energy
curves were calculated using MP2, CCSD and CCSD(T) with aug-cc-
pVXZ (X = D, T and Q) basis sets. The energy curves are shown
in Figures 5.1- 5.3. In all the calculations, the sodium dimer and the
benzene ring were kept rigid in their equilibrium geometry while their
separation was varied. In these graphs we see that the energies calcu-
lated with MP2, CCSD and CCSD(T) follow the same trends for all
three geometries. The binding energy calculated with MP2 is overes-
timated and the minimum distance is too short. The binding energy
from CCSD is underestimated and the minimum distance is too long.
The results from the CCSD(T) calculations lie between the two for-
mer methods in both binding energy and minimum distance. Within
each method, increasing the size of the basis set leads to a lowering
in energy. When comparing the potential energy curves for the tree
geometries, the largest binding energy and the shortest minimum dis-
tance occurs for the perpendicular orientation. In this geometry, one
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Chapter 5. Results and discussion

of the sodium atoms is placed directly over the ”hole” in the benzene
ring. It is therefore equidistant from all six carbons. The other sodium
atom is further away from the benzene ring. In this orientation, the
molecules fit very well geometrically and this explains the increased
binding energy compared to the other geometries.
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Figure 5.1: Potential energy curves for benzene and a sodium dimer
in parallel geometry. The QZ energy is calculated only for MP2, and
extrapolations from DZ and TZ energies for CCSD and CCSD(T).
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Figure 5.2: Potential energy curves for benzene and a sodium dimer
in perpendicular geometry. The QZ energies are extrapolations from
DZ and TZ-energies.

The same potential energy curves as in the previous section are cal-
culated with DFT using all the functionals from Table 4.1. When
comparing the DFT interaction energies to the CCSD(T), we assume
that all three geometrical orientations are equally important. For each
geometry, the standard deviation of the DFT energy of each functional
in each point, with respect to the CCSD(T)/aug-cc-pVDZ energy is
calculated according to Equation (5.1.1).
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Figure 5.3: Potential energy curves for benzene and a sodium dimer in
a parallel offset orientation. The QZ energies are extrapolations from
DZ and TZ-energies.

σ =
1

n

∑
Geometries

∑
R

√(
EDFT (R)− ECCSD(T )(R)

)2
(5.1.1)

Here, n is the number of observations. We consider five points in the
region of the minima in binding energy in each geometry. This was
used as a criteria for the evaluation of the DFT-functionals. In addi-
tion, we found the highest deviation from CCSD(T), in any geometry,
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at any distance separation for each of the functionals. These results
are summarized in Figure 5.4.
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Figure 5.4: The standard deviation from CCSD(T)/aug-cc-pVTZ en-
ergy and the highest deviation in any point for each of the functionals
in Table 4.1

We clearly see that there are large variations in the deviations from
the CCSD(T)/aug-cc-pVTZ energies between the functionals. The
best three functionals appear to be B3LYP-D3, M06-2X and TPSS-
D3. The lowest maximum deviation from the CCSD(T)-curve in any
point is found with the TPSS-functional, with an maximum error of
approximately 600 cm−1. This error is 55% of the total binding energy
from CCSD(T)/aug-cc-pVTZ calculation. The lowest average devia-
tion is found in B3LYP and TPSS, which both have errors of approxi-
mately 300 cm−1, or 27% of the binding energy. The other functionals
perform even worse in comparison and we do not show their potential
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energy curves here (see Appendix A). In Figures 5.5- 5.7 the potential
energy curves of the best three functionals are shown, along with the
CCSD(T)/aug-cc-pVTZ energy, for each of the three geometries. All
DFT calculations are carried out with the TZ2P basis set and B3LYP
and TPSS are corrected with D3.
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Figure 5.5: The DFT potential energy curves of benzene and a sodium
dimer in the parallel geometry (Figure 4.1). B3LYP and TPSS calcu-
lations shown here were carried out by Stefan Andersson, SINTEF.

The standard deviation of M06-2X with respect to CCSD(T)/aug-
cc-pVDZ energy curve is relatively low, however, the M06-2X curve
displays a distinct bump around the minima for all three geometries.
This hump is clearly un-physical and based on this, we chose to not
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Figure 5.6: The DFT potential energy curves of benzene and a sodium
dimer in the perpendicular geometry.

use this functional in our further investigations. When comparing the
other two functionals to the CC result, there are several factors to
consider. One is the numerical accuracy. According to Figure 5.4 the
TPSS functional provides the best results in this respect. Another im-
portant factor is the congruency of the entire potential energy curve
compared to that of CCSD(T). As mentioned in Section 3.4, the energy
barrier of site-jumps is important for the calculation of the diffusion
coefficients based on HTST. It will therefore be important to use a
functional that describes the relative well-depth as accurately as pos-
sible. From the DFT potential energy curves it looks like B3LYP dis-
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Figure 5.7: The DFT potential energy curves of benzene and a sodium
dimer in the parallel offset geometry.

plays a better fit than TPSS, despite the observations from Figure 5.4.

Up to this point we have only discussed the relative performance of
the DFT-functionals compared to each other. Our results show that
B3LYP and TPSS perform considerably better than the others we
have tested. It is also relevant to comment on the performance of
these functionals in absolute terms. Let us consider the potential en-
ergy curves of the perpendicular orientation (Figure 5.6). The binding
energy calculated from CCSD(T)/aug-cc-pVTZ is -1098 cm−1 and the
equilibrium distance is 3 Å. TPSS predicts similar minimum distance
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but overestimates the binding energy by almost 50%. The binding en-
ergy from B3LYP is considerably better, but it is still about 10% too
low. The bonding distance predicted by B3LYP is also approximately
0.25 Å too long, an error of 8%. Both these functionals produce con-
siderable errors both in binding distance and energy. Keeping in mind
that the perpendicular orientation appears to be the one where DFT
fits the best with the ab initio results, the overall performance is less
than impressive.

5.2 Potential surface and energy

barriers

Based on the results from the calibration study, we chose to begin
calculations on the coronene-Na-coronene system with both B3LYP
and TPSS. The first task was to determine the equilibrium distance
between the coronene molecules to be used in the potential surface cal-
culations. When varying the distance between the coronene molecules
using B3LYP, the calculated potential energy curve displayed an un-
physical bump or discontinuity. The same was seen in the preliminary
calculations of the potential energy surface of the coronene-sodium-
coronene system. The same calculations with TPSS gave smooth and
continuous curves, we therefore decided to abandon B3LYP in our fur-
ther investigations and rely only on TPSS. The equilibrium distance
between the two coronene molecules, when a sodium is placed between
them was determined to be 4.6 Å, 1.25 Å larger than the normal spac-
ing of graphite sheets of 3.35 Å.

In Figure 5.8 the potential energy of a sodium atom moving between
two rigid coronene molecules kept at a fixed separation of 4.6 Å is
shown. The energy (cm−1) is calculated with TPSS-D3/TZ2P. The
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coronene molecules are oriented parallel to each other and such that
the position of all the atoms are eclipsed. It is important to point out
that the edge of the double coronene molecule is not intended to repre-
sent the surface of a graphite lattice. The part of the potential energy
surface corresponding to the area outside the carbon framework of the
system, will not be discussed here. As expected, our calculations show
seven minima in the potential energy, each corresponding to a position
in the middle of each of the six-membered carbon rings in the coronene
molecules. In these locations, the sodium atom is separated by equal
distances from all its 12 most neighbouring carbon atoms and the nu-
clear repulsion is minimized. Moving the sodium atoms between these
minima brings it very close to the carbon atoms and leads to increased
potential energy. This is equivalent to an energy barrier that has to
be overcome. A perhaps unexpected observation, is that the energy of
the minima in the central carbon ring is higher than those in the outer
rings. It is difficult to explain exactly why this occurs. However, the
difference between the outer and inner sites indicate that edge effects
stabilize the former. This observation suggests that the test system is
not big enough to describe bulk graphite material. In bulk graphite,
we would expect all the sites to be of the same potential energy.
Another factor to consider, is that our test system contains only one
sodium atom. The mechanisms behind sodium diffusion are not com-
pletely understood, however, it is highly likely that the sodium atoms
interact with each other, while intercalated in the graphite lattice.
Any such effects will not be described by our model. In Section 5.1
we discuss the inaccuracy of DFT-TPSS and we see a 50% error in
the binding energy compared to CCSD(T)/aug-cc-pVDZ. This error
is quite substantial and we must expect this to affect the energy bar-
riers.
The observations described above, clearly illustrate the limitations of
our small model system. To summarize, the system is too small to rep-
resent bulk graphite, it does not consider sodium-sodium interactions
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Figure 5.8: Potential energy surface of a sodium atom moving between
two coronene molecules. Energies are in cm−1. The surface is drawn
in a cartesian coordinate system in units of Å, where the centre of the
coronene molecules are placed at the origin.

and the penetration of sodium into the graphite material is not consid-
ered. Based on this, it may be optimistic to comparing the calculated
diffusion coefficients to those reported from experiment in literature.
Nevertheless, Figure 5.10 shows the diffusion coefficients from our cal-
culations along with the values reported by [27,35,36]. Diffusion coef-
ficients are calculated according to Equations (3.4.3) and (3.4.1). The
energy barrier is found in the potential energy surface of a sodium
atom moving between two coronene molecules (Figure 5.8) and a pref-
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actor of 1012s−1 is used. The experimental results are presented with
their respective error bars. Because of the difference in the energy of
the central site and the six outer, and the symmetry of the system,
there are three unique barrier heights to consider (Figure 5.9).

Figure 5.9: The three unique energy barriers in a coronene-sodium-
coronene system

The energy barrier from each of the three jumps illustrated in Fig-
ure 5.9 are listed in Table 5.2. At this point we do not know which
of the energy barriers are closest to that of real graphite, therefore
diffusion coefficients are calculated for all three. The energy barriers
will also be affected by the error in binding energy from the DFT-
calculations, which could be as high as 50%.

Table 5.1: Barrier heights and diffusion coefficients

Barrier Barrier height
TPSS (eV)

1 0.208
2 0.287
3 0.321

56



5.2. Potential surface and energy barriers

0.0E+00

5.0E-10

1.0E-09

1.5E-09

2.0E-09

400 600 800 1000 1200 1400

Temperature (K)

D
iff

us
io

n 
co

ef
fic

ie
nt

 (m
2  s

-1
)

Barrier 0.208 eV

Barrier 0.287 eV

Barrier 0.321 eV

Experimental values

Figure 5.10: The variations in the diffusion coefficients with temper-
ature. The three lines represent diffusion coefficients calculated from
the three barrier heights from the DFT-D3/TPSS calculations. Ex-
perimental values from [27], [36] and [35] are included.

It appears that the results from our calculations correspond well with
the experimental results, within our choice of exponential pre-factor.
In particular the diffusion coefficients calculated from the two lowest
energy barriers match the experimental values reported by Naas [35]
very well. Considering all the limitations to our system, it is unlikely
that this observation means that our calculations are very accurate.
The logical explanation is rather that the limitations to our model
system mentioned above, work in opposite directions, leaving the cal-
culated diffusion coefficient on the same order of magnitude as the
experimental results. For example, the initial penetration of sodium
into the graphite lattice, leads to expansion and an increase in the
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inter-layer separation [40]. This therefore represents an energy barrier
decreasing the effective diffusion coefficient. At the same time, it is ar-
gued that the sodium-sodium interactions are cooperative [41], which
would increase rate of diffusion through the lattice. Since our model
disregards both these effects, we have calculated a diffusion coefficient
that matches experiments well, by accident.
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Chapter 6

Conclusions

In Chapter 5 the limitations and short-comings of our model system
is discussed. At this point the calculated diffusion coefficients are un-
reliable, yet we have obtained results worth summarizing. We have
successfully tested many of the state-of-the art density functionals for
the interactions between sodium and aromatic organic compounds.
The conclusion from this calibration study is that the TPSS func-
tional with the DFT-D3 dispersion corrections is the most suitable
functional. Although this functional performs better than the oth-
ers that were tested, it matches CCSD(T)/aug-cc-pVTZ calculations
quite poorly. A 50% divergence in the binding energy is consider-
able. This motivates us to continue to look for other functionals. If
other functionals are found, they can easily tested against the ab initio
results we have reported. Using the TPSS functional we have inves-
tigated an initial model system consisting of 48 carbon atoms and 1
sodium atom. Observations indicate that this system is too small to
accurately describe sodium diffusion through graphite. However, the
methodology applied in this project can and will be applied to larger
model systems. We expect that by increasing the size of the model
system, an accurate diffusion coefficient for the movement of sodium
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through bulk graphite can be calculated. Altogether, the work pre-
sented here provides a good foundation for the further investigations
of sodium-graphite interactions using quantum chemical methods in
the DuraMat project.
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Future work

The work done in Part A of this thesis presents many directions
for further work. The first and most obvious task is to expand the
graphite-like model and calculate a new potential energy surface. An
improvement would be to use ovalene (Figure 7.1) instead of coronene.
The most important difference between ovalene and coronene is that
ovalene has two equivalent central sites. The energy barrier between
these, and how it compares with those from the coronene-Na-sodium
experiments, will indicate whether a ovalene-Na-ovalene system is rep-
resentative of bulk graphite.

Figure 7.1: Ovalene

The DFT-calculations we have performed are relatively fast which
means that we can also begin to look at even larger model molecules
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than ovalene. In these larger systems we will place several sodium
atoms between the sheets to see how two or more intercalated sodium
atoms influence the energy barriers. Our results show that a sodium
atom between two graphite-like molecules will be stabilized when sit-
uated between the centers of two six-membered carbon rings. The en-
ergy barriers separating these sites are considerable. Figure 7.2 shows
the equilibrium bond length of sodium compared to the interstitial
distances in a graphite lattice of eclipsed sheets. The potential energy
curve of Na2 is calculated with CCSD(T)/aug-cc-pVTZ and agrees
well with the experimental bond length of 3.0786 Å. None of the dis-
tances a, b or c are very close to the equilibrium bond length of Na2.
This means that if two sodium atoms are placed in sites separated
by a distance c, there will be repulsion, and if they are separated by
distances a or b there will be attractive forces between them. This il-
lustrates the importance of investigating a model system with several
sodium atoms.

In the future, we also aim to begin investigating the interactions be-
tween sodium atoms and a graphite surface, and the penetration of
sodium into the lattice. The overall goal of the DURAMAT project is
to understand why sodium contamination degrades carbon materials
in the cells, and thus prevent it from happening. In order to contribute
to this, we must consider the carbon material surface where sodium
enters. To investigate model systems large enough to describe this
process, molecular mechanics (MM) methods might be required.

Charge transfer

An aspect of the sodium-graphite interactions that we have not con-
sidered in this work, is charge transfer. Graphene has a very high
electron affinity (4̃.5 eV [42]), which means a charge transfer from
sodium (which has a ionization potential of only 5.4 eV) is likely. A
study by Baker and Head-Gordon [43] shows that the electron affin-
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Figure 7.2: Figure 7.2 The potential energy curve of a sodium dimer
calculated at the CCSD(T)/cc-pVTZ level. The distances between
different sites in a graphite lattice are shown in the insert and marked
on the potential energy curve. The calculated minimum corresponds
well with the experimental value of 3.0786 Å

ity of polyatomic hydrocarbons (PAHs) increases with the size of the
molecule. The electron affinity appears to converge towards the value
of graphene as the size increases. The electron affinity of coronene
is reported as approximately 0.5 eV. This highlights the need to use
larger molecules (like ovalene and larger) in our calculations. In fu-
ture work, we will also investigate the role of charge transfer in the
interactions of sodium and graphite-like systems.
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Chapter 8

Introduction

8.1 Background

Work published by Reidar Stølevik et al. [44, 45] summarizes an ex-
tensive amount of data containing structural parameters and energies
of halogenated alkanes. In [44] experimental structural parameters for
chloroalkanes are compared with values from molecular mechanical cal-
culations (MM). In [45], ab initio calculations at the HF/6-31G* level
were performed and the resulting structural energies and parameters
were compared with experimental results where available. Among the
molecules studied in these works, we find 1,2-difluoroethane (DFE)
abd 1,2-dichloroethane (DCE). 1,2-dihaloethanes occurs in two con-
formers, anti and gauche (Figure 8.1). Anti and gauche isomers change
into each other through a rotation around the C-C-bond, thus they
are rotomers. The comparison of their energies has received much
attention. In the context of conformational energies (i.e. the en-
ergy difference, ∆E = Eanti − Egauche), it is interesting to consider
1,2-dihaloethane substituted with all of the halogens, (F, Cl, Br and
I), and their trends. In 2003, Akkerman et al. [46] presented results
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from X-ray diffraction experiments on 1,2-diflouroethane (DFE) and
1,2-diiodoethane (DIE). Their results show that flourinated ethane
prefers the gauche-conformation, while the iodine-species favours the
anti-conformation.

(a) Anti (b) Gauche

Figure 8.1: In the Newman projection, the difference between anti(a)
and gauche(b) conformer is clearly seen.

A study by Sreeruttun and Ramasami from 2006 [47] presents ex-
perimentally and computationally determined energy differences be-
tween the anti- and gauche-conformers of 1,2-dichloroethane (DCE)
and 1,2-dibromoethane (DBE). Computations were performed using
MM, HF, MP2 and DFT with basis sets up to 6-311++G(d,p). All
the computations indicate that both DCE and DBE favours the anti-
conformation. The energy difference between the two conformations
are generally more negative for bromo- than chloro-ethane.
Based on the results from literature summarized above, there appears
to be a trend in the conformational energies of 1,2-dihaloethanes. For
the smallest substituentt, F , gauche is the preferred conformation,
while for the other three, the anti-conformation is more favourable, and
the energy difference increases with the size of the substituent. This
indicate that steric effects are important in determining the favoured
rotomer. Thus, it is also interesting to consider the silane equiva-
lents of the disubstituted ethane molecules, XH2Si-CH2X and XH2Si-
SiH2X (Figure 8.2). These molecules are similar to 1,2-dihaloethanes,
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although the larger silicon atoms, reduce the distance between the
two halogen atoms in both anti and gauche conformations. Previous
MM calculations [48] indicate that for the Si-C-species, the gauche
conformer is slightly lower in energy, while for Si-Si, the gauche con-
former is lower in energy by a considerable margin, the opposite of
what is seen in 1,2-dihaloethanes. These results support the hypoth-
esis that the energy difference between gauche and anti-conformers is
controlled by steric repulsion between the F. However, these calcula-
tions are only performed at the MM-level and cannot be considered
chemically accurate.

(a) 1,2-dihaloethane (b)
halo(halomethyl)silane

(c) 1,2-dihalodisilane

Figure 8.2: 1,2-dihaloethane and its silane analogues. Anti conformers
are shown for all molecules. In this project we consider only symmet-
rically substituted molecules where X = F or Cl.

8.2 Nomenclature

This section describes the nomenclature we have adapted through-
out this work. The molecules investigated are shown in Figure 8.2.
In this figure, the molecules of type 8.2(a) are referred to by their
standard IUPAC names, 1,2-di(fluoro or chloro)ethane or by the ab-
breviations DCE and DBE. We only consider molecules where the two
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substituents are of the same type. Molecules of type 8.2(b) are re-
ferred to as fluoro(fluoromehtyl)silane and chloro(chlorometyl)silane.
When referring to both these types of methylsilanes we sometimes use
the term C-Si-molecules. The last type of molecules 8.2(c) are named
1,2-difluorodisilane and 1,2-dichlorodisilane, sometimes referred to as
Si-Si-molecules. In this paper we sometimes use the term ”silane
molecules” in reference to both the latter two types of molecules.

8.3 Bond lengths

There are several definitions of bond lengths and when comparing
calculations to experimental observations, it is important to distin-
guish between them. The symbol Re denotes the distance between
equilibrium nuclear positions; the distance between effective nuclear
positions derived from rotational constants of zero-point vibrational
levels are called R0; Rg is used for the thermal average value of nu-
clear separation and Rα is the average internuclear distance in thermal
equilibrium. The bond lengths from spectroscopic measurements are
of the type Rg while those calculated in quantum chemical calculations
are Re. To compare calculated and experimental results, a conversion
formula is given in [49]

Rg = Re +
3a3u

2

2
+K + δR (8.3.1)

In the equation above, a3 is the anharmonicity constant which is usu-
ally given a value of 1.5 − 2.5 Å−1. The longitudinal vibrational am-
plitude, u, is approximately 0.05 Å for C-C and C-Cl bonds. The
perpendicular vibrations are corrected for by the term K. This con-
stant usually takes values of 0.005 Å for C-C , 0.005-0.015 Å for C-Cl
and 0.01-0.02 Å for C-H. The centrifugal distortion, δR is very small
(0.001 Å) at room temperature and has been neglected. We have
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Table 8.1: Corrections (Rg −Re) to bond lengths from experiments

Bond Correction (Rg −Re) (Å)
C-Cl 0.010 - 0.020
C-C 0.010 - 0.015
C-H 0.02 - 0.04

adopted the same values for the corrections as in [45]. The corrections
depend on the relative location of the bond in the molecule and the
temperature. Therefore, each bond has been treated separately.

8.4 Goals and Hypothesis

The goal of this research is to carry out ab initio geometry optimiza-
tions of disubstituted ethane, methyl silane and disilane, using HF
and post-HF methods with increasing accuracy. We will investigate
the anti and gauche conformers of difluoro and dichloro-substituted
versions of the three types of molecules shown in Figure 8.2. From
geometry optimizations we will obtain structural parameters and con-
formational energies. For molecules where experimental results are
available, a comparison between each of the methods can be made and
the quality of the theoretical results can be assessed. For the silane-
molecules we have not found experimental structural parameters or en-
ergies in literature. However, calculations at the CCSD(T)/cc-pVDZ
level is close to the ”golden standard” of computational chemistry.
Bond lengths and angles from these calculations can be considered
chemically accurate. The ultimate goal is to contribute to the explana-
tion of the energy differences between anti- and gauche-conformations
in disubstituted ethane and its silane analogues.
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8.4.1 Overlapping work

In 2010 and 2011, two articles were published by Ramasami [50] and
Ramasami et al. [51]. These works present DFT, MP2 and CCSD(T)
calculations of energies and structural parameters of, among others,
the silane-molecules we have investigated. The calculations were car-
ried out using 6-311++G(d,p) and 6-311G(d,p) basis sets. They report
only minor differences between the structural parameters calculated
with MP2 and DFT. We discovered these articles after the work pre-
sented in this thesis was completed. The results presented in these two
articles overlap with the calculations in our project. However, there
are significant differences between our methods. As discussed later in
Chapter 9 we use the cc-pVDZ basis set for all our geometry opti-
mizations. In addition, Ramasami et al. have calculated geometries
at the MP2 level, and then calculated energies using CCSD(T), while
we have optimized all the geometries at the CCSD(T)/cc-pVDZ level.
In Chapter 10 we compare our results with those from [50] and [51].
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Computational methods

A total of six molecules were investigated, each with two conformers,
anti and gauche. The geometries of all 12 conformers were optimized
using HF, MP2 and CCSD(T) with the cc-pVDZ basis set, 36 geome-
try optimizations in total. At the cc-pVTZ-level, these molecules are
too large to conduct geometry optimizations. Rather, the optimized
geometries from the cc-pVDZ calculations are used in cc-pVTZ en-
ergy calculations. The transition from double to triple zeta basis sets
are kept method-specific (i.e. the optimized geometry from HF/cc-
pVDZ is used in the HF/cc-pVTZ calculation, while MP2/cc-pVDZ is
used for MP2/cc-pVTZ, etc). The starting points for all the geome-
try optimizations were HF/STO-3G-geometries from an optimization
using HyperChem [52]. The geometry optimizations at the cc-pVDZ
level were carried out using CFOUR [37]. Coupled cluster calculations
were done using a parallel version of CFOUR [53]. The geometry opti-
mizations are done using analytical gradients within a Quasi-Newton
scheme. The convergence criteria was 10−5 Hartree for energies and
10−5 Bohr/degrees for structural parameters.
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Chapter 10

Results and discussion

10.1 Conformational energies

After optimizing the geometry of both rotomers of each molecule stud-
ied, the energy differences are calculated. These are presented in Fig-
ures 10.1- 10.2. In the case of the 1,2-difluoroethane (Figure 10.1),
we see that the energy difference calculated with MM is closer to the
experimental value than our ab initio results. Among the ab initio
calculations, there is an increase in accuracy with increasing quality of
the methods. Hartree-Fock calculations predict a negative energy dif-
ference this molecule, which is wrong. For fluoro(fluoromethyl)silane
and 1,2-difluorodisilane, there appears to be a trend in the energy dif-
ference with increased quality of the methods. The energy difference
decreases in magnitude as the accuracy of the method increases. In
fluoro(fluoromethyl)silane, the energies calculated in this study seem
to converge towards the MM result with increasing quality of the
method. The trend is similar for 1,2-difluorodisilane, but here, the
ab initio results converge to almost zero (meaning the two rotomers
are completely equal in energy), while MM predicts a positive energy
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difference, i.e. gauche is the favoured rotomer. For these molecules
we do not have experimental results, however, our calculations coin-
cide quite well with those reported in [50] and [51]. For the two first
molecules, the results match MM-calculations very well, while for the
latter, MM and ab initio diverge.
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Figure 10.1: ∆E (Eanti-Egauche) of fluorosubstitued molecules. Exper-
imental values from Durig [54], MM results from Stølevik [48] and ab
initio results from Ramasami et al. [50,51] are also shown.

For 1,2-dichloroethane, we again see that the CCSD(T) results from
this study coincide well with experimental results and the results
from molecular mechanics calculations. However, as for DFE, the
energy difference obtained from the MM calculations are closer to
the experimental values than the ab initio results. This is surpris-
ing, since the CC-calculations should be considerably more accurate
than MM. Within the CC-results for DCE, the energy calculated with
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the larger basis set (triple zeta) shows an improvement with respect
to the experimental result. This is as expected, since an increased ba-
sis set should give higher accuracy. In the conformational energies of
chloro(chloromethyl)silane and 1,2-dichlorodisilane, we see the same
distinct trend as for the fluoro-molecules in the ab initio calculations.
The energy difference is negative for all methods, but the magnitude
decreases with increased accuracy of the calculation. The MM energy
difference is positive for both these molecules, and it can seem like the
CCSD(T) values approach MM. However, when moving from ethane
to methylsilane and then to disilane, MM predicts very large changes
in the conformational energy difference. The changes in the MP2 and
CCSD(T) energies are in the same direction, but a lower magnitude.
This shows that the effect of replacing a carbon atom with silicon,
induces the same effect in all methods. It is very likely that this is
caused by reduced steric repulsion. Whatever causes this effect, it
causes MM to falsely predict gauche as the conformer with the lowest
energy.
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Figure 10.2: ∆E (Eanti-Egauche) of the chlorosubstituted molecules.
Experimental values from Kveseth [55], MM results from Sreeruttun
et al. [47] and Stølevik [48] and ab initio results from Ramasami et
al. [50,51] are included in the figure

10.1.1 Conformational energy against bond
lengths

When going from the ethane to methylsilane and to disilane, the bond
length between the two ”backbone” atoms increase. This distance is
representative for the separation between the halogen substituents and
thus an indicator of the repulsive forces between them. In Figure 10.3
the variation in conformational energy difference is plotted against the
bond lengths (C-C, C-Si and Si-Si in Å). In the fluoro-compounds the
trends in energy difference with increased ”backbone” atom distance
are similar for MM and CC. Both display a positive energy difference
(indicating gauche is favoured) for DFE and a negative energy dif-
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ference for fluoro(fluoromethyl)silane. Between these two species the
trend is thus opposite to what would be expected based on steric argu-
ments. The energy difference changes in favour of the anti-conformer
with increased distance between the ”backbone”atoms. This U-shaped
trend is difficult to explain in terms of steric repulsion. The C-Si
bond is clearly longer than the C-C distance, which should mean a
shift in energy towards the gauche conformer. For both MM and CC,
the energy difference shifts towards gauche when moving to the Si-Si
species. Thus, the fluorosubstituted species show the same trend as
the chlorines, the energy difference shifts towards gauche for the larger
distance. For 1,2-difuourodisilane, the MM energy diverges from the
ab initio results, both from this study and from [50].
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Figure 10.3: ∆E (Eanti−Egauche) as a function of the distance between
the ”backbone” atoms (C-C, C-Si and Si-Si).

79



Chapter 10. Results and discussion

In the chlorosubstituted series, the trends in energy differences are sim-
ilar between MM and CC. As the ”back-bone” bond length increases,
the energy difference shifts from anti towards gauche. This trend is al-
most linear, in contrast to the trend in the fluoro-molecules. Although
the trend is very similar for MM and CCSD(T), the energy difference
is negative for all molecules calculated with CCSD(T). In the MM cal-
culations, the gauche conformer has the lowest energy for the C-Si and
the Si-Si molecules. As mentioned in the previous section, the jump
in the energy difference is clearly larger in MM than in CCSD(T).

10.2 Structural parameters

Experimental values of the structural parameters in DFE and DCE are
available from literature. These are compared to those calculated in
this study and other theoretical investigations in Tables 10.1 and 10.2.
Experimental values are corrected according to Equation (8.3.1). These
corrections are made in the articles we have cited. Structural pa-
rameters from experiments are only available for the lowest energy
conformer. For each of the computational methods the standard de-
viation, with respect to the experimental bond lengths is given.

10.2.1 1,2-difluoroethane

As seen in Table 10.1 all the calculation methods overestimate the
C-C bond length in DFE. It is quite surprising that the lowest level
calculations (HF) gives the best values for the C-C bond length. For
the C-F bond length, MP2 and CCSD(T) give values that are very
close to the experimental, while HF underestimates this bond length.
The standard deviation is a measure of the combined error in both
bond lengths. It shows that the best correspondence with experiments
is obtained in the MP2-calculations, while CCSD(T) is almost as good.
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Table 10.1: Bond lengths (Å) and angles (degrees) in gauche-DFE cal-
culated by HF, MP2 and CCSD(T). Experimental values are average
of values found in [56] and [57].

C-C C-F Standard devi-
ation (Å)

C-C-F

Exp. 1.498 1.390 - 110.5
HF/6-316++G** [54] 1.503 1.365 0.018 110.5
HF/cc-pVDZ 1.501 1.367 0.016 110.3
MP2/cc-pVDZ 1.507 1.386 0.007 110.5
CCSD(T)/cc-pVDZ 1.513 1.387 0.010 110.3

When looking at the bond angle, the value from the MP2 calculations
and the value from [54] are both very good, while CCSD(T) and HF
values are slightly lower than the experimental.

Table 10.2: Bond lengths (Å) and angles (degrees) in anti-DCE cal-
culated by HF, MP2 and CCSD(T. Experimental values are found
in [55].

C-C C-Cl Standard devi-
ation (Å)

C-C-Cl

Exp. [55] 1.533 1.792 - 109.0
HF/6-316G* [45] 1.516 1.791 0.012 109.4
HF/cc-pVDZ 1.513 1.800 0.015 109.3
MP2/cc-pVDZ 1.518 1.791 0.010 109.3
CCSD(T)/cc-pVDZ 1.524 1.803 0.010 109.2

10.2.2 1,2-dichloroethane

In contrast to DFE, the C-C bond length is underestimated by all the
calculation methods in DCE. The closest value to the experimental is
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that given by CCSD(T). For the C-Cl bond, CCSD(T) overestimates
the length while MP2/cc-pVDZ and HF/6-31G* is very close to the
experimental value. Judging by the standard deviation, CCSD(T) co-
incides best with the experimental observations. In HF, the 6-31G*
basis set produces results closer to the experimental values than cc-
pVDZ.
In both DFE and DCE, the C-C bond length calculated by HF is
shorter than that of the other two methods. In DCE, CCSD(T) pro-
vides the best prediction of the C-C bond length while in DFE, the
best correspondence with experiments is actually shown by HF. These
observations seem to contradict each other. It is difficult to explain ex-
actly why MP2 and CCSD(T) both predict a longer C-C bond length
than HF. Both the former methods are post-HF and include electron
correlation which means they are considerably more accurate than HF.
It should be noted that the gauche and anti rotamers are considered
for DFE and DCE, respectively. These observations could indicate
that CCSD(T) more accurately describes the anti-conformer.

10.2.3 Silane compounds

For the silane molecules investigated in this study, there are no exper-
imental values in literature. Although the CCSD(T) and MP2 results
in the section above corresponds well with experimental results, it is
difficult to assess the accuracy of the calculated energies and geome-
tries of the methylsilanes and disilanes. However, considering the high
accuracy of CCSD(T)/cc-pVDZ, our results can be considered reli-
able. Tables with all the structural parameters from these geometry
optimizations are found in Appendix B. Here, we will only discuss a
few general trends from the calculations.
In the case of both 1,2-difluoro and 1,2-dichlorodisilane, the Si-Si
bonds from HF calculations are longer than those from MP2 and
CCSD(T). In chlorines, there is a clear trend: Si-SiHF > Si-SiCCSD(T )
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> Si-SiMP2. In flourines, the MP2 and CCSD(T) Si-Si bond lengths
are nearly identical, and they are both shorter than the HF bond
length. This is a very different trend than in DFE and DCE, where
HF predicts a shorter C-C bond.
In the flourines, the opposite trend is observed in the Si-F bond com-
pared to the Si-Si bond. Here, HF gives a shorter bond than MP2 and
CCSD(T). For 1,2-difluorodisilane, the bond lengths in the anti- and
gauche-conformers are indistinguishable.
In the chloro species, the same trend is observed in the Si-Cl bonds as
in the Si-Si bonds of DFE and DCE, HF bonds are longer than MP2
and CCSD(T). The Si-Si bonds are longer in gauche, while the Si-F
bonds are longer in the anti conformers for all the methods.
In the methylsilane-molecules, the observed trends are quite different
from those described in the disilanes. In the fluoro compounds, the
C-Si, C-F and the Si-F bonds are almost identical for all methods in
both anti and gauche conformers. In the chloro compounds, the trend
for all bonds is bondCCSD(T ) > bondHF > bondMP2. In addition, the
bond lengths are also generally longer for anti than for gauche.

10.2.4 Comparison with data from Ramasami

Bond lengths and some angles are also reported in [50, 51] for the
dihalodislianes and halo(halomethyl)silanes investigated. Geometries
in these studies are calculated at a MP2/6-311++G(d,p) level. The
resulting bond lengths correspond very well with our values at the
CCSD(T)/cc-pVDZ level. When considering all the C-Si, Si-Si, Si-
X and C-X bonds in all conformers, the average deviation between
the two data sets is 0.020 Å per bond. The largest deviations are
found in the Si-X and C-X bonds, while the C-Si and Si-Si bonds
are practically of identical length. One interesting observation is that
all the bond lengths calculated with MP2 [50, 51] are shorter than
those calculated with CCSD(T). There is only one exception; the C-
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F bond in gauche-fluoro(fluoromethyl)silane. The bond angles of the
dihalodisilanes are not reported in [50], so we will only compare angles
for the halo(halomethyl)silanes. For the C-Si-X and the Si-C-X angles
there is an average 0.93 degree deviation between the two data set
(two angles, in both conformers of both molecules). We note that the
bond angles deviate more in the anti conformers than in the gauche.
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Conclusion

The geometry optimizations done in this project has resulted in a large
amount of data. In the previous sections we have discussed some of
the results. Based on the comparison of the calculated bond lengths
and angles with experimental results for DFE and DCE, it is evident
that the CCSD(T)/cc-pVDZ-calculations give very accurate results.
Although CCSD(T) does not give more accurate results for all bond
lengths, the overall geometry is better than that calculated with HF
and MP2. When comparing trends in bond lengths between compu-
tational methods and between the molecules, it is difficult to make
any conclusions. While some bonds are overestimated by CCSD(T),
others are overestimated by HF compared to the experimental results.
A geometry optimization with CCSD(T)/cc-pVTZ would represent
the ”golden standard” of quantum chemistry. Although we have only
used the cc-pVDZ basis sets, the results can be considered highly accu-
rate. The experimental results referred to here, are corrected accord-
ing to Equation (8.3.1). Because of the accuracy of the CCSD(T)/cc-
pVDZ geometry optimizations, it becomes valid to question the pa-
rameters used in the conversion between Rg and Re, rather than the
calculated results. In order to absolutely verify this, CCSD(T)/cc-
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pVTZ calculations should be performed.
The primary goal of this project was to investigate the conformational
energies when moving from 1,2-dihaloethane, to halo(halomethyl)silane
and then to 1,2-dihalodisilane. Previous molecular mechanics calcula-
tions report values of ∆E that predicts a shift from anti to gauche
being the most stable when going from 1,2-dichloroethane to 1,2-
dichlorodisilane. This does not agree with our ab initio calculations,
although ∆E shifts towards gauche.
In the case of the fluorosubstituted molecules, ∆E does not follow
the same trend. When going from the 1,2-dihaloethanes to the fluoro-
molecule, ∆E changes from positive to negative, and then increases
again in the disilane molecule. These observations indicate that the
energy differences between anti and gauche-conformers are complex
and cannot be explained through steric repulsion alone. The field
of halo-subsituted hydrocarbons has been studied extensively, how-
ever, the highest level of ab initio geometry optimizations reported
in literature are from MP2/6-311++G(d,p) [47, 50, 51]. The calcula-
tions in this study therefore results in an improvement in the available
data. The geometries and conformational energies from our study cor-
respond very well with results from [50] and [51] but are slightly more
accurate. Comparisons with other theoretical studies are very impor-
tant for molecules where experimental results are unavailable. Based
on the comparison between our results and those in [50,51] we do see
that MP2 consistently overestimates the bond lengths compared to
CCSD(T), but only by a margin of 0.02 Å.
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Future work

As mentioned in the previous chapter, CCSD(T)/cc-pVTZ geometry
optimizations are the ”golden standard” of quantum chemistry. We
have optimized geometries at the CCSD(T)/cc-pVDZ level, and we
believe that it is feasible to calculate geometries with cc-pVTZ, at
least for DFE using CFOUR in parallel. These can then be compared
to experimental results and will arguably be more accurate.

In this project, we have only considered fluoro- and chloro-substituted
alkanes and silanes. Results have shown that there are differences in
the trends in conformational energies between the two. In order to fur-
ther investigate this, it would be interesting to calculate geometries of
the corresponding bromo and iodo-molecules. The problem with these
species, is the size of the bromine and iodine atoms. For heavy nu-
clei, relativistic effects begin to contribute [58]. Relativistic corrections
have been developed for ab initio methods [59, 60] and are available
in CFOUR. Geometry optimizations of the bromo-equivalents of the
molecules studied here is possible, although quite costly. Bromo- and
iodo-substituted molecules are included in the work by [50] and [51].
In both studies, Gaussian 03W is used. This program does include
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features to correct for relativistic effects, however, they have not been
used in [50, 51]. Thus, a re-calculation of the geometries in CFOUR,
using the relativistic corrections available there, is an excellent op-
portunity to investigate the importance of these effects in iodo- and
bromo-compounds and to obtain accurate energies and structural pa-
rameters to complement those from this study.
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Development of ab initio
computational methods
based on non-orthogonal

Slater determinants
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Chapter 13

Background and goals

In Section 1.5 some of the most used methods in computational chem-
istry today were mentioned. The field of computational chemistry has
made tremendous progress and the size and complexity of systems
that can be investigated today are vast compared to what was possi-
ble only 20 years ago. However, much effort is still put towards the
development of new methods with increased accuracy, reduced com-
putational costs, or both. In addition, there are systems that the most
common modern methods lack the ability to describe accurately, e.g
Be2. For accurate calculations of these systems, FCI is required, which
is computationally very demanding. It is desirable to develop fast and
accurate methods that can handle such molecules.

Koch and Dalgaard [61] present an alternative multiconfigurational-
SCF (MCSCF) approach. In contrast to common practice, their pro-
posed method does not place requirements of orthogonality on the
determinants used. This results in a much more flexible wave func-
tion, but decreases the computational speed. In order to save time, an
alternative optimization procedure is also suggested. The method uses
the HF wave function as a starting point. Determinants are added to
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this reference and optimized one at a time.
The method has been shown to give a near full-CI description of the
electron correlation energy of simple systems, using much fewer deter-
minants than what is needed in other MCSCF-methods. In [61], the
method was tested, and showed good results for a water molecule in
its equilibrium geometry, a Be-atom and for the BH-molecule. The
quality of the calculations was measured in percentage of electron cor-
relation recovered. For Be, 92.2% of the electron correlation was ob-
tained by using ten determinants, and 99.9% was achieved with 120
determinants. For water, 88.8% was recovered by adding ten determi-
nants, and 99.5% from 160 determinants. The non-orthogonal Slater-
determinant (NOSD) method can in the future be combined with cou-
pled cluster such that the orbitals in the cluster operator are non-
orthogonal to the orbitals in the reference determinant. This will allow
the description of chemical reactions using CC-methods [62]. When
the code was tested in 1993, it was programmed in a free-standing
program which is not very practical. Implementation of the method
in Dalton is the first step towards a combination of NOSD with CC.
The objective of this part of the thesis, is to present the theoretical
background of the method in a clear manner and to implement and
test the method in Dalton [63] for singlet systems.

13.1 Test systems

After implementing the NOSD code in Dalton we wish to test its
performance. We are particularly interested in the amount of electron
correlation energy recovered, its computational speed and if it is able
to describe systems where other common methods (MP2, CCSD and
CCSD(T)) fail. We have chosen to test the NOSD code on water
and the beryllium dimer. Binding and absolute energies from our
calculations will be compared to experimental and theoretical results
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from literature.

13.1.1 Water

In [64], results from calculations using various methods on water in
its equilibrium geometry and during symmetric stretching of the O-H
bonds is presented. Among the methods tested are MP2 and CCSD(T),
along with higher level calculations with both MBPT and CC. The
higher level methods (e.g. MP15 and CCSDTQ) produce very accu-
rate results, but similar to FCI calculations, these are very costly. Our
goal is for NOSD to be a method that can produce accurate results in
a relatively short time. We will therefore focus on the comparison of
our results to those from MP2 and CCSD(T).

13.1.2 Be2

The beryllium dimer, Be2, is an enigma for computational chemistry,
despite its modest size (8 electrons). Early theoretical studies using
both SCF [65, 66] and CI [67] concluded that the dimer was com-
pletely repulsive. Since then, different studies have presented results
varying from a shallow van der Waals minima to double minima and
bond lengths between 2.3 and 5.1 Å. In 2007, a study by Patkowski
et al. [68] presented the full configuration interaction (FCI) binding
energy for Be2. The calculations were conducted by first calculat-
ing the CCSD(T)-energy, extrapolating this to the complete basis set
limit (CBS) and then doing a FCI-calculation within the frozen core
(FC) approximation. The resulting binding energy was 938 cm−1 at
a fixed bond length of 2.44 Å. In 2009, a spectroscopic study by Mer-
ritt et al. [69] presented an experimental well depth and bond lengths
of 929.742 cm−1 and 2.45 Å, respectively. This coincides very well
with the theoretical results from Patkowski and it appears that the
correct bond length and binding energy has been found. The method
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employed by Patkowski is computationally very demanding, however,
none of the faster methods (MP2, CCSD or CCSD(T)) produce accu-
rate results. Our goal is to use NOSD to obtain an accurate description
of Be2.
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Theory

In this chapter we will go through the derivation of the equations that
form the theoretical basis for the method based on non-orthogonal
Slater determinants (NOSD). Chapter 15 will describe the implemen-
tation of the method in Dalton.

14.1 Matrix elements

The state of a system is described by a wave function that can be
written as a linear combination of Slater determinants

|Ψ〉 =
∑
j

|φj〉Cj (14.1.1)

We start with a primitive basis of M orthonormal spin-orbitals { ωq (ξ) }
and their corresponding creation operators

{
a†q
}

. In this basis, the
Hamiltonian is given by

H =
∑
p,q

hpqa
†
paq + 1

2

∑
p,r,q,s

(pq|rs) a†pa†rasaq (14.1.2)
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We will assume that the one- and two-electron integrals in this basis
are known. Let us then imagine that one of the determinants in the
expansion in Equation (14.1.1) is given by

|φ〉 = b†1b
†
2 . . . b

†
n |vac〉 (14.1.3)

Where,
{
b†j

}
are the creation operators for the spin orbitals { νq (ξ) }

that are occupied in φ. These spin orbitals can be expressed as a
linear combination of the spin orbitals in the original orthonormal
basis { ωq (ξ) }

νj =
∑
p

ωpDpj(φ) (14.1.4)

Here D(φ) is a rectangular M × n matrix. Similarly, the creation
operators in this basis can be expressed as a linear combinations of
the original creation operators

b†p =
∑
r

a†rDrp(φ) (14.1.5)

The objective is now to describe the matrix elements required to cal-
culate the electronic energy using arbitrary, not necessarily orthogonal
Slater determinants. The simplest matrix element is the scalar product
〈φ′|φ〉 where φ is given as above and where φ′ is a different determinant
with occupied orbitals { uq (ξ) } given by

uj =
∑
p

ωpDpj(φ
′) (14.1.6)

and the corresponding creation operators
{
c†j

}
are given as

c†p =
∑
r

a†rDrp(φ
′) (14.1.7)
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The scalar product between these two determinants can be expressed
as the determinant of an overlap matrix ∆

〈φ′ |φ〉 = |∆| (14.1.8)

The equation above can be shown using the anti-commutator relations
of the creation operators.

[
cp, b

†
q

]
+

=
∑
r,s

[
arD

∗
rp(φ

′), a†sDsq(φ)
]
+

=
∑
r,s

D∗rp(φ
′)δrsDsq(φ)

=
∑
r

D∗rp(φ
′)Drq(φ)

= 〈up | νq〉 (14.1.9)

Equation (14.1.8) holds for determinants of any length. Below, the
equation is derived for two two-electron determinants. The vacuum
state is usually denoted |vac〉. We introduce the notation 〈x〉 for the
vacuum expectation value of the operator x. We can rewrite the scalar
product of any two determinants by ”moving” the annihilation opera-
tors from left to right by inserting relation for the anti-commutators.
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〈φ′ |φ〉 =
〈
c2c1b

†
1b
†
2

〉
=
〈
c2

(
c1b
†
1 + b†1c1 − b

†
1c1

)
b†2

〉
=

〈
c2

([
c1, b

†
1

]
+
− b†1c1

)
b†2

〉
=

〈
c2

[
c1, b

†
1

]
+
b†2

〉
−
〈
c2b
†
1c1b

†
2

〉
=
[
c1, b

†
1

]
+

〈
c2b
†
2

〉
−
([
c1, b

†
2

]
+

〈
c2b
†
1

〉
−
〈
c2b
†
1b
†
2c1

〉)
=
[
c1, b

†
1

]
+

〈
c2b
†
2

〉
−
[
c1, b

†
2

]
+

〈
c2b
†
1

〉
After moving all annihilation operators to the right we are left with

〈φ′ |φ〉 =
[
c1, b

†
1

]
+

[
c2, b

†
2

]
+
−
[
c1, b

†
2

]
+

[
c2, b

†
1

]
+

= 〈u1 | ν1〉 〈u2 | ν2〉 − 〈u1 | ν2〉 〈u2 | ν1〉 = |∆| (14.1.10)

The matrix element arising from the one-electron term of the Hamil-
tonian can be calculated in a similar fashion

〈
φ′
∣∣ a†paq ∣∣φ〉 =

〈
φ′
∣∣∣ [a†p, aq]+ ∣∣∣φ〉− 〈φ′ ∣∣ aqa†p ∣∣φ〉 (14.1.11)

= δpq 〈φ′ |φ〉 −
〈
φ′
∣∣ aqa†p ∣∣φ〉 (14.1.12)

The second term in the last line is equivalent to the determinant of
a n + 1 electron determinant overlap and can be expanded as in the
derivation above.
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〈
φ′
∣∣ a†paq ∣∣φ〉 = δpq 〈φ′ |φ〉 −

〈
φ′
∣∣ aqa†p ∣∣φ〉

= δpq|∆| − det




δqp

〈
aqb
†
1

〉 〈
aqb
†
2

〉
. . .

〈
aqb
†
n

〉〈
c1a
†
p

〉
∆

〈
c2a
†
p

〉
...〈

cna
†
p

〉

=− det




0

〈
aqb
†
1

〉 〈
aqb
†
2

〉
. . .

〈
aqb
†
n

〉〈
c1a
†
p

〉
∆

〈
c2a
†
p

〉
...〈

cna
†
p

〉
(14.1.13)

We are thus left with a single determinant of a (n+1)×(n+1) matrix.
To simplify the expression above, we use the relation

det

(
A B
C D

)
= detD× det

(
A−BD−1C

)
(14.1.14)

Applying this to the last line of Equation (14.1.13) we obtain an ex-
pression for the one electron integral in terms of the D matrixes from
equations (14.1.4) and (14.1.6)

〈
φ′
∣∣ a†paq ∣∣φ〉 = −|∆| × det

(
−
〈
aqb
†
µ

〉
(∆)−1µν

〈
cνa
†
p

〉)
= |∆| × det

(
Dqµ(φ)(∆)−1µνD

∗
νp(φ

′)
)

= |∆| ×
[
D(φ)(∆)−1µνD(φ′)†

]
qp
≡ gqp (14.1.15)
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The next step is to evaluate the two-electron integrals. Using the same
approach, introducing the anti-commutators by moving annihilation
operators towards the ket, we find that the two electron density matrix
is given by〈

φ′
∣∣ a†pa†rasaq ∣∣φ〉 = (gqpgsr − gspgqr)|∆|−1 (14.1.16)

This expression becomes unstable when the determinant of the overlap
matrix is close to zero. To avoid this problem we introduce a singular
value decomposition of the overlap matrix

∆ = UdV+ (14.1.17)

Where U and V are unitary matrices with determinants equal to one
and d is a diagonal matrix. The determinant of a product of matrixes
equals to product of the determinants. The determinant of a diagonal
matrix is the product of all the diagonal elements, so the scalar product
of two determinants can then be written as

〈φ′ |φ〉 =
∏
j

dj (14.1.18)

where dj are the elements of d. Using this alternative formulation of
the overlap matrix, the one- and two-electron densities can be rewrit-
ten. The one electron matrix element is then given by

gqp =
[
D(φ)VpU+D(φ′)†

]
qp

(14.1.19)

where p is a diagonal matrix with elements pj = d1d2 . . . dj−1dj+1 . . . dn.
In order to simplify the two-electron matrix elements we introduce the
quantity f(qp, jj′)

f(qp, jj′) = (D(φ)V)qj (D(φ′)U)
∗
pj′ (14.1.20)
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The two-electron elements can then be rewritten to a more stable
form. We begin by considering the first term on the right hand side
of Equation (14.1.16)

gqpgsr|∆|−1 =
[
D(φ)Vd−1U+D(φ′)†

]
qp
×[

D(φ)Vd−1U+D(φ′)†
]
sr
|∆| (14.1.21)

=
∑
jj′

(D(φ)V)qjd
−1
j (U+D(φ′)+)jp

(D(φ)V)sj′d
−1
j′ (U+D(φ′)+)j′r|∆| (14.1.22)

=
∑
jj′

(D(φ)V)qj(D(φ′)U)∗pj

(D(φ)V)sj′(D(φ′)U)∗j′rd
−1
j d−1j′ |∆| (14.1.23)

=
∑
jj′

f(qp, jj)f(sr, j′j′)d−1j d−1j′ |∆| (14.1.24)

Replacing both terms in Equation (14.1.16) as shown above yields

〈
φ′
∣∣ a†pa†rasaq ∣∣φ〉 =

∑
jj′

f(qp, jj)f(sr, j′j′)d−1j d−1j′ |∆|

−
∑
jj′

f(qp, jj′)f(sr, jj′)d−1j d−1j′ |∆| (14.1.25)

This can be simplified further by introducing the definition

d−1j d−1j′ |∆| =
∏
q 6=j,j′

dq = qjj′ (14.1.26)

Which leaves us with
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〈
φ′
∣∣ a†pa†rasaq ∣∣φ〉 =

∑
jj′

[f(qp, jj)f(sr, j′j′)− f(qp, jj′)f(sr, jj′)]qjj′

(14.1.27)
Using the equations in this section, the matrix elements needed to
calculate the energy of a general spin-orbital basis can be found. In
the rest of the equations and throughout this thesis, the focus will be
on singlet states with 2n electrons. The orbital indices i, j, k, . . . will
refer to occupied spatial orbitals and the indices a, b, c, . . . will indicate
virtual orbitals. All determinants will contain an equal number of
orbitals with α and β spin, with identical spatial parts. We will use
the modified defintions

|∆| = 〈φ′α|φα〉 (14.1.28)

gqp = 〈φ′α|a†pαaqα|φα〉 (14.1.29)

This gives the following expression for the total energy of a singlet
state
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〈φ′|H|φ〉 = 〈φ′βφ′α|
∑
p,q

hrs

(
a†pαaqα + a†pβaqβ

)
|φαφβ〉

+ 〈φ′βφ′α|
[

1

2

∑
p,q,r,s

(pq|rs)
(
a†pαa

†
rαasαaqα

)]
|φαφβ〉

+ 〈φ′βφ′α|
[

1

2

∑
p,q,r,s

(pq|rs)
(
a†pβa

†
rβasβaqβ

)]
|φαφβ〉

+ 〈φ′βφ′α|
[

1

2

∑
p,q,r,s

(pq|rs)
(
a†pαa

†
rβasβaqα

)]
|φαφβ〉

+ 〈φ′βφ′α|
[

1

2

∑
p,q,r,s

(pq|rs)
(
a†pβa

†
rαasαaqβ

)]
|φαφβ〉 (14.1.30)

The first term in Equation (14.1.30) is the one-electron contribution
which can be simplified to

〈φ′βφ′α|
∑
p,q

hrs

(
a†pαaqα + a†pβaqβ

)
|φαφβ〉

=
∑
p,q

hrs

(
〈φ′β|φβ〉 〈φ′α|a†pαaqα|φα〉+ 〈φ′α|φα〉 〈φβ|a

†
pβaqβ|φβ〉

)
=
∑
pq

hpq (|∆|gqp + |∆|gqp)

= 2|∆|
∑
pq

hpqgqp (14.1.31)
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The four last terms in Equation (14.1.30) are the two-electron contri-
butions. They can be simplified according to the derivation below

1

2

∑
p,q,r,s

(pq|rs)

〈φ′α|
(
a†pαa

†
rαasαaqα

)
|φα〉 〈φ′β|φβ〉

+ 〈φ′β|
(
a†pβa

†
rβasβaqβ

)
|φβ〉 〈φ′α|φα〉

+ 〈φ′α|
(
a†pαaqα

)
|φα〉 〈φ′β|a

†
rβasβ|φβ〉

+ 〈φ′α|
(
a†rαasα

)
|φα〉 〈φ′β|a

†
pβaqβ|φβ〉

=
1

2

∑
p,q,r,s

(pq|rs) [2 (gqpgsr − gspgqr) + 2gqpgsr]

=
∑
p,q,r,s

2 (pq|rs) gqpgsr − (pq|rs) gspgqr

=
∑
p,q,r,s

2 (pq|rs) gqpgsr − (ps|rq) gqpgsr

=
∑
p,q,r,s

[2 (qp|rs)− (ps|rq)] gqpgsr

=
∑
p,q,r,s

M(pq, rs)gqpgsr (14.1.32)

Where we have introduced the definition

M(pq, rs) ≡ 2 (qp|rs)− (ps|rq) (14.1.33)

Combining the results from Equations (14.1.31) and (14.1.32) we can
write the total Hamiltonian matrix element of a singlet state as

〈φ′|H|φ〉 = 2|∆|
∑
pq

hpqgqp +
∑
p,q,r,s

M(pq, rs)gqpgsr (14.1.34)
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The matrix elements of the Hamiltonian is used for the calculation of
the energy. Recalling that the energy is given by

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

(14.1.35)

Here, we can insert a linear combination of non-orthogonal Slater de-
terminants which yields

E =

∑
IJ CI 〈φI |H|φJ〉CJ∑
IJ CI 〈φJ |φI〉CI

(14.1.36)

Where the matrix elements are given by Equations (14.1.34) and (14.1.10).

14.2 Orbital parameterization

The topic of orbital rotations was discussed in Section 1.4. We use
this type of rotations in order to generate new determinants form a
reference determinant (usually the Hartree-Fock wave function).

|φ〉 = exp(iΛ) |R〉 (14.2.1)

Here, Λ is a Hermitian one-particle operator of rank zero with respect
to spin-rotations. For real orbitals, Λ is written as

Λ = −i
∑
b,j

(
a†bαajα − a

†
jαabα + a†bβajβ − a

†
jβabβ

)
λbj (14.2.2)

Using this rotation on a determinant, creates a matrix D (Equa-
tion (14.1.4)), which depends on the parameters λbj in a quite com-
plicated way. The matrix λ is rectangular and the first index a runs
over all the virtual orbitals (a, b, c, . . .) while the second index denotes
the occupied orbitals (i, j, k, . . .). In order to simplify the expression
for D we suggest an SVD of λ.
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λbj =
∑
p

AbpθpBjp (14.2.3)

Above, A and B are real, orthogonal matrixes of dimensions M−n and
n respectively. The diagonal matrix θ has at most n non-zero elements
and θp = 0 when p > n. Using this SVD we can derive expressions
for the unitary orbital transformations generated by Λ. Let us first
consider the transformation of the virtual spin orbitals of the reference
state, |R〉. In the singlet state case we begin with considering only the
α-terms in Equation (14.2.2). From Equation (1.4.8) we see that

exp(ıΛα)a†aαexp(−ıΛα) = ã†aα

= a†aα +
[
Λα, a†aα

]
+ 1

2

[
Λα,

[
Λα, a†aα

]]
+ . . .

(14.2.4)

If the series is truncated at after the third term we need to calculate
two determinants. From this point forward, we assume that we are
dealing with the α-contribution and omit the subscript for clarity.
Using the single value decomposition of λbj the commutator in the
second term on the right hand side of Equation (14.2.4) is equal to
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[
Λ, a†a

]
=

[(∑
b,j

a†baj − a
†
jab
∑
p

AbpθpBjp

)
, a†a

]
=
∑
b,j,p

([
a†baj, a

†
a

]
−
[
a†jab, a

†
a

])
AbpθpBjp (14.2.5)[

a†baj, a
†
a

]
= a†bδja = 0[

a†jab, a
†
a

]
= a†jδab[

Λ, a†a
]

= −
∑
b,j,p

a†jδabAbpθpBjp

= −
∑
j,p

a†jAapθpBjp (14.2.6)

Which can be rearranged to[
Λ, a†a

]
= −

∑
j,p

a†jBjpθp (Apa)
T = −

∑
j

a†j
[
BθAT

]
ja

(14.2.7)

Inserting the result from above into the commutator in the third term
on the right side in Equation (14.2.4) we obtain in a similar way

[
Λ,
[
Λ, a†a

]]
= −

[(∑
b,j,p

(
a†baj − a

†
jab

)
AbpθpBjp

)
,
∑
i,q

a†iAaqθqBiq

]
= −

∑
b,j,i,p,q

([
a†baj, a

†
i

]
−
[
a†jab, a

†
i

])
AbpθpBjpAaqθqBiq

= −
∑
b,j,i,p,q

(
a†bδji − a

†
jδbi

)
AbpθpBjpAaqθqBiq

= −
∑
b,j,p,q

a†bAbpθpθqAaqBjpBjq (14.2.8)
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By noting that

BjpBjq = δpq (14.2.9)

Equation (14.2.8) reduces to[
Λ,
[
Λ, a†a

]]
= −

∑
b,p

a†bAbpθpθpAap (14.2.10)

Similarly to what was done in the first commutator term, we can write
this as

[
Λ,
[
Λ, a†a

]]
= −

∑
b,p

a†bAbpθpθpAap = −
∑
b

a†b
[
Aθ2AT

]
ba

(14.2.11)

Inserting the results from the two previous expressions into Equa-
tion (14.2.4) we obtain

ã†a = a†aα −
∑
j,p

a†jAapθpBjp − 1
2

∑
b,p

a†bAbpθpθpAap . . . (14.2.12)

Let us now compare the terms in series in Equation (14.2.12) to the
Taylor series expansion of the sine and cosine functions

sin θ = 1− θ2

2!
+
θ4

4!
− . . . (14.2.13)

cos θ = θ − θ3

3!
+
θ5

5!
− . . . (14.2.14)

Using the Taylor series expansions, Equation (14.2.12) can be rewrit-
ten in terms of the trigonometric functions to form

ã†a =
∑
b

a†b
[
A cos θAT

]
ba
−
∑
j

a†j
[
B sin θAT

]
ja

(14.2.15)
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14.3. Initial guess

Using the same approach we can write a similar expression for the
occupied spin-orbitals in the reference state

ã†i =
∑
a

a†b
[
A sin θBT

]
ai

+
∑
j

a†j
[
B cos θBT

]
ji

(14.2.16)

In Equations (14.2.15) and (14.2.16), the transposed matrixes AT and
BT , respectively, can be factorized out of the two terms. The mul-
tiplication of these matrices represent unitary transformations of the
orbitals and is thus irrelevant for the energy. Therefore, we can write
the occupied spin orbitals as

νp(r) =
∑
a

ωaAap sin θp +
∑
j

ωjBjp cos θp

≡
∑
s

ωsD(φ)sp (14.2.17)

where p = 1, 2, . . . , n. A similar expression can be written for the
virtual orbitals.

wp(r) =
∑
b

ωbAbp cos θp −
∑
i

ωiBip sin θp

≡
∑
s

ωsQ(φ)sp (14.2.18)

where p = 1, 2, . . . ,M − n

14.3 Initial guess

An underlying principle in this method is to improve the energy by
sequentially adding determinants to the wave function in order to im-
prove the energy. Imagine a reference wave function, e.g. the HF
state, being improved by adding an additional Slater determinant
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Chapter 14. Theory

|Ψ〉 = |Ψ0〉C0 + |φ〉C1 (14.3.1)

In the suggested approach, each optimization is initiated by adding
the previously optimized determinant as input. This will not lead to
a change in the energy. From the variational principle equation below
holds

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

≥ ε0 (14.3.2)

Where, ε0 is the experimental ground state energy. The coefficients
C0 and C1 are then variational parameters of the total wave function
and the gradient with respect to C1 can be written as

∂E

∂C1

=
∂
∂C1
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

− 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉2

∂
∂C1
〈Ψ|Ψ〉 = 0 (14.3.3)

To simplify the notation, we will from now on assume that the wave
function is normalized. The condition for the energy to be stationary
is that

∂E

∂C1

= 2
(
〈Ψ|H|φ1〉 − E 〈Ψ|φ1〉

)
= 0 (14.3.4)

And similarly for C0. This leads to the familiar equation

(H− SE) ~C =~0 (14.3.5)

⇔ |H− SE| =0 (14.3.6)

In Section 1.4 we describe the concept of unitary orbital transforma-
tions using an exponential operator. Let us imagine that the Slater
determinant added in Equation (14.3.1) is expressed as a transforma-
tion of a reference determinant, |φ〉 = exp(ıΛ) |R〉.
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14.3. Initial guess

|Ψ〉 = |Ψ0〉C0 + exp(ıΛ) |R〉C1 (14.3.7)

The wave function still obeys the variational principle, and since the
rotation depends on the parameters {λbj} (Equation (14.2.3)), these
are now also variational parameters. Thus we can write

∂E

∂λbj
= 2C 〈Ψ|H − E| ∂φ

∂λbj
〉 (14.3.8)

This will also vanish since we are at a minimum in the energy. In order
to optimize the new wave function, a modification of the variables
{λbj} has to be made. A rigorous procedure for this modification is
not yet developed, but a temporary solution has proved successful. In
coupled cluster calculations, the wave function is improved by adding
states corresponding to e excitations. We adopt a similar approach.
Adding a determinant that corresponds to a single excitation from
HOMO, φj, to LUMO, φa, would be similar to the approach in CCS.
However, we do not impose orthogonality, and the added determinant
does not have to be one where an electron is completely excited. A
rotation by π

4
on φj and φa, corresponds to a partial excitation. Adding

such a determinant is used as our initial guess.
The choice of j and a that produce the best starting point is non-
trivial. In preliminary calculations, we have done CC-calculations to
see which excited state contributes the most to the wave function,
as a guide in our choice. A better procedure would be to use the
orbital energy differences (the denominator in the expression for the
perturbation energy) and sort these in order of size. If when adding n
determinants to the previously optimized reference state, the n lowest
orbital energy differences would be used. Each would correspond to a
partial excitation, or mixing of one occupied and one virtual orbital.
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Chapter 14. Theory

14.4 Optimization

An optimization procedure requires the calculation of the gradient
of the energy with respect to the variational parameters. Using the
analytical gradient is by far the fastest approach. However, the cal-
culation is quite involved and we have not yet completed this part
of the program. A routine that calculates the numerical gradient is
also included in the program. In the final version, this will only be
used to verify the analytical gradient, however, until the analytical
gradient is available, the wave function can be optimized with the nu-
merical gradient. This approach is equally accurate, but considerably
slower. In the program, we employ the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method with a numerical gradient calculated using
the central differences method.

14.4.1 Central differences

The central differences method is used to calculate the numerical gra-
dient of a function f(x). The simplest case is a two point formula.
This requires that f(x + h) and f(x − h) can be evaluated, where h
is the chosen step size. Consider the Taylor expansion around the two
points

f(x+ h) = f(x) + f ′(x)h+
f (2)(x)h2

2!
+ . . .

f(x− h) = f(x)− f ′(x)h+
f (2)(x)h2

2!
+ . . .

Subtracting the second formula from the first and rearranging yields

f ′(x) =
f(x+ h)− f(x− h)

2h
(14.4.1)
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14.4. Optimization

The two point formula has a truncation error O(h2). The accuracy of
the formula can be increased by including more points, symmetrically
spaced around x.

14.4.2 BFGS

The BFGS method is a method used for nonlinear optimization with-
out constraints. The algorithm searches for stationary points on a
multidimensional surface. The algorithm works as follows

1. An initial guess, x0 and an approximation to the Hessian matrix
B0 is given

2. A direction vector, px is obtained from the equation

Bkpk = −∇f(xk)

3. Along the determined direction, a line search determines the step
length ak and the solution vector is updated

xk+1 = xk + akpk

4. sk and yk are given the values

sk = akpk

yk = ∇f(xk+1)−∇f(xk)

5. Finally, the approximation of the Hessian for the next step is
calculated as

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksk(Bksk)

T

sTkBksk
(14.4.2)
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6. Steps 2-5 are repeated until a convergence criteria is satisfied.

Our optimization problem can depend on a high number of variables,
depending on the number of determinants used. The memory available
is also limited and we have therefore chosen to use the limited memory
BFGS, L-BFGS. This is a variation of the method described above.
Instead of storing the whole approximate Hessian, the approximate
Hessian is stored in the form of a few vectors, which represent the
matrix implicitly. For systems with many variables, this can save
considerable memory.
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Computational Methods

Dalton

Dalton is an open-source program package for quantum chemistry cal-
culations. The program is written in Fortran and used by scientists
all over the world. It contains modules for calculating energies and
optimizing geometries using HF, MBPT, CC and DFT. The NOSD
method uses the HF wave function as a starting point and it therefore
convenient for us to implement our code in Dalton. We have added
our code as a module that can be called from normal dalton-input
files.

15.1 Implementation of NOSD in

Dalton

This section outlines the NOSD-calculation in Dalton based on the
equations from Chapter 14.
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Chapter 15. Computational Methods

15.2 Driver

Since the NOSD-method uses the HF determinant as a starting point,
a HF-calculation always preceds the NOSD-calculation in Dalton. Af-
ter the HF-calculation is complete, a program called the NOSD-driver
is called. The driver controls the calculation and runs the following
tasks:

1. An initial guess is created

2. The energy of initial guess is calculated

3. The wave function is optimized with respect to the variational
parameters

15.2.1 Initiating the calculation

In Section 14.3 the method of initiating the optimization is described.
A rotated version of the HF reference determinant is added to the
previously optimized determinant. At the present stage we hard-code
the rotational parameters {λbj} to be π

4
. The number of determinants

to be added to the reference state is controlled by input from the user.

15.2.2 Energy calculation

After the λ-matrix is initiated, the energy of the initial guess is calcu-
lated by a separate subroutine. The energy is calculated as follows:

1. The D(φn)-matrices are calculated for all the determinants {φn}
that are added to the reference wave function.

2. One- and two-electron integrals, hpq and (pq|rs) are stored dur-
ing the HF-calculation and can be read from file.

116



15.2. Driver

3. The function M(pq|rs) is calculated from the two electron inte-
grals according to Equation (14.1.33).

4. The g-matrix is calculated from the D-matrices and the SVD of
the overlap (Equation (14.1.17)).

5. The Hamiltonian matrix is calculated by contracting the M-
integrals with the g-matrix and adding the one-electron contri-
bution as in Equation (14.1.34).

6. From the Hamiltonian matrix the energy is calculated. This can
be done in two ways:

a) From the expectation value of the Hamiltonian as in Equa-
tion (14.1.36)

b) From the eigenvalues of the diagonalized Hamiltonian.

The energy is calculated using the expectation value of the Hamil-
tonian, except in the first calculation of the energy of the initial
guess.

7. Lastly the nuclear contribution from the HF calculation is added
and the total energy is given.

15.2.3 Optimization

After the energy of the initial guess is calculated, the optimization
begins. This is done using an L-BFGS-routine. The energy and gra-
dient are inputs in the optimization. The energy is calculated as de-
scribed above and the gradient is calculated using the central differ-
ences method (Section 14.4.1). The L-BFGS-routine is independent of
the gradient procedure. At a later stage, a routine for calculating the
analytical gradient will be implemented, which will increase the speed
of the optimization.
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Results and discussion of
NOSD results

The NOSD code has been tested for two systems, Be2 and water.
Computations are quite slow since the optimization has to be done
using the numerical gradient. This limits the number of determinants
we can add to the HF wave function. The results described in this
Chapter are preliminary as the program is not completed yet.
For both test systems we have calculated the energy with two and
three determinants. This means that one and two determinants are
added to the HF state, respectively. Initial results indicate that when
using more than two determinants, situations where the norm of the
wave function approaches zero can occur. To avoid this, we have
also done calculations where the HF-reference is kept fixed during
the optimization. This is only a temporary solution to the problem.
We are currently investigating a permanent solution, where all added
determinants are orthogonal to the HF state in the initial guess.
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Chapter 16. Results and discussion of NOSD results

16.1 Water

Potential energy curves for water during symmetric stretching of the
OH bond is presented in [64] using HF, MP2, CCSD(T) and FCI. In
Figure 16.1 these results are compared to NOSD calculations using
two and three determinants (for two determinants, results from calcu-
lations with a fixed HF reference and results where it is unrestricted
are shown). The graph shows the total energy. The experimental value
of the O-H bond length is 0.976 Å.
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Figure 16.1: Energy curve of water under symmetric stretching of the
O-H bond calculated with various methods

A measure of the accuracy of NOSD is the percentage of electron cor-
relation recovered. The correlation energy in the NOSD calculations
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of water in the equilibrium geometry are presented in Table 16.1

Table 16.1: Correlation energy (a.u.) for H2O calculated by NOSD
with two and three determinants. NOSD calculations are carried out
the cc-pVDZ basis set.

Method Correlation energy %
FCI [64] -0.218 100
NOSD(2D,HF-fixed) -0.056 25.7
NOSD(2D) -0.095 43.6
NOSD(3D,HF-fixed) -0.096 44.1
NOSD(4D,HF-fixed) -0.124 56.9

When the NOSD was tested in 1993, 67% of the correlation energy
was recovered by using 5 determinants. This was however done us-
ing a smaller basis set than we have, so the results are not directly
comparable. However, the trend in correlation energy with increasing
number of determinants is very encouraging.

16.2 Be2

Using the beryllium dimer, we have tested the NOSD-method with
two and three determinants. In Table 16.2 the results from NOSD
calculations are listed along with experimental values from [69] and
FCI-results from [68]. We have also included calculations from this
study with HF, MP2, CCSD and CCSD(T)-methods and the cc-pVDZ
basis set. These calculations have been done using CFOUR.
The whole potential energy curves for the Be2 dimer, calculated with
various methods in this study are shown in Figure 16.2. HF, MP2,
CCSD and CCSD(T) calculations are done using CFOUR [37]. The
experimental value reported by Merritt [69] is also included. This
value is almost identical to the FCI/CBS-value from [68].
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Chapter 16. Results and discussion of NOSD results

Table 16.2: The binding energy at the experimental bond length (2.44
Å), the calculated bond length and the binding energy at the calcu-
lated bond length. Energies in cm−1 and bond lengths in Å. Calcula-
tions from this study are done with the cc-pVDZ basis set.

Method Binding energy
at 2.44 Å

Calculated
bond length

Binding energy
at calculated
bond length

Experimental [69] -930 - -
FCI/CBS [68] -938 ± 15 2.44 -
HF +2750 6.41 -1.48
MP2 +327 4.29 -103.42
CCSD +818 5.00 -34.22
CCSD(T) +128 4.54 -60.28
NOSD(2D) +1881 4.43 -146.00
NOSD(3D) -571 - -

The results shown in Table 16.2 and Figure 16.2 clearly show how
poorly HF, MP2, CCSD and CCSD(T) describe the beryllium dimer.
Among these standard methods, the best correspondence with exper-
iments and FCI is actually shown by MP2. Although these results
are better than the other, they are very inaccurate; the bond length
is 76% longer than the experimental and the binding energy is only
11% of the experimental result. The NOSD(2D)-results are also inac-
curate, however, the binding energy (-146 cm−1) is considerably more
accurate than the standard methods, and the bond length is almost
as accurate as the MP2 calculations. This is obtained by only adding
one, non-orthogonal determinant to the HF state. The improvement
in binding energy at 2.44 Å of NOSD(2D) over HF corresponds to a
recovery of 23.6% of the correlation energy. This is approximately half
of what was obtained for water using two determinants. Using three
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Figure 16.2: Potential energy curve of the beryllium dimer calculated
with various methods

determinants, we have only calculated two points, one at the experi-
mental bond length and at the dissociation energy. This results in a
binding energy of -571 cm−1 at 2.44 Å. This is a drastic improvement
compare to the other results shown in Figure 16.2. The binding energy
represents recovery of 90% of the correlation energy. For this system,
the correlation energy is very large, and despite recovering 90%, there
is still a difference of 360 cm−1. It should also be noted that we are
comparing the NOSD-energies to FCI calculations extrapolated to the
complete basis set limit. This means that part of the discrepancy
between our result and the FCI-energy is also due to basis set trun-
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cation error. The binding energy at the experimental bond length as
calculated by NOSD(3D) represents a vast improvement compared to
the MP2, CCSD and CCSD(T) results. Unfortunately, we have not
had time to calculate the entire potential energy curve using three
determinants.

124



Chapter 17

Conclusion

The description of the NOSD-method in the original Letter by Koch
and Dalgaard is very condensed. We hope that the presentation of
the fundamental theory and the details of the method have been more
clearly described in Chapters 14 and 15.

Although the NOSD-code is not yet complete, the preliminary re-
sults presented in Chapter 16 illustrate its potential. For the water
molecule, the energy calculated with NOSD is much more accurate
than the HF-energy, even by adding only one determinant. Without
adding more determinants, the accuracy of NOSD cannot compare
with MP2 or CCSD(T), however the results from [61] indicate that
a very high accuracy can be expected when the code is code is com-
plete and a higher number of determinants can be used. For the Be2
molecule, the results from NOSD(2D)-calculations are of a compara-
ble accuracy to that of MP2 and CCSD(T). Compared to the exper-
imental and FCI results, this is still not very accurate. Using three
determinants shows a radical improvement in the binding energy at
the experimental bond length compared to the other methods. If the
results show the same rate improvement when more determinants are
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added, there is reason to hope for results close to FCI-accuracy when
the program is completed.
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Future work

As mentioned in the Discussion, the implementation of NOSD in Dal-
ton has not been completed. The goal was to finish the implementation
within the end of this project, however, the programming and testing
proved to require more time than expected. The most important re-
maining parts of the program are to calculate the analytical gradient
and to implement a stabile and robust method of initiating the calcu-
lations. With only the numerical gradient, calculations are very slow
which has limited the test calculations. When the analytical gradi-
ent is available, test calculations can be conducted faster and more
extensive results can be presented. We also wish to add a section
for analysis of the calculations in the program. This will include the
diagonalization of the one-electron density which will give the natu-
ral occupation, and a presentation of the two-electron density. Work
to finish the program is currently ongoing and will be a part of my
PhD-project.
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Appendix A

DFT potential energy curves
from Part A

In this appendix, the potential energy curves of the DFT functionals
that were not shown in Chapter 5 are displayed. The DFT energies
are calculated using ADF and the TZ2P basis set. For each geometry,
the CCSD(T)/cc-pVTZ energy curve is included for comparison.
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Appendix B

Structural parameters from
Part B

In this appendix, the structural parameters of the molecules investi-
gated in Part B of this thesis are listed. 1,2-dichloro and 1,2-difluoro
ethane were discussed in Section 10 and are not listed here.
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Table B.1: Structural parameters of halo(halomethyl)silanes investi-
gated in Part B of this thesis. All bond lengths are in Å and bond
angles in degrees. Geometry optimizations are carried out with cc-
pVDZ basis sets. The torsional angle (Cl-Si-C-Cl) was kept fixed at
180o in optimizations of anti-conformers.

Fluoro(fluoromethyl)silane(FH2C − SiH2F )
Anti Gauche

HF MP2 CCSD(T) HF MP2 CCSD(T)
Si-C 1.895 1.894 1.900 1.892 1.897 1.893
C-F 1.385 1.408 1.410 1.401 1.404 1.380
Si-F 1.637 1.654 1.654 1.651 1.652 1.634
F-C-Si 107.0 105.1 105.2 109.4 109.3 109.8
F-Si-C 106.6 108.7 108.5 109.5 109.4 108.9
F-Si-C-F 180.0 180.0 180.0 71.1 69.2 69.3

Chloro(chloromethyl)silane(ClH2C − SiH2Cl)
Anti Gauche

HF MP2 CCSD(T) HF MP2 CCSD(T)
Si-C 1.893 1.891 1.897 1.894 1.893 1.899
C-Cl 1.808 1.800 1.815 1.801 1.795 1.809
Si-Cl 2.093 2.085 2.091 2.083 2.076 2.083
Cl-C-Si 108.3 107.4 107.3 111.7 110.9 110.9
Cl-Si-C 107.1 108.1 108.2 109.5 109.4 109.6
Cl-Si-C-Cl 180.0 180.0 180.0 68.8 66.3 66.7
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Table B.2: Structural parameters of 1,2-dihalodisilanes investigated
in Part B of this thesis. All bond lengths are in Å and bond angles
in degrees. Geometry optimizations are carried out with cc-pVDZ
basis sets. The torsional angle (F-Si-Si-F) was kept fixed at 180o in
optimizations of anti-conformers.

1,2-difluorodisilane(FH2Si− SiH2F )
Anti Gauche

HF MP2 CCSD(T) HF MP2 CCSD(T)
Si-Si 2.367 2.358 2.361 2.367 2.356 2.359
Si-F 1.643 1.661 1.661 1.640 1.658 1.659
F-Si-Si 106.7 107.2 107.2 108.5 109.4 109.4
F-Si-Si-F 180.0 180.0 180.0 73.2 70.9 71.4

1,2-dichlorodisilane(ClH2Si− SiH2Cl)
Anti Gauche

HF MP2 CCSD(T) HF MP2 CCSD(T)
Si-Si 2.364 2.350 2.355 2.368 2.353 2.357
Si-Cl 2.101 2.093 2.101 2.095 2.088 2.096
Cl-Si-Si 107.3 107.5 107.7 108.7 107.9 108.3
Cl-Si-Si-Cl 180.0 180.0 180.0 67.5 64.0 64.3
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