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We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa—Holm
system can be understood in terms of certain reparametrizations of the underlying isospectral problem.
The respective coordinates correspond to different normalizations of an associated first order system. In
particular, we will see that the two-component Camassa—Holm system in Lagrangian variables is completely
integrable as well.
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1. Introduction

The Camassa—Holm (CH) equation [8, 9]
Up — Uxx + 3””): - zuxuxx — Uldyyy = O, (11)

which serves as a model for shallow water waves [16], has been studied intensively over the last 20
years, due to its rich mathematical structure. For example, it is bi-Hamiltonian [23], formally completely
integrable [11], has infinitely many conserved quantities [38], and for a huge class of smooth initial data,
the corresponding classical solution only exists locally in time due to wave breaking [12—-14]. Especially
the last property attracted a lot of attention and led to the construction of different types of global weak
solutions via a generalized method of characteristics [6, 7, 26, 33, 34]. For conservative solutions, another
possible approach is based on the solution of an inverse problem for an indefinite Sturm-Liouville problem
[3, 18, 19, 21]; the inverse spectral method. The aim of this note is to point out some connections between
these two ways of describing conservative weak solutions.

Over the last few years various generalizations of the CH equation have been introduced. A lot of
them have been constructed in such a way that one or several properties of the CH equation are preserved.
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Among them is the two-component Camassa—Holm (2CH) system [15]

Uy — Uy + Uty — 2Ulhy — Uty + o, = 0, (1.2a)
pr + (up), =0, (1.2b)

that may also be written in the alternative form

u; + uu, + p, =0, (1.3a)
pr+ (up), =0, (1.3b)

where the auxiliary function p solves the differential equation

P D=1+ i+ 27 (130
2702
From our point of view, this generalization is of special interest, not only because it has been derived in the
context of shallow water waves [15], but also because weak solutions can be described via a generalized
method of characteristics [25, 26] as well as via an underlying isospectral problem [10, 15, 35, 36]. Thus
we are going to study the 2CH system here, which apparently reduces to the CH equation in the case
when the function p vanishes identically.

As already hinted above and presented in [26], there is not only one class of weak solutions but several
of them, dependent on how the energy is manipulated when wave breaking occurs. This means that the
spatial derivative u,( -, ) of the solution (u(-,7), p(-,t)) becomes unbounded within finite time, while
both [|u(-, H)|ly1 g and | (-, 1)l 2x) remain bounded; see e.g. [28-31, 45, 46] and the references therein.
In addition, energy concentrates on sets of measure zero. If one continues solutions after wave breaking in
such a way that the total amount of energy, which is described by a Radon measure ., remains unchanged
in time, one obtains the so-called conservative weak solutions [25]. Thus any conservative weak solution
is described by a triplet (u, p, i), where the connection between u, p, and u is given through the measure
W’s absolutely continuous part (4, = (uﬁ + p?)dx, and the total energy (R, ?) is independent of time.

The construction of these solutions by a generalized method of characteristics relies on a trans-
formation from Eulerian to Lagrangian coordinates [25], based on [6, 33], which will be reviewed in
Section 2 (we refer to [25] for more details). Under this transformation, the 2CH system can be rewritten
in Lagrangian variables (for conservative solutions) as

v, =U, (1.4a)
U =-0, (1.4b)
h, =2(U* - P)Us, (1.4c)
r,=0, (1.4d)

where the functions P and Q are given by
1
manzzfeMMﬂwawﬁ+m@mm, (1.4e)
R

mao:_%fm@@—ngmeawk+m@@m. (1.4f)
R
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Note that the three Eulerian coordinates (u, p, () are mapped to four Lagrangian coordinates (y, U, h, r),
which indicates that to each element (u, p, u) there corresponds an equivalence class in Lagrangian
coordinates. These equivalence classes can be identified with the help of so-called relabelling functions.

The purpose of this note is to study what the change from Eulerian to Lagrangian variables means in
terms of the isospectral problem underlying the 2CH system. It is known [10, 15, 35, 36] that the 2CH
system can be written as the condition of compatibility for the overdetermined system

1
—wu+zw=zw—mgw+ffw, (1.52)

1 1
Vo= suy — (2_z + u) V. (1.5b)

In particular, the spectrum associated with (1.5a) is invariant under the 2CH flow. We will see in Lemma 3.2
that the isospectral problem, i.e. the differential equation (1.5a) can be rewritten as a particular equivalent
first order system. It then turns out that a normalizing standard transformation (which is well-known in the
theory of canonical systems [44, Section 4]) takes this system to another equivalent first order system that
only involves the Lagrangian variables (y, U, h, r) as coefficients; see Lemma 3.3. Moreover, relabelling
of Lagrangian variables simply amounts to an elementary reparametrization of the first order system;
see Lemma 3.4. From this point of view, the relation between Eulerian and Lagrangian variables can be
understood as different kinds of normalizations of the same (i.e. equivalent up to reparametrizations) first
order system. Lagrangian coordinates (in ;) correspond to trace normalization of an associated weight
matrix and Eulerian coordinates correspond to normalization of its bottom-right entry.

That our newly obtained first order system (3.10) indeed serves as an isospectral problem for the
Lagrangian version of the 2CH system is then shown in Section 4. More precisely, we will see that
the system (1.4) turns out to be completely integrable in the sense that it can be reformulated as the
compatibility condition for an overdetermined system.

Notation

For integrals of a continuous function f with respect to a Radon measure v on R, we will employ the
convenient notation

fdv = 1o, y=x, x yeER, (1.6)

rendering the integral left-continuous as a function of y. If f is even locally absolutely continuous on R
and g denotes a left-continuous distribution function of v, then we have the integration by parts formula

y y
/ Jdv = gfly —/ g@)f'(s)ds, x,yeR, (1.7)

which can be found in [5, Exercise 5.8.112] for example.
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2. From Eulerian to Lagrangian coordinates

In this section, we will briefly outline the change from Eulerian to Lagrangian coordinates for the two-
component Camassa—Holm system. This has been done for the conservative case in [25], where the
interested reader may find additional details. For the sake of simplicity and readability, we will only con-
sider the case of vanishing spatial asymptotics, i.e. when the initial data (1, po) belongs to H' (R) x L*(R).
It is well-known that even in the case of smooth initial data, wave breaking can occur within finite time,
i.e. energy may concentrate on sets of Lebesgue measure zero. Dependent on how the concentrated
energy is manipulated, one may obtain different kinds of global weak solutions, the most prominent ones
being the conservative and dissipative ones; see [26]. For our purposes (i.e. viewing the two-component
Camassa—Holm system as an integrable system), the conservative solutions are the appropriate choice. In
this case, a detailed study of the interplay between Eulerian and Lagrangian coordinates from the wave
breaking point of view can be found in [27].

In order to obtain a well-posed notion of global solutions, we need to take wave breaking into account
by augmenting the Eulerian coordinates with a non-negative Radon measure p describing the energy of
a solution.

DErFINITION 2.1 (Eulerian coordinates) The set D is composed of all triples (u, p, ) such that u is a
real-valued function in H'(R), p is a non-negative function in L?>(R) and 1 is a non-negative and finite
Radon measure on R, whose absolutely continuous part (1, is given by

ae = (uﬁ + ,02) dx. 2.1

The main benefit of the change from Eulerian to Lagrangian coordinates lies in the fact that the measure
W turns into a function which allows to apply a generalized method of characteristics in a suitable Banach
space to solve the two-component Camassa—Holm system in Lagrangian variables. Before introducing
the set of Lagrangian coordinates J, we have to define the set of relabelling functions, which will also
enable us to identify equivalence classes in Lagrangian coordinates.

DEFINITION 2.2 (Relabeling functions) We denote by G the subgroup of the group of homeomorphisms
¢ from R to R such that

¢ —id and ¢! — id both belong to W2 (R), (2.2a)
and ¢: — 1 belongs to L*(R). (2.2b)

The conditions required in this definition ensure that the relabelling functions ¢ are close to the
identity in a certain sense.

DEerINITION 2.3 (Lagrangian coordinates) The set F is composed of all quadruples of real-valued
functions (y, U, h, r) such that

o —id, U, h,r,y: — 1,Us) € L*(R) x [L*(R) NL*R)]’, (2.3a)
Ye >0, h >0, y: + h > 0 almost everywhere on R, (2.3b)
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ysh = U{ 4 r* almost everywhere on R, (2.3¢)
y+HEeg, (2.3d)

where we introduce H by setting H(§) = f_io h(s)ds.

With these definitions, we are now able to describe the transformation between the sets of Eulerian
and Lagrangian coordinates.

DEFINITION 2.4 For any (u, p, ) in D we define (y, U, h, r) by

y(§) = supfx € R | x + pu((—00,x)) <&}, (2.4a)
UE) =uoy(), (2.4b)
h(§) =1 —y:(8), (2.40)
r(§) =y (§) poy(). (2.4d)

Then (y, U, h, r) belongs to F and we denote by L : D +— F the mapping which to any (i, p, u) € D
associates (y, U, h,r) € F as given by (2.4).

In order to get back from Lagrangian to Eulerian coordinates, we also introduce the following mapping,
where the quantity y(v) denotes the push-forward by the function y of a Radon measure v on R.

DEeFINITION 2.5 For any (y, U, h, r) in F we define (i, p, u) by

u(x) = U(§) for any & such that x = y(&), (2.5a)
w = ys(h(§)d§), (2.5b)
p(x)dx = yu(r(§)d§). (2.5¢)

Then (u, p, ) belongs to D and we denote by M : F +— D the mapping which to any (y, U, h,r) € F
associates (u, p, u) € D as given by (2.5).

We say that X and X € Fare equivalent, if there exists a relabelling function ¢ € G such that

A

X =X o¢, where X o ¢ denotes (yop, Uo ¢, ¢ -hoo, ¢: - r o). Upon taking equivalence classes in F,
it turns out that the mappings L and M are inverse to each other. In particular, if we introduce the class

Fo={XeF|ly+H=id}, (2.6)

then JF, contains exactly one representative of each equivalence class in F. Moreover, one readily sees
that the range of the mapping L is precisely the set F, and hence

MoL=idp and LoM =idg,.
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The reformulation of the two-component Camassa—Holm system in Lagrangian coordinates (for
conservative solutions) is given by (1.4) and admits a continuous semigroup of solutions. Denoting by
S;(Xo) the solution at time ¢ with initial data X(0) = X,, € F, one has

S(Xo 0 ¢) = S,(Xo) 0 ¢ 2.7
for all ¢ € G (i.e. the time evolution respects equivalence classes in F). Upon going back to Eulerian

coordinates, we obtain a continuous semigroup M o S, o L of solutions in D that gives rise to global
conservative weak solutions of the two-component Camassa—Holm system (1.3).

3. Transformations of the isospectral problem

Throughout this section, we fix some (u, p, ) € D and define w in H~'(R) by

w(h) =fu(x)h(x)dx+/ux(x)hx(x)dx, he H\(R), 3.1
R R

so that w = u — u,, in a distributional sense, as well as a non-negative and finite Radon measure v on R
such that

w(B) = / u,(x)2dx + v(B) (3.2)
B

for every Borel set B C R. Let us point out that it is always possible to recover the triple (u, p, 1) from the
distribution @ and the measure v. The isospectral problem for smooth solutions of the two-component
Camassa—Holm system has the form

ot 3 =20l + 2, (33)
where z is a complex spectral parameter. Moreover, there are good reasons (see [18, 19] as well as
Section 4) to expect that it also serves as an isospectral problem for global conservative solutions of the
two-component Camassa—Holm system [25].

Of course, due to the low regularity of the coefficients, the differential equation (3.3) has to be
understood in a distributional sense; cf. [18, 20, 24, 42].

DEFINITION 3.1 A solution of (3.3) is a function f € H! (R) such that
1
/fv(X)hx(x)dx t3 /f(X)h(X)dx =zo(h) +7° /ﬂl dv (3.4)
R R R

for every function & € H! (R).

We will first show that, as long as z is non-zero, the differential equation (3.3) can be transformed
into an equivalent first order system of the form

0 -1 u—L1 0 w u v 0
— 4z X X
(l O)Fx_( 0 0)F+Z<ux 1>F+Z(O O)F' 3.5)
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Since v may be a genuine measure, this system has to be understood as a measure differential equation
[2, 4, 22, 40] in general: A solution of the system (3.5) is a function F : R — C? which is locally of
bounded variation with

P 0 0 2 u(s) -1 270 0
_F|X?_/~; (u(s)_t 0>F(s)ds+z/;] (ux(s)z ux(s)>F(s)ds+z/;] (1 O)de (3.6)

for all x;, x, € R. In this case, the first component of F is clearly locally absolutely continuous, whereas
the second component is only left-continuous; cf. (1.6).

LemmA 3.2 If the function f is a solution of the differential equation (3.3), then there is a unique
left-continuous function 1 such that

) = £ = zu (0)f (%) (3.7

for almost all x € R and the function
Zﬁ) (3.8)

is a solution of the system (3.5). Conversely, if the function F is a solution of the system (3.5), then its
first component is a solution of the differential equation (3.3).

Proof. Upon integrating by parts in (3.4), we first note that a function f € H|

1oc (R) is a solution of (3.3)
if and only if there is a ¢ € R and a constant d € C such that

fi(x) =d + 3_1 /xf(S)dS - Z/x u($)f (5) + ux(f(9) ds + zu (O)f (x) — 2° /Xf dv (3.9

for almost all x € R. Soif f is a solution of (3.3), then this guarantees that there is a unique left-continuous
function f!'! such that (3.7) holds for almost all x € R. It is straightforward to show that the function
in (3.8) is a solution of the system (3.5).

Now suppose that F' is a solution of the system (3.5) and denote the respective components with
subscripts. The first component of the integral equation (3.6) shows that F; belongs to H,. .(R) with

Fr(x) = Fi.(x) — zur (0)Fy (x)

for almost all x € R. In combination with the second component of (3.6) this shows that (3.9) holds with
f replaced by F; for some ¢ € R, d € C and almost every x € R, which shows that F is a solution of the
differential equation (3.3). O
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Except for the potential term (i.e. the first term on the right-hand side), the equivalent first order
system (3.5) has the form of a canonical system; we only mention a small selection of references [1, 17,
32, 37, 39, 41, 43, 44]. If the measure v is absolutely continuous, then it is well known (see, e.g. [44,
Section 4]) that the system (3.5) can be transformed (by a reparametrization) into an equivalent system
with a trace normed weight matrix (i.e. the matrix multiplying the spectral parameter on the right-hand
side). This is furthermore true in the general case upon slightly modifying the transformation; see [20,
Proof of Theorem 6.1]. In fact, upon denoting with X = (y, U, h,r) € F, the Lagrangian quantities
corresponding to (u, p, t) as in Definition 2.4, it turns out that this transformation takes the system (3.5)
into an equivalent system of the form

0 -1 u-—+L 0 H. U,
_ 4z & &
(1 0>Gs_ﬁ< 0 0>G ZQ@ k)G' (3.10)

One notes that the weight matrix is now a trace normed (i.e. with trace equal to one almost everywhere)
locally integrable function with determinant

Hyy: —U; =y;poy=1’ (3.11)
in view of (2.3c). Thus, the system (3.10) can be understood in a standard sense.
LeEMMA 3.3 Let o be the distribution function on R defined by
o(x) =x+ pu((—oo,x)), xeR, (3.12)

so that y is a generalized inverse of o. If the function F is a solution of the system (3.5), then the function
G defined by

1 0

G(&) = (z(o o) — £) 1) Foy), £eR, (3.13)

is a solution of the system (3.10). Conversely, if the function G is a solution of the system (3.10),
then (3.13) defines a function F that is a solution of the system (3.5).

Proof. To begin with, let us note the simple identities
yoox)=x, xeR; coy)=¢&, & eran(o).
In particular, since y is locally constant on R\ran(o), this gives the equality

Ve (§)G(E) = y:(§)F o y(§) (3.14)

for almost all £ € R, if F and G are related by (3.13). The remaining ingredients are two substitution
formulas: Firstly, for every function i € L. _(IR), we have

loc

(&) [3)
/ h(s)ds = / Ye(®)hoy(s)ds, &, & R, (3.15)

Y1) §1
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according to, e.g. [5, Corollary 5.4.4]. Secondly, we will also use the identity

o(x) X X
/ ’ hoy(s)dsz-/zh(s)ds—i-/ 2h(s)du(s), X1, X3 € R, (3.16)

(1) X1 X1

which holds for all continuous functions / on R (see, e.g. [5, Theorem 3.6.1])
Now suppose that F' is a solution of the system (3.5) and let &, &, € R. Then the integral equation (3.6),
identity (3.14) as well as (3.15) and (3.16) give

3] &
y&) 0 0 —U:e(s)  —ye(s)

&1
ooy(§2)
+ Z/ <(1) 8) G(s)ds.
aoy(§y)
Moreover, since y is constant on [0 o y(&;), &;] when &; ¢ ran(o) we have
& §i
Fioy(s)ds = z/ Gi(s)ds

ooy(§;)

& — 0 0 y(E)F, 0 y(E) = 2 /

ooy (&)

fori =1, 2. After a straightforward calculation, all this finally gives

& &
& _ 0 0 —U:(s) —ye(s)
_GL; = /51 Ve (s) (U(s) —L O) G(s)ds + z/ ( Hes)  Us(s) > G(s)ds, (3.17)

1

which shows that G is a solution of the system (3.10).

For the converse, suppose that G is a solution of the system (3.10). In order to show that a function
F is well-defined by (3.13), let &, & € R such that y(&;) = y(&,) and assume that & < &, without loss
of generality. Then the functions y and U are constant on the interval [&, & ] and we readily infer that

Gi(¢) =G (&), -G, Z =z(5& —&DG1(6),

which shows that F' is well-defined (also note that the range of y is all of R). Now for any givenx;, x, € R,
we may evaluate

-Fli =6l

using the integral equation (3.17), identity (3.14) as well as (3.15) and (3.16) to see that F' is a solution
of the system (3.5). ]

Note that the matrix in (3.13) disappears if the measure v is absolutely continuous and the
transformation in Lemma 3.3 becomes a simple reparametrization.

In order to show what relabelling means in terms of the isospectral problem, let ¢ € G be a relabelling
function and consider the relabelled Lagrangian variables X=Xo ¢ as in Section 2. Then it is not hard
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to see that the original system (3.10) is indeed equivalent to the corresponding system with relabelled

variables
0 -1\~ . [(U-L 0\~ He U\ -
G = 4 G+z| -~ G, 3.18
(1 0) ¢ yé( 0 0> +Z(Us Ve G189

by means of the following simple transformation.

LEMMA 3.4 A function G is a solution of the system (3.10) if and only if the function G=Go ¢isa
solution of the system (3.18).

Proof. The claim follows immediately upon applying the substitution rule [5, Corollary 5.4.4] to the
integral equation (3.17). U

Concluding, we have seen that (3.5) and (3.10) represent the same (i.e. equivalent up to reparametriza-
tions) first order system with different kinds of normalizations. The Lagrangian coordinates in F
correspond to trace normalization of the weight matrix, whereas the Eulerian coordinates in D correspond
to normalization of the bottom-right entry in the weight matrix.

4. Complete integrability

In this final section, we will show that the Lagrangian version (1.4) of the two-component Camassa—Holm
system is completely integrable in the sense that it can be formulated as the condition of compatibility for
an overdetermined linear system. To this end, let us first write down the corresponding reformulation of
the two-component Camassa—Holm system (1.3) as a condition of compatibility: For sufficiently smooth
functions u, p and p, we set

V= (4_12 ", 8) —z (u{f*pz ;1> @.1)
o ) R Gy R Pachy
Then a straightforward calculation shows that
f=s <L(f)r 8) oc <2uu: 'f:[prt u?:)’ 4.3)
o= % (’?x 8) " (ci 8) e (Mﬁ_ﬂfxpz ;xl) o (ZMXM; u+m2ppx ui)’ 44

_1L/0 0 0 0 5 -1 0 z (u*+ p? 2u,
= (o o)~ o) +eti=n (a )-5(707 i) @9

Upon collecting equal powers of z, we see that the condition of compatibility

Vi—W,+[V,W]=0 (4.6)
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for the overdetermined system
v, =Vy, v, =Wy,

is indeed equivalent to the two-component Camassa—Holm system (1.3).

Now suppose that the functions y, U, H and P are sufficiently smooth and define

vt o) (@)
1
M=21_1<U241—Z 8) - (UZO—P 6)'
Then one readily computes that
erl(o 0)_( 0 o)_z(—Ug, —y§,>,
47 \yer O Uys + Uy 0 Hy  Ug

v L (0 0)_ 0 0
F7 o \U: 0 2UU: —P; 0)

= (o, o) (o )+ =ni; 1)-3(5
Again, upon collecting equal powers of z, the condition of compatibility
N, —M; +[N,M] =0
for the overdetermined system
v, =NV, v, =MV,

is seen to be equivalent to the system
Yer = Us,
1 2
Ue, = EHE + (U = P)ye,

H;, = 2(U* — P)U,
Uys = —Ps.

Note that in this case, the function P is determined by y, U, H to the extent that

1
YePee — yeeP: — yiP = —5y§(2U2ys + Hy),

2U,
_HE

)

11

4.7

(4.8)

4.9)

(4.10)

.11

4.12)

(4.13)

(4.14)

(4.152)

(4.15b)

(4.15¢)
(4.15d)

(4.16)

which follows upon combining (4.15d) and (4.15b). We finally want to show that this system indeed
reduces to the system (1.4) under the additional assumption that the functions y — id, U, H and P
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(as well as their derivatives) decay spatially. In fact, it is immediate that the system (1.4) implies (4.15).
Conversely, given a solution of the system (4.15), we first obtain (1.4a) from (4.15a) upon exploiting the
decay assumption. Furthermore, one sees that for every ¢ € R we have

1
PED = / e MEDCI U2y 4 hY(s,ds, £ €R, 4.17)
R

since the function on the right-hand side in this equation is a solution of (4.16) as well (also take into
account that both functions in this equation are constant whenever y is constant). In view of (4.15c), this
shows that (1.4c) holds with P given by (1.4e). Because we clearly have

Pe(§.1) = y:(§.0Q(.1), §€R, (4.18)

with Q defined as in (1.4f), we see from (4.15d) that (1.4b) holds whenever y; is non-zero. If y is constant
on some interval, then (4.15b) and (1.4f) show that

1
Ug = EHs = —0Q, (4.19)

which implies that (1.4b) holds everywhere indeed. It remains to note that the time evolution of r can be
derived by using r* = y:h — UZ, which yields 2rr, = 0.
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