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This paper proposes a linear parameter varying (LPV) interval observer for state estimation and unknown inputs
decoupling in uncertain continuous-time LPV systems. Two different problems are considered and solved: i) the
evaluation of the set of admissible values for the state at each instant of time; and ii) the unknown input observation,
i.e. the design of the observer in such a way that some information about the nature of the unknown inputs affecting the
system can be obtained. In both cases, analysis and design conditions, which rely on solving linear matrix inequalities
(LMIs), are provided. The effectiveness and appeal of the proposed method is demonstrated using an illustrative
application to a two-joint planar robotic manipulator.
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1. Introduction

The problem of state estimation has been widely studied in the literature for both linear and nonlinear sys-
tems (Besançon, 2007; Fossen and Nijmeijer, 1999; Meurer, Graichen, and Gilles, 2005). For example, an
estimation of the state may be needed for control design or fault detection. When only the initial condition is
assumed to be unknown, classical observers (Andrieu, Praly, and Astolfi, 2009; Luenberger, 1964) provide
an estimation which converges asymptotically to the state of the considered system. However, the presence
of uncertainties coming from either external disturbances or from the mismatch between the model and
the real system may impede the convergence of classical state observers to the exact value of the state
(Chebotarev, Efimov, Raissi, and Zolghadri, 2013; Efimov, Raissi, Perruquetti, and Zolghadri, 2013; Wang,
Bevly, and Rajamani, 2015). In this situation, interval observers can be an appealing alternative approach
(Gouzé, Rapaport, and Hadj-Sadok, 2000) because, under some assumptions, they can provide the set of
admissible values for the state at each instant of time. Unlike stochastic approaches, such as the Kalman
filter (Simon, 2006), interval observers ignore any probability distribution of the sources of uncertainty,
and assume that they are constrained in a known bounded set. Using this information, instead of a single
trajectory for each state variable, the interval observer computes the lower and upper bounds, which are
compatible with the uncertainty (Raka and Combastel, 2013). There are several approaches for designing
interval observers, e.g. the ones proposed by Jaulin (2002) and Kieffer and Walter (2004). A successful
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framework for interval observer design is based on the monotone system theory, and has been proposed
at first by Olivier and Gouzè (2004), and further investigated by Moisan, Bernard, and Gouzè (2009) and
Raı̈ssi, Videan, and Zolghadri (2010); Raı̈ssi, Efimov, and Zolghadri (2012).

Fault detection and diagnosis (FDD) is an important subfield of control engineering that aims at monitor-
ing a system with the goal of identifying the occurrence of a fault, as well as to provide useful informations
about the fault, e.g. its location (Ding, 2013; Witczak, 2014). A well-established FDD paradigm is the
residual-based one, where one or more signals are created based on a model of the system and the knowl-
edge of its inputs and outputs (Gao, Cecati, and Ding, 2015). Then, the analysis of this signal can help to
determine which fault has occurred (Gertler, 1998). The residual-based FDD paradigm has been investi-
gated thoroughly in the last decades, and several results are available, for both linear (Henry and Zolghadri,
2005) and nonlinear (Kaboré and Wang, 2001; Kaboré, Othman, McKenna, and Hammouri, 2000) systems.
However, in order to increase the reliability and performance of this paradigm, robustness issues must be
addressed, i.e. the fault diagnoser must only be sensitive to faults, even in the presence of model-reality
mismatch (Chen and Patton, 1999). In this sense, the interval observer theory provides a passive approach
for the development of a robust fault diagnoser, since the absence of false alarms and wrong diagnosis
due to uncertainty and other undesired effects, e.g. noise, can be guaranteed by the property of interval
estimation.

Among the most successful techniques available in the literature for residual generation, there is the un-
known input observer (UIO) approach (Kudva, Viswanadham, and Ramakrishna, 1980). UIOs are observers
that allow estimating the state of a given system, independently of some unknown inputs (Hammouri and
Tmar, 2010). One important feature of this approach is that UIOs can be made insensitive to certain input
space directions if some structural conditions on the system are fulfilled (Cristofaro and Johansen, 2014).
In this way, the decoupling between the external disturbances (unknown inputs) acting on the system and
the estimation error can be attained, which is a very useful property that can be exploited for the purpose
of FDD (Chen, Patton, and Zhang, 1996).

Recent research has considered UIO design for FDD in nonlinear systems (Amato, Cosentino, Mattei,
and Paviglianiti, 2006). The UIO proposed by Amato et al. (2006) has two relevant and appealing features:
(i) the observer structure is nonlinear; and (ii) the effect of neglected nonlinearities, which for instance
may represent structured uncertainty, and decoupled disturbances is minimized using a H∞ optimization.
However, the UIO in Amato et al. (2006) has the following shortcomings: (i) the proof of stability of the
estimation error dynamics passes through the linearisation of the nonlinear term. Hence, it is theoretically
valid only if the system state is in the neighbourhood of the estimated state; and (ii) a large nonlinear
campaign of simulations with different kinds of faults and operating conditions is needed in order to obtain
an appropriate tuning of suitable isolation thresholds.

In contrast with linearisation techniques, linear parameter varying (LPV) methods have the advantage of
not involving any approximation, since they can rely on an exact transformation of the original nonlinear
system into a quasi-linear one, by embedding all the original nonlinearities within some varying parameters
that schedule the state space matrices (Shamma, 2012). The LPV paradigm, which has attracted a lot of
attention in the last decades (Hoffmann and Werner, 2014), provides an elegant way of guaranteeing the-
oretical stability and performance in nonlinear systems using linear-like techniques (Shamma and Athans,
1991). Hence, it is an appealing paradigm for the design of UIOs for nonlinear systems for which theoret-
ical properties hold even in the presence of a mismatch between the system’s and the estimated state. At
the same time, the interval observer paradigm is appealing because the estimated lower and upper bounds
for the state can be used for generating unknown input isolation signals that embed the information about
the uncertainty in such a way that a demanding simulation-based tuning of the isolation thresholds can be
avoided.

Motivated by the above mentioned properties, the goal of this work is to merge the theory of interval
observers with the theory of unknown input observers, developing an interval UIO which can be applied to
the problem of fault detection and isolation in uncertain LPV systems subject to faults and other undesired
effects. Achieving this goal requires further modification of the solution proposed by Chebotarev et al.
(2013) and Efimov et al. (2013).
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The paper is structured as follows. Section 2 introduces the two problems, that are solved in the subse-
quent sections. Problem 1, which is solved in Section 3, refers to the design of an LPV interval observer,
which computes lower and upper bounds for the state, provided that no unknown inputs act on the observed
system. On the other hand, Problem 2, which is solved in Section 4, deals with the presence of unknown
inputs through the design of an LPV interval unknown input observer. Finally, Section 5 illustrates the
application of the proposed approach and Section 6 presents the main conclusions.

Notation: The set of (non-negative) real numbers will be denoted by R (R+). For a given vector signal
u : R 7→ Rnu , the shorthand notation ut will be used instead of u(t). Also, L nu

∞ will denote the set of all
signals u such that ‖u‖

∞
= sup{|ut | , t ∈ R+} < ∞. Given a matrix M ∈ Rm×n, He{M} will be used as

a shorthand notation for M +MT . For two vectors x1,x2 ∈ Rn or matrices M1,M2 ∈ Rm×n, the relations
x1 ≤ x2 and M1 ≤ M2 should be understood element-wise. The notation M† denotes the Moore-Penrose
pseudo-inverse of M ∈ Rm×n. If M ∈ Rn×n is symmetric, then M ∈ Sn×n. The notation M ≺ 0 (M � 0)
means that M ∈ Sn×n is negative (positive) definite. If M ∈ Sn×n is diagonal, then M ∈ Dn×n. If all the
elements of M ∈ Rn×n outside the main diagonal are non-negative, then M ∈Mn×n (Metzler). For a generic
vector x ∈ Rn, its i-th element will be denoted by x(i). For a given M ∈ Rm×n and a set of column indices
N , with N a subset of {1, . . . ,n}, the i-th column of M will be denoted by M(i), while M(N ) will denote
the matrix obtained from M by replacing all columns whose indices do not belong to N with zeros. Also,
the notation Π(M)x will denote the projection of x onto the subspace generated by the columns of M. Given
a set S , the notation P(S ) will denote the power set of S , i.e. the set of all subsets of S , including the
empty set and S itself. Finally, given M ∈ Rm×n, M+ = max{0,M}, where max denotes the element-wise
maximum, M− = M+−M, and |M|= M++M−.

2. Problem statement

Consider an uncertain LPV system described by:

ẋt =[A(ϑt)+∆A(ϑt)]xt +[B(ϑt)+∆B(ϑt)]ut +[Bun (ϑt)+∆Bun (ϑt)]uun,t + ct +dt (1)
yt =Cxt (2)

where x ∈ Rnx is the state, u ∈ Rnu is the known input (e.g. the control action), uun ∈ Rnuun is the unknown
input (e.g. some actuator fault), c ∈ Rnx is a known term, d ∈ Rnx is an unknown and unstructured distur-
bance and y ∈ Rny is the output available from the sensors. The elements of the matrix functions appearing
in (1) are nonlinear functions of some known time varying parameters, which are represented by the vector
ϑt ∈ Θ ⊂ Rnϑ , where Θ is a known closed and bounded set. Also, it is assumed that the derivatives of the
scheduling parameters ϑ̇t are known. It is assumed that the matrix C ∈ Rny×nx is full row rank, that the
matrix functions A(ϑt), B(ϑt), Bun (ϑt) (of appropriate dimensions) are known, with Bun (ϑt) full column
rank and rank (C (Bun(ϑt)+∆Bun(ϑt))) = nun ≤ ny∀ϑt ∈ Θ, whereas ∆A(ϑt), ∆B(ϑt) and ∆Bun (ϑt) are
unknown and represent the modelling uncertainty.

Notice that given a nonlinear state equation of the following type:

ẋt = f (xt ,ut ,uun,t)+ ct +dt (3)

where f depends on some uncertain parameters, it is possible to apply systematic approaches for the gener-
ation of equivalent LPV representations, e.g. the one described in Kwiatkowski, Boll, and Werner (2006),
to both the state equation without uncertainty (i.e. using nominal values for the uncertain parameters) and
the state equation with uncertainty, obtaining respectively:

ẋt = A(ϑt)xt +B(ϑt)ut +Bun(ϑt)uun,t + ct +dt (4)
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and:

ẋt = Ã(ϑt)xt + B̃(ϑt)ut + B̃un(ϑt)uun,t + ct +dt (5)

Then, an equivalent uncertain LPV representation of (3) can be easily obtained by considering:

∆A(ϑt) = Ã(ϑt)−A(ϑt) (6)

∆B(ϑt) = B̃(ϑt)−B(ϑt) (7)

∆Bun(ϑt) = B̃un(ϑt)−Bun(ϑt) (8)

Without loss of generality, and up to a change of coordinates, it is possible to consider that C has the
following structure:

C =
(

C̃ 0
)

(9)

where C̃ ∈ Rny×ny is invertible.
As recalled in the introduction, interval observers evaluate the set of admissible values for the state at

each instant of time. In other words, an interval observer will provide two signals, namely the lower and
the upper estimated bounds for the state, rather than a single one (the estimated state).

Problem 1 concerns the extension of this concept to a structure for the interval observer which is suitable
for the unknown input observation. Before stating the problem, let us introduce an assumption about the
boundedness of disturbances and uncertainties, that will be required for establishing a solution.

Assumption 1. There exist dt , dt ∈L nx
∞ , ∆A(ϑt), ∆A(ϑt) ∈ Rnx×nx and ∆B(ϑt), ∆B(ϑt) ∈ Rnx×nu such

that for all ϑt ∈Θ:

dt ≤ dt ≤ dt (10)

∆A(ϑt)≤ ∆A(ϑt)≤ ∆A(ϑt) (11)

∆B(ϑt)≤ ∆B(ϑt)≤ ∆B(ϑt) (12)

Notice that since Θ is closed and bounded, given a continuous matrix function R(ϑt)∈Rnx×nx , (10)-(12) are
equivalent to the existence of dR,t , dR,t ∈L nx

∞ , ∆AR(ϑt), ∆AR(ϑt) ∈ Rnx×nx and ∆BR(ϑt), ∆BR(ϑt) ∈ Rnx×nu

such that for all ϑt ∈Θ:

dR,t ≤ R(ϑt)dt ≤ dR,t (13)

∆AR(ϑt)≤ ∆AR(ϑt) = R(ϑt)∆A(ϑt)≤ ∆AR(ϑt) (14)

∆BR(ϑt)≤ ∆BR(ϑt) = R(ϑt)∆B(ϑt)≤ ∆BR(ϑt) (15)

Problem 1. Given a continuous matrix function R(ϑt) ∈ Rnx×nx , partitioned as follows:

R(ϑt) =

(
R11(ϑt) 0

0 I

)
(16)

with R11(ϑt) ∈ Rny×ny and such that:

AR12(ϑt)≥ 0 (17)

AR22(ϑt) ∈M(nx−ny)×(nx−ny) (18)
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where AR12(ϑt) ∈ Rny×(nx−ny) and AR22 denote the upper-right and lower-right sub-matrices of AR(ϑt) =
R(ϑt)A(ϑt), respectively, determine an LPV interval observer which computes xt and x̄t such that:

xt ≤ xt ≤ x̄t ∀t ≥ 0 (19)

with xt , x̄t ∈L nx
∞ , provided that:

x0 ≤ x0 ≤ x̄0 (20)

uun,t = 0 ∀t ≥ 0 (21)

and Assumption 1 holds.
The parameter varying matrix function R(ϑt) is relevant to solve the problem of unknown input obser-

vation, which is formalized in Problem 2. In this case, in addition to solve Problem 1, the interval observer
will also exhibit some desired properties of decoupling between the effects of the unknown inputs uun af-
fecting the system. In this way, by looking at the projections of appropriate signals onto some subspaces,
which are generated by the columns of an appropriate matrix H, it will be possible to detect the presence
of unknown inputs acting on the system, as well as to identify their nature (isolation). In order to solve
Problem 2, two additional assumptions are needed. Assumption 2 concerns the boundedness of signals and
uncertainties related to the unknown inputs. On the other hand, Assumption 3 refers to the structure of the
uncertainty that affects the state matrix, requiring that the non-measured states influence the measured ones
in a known manner.

Assumption 2. The signal uun,t is such that:

uun,t ≤ uun,t ≤ ūun,t (22)

with uun,t ≤ 0 and ūun,t ≥ 0, uun, ūun ∈L nu
∞ . Moreover, there exist ∆Bun(ϑt), ∆Bun(ϑt) ∈ Rnx×nuun such that

for all ϑt ∈Θ:

∆Bun(ϑt)≤ ∆Bun(ϑt)≤ ∆Bun(ϑt) (23)

Also in this case, since Θ is closed and bounded, given a continuous matrix function R(ϑt)∈Rnx×nx , (23)
is equivalent to the existence of ∆Bun,R(ϑt),∆Bun,R(ϑt) ∈ Rnx×nuun such that for all ϑt ∈Θ:

∆Bun,R(ϑt)≤ R(ϑt)∆Bun(ϑt)≤ ∆Bun,R(ϑt) (24)

Assumption 3. The matrix ∆A(ϑt) is partitioned as:

∆A(ϑt) =

(
∆A11(ϑt) 0
∆A21(ϑt) ∆A22(ϑt)

)
(25)

with ∆A11(ϑt) ∈ Rny×ny .
Problem 2. Given an invertible matrix function R(ϑt) ∈ Rnx×nx partitioned as in (16) and such that (17)-

(18) hold, and a matrix H ∈ Rnx×nuun for which the following holds:

R(ϑt)Bun(ϑt) = H ∀ϑt ∈Θ (26)

and provided that (20) and Assumptions 1-3 hold, determine an LPV interval unknown input observer
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which, in addition to solve Problem 1, satisfies:

u( j)
un,t = 0 ⇒ Π(H( j))ε t ≥ 0 ∧ Π(H( j))ε̄t ≥ 0 (27)

Π(H( j))ε t < 0 ∨ Π(H( j))ε̄t < 0 ⇒ u( j)
un,t , 0 (28)

where ε t and ε̄t are evaluable quantities that can be used as unknown input isolation signals. In particular,
in this paper, it is shown that a valid choice for these signals is the following:

ε t =C† (yt −Cxt) (29)

ε̄t =C† (Cx̄t − yt) (30)

In other words, if the j-th unknown input has value equal to zero, the projections of both ε t and ε̄t onto
the subspace generated by the j-th column of H will be non-negative. On the other hand, if at least one
of such projections is negative, it means that the j-th unknown input has value different from zero, which
allows performing a correct isolation.

Remark 1: In presence of an uncertain term εt , the application of nonlinear fault diagnosis strategies
as the one described in Kaboré et al. (2000) requires the knowledge of a uniform bound µ > 0 such that
∀t : ‖εt‖ ≤ µ , with µ known a priori in order to calculate appropriate thresholds for the residuals. However,
if the uncertainty is structured, as in the case detailed in this paper for which εt = ∆A(ϑt)xt +∆B(ϑt)ut +
∆Bun(ϑt)uun,t + dt , a description of the uncertainty as in Kaboré et al. (2000) can be overly conservative.
This conservativeness is avoided by the interval-based approach detailed in the following, which exploits
the structuredness of the uncertainty and uses elementwise bounds on the individual terms ∆A(ϑt), ∆B(ϑt),
∆Bun(ϑt), uun,t and dt (in the case of quasi-LPV systems (Shamma and Athans, 1991) knowledge of bounds
on the state xt is also needed for computing the set Θ).

3. LPV interval observer design

3.1 The LPV interval observer

The LPV interval observer proposed to solve Problem 1 can be conveniently decomposed into two coupled
subsystems, i.e. a lower bound observer, which provides xt , as follows:

żt =F (ϑt)zt +R(ϑt)B(ϑt)ut +S (ϑt)yt − Ṫ
(
ϑt , ϑ̇t

)
yt +dR,t + ct −T (ϑt)Cct (31)

+∆AR(ϑt)
+x+

t −∆AR(ϑt)
+

x−t −∆AR(ϑt)
−x̄+

t +∆AR(ϑt)
−

x̄−t

+∆BR(ϑt)
+u+

t −∆BR(ϑt)
+

u−t −∆BR(ϑt)
−u+

t +∆BR(ϑt)
−

u−t
xt =zt +T (ϑt)yt (32)

and an upper bound observer, which provides x̄t , as follows:

˙̄zt =F (ϑt) z̄t +R(ϑt)B(ϑt)ut +S (ϑt)yt − Ṫ
(
ϑt , ϑ̇t

)
yt +dR,t + ct −T (ϑt)Cct (33)

+∆AR(ϑt)
+

x̄+
t −∆AR(ϑt)

+x̄−t −∆AR(ϑt)
−

x+
t +∆AR(ϑt)

−x−t

+∆BR(ϑt)
+

u+
t −∆BR(ϑt)

+u−t −∆BR(ϑt)
−

u+
t +∆BR(ϑt)

−u−t
x̄t =z̄t +T (ϑt)yt (34)

where F(ϑt), F(ϑt), S(ϑt), S(ϑt) and T (ϑt) are matrix functions of appropriate dimensions, and Ṫ (ϑt , ϑ̇t)
is obtained from T (ϑt) by differentiating each element with respect to time.
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The following theorem provides the conditions which should be met to ensure an interval estimation of
xt and the boundedness of xt , x̄t , as specified in Problem 1.

Theorem 1: Let Assumption 1 be satisfied, x ∈L nx
∞ , u ∈L nu

∞ , c ∈L nx
∞ , the interval observer be given by

(31)-(34), the matrix functions R(ϑt) ∈ Rnx×nx and F (ϑt), F (ϑt) ∈Mnx×nx be chosen such that R(ϑt) is
partitioned as in (16), (17)-(18) hold, and:[

F12(ϑt)
F22(ϑt)

]
=

[
F12(ϑt)
F22(ϑt)

]
=

[
AR12(ϑt)
AR22(ϑt)

]
(35)

where F12(ϑt),F12(ϑt) ∈ Rny×(nx−ny) and F22(ϑt),F22(ϑt) ∈M(nx−ny)×(nx−ny) denote the upper-right and
lower-right sub-matrices of F(ϑt) and F(ϑt), respectively. Then, the relation (19) is satisfied provided that
(20)-(21) hold and the matrix functions T (ϑt),S (ϑt) ,S (ϑt) ∈ Rnx×ny are chosen as1:

T (ϑt)C = I−R(ϑt) (36)
S (ϑt) = S1 (ϑt)+S2 (ϑt) (37)

S (ϑt) = S1 (ϑt)+S2 (ϑt) (38)
S1 (ϑt)C = R(ϑt)A(ϑt)−F (ϑt) (39)

S1 (ϑt)C = R(ϑt)A(ϑt)−F (ϑt) (40)
S2 (ϑt) = F (ϑt)T (ϑt) (41)

S2 (ϑt) = F (ϑt)T (ϑt) (42)

In addition, if there exist P,Q ∈ S2nx×2nx , P,Q � 0 and constants ε1,ε2,γ > 0 such that the following
matrix inequality is verified:

Φ(ϑt) =

(
G(ϑt)

T P+PG(ϑt)+(ε1 + ε2)P+Q+ γη(ϑt)
2I2nx 0

0 ε
−1
1 P− γI2nx

)
� 0 (43)

where:

η(ϑt) = 2
(∥∥∥∆AR(ϑt)

+−∆AR(ϑt)
+
∥∥∥

2
+
∥∥∥∆AR(ϑt)

−
∥∥∥

2
+
∥∥∥∆AR(ϑt)

−∥∥∥
2

)
(44)

G(ϑt) =

(
F(ϑt)+∆AR(ϑt)

+ 0

0 F(ϑt)+∆AR(ϑt)
+

)
(45)

then xt , xt ∈L nx
∞ .

The theorem statement consists of two parts. Eqs. (36)-(42) guarantee that, at each instant of time, the
true state of the LPV system (1)-(2) will lie inside the region defined by the lower and upper estimates. On
the other hand, the feasibility of the matrix inequality (43) ensures that such estimates will remain bounded,
i.e. they will not diverge.

Proof of Theorem 1: Let us consider the dynamics of the interval estimation errors et = xt − xt and

1Notice that the existence of matrix functions T (ϑt), S(ϑt), S(ϑt) satisfying (36)-(42) is guaranteed by the fact that (16)-(18) and (35) hold.
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ēt = x̄t − xt which, taking into account (1)-(2), (31)-(34) and (36)-(42), become:

ėt =F (ϑt)et +R(ϑt)(Bun (ϑt)+∆Bun (ϑt))uun,t +
3

∑
i=1

wi
t (46)

˙̄et =F̄ (ϑt) ēt −R(ϑt)(Bun (ϑt)+∆Bun (ϑt))uun,t +
3

∑
i=1

w̄i
t (47)

where:

w1
t = R(ϑt)dt −dR,t (48)

w2
t = ∆AR(ϑt)xt −∆AR(ϑt)

+x+
t +∆AR(ϑt)

+
x−t +∆AR(ϑt)

−x̄+
t −∆AR(ϑt)

−
x̄−t (49)

w3
t = ∆BR (ϑt)ut −∆BR(ϑt)

+u+
t +∆BR(ϑt)

+
u−t +∆BR(ϑt)

−u+
t −∆BR(ϑt)

−
u−t (50)

w̄1
t = dR,t −R(ϑt)dt (51)

w̄2
t = ∆AR(ϑt)

+
x̄+

t −∆AR(ϑt)
+x̄−t −∆AR(ϑt)

−
x+

t +∆AR(ϑt)
−x−t −∆AR(ϑt)xt (52)

w̄3
t = ∆BR(ϑt)

+
u+

t −∆BR(ϑt)
+u−t −∆BR(ϑt)

−
u+

t +∆BR(ϑt)
−u−t −∆BR (ϑt)ut (53)

When (21) holds, since F (ϑt) ,F (ϑt)∈Mnx×nx , then any solution of (46)-(47) is element-wise non-negative
for all t ≥ 0, i.e. (19), provided that e0≥ 0, ē0≥ 0, wi

t ≥ 0 and w̄i
t ≥ 0 ∀t ≥ 0, ∀i= 1,2,3 (Farina and Rinaldi,

2000). e0 ≥ 0 and ē0 ≥ 0 hold due to (20). The terms w1
t , w̄1

t are non-negative ∀t ≥ 0 due to Assumption
1 (see (13)). On the other hand, w2

t , w̄2
t remain non-negative as long as (19) holds, according to Lemma 1

in Efimov et al. (2013) and Assumption 1 (see (14)). (19) holds for t = 0, due to e0 ≥ 0, ē0 ≥ 0, and (19)
is preserved ∀t ≥ 0 by induction, as long as w3

t , w̄3
t remain non-negative too. Indeed, also w3

t , w̄3
t remain

non-negative because of Lemma 1 in Efimov et al. (2013) and Assumption 1 (see (15)).
Let us show that the variables xt and x̄t stay bounded ∀t ≥ 0. For this purpose, let us notice that the

equations that describe the dynamics of xt and x̄t can be rewritten as:

ẋt =
(

F(ϑt)+∆AR(ϑt)
+
)

xt + f (xt , x̄t)+δ t(xt ,ut ,uun,t ,ct ,dt) (54)

˙̄xt =
(

F(ϑt)+∆AR(ϑt)
+
)

x̄t + f (xt , x̄t)+ δ̄t(xt ,ut ,uun,t ,ct ,dt) (55)

for some δ t(·) and δ̄t(·), with:

f (xt , x̄t) =
(

∆AR(ϑt)
+−∆AR(ϑt)

+
)

x−t −∆AR(ϑt)
−x̄+

t +∆AR(ϑt)
−

x̄−t (56)

f (xt , x̄t) =
(

∆AR(ϑt)
+−∆AR(ϑt)

+
)

x̄−t −∆AR(ϑt)
−

x+
t +∆AR(ϑt)

−x−t (57)

Clearly, for all ϑt ∈Θ, f and f satisfy:

∣∣ f (xt , x̄t)
∣∣≤ ∥∥∥∆AR(ϑt)

+−∆AR(ϑt)
+
∥∥∥

2
|xt |+

(∥∥∥∆AR(ϑt)
−
∥∥∥

2
+
∥∥∥∆AR(ϑt)

−∥∥∥
2

)
|x̄t | (58)∣∣ f (xt , x̄t)

∣∣≤ ∥∥∥∆AR(ϑt)
+−∆AR(ϑt)

+
∥∥∥

2
|x̄t |+

(∥∥∥∆AR(ϑt)
−∥∥∥

2
+
∥∥∥∆AR(ϑt)

−
∥∥∥

2

)
|xt | (59)

and, if (21) holds, the inputs δ t , δ t are bounded due to Assumption 1 and the fact that x ∈L nx
∞ , u ∈L nu

∞ ,
c ∈L nx

∞ .

8
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To prove the boundedness of the solution of the observer (31)-(34), let us rewrite (54)-(55) as:

ζ̇t = G(ϑt)ζt +φ(ζt)+δt

where:

ζt =

(
xt
x̄t

)
φ(ζt) =

(
f (xt , x̄t)

f (xt , x̄t)

)
δt =

(
δ t
δ̄t

)

|φ(ζt)| ≤ η(ϑt) |ζt |

Let us consider a Lyapunov function Vt = ζ T
t Pζt , whose derivative takes the form:

V̇t = ζ
T
t
[
G(ϑt)

T P+PG(ϑt)
]

ζt +2φ(ζt)
T Pζt +2δ

T
t Pζt (60)

≤ ζ
T
t
[
G(ϑt)

T P+PG(ϑt)
]

ζt + ε1ζ
T
t Pζt + ε

−1
1 φ(ζt)

T Pφ(ζt)+ ε2ζ
T
t Pζt + ε

−1
2 δ

T
t Pδt

+ζ
T
t Qζt −ζ

T
t Qζt + γη(ϑt)

2
ζ

T
t ζt − γφ(ζt)

T
φ(ζt)

=
(

ζ T
t φ(ζt)

T
)

Φ(ϑt)

(
ζt

φ(ζt)

)
+ ε
−1
2 δ

T
t Pδt −ζ

T
t Qζt ≤ ε

−1
2 δ

T
t Pδt −ζ

T
t Qζt

where Φ(ϑt) is given by (43). Then, xt , xt ∈L nx
∞ . �

Given the matrix functions F(ϑt),F(ϑt), the conditions provided by Theorem 1 allow analysing whether
or not the observer (31)-(34) will provide a bounded interval estimation of the state. It must be pointed out
that Theorem 1 relies on the satisfaction of infinite conditions. However, this difficulty can be overcome
by gridding Θ using N points ϑi, i = 1, . . . ,N. Then, once ε1 and ε2 have been chosen, (43) becomes a set
of LMIs, which can be solved efficiently using available solvers, e.g. YALMIP/SeDuMi (Löfberg, 2004;
Sturm, 1999). From a practical point of view, it is reasonable to assume that if the gridding of Θ is dense
enough, then (43) would still hold for values of ϑt different from the gridding ones. A deep theoretical
study of this fact is possible using the results developed by Rosa (2011), but goes beyond the goal of this
paper.

3.2 Design conditions

At the expense of introducing some conservativeness, it is possible to derive conditions for performing the
design, i.e. for the case where F(ϑt), F(ϑt) are not given, such that they are obtained as part of the solution
of the LMIs. This can be done using the following corollary.

Corollary 1: Let the matrix function R(ϑt) ∈ Rnx×nx be partitioned as in (16) and such that (17)-(18)
hold, Assumption 1 be satisfied and x ∈ L nx

∞ , u ∈ L nu
∞ , c ∈ L nx

∞ . Also, let us assume that there exist an
element-wise non-negative matrix:

P =

(
P 0
0 P

)
(61)

with P,P ∈ Snx×nx , P,P� 0, a matrix function:

W (ϑt) =

(
W (ϑt) 0

0 W (ϑt)

)
=


W 11(ϑt) 0 0 0
W 12(ϑt) 0 0 0

0 0 W 11(ϑt) 0
0 0 W 12(ϑt) 0

 (62)

9



May 12, 2017 International Journal of Control IJC˙proportionalintervalUIO˙R2

with W (ϑt),W (ϑt) ∈ Rnx×nx , W 11(ϑt),W 11(ϑt) ∈ Rny×ny , W 12(ϑt),W 12(ϑt) ∈ R(nx−ny)×ny , a matrix Q ∈
S2nx×2nx , Q� 0, a sufficiently large matrix function Σ(ϑt) ∈ D2nx×2nx

+ and constants ε1,ε2,γ > 0 such that:(
He{W (ϑt)+PΞ(ϑt)}+(ε1 + ε2)P+Q+ γη(ϑt)

2I2nx 0
0 ε

−1
1 P− γI2nx

)
� 0 (63)

W (ϑt)+PΣ(ϑt)≥ 0 (64)

with η(ϑt) defined as in (44) and:

Ξ(ϑt) =


(

0 AR12(ϑt)
0 AR22(ϑt)

)
+∆AR(ϑt)

+ 0

0
(

0 AR12(ϑt)
0 AR22(ϑt)

)
+∆AR(ϑt)

+

 (65)

Then, the interval observer (31)-(34) with matrices F(ϑt), F(ϑt) calculated as:

(
F (ϑt) 0

0 F (ϑt)

)
= P−1W (ϑt)+


0 AR12(ϑt) 0 0
0 AR22(ϑt) 0 0
0 0 0 AR12(ϑt)
0 0 0 AR22(ϑt)

 (66)

and matrix functions T (ϑt) ,S (ϑt) ,S (ϑt) ∈ Rnx×ny chosen as (36)-(42) is such that the relation (19) holds
provided that (20)-(21) are satisfied, with xt ,xt ∈L nx

∞ .

Proof of Corollary 1: The matrix inequality (63) can be obtained easily from (43) by considering that
(35) corresponds to:

F(ϑt) =

(
F11(ϑt) AR12(ϑt)
F21(ϑt) AR22(ϑt)

)
F(ϑt) =

(
F11(ϑt) AR12(ϑt)
F21(ϑt) AR22(ϑt)

)
(67)

and through the change of variables:

W (ϑt) =

 P
(

F11(ϑt) 0
F21(ϑt) 0

)
0

0 P
(

F11(ϑt) 0
F21(ϑt) 0

)
 (68)

which explains why F(ϑt) and F(ϑt) are calculated as (66). On the other hand, (64) corresponds to F (ϑt),
F (ϑt) ∈Mnx×nx . �

Also in this case, (63)-(64) can be brought to a finite number of matrix inequalities by gridding Θ using
N points ϑi, i = 1, . . . ,N.

As discussed by Efimov et al. (2013), optimizing the values of the constants ε1,ε2 and the matrices Q
and P, it is possible to establish the accuracy of the interval estimation since the gain of the transfer from
δt to ζt characterizes the width of the interval [xt , x̄t ].

10
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4. LPV interval unknown input observer design

4.1 Fault isolation using the LPV interval unknown input observer

Unknown input observers are useful for the task of isolating faults, which can be represented by the un-
known input uun,t in (1). In this case, the idea consists in assigning different directions of residuals for each
element of the vector uun,t , and designing the interval observer in order to guarantee that, if the component
of at least one between ε t and ε̄t along the direction specified by the j-th column of the matrix H becomes
negative, then the j-th element of the vector uun,t must be necessarily different from zero, which allows
isolating the fault.

Looking at (46)-(47), and recalling (26), it is evident that when ∆Bun(ϑt) = 0, in order to achieve the
fault isolation property, the columns of H should correspond to eigenvectors of the matrices F(ϑt), F(ϑt),
and the terms wi

t , w̄i
t should maintain non-negativity despite a possible change in the sign of et and/or ēt .

This last property, which is not necessary for fault detection, but is fundamental to achieve fault isolation,
requires a slight modification of the interval observer structure provided in (31)-(34). On the other hand,
a further modification of (31)-(34) is performed to embed the term R(ϑt)∆Bun(ϑt)uun,t into non-negative
terms that will be referred to as w4

t and w̄4
t .

The following LPV interval unknown input observer is proposed to solve Problem 2:

ξ̇
t
=żt +

ny

∑
i=1

1− sign
(

ε
(i)
t

)
2

[
∆A(i)

R (ϑt)
+
((

x̃(i)t

)+
−
(

x(i)t

)+
)
−∆A(i)

R (ϑt)
+
((

x̃(i)t

)−
−
(

x(i)t

)−)]
(69)

+
1− sign

(
ε̄
(i)
t

)
2

[
−∆A(i)

R (ϑt)
−
((

x̃(i)t

)+
−
(

x̄(i)t

)+
)
+∆A(i)

R (ϑt)
−((

x̃(i)t

)−
−
(

x̄(i)t

)−)]+F (ϑt)(ξ t
− zt)

+∆Bun,R(ϑt)
+u+

un,t −∆Bun,R(ϑt)
+

u−un,t −∆Bun,R(ϑt)
−ū+

un,t +∆Bun,R(ϑt)
−

ū−un,t

xt =ξ
t
+T (ϑt)yt (70)

˙̄
ξt = ˙̄zt +

ny

∑
i=1

1− sign
(

ε̄
(i)
t

)
2

[
∆A(i)

R (ϑt)
+
((

x̃(i)t

)+
−
(

x̄(i)t

)+
)
−∆A(i)

R (ϑt)
+
((

x̃(i)t

)−
−
(

x̄(i)t

)−)]
(71)

+
1− sign

(
ε
(i)
t

)
2

[
−∆A(i)

R (ϑt)
−((

x̃(i)t

)+
−
(

x(i)t

)+
)
+∆A(i)

R (ϑt)
−
((

x̃(i)t

)−
−
(

x(i)t

)−)]+F (ϑt)
(
ξ̄t − z̄t

)
+∆Bun,R(ϑt)

+
ū+

un,t −∆Bun,R(ϑt)
+ū−un,t −∆Bun,R(ϑt)

−
u+

un,t +∆Bun,R(ϑt)
−u−un,t

x̄t =ξ̄t +T (ϑt)yt (72)

where ε t , ε̄t , żt and ˙̄zt are given by (29)-(31), (33) and:

x̃t =C†yt (73)

The following lemma provides the conditions which should be met to ensure an interval estimation of xt
and the boundedness of xt , x̄t as specified in Problem 1.

Lemma 1: Let Assumptions 1-2 be satisfied, x ∈L nx
∞ , u ∈L nu

∞ , c ∈L nx
∞ , the interval observer be given

by (31), (33) and (69)-(72) and the matrix functions R(ϑt) ∈ Rnx×nx and F(ϑt),F(ϑt) ∈Mnx×nx be chosen
such that R(ϑt) is partitioned as in (16), and (17)-(18) and (35) hold. Then, the relation (19) is satisfied
provided that (20)-(21) hold and the matrix functions T (ϑt),S (ϑt) ,S (ϑt)∈Rnx×ny are chosen as (36)-(42).

In addition, if there exist P,Q ∈ S2nx×2nx , P,Q � 0 and constants ε1,ε2,γ > 0 such that the following
matrix inequality is satisfied ∀S1,S2 ∈P({1, . . . ,ny}):

Φ(ϑt ,S1,S2) =

(
He{PG(ϑt ,S1,S2)}+(ε1 + ε2)P+Q+ γη(ϑt ,S1,S2)

2I2nx 0
0 ε

−1
1 P− γI2nx

)
� 0 (74)

11
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where:

η(ϑt ,S1,S2) = η1(ϑt ,S1,S2)+η2(ϑt ,S1,S2) (75)

η1(ϑt ,S1,S2) =

∥∥∥∥∆A(S1∪S3)
R (ϑt)

+
−∆A(S1∪S3)

R (ϑt)
+
∥∥∥∥

2
+
∥∥∥∆A(S1∪S3)

R (ϑt)
−∥∥∥

2
+

∥∥∥∥∆A(S1∪S3)
R (ϑt)

−∥∥∥∥
2

(76)

η2(ϑt ,S1,S2) =

∥∥∥∥∆A(S2∪S3)
R (ϑt)

+
−∆A(S2∪S3)

R (ϑt)
+
∥∥∥∥

2
+
∥∥∥∆A(S2∪S3)

R (ϑt)
−∥∥∥

2
+

∥∥∥∥∆A(S2∪S3)
R (ϑt)

−∥∥∥∥
2

(77)

S3 = {ny +1, . . . ,nx} (78)

G(ϑt ,S1,S2) =

 F(ϑt)+∆A(S2∪S3)
R (ϑt)

+
0

0 F(ϑt)+∆A(S1∪S3)
R (ϑt)

+

 (79)

then xt , xt ∈L nx
∞ .

Similarly to Theorem 1, the matrix inequality (74) is needed to ensure that the lower and upper estimates
provided by the interval observer will remain bounded despite the modifications in the structure of the
observer due to changes in the signs of ε

(i)
t , ε̄

(i)
t , i = 1, . . . ,ny. This fact will be further detailed in the proof

of Lemma 1.
Proof of Lemma 1: By using the interval unknown input observer (31), (33) and (69)-(72), and taking

into account (1)-(2) and (36)-(42), the dynamics of the interval estimation errors et , ēt follow:

ėt =F (ϑt)et +R(ϑt)Bun (ϑt)uun,t +
4

∑
i=1

wi
t (80)

˙̄et =F̄ (ϑt) ēt −R(ϑt)Bun (ϑt)uun,t +
4

∑
i=1

w̄i
t (81)

where wi
t , w̄i

t , i = 1,3, are given by (48), (50)-(51) and (53), and:

w2
t =

nx

∑
i=1

[
∆A(i)

R (ϑt)x
(i)
t −∆A(i)

R (ϑt)
+(

x(i)t

)+
+∆A(i)

R (ϑt)
+(

x(i)t

)−
+∆A(i)

R (ϑt)
−(

x̄(i)t

)+
−∆A(i)

R (ϑt)
−(

x̄(i)t

)−]

−
ny

∑
i=1

1− sign
(

ε
(i)
t

)
2

[
∆A(i)

R (ϑt)
+
((

x̃(i)t

)+
−
(

x(i)t

)+
)
−∆A(i)

R (ϑt)
+
((

x̃(i)t

)−
−
(

x(i)t

)−)]

−
ny

∑
i=1

1− sign
(

ε̄
(i)
t

)
2

[
−∆A(i)

R (ϑt)
−
((

x̃(i)t

)+
−
(

x̄(i)t

)+
)
+∆A(i)

R (ϑt)
−((

x̃(i)t

)−
−
(

x̄(i)t

)−)]
(82)

w4
t = R(ϑt)∆Bun (ϑt)uun,t −∆Bun,R(ϑt)

+u+
un,t +∆Bun,R(ϑt)

+
u−un,t +∆Bun,R(ϑt)

−ū+
un,t −∆Bun,R(ϑt)

−
ū−un,t (83)

w̄2
t =

nx

∑
i=1

[
∆A(i)

R (ϑt)
+(

x̄(i)t

)+
−∆A(i)

R (ϑt)
+(

x̄(i)t

)−
−∆A(i)

R (ϑt)
−(

x(i)t

)+
+∆A(i)

R (ϑt)
−(

x(i)t

)−
−∆A(i)

R (ϑt)x
(i)
t

]

+
ny

∑
i=1

1− sign
(

ε̄
(i)
t

)
2

[
∆A(i)

R (ϑt)
+
((

x̃(i)t

)+
−
(

x̄(i)t

)+
)
−∆A(i)

R (ϑt)
+
((

x̃(i)t

)−
−
(

x̄(i)t

)−)]

+
ny

∑
i=1

1− sign
(

ε
(i)
t

)
2

[
−∆A(i)

R (ϑt)
−((

x̃(i)t

)+
−
(

x(i)t

)+
)
+∆A(i)

R (ϑt)
−
((

x̃(i)t

)−
−
(

x(i)t

)−)]
(84)

w̄4
t = ∆Bun,R(ϑt)

+
ū+

un,t −∆Bun,R(ϑt)
+ū−un,t −∆Bun,R(ϑt)

−
u+

un,t +∆Bun,R(ϑt)
−u−un,t −R(ϑt)∆Bun (ϑt)uun,t (85)

12
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As it has already been discussed, the terms wi
t , wi

t , i = 1,3 are non-negative due to Assumption 1 and (20).
Let us show that w2

t ≥ 0 and w̄2
t ≥ 0. To do so, let us notice that the terms obtained from (82) and (84) for

i > ny (i.e. i ∈S3) equal the corresponding terms in (49) and (52), which are non-negative due to Lemma 1
in Efimov et al. (2013) and Assumption 1, as demonstrated by induction in the proof of Theorem 1. On the
other hand, when i≤ ny, if ε

(i)
t ≥ 0 and ε̄

(i)
t ≥ 0, it is straightforward to see that the i-th terms in (82)-(84)

equal the i-th terms in (49) and (52), such that non-negativity is assured as long as x(i)t ≤ x(i)t ≤ x̄(i)t . This is
necessarily true, since from (2), it follows that:

yt −Cxt =C (xt − xt) (86)
Cx̄t − yt =C (x̄t − xt) (87)

which are systems of linear equations. Solutions to (86)-(87) exist, since C is full row rank, and are given
by:

xt − xt =C† (yt −Cxt)+
[
I−C†C

]
η (88)

x̄t − xt =C† (Cx̄t − yt)+
[
I−C†C

]
η (89)

for arbitrary vector η . However, due to the structure of C in (9), the arbitrarity of the solutions (88)-(89)
due to η would affect only the last nx−ny elements of xt − xt and x̄t − xt , such that unicity of the solutions
would hold for the first ny elements of xt−xt and x̄t−xt . Then, for the sake of simplicity, as long as only the
first ny elements of xt − xt and x̄t − xt are considered, the following solution can be considered for further
reasoning:

xt − xt =C† (yt −Cxt) = ε t (90)

x̄t − xt =C† (Cx̄t − yt) = ε̄t (91)

Hence, x(i)t − x(i)t ≥ ε
(i)
t ≥ 0 and x̄(i)t − x(i)t ≥ ε̄

(i)
t ≥ 0, which assures non-negativity of the i-th terms in

(82)-(84) for ε
(i)
t ≥ 0 and ε̄

(i)
t ≥ 0.

Let us consider the case when ε
(i)
t < 0 (the case when ε̄

(i)
t < 0 follows a similar reasoning, thus it is

omitted), in which the i-th terms in (82) and (84) become the following:

∆A(i)
R (ϑt)x

(i)
t −∆A(i)

R (ϑt)
+(

x̃(i)t

)+
+∆A(i)

R (ϑt)
+(

x̃(i)t

)−
+∆A(i)

R (ϑt)
−(

x̄(i)t

)+
−∆A(i)

R (ϑt)
−(

x̄(i)t

)−
(92)

∆A(i)
R (ϑt)

+(
x̄(i)t

)+
−∆A(i)

R (ϑt)
+(

x̄(i)t

)−
−∆A(i)

R (ϑt)
−(

x̃(i)t

)+
+∆A(i)

R (ϑt)
−(

x̃(i)t

)−
−∆A(i)

R (ϑt)x
(i)
t (93)

From Lemma 1 in Efimov et al. (2013), in order to prove positiveness of (92)-(93), x̃(i)t ≤ x(i)t ≤ x̄(i)t should
hold. It is straightforward that x(i)t ≤ x̄(i)t due to ε̄

(i)
t ≥ 0. On the other hand, following the reasoning already

provided for (86)-(87), it can be shown that x(i)t = x̃(i)t , so that w2
t and w̄2

t are non-negative. Also, the non-
negativity of w4

t , w̄4
t follows directly from Assumption 2, taking into account Lemma 1 in Efimov et al.

(2013). Then, since F(ϑt),F(ϑt) ∈Mnx×nx , any solution of (80)-(81) with uun,t = 0 is element-wise non-
negative for all t ≥ 0.

Let us show that the variables xt and x̄t stay bounded ∀t ≥ 0. Without loss of generality, let us consider
the case where: {

ε
(i)
t < 0 i ∈N1

ε
(i)
t ≥ 0 i ∈S1

{
ε̄
(i)
t < 0 i ∈N2

ε̄
(i)
t ≥ 0 i ∈S2

(94)

with N1 ∩S1 = /0, N2 ∩S2 = /0 and N1 ∪S1 = N2 ∪S2 = {1, . . . ,ny}. In this case, the equations that

13
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describe the dynamics of xt and x̄t can be written as:

ẋt =
(

F(ϑt)+∆A(S1∪S3)
R (ϑt)

+)
xt + fS (xt , x̄t)+δS,t(xt ,ut ,uun,t ,ct ,dt) (95)

˙̄xt =

(
F(ϑt)+∆A(S2∪S3)

R (ϑt)
+
)

xt + fS (xt , x̄t)+δS,t(xt ,ut ,uun,t ,ct ,dt) (96)

for some δS,t(·) and δS,t(·), with:

fS(xt , x̄t) =

(
∆A(S1∪S3)

R (ϑt)
+
−∆A(S1∪S3)

R (ϑt)
+
)

x−t −∆A(S2∪S3)
R (ϑt)

−
x̄+

t +∆A(S2∪S3)
R (ϑt)

−
x̄−t (97)

fS(xt , x̄t) =

(
∆A(S2∪S3)

R (ϑt)
+

−∆A(S2∪S3)
R (ϑt)

+
)

x̄−t −∆A(S1∪S3)
R (ϑt)

−
x+

t +∆A(S1∪S3)
R (ϑt)

−
x−t (98)

Also in this case, similarly to the proof of Theorem 1, fS(xt , x̄t) and fS(xt , x̄t) are such that:
∣∣ fS(xt , x̄t)

∣∣≤ ∥∥∥∥∆A(S1∪S3)
R (ϑt)

+
−∆A(S1∪S3)

R (ϑt)
+
∥∥∥∥

2
|xt |+

(∥∥∥∆A(S2∪S3)
R (ϑt)

−∥∥∥
2
+

∥∥∥∥∆A(S2∪S3)
R (ϑt)

−∥∥∥∥
2

)
|x̄t | (99)

∣∣ fS(xt , x̄t)
∣∣≤ ∥∥∥∥∆A(S2∪S3)

R (ϑt)
+

−∆A(S2∪S3)
R (ϑt)

+
∥∥∥∥

2
|x̄t |+

(∥∥∥∥∆A(S1∪S3)
R (ϑt)

−∥∥∥∥
2
+
∥∥∥∆A(S1∪S3)

R (ϑt)
−∥∥∥

2

)
|xt | (100)

and the inputs δS,t and ¯δS,t are bounded because of Assumptions 1-2, and the fact that x ∈L nx
∞ , u ∈L nu

∞

and c ∈ L nx
∞ . Hence, it can be shown through a Lyapunov function Vt = ζ T Pζt that if (74) holds, then

xt , x̄t ∈ L nx
∞ (this part of the proof follows the last part of the proof of Theorem 1, thus it is omitted).

Since the indices contained in the sets S1 and S2 are not known a priori, it follows that (74) should hold
∀S1,S2 ∈P({1, . . . ,ny}) in order to guarantee the boundedness of xt and x̄t , thus completing the proof.
�

At this point, using Lemma 1, the following theorem provides the conditions which should be met in
order to solve Problem 2.

Theorem 2: Let Assumptions 1-3 be satisfied, x ∈L nx
∞ , u ∈L nu

∞ , c ∈L nx
∞ , the invertible matrix function

R(ϑt) ∈ Rnx×nx be partitioned as in (16) and such that (17)-(18) hold, the matrix H ∈ Rnx×nuun be such that
(26) holds, and the interval unknown input observer be given by (31), (33) and (69)-(72). Then, if there
exist matrix functions Γ(ϑt),Γ(ϑt) ∈ Dnuun×nuun and H∗(ϑt),H

∗
(ϑt) ∈ Rnx×nx such that (35) holds with:

F(ϑt) = R(ϑt)
−1 [HΓ(ϑt)Bun(ϑt)

† +H∗(ϑt)
(
I−Bun(ϑt)Bun(ϑt)

†)] ∈Mnx×nx (101)

F(ϑt) = R(ϑt)
−1 [HΓ(ϑt)Bun(ϑt)

† +H∗(ϑt)
(
I−Bun(ϑt)Bun(ϑt)

†)] ∈Mnx×nx (102)

then the relations (27)-(28) are satisfied provided that (20) holds and the matrix functions
T (ϑt),S (ϑt) ,S (ϑt) ∈ Rnx×ny are chosen as (36)-(42). Moreover, if (21) holds, then also (19) is satisfied.

In addition, if there exist P ∈ S2nx×2nx , P � 0, Q ∈ S2nx×2nx , Q � 0 and constants ε1,ε2,γ > 0 such that
(74), with η(ϑt ,S1,S2), ηi(ϑt ,S1,S2), i = 1,2, S3 and G(ϑt ,S1,S2) defined as in (75)-(79), is verified
∀S1,S2 ∈P({1, . . . ,ny}), then xt , xt ∈L nx

∞ .

Proof of Theorem 2: As shown previously, by using the unknown input interval observer (31), (33) and
(69)-(72), the dynamics of the interval estimation errors et , ēt follow (80)-(81), where wi

t , w̄i
t , i = 1,2,3,4,

are given by (48), (50)-(51), (53) and (82)-(85). Due to Assumption 3, the non-negativity of the terms w2
t ,

w̄2
t given by (82) and (84) will not be affected by the effect that the unknown inputs uun have on the non-

measured states (indices i ∈S3). Then, looking at (26), it is straightforward that for guaranteeing (19) and
(27)-(28), in addition to the conditions of Lemma 1, the columns of H should correspond to eigenvectors
of the matrices F(ϑt) and F(ϑt), i.e.:

F(ϑt)H = HΓ(ϑt) (103)

14
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F(ϑt)H = HΓ(ϑt) (104)

where Γ(ϑt),Γ(ϑt) ∈ Rnuun×nuun contain some of the eigenvalues of F(ϑt),F(ϑt) (the ones that correspond
to the eigenvectors that are columns of H).

Taking into account (26), it is easy to see that (103)-(104) are equivalent to:

F(ϑt)R(ϑt)Bun(ϑt) = HΓ(ϑt) (105)

F(ϑt)R(ϑt)Bun(ϑt) = HΓ(ϑt) (106)

Since Bun(ϑt) is full column rank, solutions to the matrix equations (105)-(106) exist. These solutions can
be expressed as (101)-(102), which completes the proof. �

The infinite number of conditions given by Theorem 2 can be brought to a finite number by gridding the
varying parameter space Θ using N points ϑi, i = 1, . . . ,N, as already suggested in Section 3.

4.2 Design conditions

Also in this case, it is possible to derive conditions for performing the design, as specified by the following
corollary.

Corollary 2: Given the matrix functions Γ(ϑt),Γ(ϑt) ∈ Dnuun×nuun , let Assumptions 1-3 be satisfied,
x ∈L nx

∞ , u ∈L nu
∞ , c ∈L nx

∞ , the invertible matrix function R(ϑt) be partitioned as in (16) and such that
(17)-(18) hold, and the matrix H ∈ Rnx×nuun be such that (26) holds. Also, let us assume that there exist
an element-wise non-negative block-diagonal matrix P as in (61), with P,P ∈ Snx×nx , P,P � 0, a matrix
function:

WH(ϑt) =

(
W H(ϑt) 0

0 W H(ϑt)

)
(107)

with W H(ϑt),W H(ϑt) ∈ Rnx×nx , a matrix Q ∈ S2nx×2nx , Q � 0, a sufficiently large matrix function Σ ∈
D2nx×2nx
+ and constants ε1,ε2,γ > 0 such that:

P


AR12(ϑt) 0
AR22(ϑt) 0

0 AR12(ϑt)
0 AR22(ϑt)

= P
(

F∗(ϑt) 0
0 F∗(ϑt)

)
+WH(ϑt)


0 0

Inx−ny 0
0 0
0 Inx−ny

 (108)

and ∀S1,S2 ∈P({1, . . . ,ny}):(
He{PΞ(ϑt ,S1,S2)+WH(ϑt)ϒ(ϑt)}+(ε1 + ε2)P+Q+ γη(ϑt ,S1,S2)

2I2nx 0
0 ε

−1
1 P− γI2nx

)
� 0 (109)

P

 Ξ(ϑt ,S2)−∆A(S2∪S3)
R (ϑt)

+
0

0 Ξ(ϑt ,S1)−∆A(S1∪S3)
R (ϑt)

+

+WH(ϑt)ϒ(ϑt)+PΣ(ϑt)≥ 0

(110)
where Inx−ny is the identity matrix of order nx − ny, F∗(ϑt),F

∗
(ϑt) ∈ Rnx×(nx−ny) denote the right sub-

matrices of R(ϑt)
−1HΓ(ϑt)Bun(ϑt)

† and R(ϑt)
−1HΓ(ϑt)Bun(ϑt)

†, respectively, η(ϑt ,S1,S2) is defined

15
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as in (75) and:

Ξ(ϑt ,S1,S2) =

(
Ξ(ϑt ,S2) 0

0 Ξ(ϑt ,S1)

)
(111)

ϒ(ϑt) =

(
I−Bun(ϑt)Bun(ϑt)

† 0
0 I−Bun(ϑt)Bun(ϑt)

†

)
(112)

Ξ(ϑt ,S2) = R(ϑ)−1HΓ(ϑt)Bun(ϑt)
† +∆A(S2∪S3)

R (ϑt)
+

(113)

Ξ(ϑt ,S1) = R(ϑt)
−1HΓ(ϑt)Bun(ϑt)

† +∆A(S1∪S3)
R (ϑt)

+

(114)

Then, the interval unknown input observer (31), (33) and (69)-(72), with F(ϑt) and F(ϑt) calculated as in
(101)-(102), with:

H∗(ϑt) =R(ϑt)P−1W H(ϑt) (115)

H∗(ϑt) =R(ϑt)P
−1W H(ϑt) (116)

and T (ϑt),S (ϑt) ,S (ϑt) chosen as (36)-(42) is such that the relations (27)-(28) are satisfied provided that
(20) holds. Moreover, if (21) holds, then also (19) is satisfied, with xt ,xt ∈L nx

∞ .

Proof of Corollary 2: (109) can be obtained from (74) through the change of variables:

WH(ϑt) =

(
PR(ϑt)

−1H∗(ϑt) 0
0 PR(ϑt)

−1H∗(ϑt)

)
(117)

which explains why H∗(ϑt) and H∗(ϑt) are calculated as in (115)-(116). On the other hand, (108) and (110)
corresponds to the verification of (35) and the Metzler property, respectively. �

As already discussed previously, by gridding the varying parameter space Θ using N points ϑi, i =
1, . . . ,N, (109) and (110) can be reduced to a finite set of LMIs, by requiring that they hold ∀ϑi, i= 1, . . . ,N.

Remark: The proposed LPV interval unknown input observer follows the passive approach to robust
fault diagnosis Chen and Patton (1999), which ensures that as long as the assumptions about bounds on
uncertainties, disturbances and noise are satisfied, if no unknown inputs are acting on the system then the
state will always be contained within the computed bounds (absence of false alarms). On the other hand,
if some unknown inputs are acting on the system, only the corresponding components of the unknown
input isolation signals might become negative (absence of wrong diagnosis). Anyway, as suggested by
Ding (2013), it is possible to enhance the robustness against disturbances and the sensitiveness to faults by
considering a multiobjective optimization. Commonly employed performance indices are the H∞ norm and
the H− index, which are minimized and maximized, respectively (Chadli, Abdo, and Ding, 2012; Henry,
Cieslak, Zolghadri, and Efimov, 2015). However, considering a multiobjective H∞/H− optimization for
the design of the LPV interval UIO goes beyond the scope of this paper, and will be addressed by future
work.

4.3 Performance assessment

In this section, a metric based on the idea of stochastic robustness (Marrison and Stengel, 1997;
Witczak and Pretki, 2007) is proposed in order to assess the performance of the LPV interval UIO.
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This metric is given by the probability that the LPV interval UIO will exhibit an unacceptable be-
haviour. More specifically, let us denote the LPV interval UIO as O , while the set of possible scenarios
is denoted by S (µ), where µ ∈M denotes possible variations due to different realization of the model
uncertainty, unknown inputs, etc. within a bounded set M, which can be described by a probability
density function pr(µ). Then, the performance metric can be defined as the integral of an indicator
function over the space of expected variations:

Ψ(O) =
∫
M

I [S (µ),O] pr(µ)dµ (118)

where I is a binary function which describes if the behaviour of the fault/icing diagnoser for a given
realization of µ is acceptable (I = 1) or not (I = 0).

Unfortunately, (118) cannot be integrated analytically. A practical alternative is to use Monte Carlo
methods (Doucet, de Freitas, and Gordon, 2001) with pr(µ) shaping random values of µ that will be
denoted by µi. When M random µi, i = 1, . . . ,M are generated, then an estimate of Ψ is given by:

Ψ̂(O) =
1
M

M

∑
i=1

I [S (µi),O] (119)

where Ψ̂ approaches Ψ in the limit as M → ∞. However, it is impossible to set M = ∞, thus it is
interesting to choose M in such a way that Ψ̂ has standard deviation less than a desired value σ

Ψ̂
.

Since I is binary, Ψ̂ has a binomial distribution, such that M can be chosen as (Witczak and Pretki,
2007):

M ≥
⌈

1
4

σ
−2
Ψ̂

⌉
(120)

5. Application to a two-joint planar robotic manipulator

Let us consider a two-joint planar robotic manipulator, for which the dynamics equation can be expressed
as (Yu, Chen, and Woo, 2002):

ãq̈1 + b̃cos(q2−q1)q̈2− b̃q̇2
2 sin(q2−q1) = τ1 (121)

b̃cos(q2−q1)q̈1 + c̃q̈2 + b̃q̇2
1 sin(q2−q1) = τ2 (122)

where q1 and q2 represent the positions of the first and the second joint, respectively, τ1 and τ2 are the joint
torques, and ã, b̃, c̃ are coefficients which depend on dynamic and kinematic parameters. It is assumed that
ã = a+∆a, b̃ = b+∆b, c̃ = c+∆c, where a,b,c are known (nominal coefficient values) and ∆a, ∆b, ∆c
represent the uncertainty, which take unknown values in known intervals [∆a,∆a], [∆b,∆b] and [∆c,∆c],
respectively. Similarly, τ1 = τ∗1 +∆τ1 and τ2 = τ∗2 +∆τ2, where τ∗1 ,τ

∗
2 are known inputs and ∆τ1,∆τ2 are

unknown (they can represent faults in the actuators). It is assumed that the full state is available for mea-
surement, i.e. C = I.

By using the state vector x = [q1,q2, q̇1, q̇2]
T , the input vector u = [τ∗1 ,τ

∗
2 ]

T and the unknown input vector
uun = [∆τ1,∆τ2]

T , (121)-(122) can be brought to the form (5) with ϑt = xt , ct = 0, dt = 0, and:

Ã(ϑt) =


0 0 1 0
0 0 0 1
0 0 ã33(ϑt) ã34(ϑt)
0 0 ã43(ϑt) ã44(ϑt)

 B̃(ϑt) = B̃un (ϑt) =


0 0
0 0

b̃31 (ϑt) b̃32 (ϑt)
b̃41 (ϑt) b̃42 (ϑt)



17
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where the elements of the state and input matrices are given by:

ã33(ϑt) =
b̃2 sin(x2− x1)cos(x2− x1)x3

ãc̃− b̃2 cos2(x2− x1)

ã34(ϑt) =
b̃c̃sin(x2− x1)x4

ãc̃− b̃2 cos2(x2− x1)

ã43(ϑt) =−
ãb̃sin(x2− x1)x3

ãc̃− b̃2 cos2(x2− x1)

ã44(ϑt) =−
b̃2 sin(x2− x1)cos(x2− x1)x4

ãc̃− b̃2 cos2(x2− x1)

b̃31(ϑt) =
c̃

ãc̃− b̃2 cos2(x2− x1)

b̃32(ϑt) = b̃41(ϑt) =−
b̃cos(x2− x1)

ãc̃− b̃2 cos2(x2− x1)

b̃42(ϑt) =
ã

ãc̃− b̃2 cos2(x2− x1)

Then, as explained in Section 2, by neglecting the uncertainty, (4) is obtained with:

A(ϑt) =


0 0 1 0
0 0 0 1
0 0 a33(ϑt) a34(ϑt)
0 0 a43(ϑt) a44(ϑt)

 B(ϑt) = Bun (ϑt) =


0 0
0 0

b31 (ϑt) b32 (ϑt)
b41 (ϑt) b42 (ϑt)


where the elements of A(ϑt), B(ϑt), Bun(ϑt) can be obtained from the corresponding elements of
Ã(ϑt), B̃(ϑt), B̃un(ϑt) by replacing ã, b̃, c̃ with a,b,c, respectively. Then, ∆A(ϑt), ∆B(ϑt), ∆Bun(ϑt) can
be obtained as in (6)-(8):

∆A(ϑt) =


0 0 0 0
0 0 0 0
0 0 ∆a33(ϑt) ∆a34(ϑt)
0 0 ∆a43(ϑt) ∆a44(ϑt)

 ∆B(ϑt) = ∆Bun (ϑt) =


0 0
0 0

∆b31 (ϑt) ∆b32 (ϑt)
∆b41 (ϑt) ∆b42 (ϑt)


For the sake of brevity, the expressions of the elements of ∆A(ϑt), ∆B(ϑt), ∆Bun(ϑt) are omitted, except

for the illustrative example of ∆a33(ϑt), which is given by:

∆a33(ϑt) =
(b+∆b)2 sin(x2− x1)cos(x2− x1)x3

(a+∆a)(c+∆c)− (b+∆b)2 cos2(x2− x1)
− b2 sin(x2− x1)cos(x2− x1)x3

ac−b2 cos(x2− x1)
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The following step for the application of the proposed strategy is to find the lower and upper bounds such
that (11)-(12) and (23) hold. These bounds can be found elementwise, taking into account the knowledge
about the uncertainty intervals. For example, the element ∆a33(ϑt) can be bounded by:

∆a33(ϑt) =


(b+∆b)2 cos(x2−x1)sin(x2−x1)x3

(a+∆a)(c+∆c)−(b+∆b)2 cos2(x2−x1)
−a33(ϑt) i f cos(x2− x1)sin(x2− x1)x3 ≥ 0

(b+∆b)2 cos(x2−x1)sin(x2−x1)x3
(a+∆a)(c+∆c)−(b+∆b)2 cos2(x2−x1)

−a33(ϑt) i f cos(x2− x1)sin(x2− x1)x3 < 0

∆a33(ϑt) =


(b+∆b)2 cos(x2−x1)sin(x2−x1)x3

(a+∆a)(c+∆c)−(b+∆b)2 cos2(x2−x1)
−a33(ϑt) i f cos(x2− x1)sin(x2− x1)x3 ≥ 0

(b+∆b)2 cos(x2−x1)sin(x2−x1)x3
(a+∆a)(c+∆c)−(b+∆b)2 cos2(x2−x1)

−a33(ϑt) i f cos(x2− x1)sin(x2− x1)x3 < 0

By choosing:

R(ϑt) =


0 0 a bcos(x2− x1)
0 0 bcos(x2− x1) c
1 0 0 0
0 1 0 0


the matrix H calculated as in (26) is:

H =


1 0
0 1
0 0
0 0


which means that if the first component of either εt or εt becomes negative, u(1)un,t , 0, while if the second

component becomes negative, then u(2)un,t , 0.
It is easy to check that the choice of R(ϑt) leads to:

∆AR(ϑt) =


0 0 a∆a33(ϑt)+bcos(x2− x1)∆a43(ϑt) a∆a34(ϑt)+bcos(x2− x1)∆a44(ϑt)
0 0 bcos(x2− x1)∆a33(ϑt)+ c∆a43(ϑt) bcos(x2− x1)∆a34(ϑt)+ c∆a44(ϑt)
0 0 0 0
0 0 0 0



∆BR(ϑt) = ∆Bun,R(ϑt) =


a∆b31(ϑt)+bcos(x2− x1)∆b41(ϑt) a∆b32(ϑt)+bcos(x2− x1)∆b42(ϑt)
bcos(x2− x1)∆b31(ϑt)+ c∆b41(ϑt) bcos(x2− x1)∆b32(ϑt)+ c∆b42(ϑt)

0 0
0 0


Then, the bounds in (14)-(15) and (24) can be easily calculated. For example:

∆aR13(ϑt) =

{
a∆a33(ϑt)+bcos(x2− x1)∆a43(ϑt) i f cos(x2− x1)≥ 0
a∆a33(ϑt)+bcos(x2− x1)∆a43(ϑt) i f cos(x2− x1)< 0
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Through the choices:

Γ(ϑt) = Γ(ϑt) = Γ =−λ I

H∗(ϑt) = H∗(ϑt) = H∗ =


0 0 0 0
0 0 0 0
−λ 0 0 0
0 −λ 0 0


the matrices calculated using (101)-(102) are F(ϑt) = F(ϑt) = −λ I. Notice that, according to (46)-(47),
the matrices F(ϑt), F(ϑt), i.e. the choice of λ , will determine the dynamical behaviour of the interval
estimation errors et , et . By using (36)-(42), the matrix functions T (ϑt), S(ϑt) and S(ϑt) can be calculated.
For example:

T (ϑt) =


1 0 −a −bcos(x2− x1)
0 1 −bcos(x2− x1) −c
−1 0 1 0
0 −1 0 1


which leads to:

Ṫ (ϑt) =


0 0 0 b(x4− x3)sin(x2− x1)
0 0 b(x4− x3)sin(x2− x1) 0
0 0 0 0
0 0 0 0


Then, according to the first part of Theorem 2, (31), (33) and (69)-(72) is an LPV interval unknown input
observer for the considered system.

Let us consider the following values: a = 5.75kg ·m2, b = 1.5kg ·m2, c = 1.75kg ·m2, ∆a = −∆a =
0.2kg ·m2, ∆b =−∆b = 0.1kg ·m2, ∆c =−∆c = 0.1kg ·m2, ã = 5.6kg ·m2, b̃ = 1.4kg ·m2, c̃ = 1.7kg ·m2,
λ = 1 (notice that for any possible value of ã, b̃, c̃, ãc̃− b̃2 cos2(x2− x1) > 0, such that the matrix func-
tions Ã(ϑt), B̃(ϑt) and B̃un(ϑt) are well-defined). By gridding Θ = [−π,π]× [−π,π]× [−1,1]× [−1,1]
into 10000 points, (74) can be assessed, thus confirming that xt and x̄t will stay bounded. For sim-
ulation purposes, let us consider: uun,t = [−5,−5]T , ūun,t = [5,5]T , x0 = [π/12,−π/12,0,0]T , ξ

0
=

[−π/6,−π/6,−π/12,−π/12]T , ξ 0 = [π/6,π/6,π/12,π/12]T . The control input ut is provided by the
LPV controller in Yu et al. (2002). Four different scenarios are considered:

Scenario 1: uun,t = [0,0]T

Scenario 2: uun,t =

{
[0,0]T t ≤ 20s
[5,0]T else

Scenario 3: uun,t =

{
[0,0]T t ≤ 20s
[0,5]T else

Scenario 4: uun,t =

{
[0,0]T t ≤ 20s
[5,5]T else

Figs. 1-4 show the responses of the unknown input isolation signals ε t and ε̄t in the four considered
scenarios. As expected, in Scenario 1, all the components of ε t and ε̄t are positive, since no unknown input
is acting on the system. On the other hand, in Scenario 2, ε

(1)
t becomes negative at time t = 21.16s, which

allows detecting and isolating correctly the presence of the first unknown input. Similarly, in Scenario 3,
ε̄
(2)
t becomes negative at time t = 20.02s, which means that the second unknown input is acting on the
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system. Finally, the change of sign of both ε
(1)
t and ε̄

(2)
t in Scenario 4 (see Fig. 4) confirms that both the

unknown inputs are acting on the system at the same time, providing further confirmation of the validity of
the developed theory.
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Figure 1.: Unknown input isolation signals ε t and ε t in Scenario 1.
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Figure 2.: Unknown input isolation signals ε t and ε t in Scenario 2.

Finally, in order to assess the performance of the proposed method, the approach described in
Section 4.3 has been applied, by performing Monte Carlo simulation with different values of the
uncertainty and of the unknown inputs. To this end, the metric (118) has been calculated by using
an indicator function I that takes into account whether a given simulation has been successful or
not (for example, in scenario 1, the simulation is considered to be successful if neither ε

(i)
t nor ε

(i)
t ,

i = 1,2, becomes negative; on the other hand, in scenario 2, the success is characterized by ε
(1)
i or ε

(1)
t

becoming negative while both ε
(2)
i and ε

(2)
i remaining non-negative). For each considered scenario

(scenarios 1-4, depending on which unknown inputs are affecting the system), uncertainty level (ex-
pressed as a percentage of the nominal parameters’ values) and unknown input magnitudes, M = 100
Monte Carlo simulations have been performed which, according to (120), corresponds to ensuring a
standard deviation σ

Ψ̂
= 0.05.

The results of the performance assessment are summarized in Figs. 5-8. Notably, in scenario 1 (Fig.
5), a performance metric Ψ̂(O) = 1 is obtained in all cases, since the proposed technique ensures the
absence of false alarms. In all the other scenarios, it is evident that the higher is the uncertainty, the
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Figure 3.: Unknown input isolation signals ε t and ε t in Scenario 3.
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Figure 4.: Unknown input isolation signals ε t and ε t in Scenario 4.

bigger is the value of the minimum detectable unknown input.

6. Conclusions

This paper has introduced the use of LPV interval observers for the state estimation in uncertain continuous-
time LPV systems. The conditions for analysis and design of these observers are based on LMIs, which
can be solved efficiently using available solvers. In particular, two properties are required by the anal-
ysis/design: i) interval estimation of the state, i.e. as long as some assumptions about uncertainties and
disturbances are verified, the state will always be contained within the bounds calculated by the interval
observer; and ii) boundedness of the estimation, which is akin to the asymptotic stability of classical state
observers, and is verified by finding an appropriate Lyapunov function.

Furthermore, it has been shown that a slight modification of the LPV interval observer allows decoupling
unknown inputs acting on the system. In this way, an LPV interval unknown input observer is obtained.
This unknown input observer is useful for the task of isolating faults and other undesired effects, because
different output directions of the residuals can be assigned to these effects. Due to the property of interval
estimation guaranteed by the observer, the absence of false alarms and wrong diagnosis will be assured.

The application of the proposed approach to a two-joint planar robotic manipulator has demonstrated its
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Figure 5.: Estimated performance metric Ψ̂(O) in scenario 1.
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Figure 6.: Estimated performance metric Ψ̂(O) in scenario 2.

appeal, giving more insight into this method and confirming the results provided by the theory.
As previously remarked, future research will aim at considering a multiobjective H∞/H− optimization

for the design of the LPV interval UIO with the aim of enhancing the robustness against disturbances
and the sensitiveness to faults. Further lines of research include: (i) decreasing the conservativeness of
analysis/design using other types of Lyapunov functions, e.g. parameter-dependent ones; (ii) considering
the case of noisy measurements and inexactly measured scheduling parameters; and (iii) integrating the
proposed FDD approach with a fault tolerant control strategy.
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Figure 7.: Estimated performance metric Ψ̂(O) in scenario 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Uncertainty %

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ψ̂
(O

)

u
un

 = 0.5

u
un

 = 1

u
un

 = 1.5

u
un

 = 2

u
un

 = 2.5

Figure 8.: Estimated performance metric Ψ̂(O) in scenario 4.

References

Amato, F., Cosentino, C., Mattei, M., and Paviglianiti, G. (2006). A direct/functional redundancy scheme for fault
detection and isolation on an aircraft. Aerospace Science and Technology, 10, 338–345.

Andrieu, V., Praly, L., and Astolfi, A. (2009). High gain observers with updated gain and homogenous correction
terms. Automatica, 45(2), 422–428.
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