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Tight integration of ultra wideband (UWB) range measurements with real-time kine-
matic (RTK) aiding of inertial navigation for increased robustness to GNSS dropouts, is
achieved using a double-differenced nonlinear observer. A stationary base station provides
additional GNSS range measurements, upon which a double-differenced observer is for-
mulated. The results are verified using a simulated unmanned aerial vehicle (UAV) with
realistic inertial, GNSS and UWB measurements.

Nomenclature

A Dynamics matrix
b Angular velocity bias
C Measurement matrix
e Injection term
f Specific force
K Observer gain matrix
k Constant tuning parameter
L Scaling matrix
l UWB Geometric distance
N Integer ambiguity
P Covariance matrix
p Position
Q Measurement covariance matrix
q Unit quaternion attitude representation
R State covariance matrix
U Lyapunov function candidate
v velocity
w UWB white noise
Subscripts
i,h Satellite number
j UWB node number
k Iteration number
Symbols

α UWB rover clock bias
β GNSS receiver clock bias
χ Auxiliary state vector
δ Perturbation term
δ Transformed state vector 3
ε GNSS range atmospheric noise
η Transformed state vector
λ Wavelength
µ UWB range measurement
ν Vector
ω Angular velocity
ψ Geometric distance from satellite to receiver
ρ Pseudo-range measurement
σ̂ Attitude observer injection term
ϕ Carrier-phase measurement
ξ Auxiliary state

Superscripts

b Body frame
e Earth-Centered-Earth-Fixed frame
n North-East-Down frame
r Rover (UAV) receiver
s Base station receiver
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I. Introduction

Within the last decade, the use of unmanned aerial vehicles (UAVs) have vastly increased due to lower cost
and ease of use. The level of autonomy has increased as well, and UAVs are now able to complete complicated
tasks autonomously. However, the landing phase of a UAV mission is often manually operated by a highly
skilled UAV pilot. The primary reason for manual control is the fast adaptability and high precision required
for safely landing a UAV in a small area. The high precision demand might not be satisfied by the on-board
sensor-suite, which often has low accuracy in low-cost UAVs due to cost and weight constraints. Typical
navigation avionics consists of a single-frequency global navigation satellite system (GNSS) receiver and a
MEMS-based inertial measurement unit (IMU).

The measurements can be integrated to obtain higher precision than the stand-alone GNSS receiver
precision. The integration is often achieved using a Kalman filter (KF) variant, which integrates the inertial
measurements from acceleration to position, at high rate, while correcting the position estimate using the
GNSS receiver data obtained at a lower rate. The attitude of the vehicle can also be estimated by the KF
by using angular velocity or magnetometer measurements. In recent years nonlinear observers have been
proposed to estimate position, linear velocity and attitude (PVA) of vehicles as an alternative to the widely
used KF. The nonlinear observers have the advantage of proven (often global) stability conditions, smaller
computational footprint and reduced need for linearization. In Ref. 1 and Ref. 2 a nonlinear complementary
filter was proposed, which was expanded upon in Ref. 3 to an attitude and velocity observer dependent only
on inertial, magnetometer and GNSS measurements. Furthermore, in Ref. 4 and Ref. 5, these results were
expanded to include the quaternion representation of attitude in local and global coordinate frames. For an
extensive overview of attitude estimators see Ref. 6.

One way to increase the precision of the PVA estimates is to utilize a tightly coupled integration scheme,
integrating the inertial measurements with global range measurements from the satellites to the receiver,
instead of using the global position estimates from the receiver. The GNSS measurements are thereby in the
range domain instead of the position domain, allowing aiding by pseudo-range or carrier-phase measurements.
Tightly coupled integration have traditionally been done using a KF variant; Ref. 7 and Ref. 8, with nonlinear
observers recently being proposed; Ref. 9, Ref. 10, Ref. 11 and Ref. 12. Using carrier-phase measurements as
aiding, introduces the integer ambiguities which are a constant range offset, given by a number of wavelengths.
If the ambiguities can be resolved correctly the carrier-phase measurements will typically have centimeter
accuracy.

The global range measurements are subjected to disturbances from the atmosphere due to signal path
obstructions in the ionosphere and troposphere. These atmospheric disturbances can be somewhat predicted
using local and solar weather forecasts. Another option is to augment the measurement configuration by
including a base station at a known position. The base station supplies the vehicle (often called the ’rover’)
with range measurements obtained at the base station, to be subtracted from the rover measurements,
thereby reducing common disturbances. If the rover is within 20 km,7 the atmospheric disturbances can be
canceled in the differenced range measurements. In a differential GNSS configuration the integration uses
the differenced range measurements to aid the inertial navigation. When resolving the integer ambiguities
in real time, the configuration can be considered a Real-Time-Kinematic (RTK) configuration. The quality
of an RTK position estimate is often divided into three categories: a) ’single’, indicating same precision as
a single-receiver configuration, b) ’float’, where the integer ambiguities are considered real valued numbers
giving a precision on decimeter level, or c) ’fixed’, when the ambiguities have been resolved to integer values
often with a precision on centimeter level. Maintaining a ’fixed’ RTK position estimate is desirable when
the accuracy requirements are high, such as during a fixed-wing UAV net landing.13

A drawback of the RTK positioning is the sensitivity to agile maneuvers and obstructed GNSS signal
path, which can lead to loss of fix quality. If the RTK positioning looses sight of a satellite in the constellation,
the integer ambiguity have to be determined again when the satellite is reintroduced. In order to improve the
resistance to precision deterioration when satellites are obstructed the sensor configuration can be augmented
with use of further aiding sensors, e.g. cameras, air speed sensors, or ultra wideband transceivers. Ultra
wideband (UWB) technology has typically been used for indoor navigation due to its short range. The setup
consists of a UWB receiver measuring the distance to one (or several) UWB nodes acting as pseudo-satellites.
The UWB cannot, in practice, substitute the GNSS measurements in outdoor environment due to the short
range, however it can aid the inertial navigation in GNSS denied or challenged areas, e.g. the UWB nodes
can be placed strategically around the landing area to aid during the final part of a UAV flight. UWB
technology have been used in other outdoor applications such as in Ref. 14 where inter-vehicle positioning
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was achieved using DGPS in combination with UWB, or in Ref. 15 where position and heading of smoke
divers equipped with IMU and UWB was estimated. Other previous work include Ref. 16 where double-
differenced GPS measurements are coupled with a single UWB range measurement in a tightly coupled
manner, using an unscented Kalman filter and a two-frequency GPS receiver. Their goal is to accurately
determine the relative position between two UAVs in formation flight, with increased robustness to GPS
loss-of-fix. Further, Ref. 17 presents a summary of the theoretical foundation for, and challenges related
to, UWB self-localization systems, such as the Cramer-Rao lower bound and clock synchronization issues.
Another UWB application is suggested in Ref. 18, where UWB position estimates are used to emulate GNSS
measurements.

This paper considers a tightly-coupled integration of IMU and double-differenced GNSS range measure-
ments for RTK applications using a nonlinear observer structure aided with single-differenced UWB range
measurements. The main contribution of this paper is the addition of UWB range measurements to the
nonlinear observer, which offers increased robustness when operating in GNSS challenged or denied areas.
This addition requires the stability proof to be revisited, as the state vector for the translational motion
observer is augmented to include timing parameters for the UWB signals.

A. Notation and Preliminaries

A column vector x ∈ R3 given as x := [x1;x2;x3] with transpose xᵀ has Euclidean norm ‖x‖2, while the
skew-symmetric matrix, denoted S(·), is given as:

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,
such that S(x1)x2 = x1×x2, where × denotes the vector product. The attitude can be represented by a
unit quaternion q := [sq;rq] with length ‖q‖2 = 1, consisting of a real part sq ∈ R and a vector part rq ∈ R3.
The product between two quaternions, q and p, are given by the Hamiltonian product, denoted q⊗p:

q⊗p=

 sqsp− rᵀqrp
sqrp+sprq + rq× rp

 ,
In the following 0 denotes a zero-matrix of appropriate dimensions.

In the following multiple coordinate frames will be used, where the frame will be indicated by the
superscript unless otherwise stated. The Body-frame will be denoted b, while the global Earth-Centered-
Earth-Fixed (ECEF) frame will be denoted e, and the local North-East-Down (NED) frame will be denoted
n. A vector x might be decomposed in different coordinate frames, thus xb and xe refers to the same vector
decomposed in the Body- and ECEF-frame. The rotation between frames are given by unit quaternions, e.g.
qeb = [sqe

b
;rqe

b
], with corresponding rotation matrix R(qeb)xb = xe given as R(qeb) := I+2sqe

b
S(rqe

b
)+2S(rqe

b
)2.

B. Paper Organization

The paper is organized as follows: in section II the configuration of sensors will be established, while
section III states the problem formally. In section IV the proposed observer structure, consisting of a
translational motion observer and a recent attitude estimator, will be introduced. Section V will show the
obtained results using a state-of-the-art UAV simulator, with section VI summarizing the paper.

II. Problem Setup

This section describes the properties of UWB and RTK-GNSS, as well as why this type of sensors are
beneficial to combine.

A. Real-Time-Kinematics GNSS

The idea behind RTK is to utilize differenced carrier-phase and pseudo-range measurements instead of mea-
surements obtained at the rover, for computation of position. The differenced measurements are determined
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by subtracting ranges obtained at a stationary base station from those obtained at a moving rover, thereby
canceling some common error terms. The measurements, obtained from a constellation of m satellites, by
the two receivers are pseudo-range, ρ, and carrier-phase, ϕ. Considering measurements from the ith satellite,
the measurements are given as:

ρri = ψri +βr + εrρ,i, (1)
ϕri = ψri +Nr

i λ+βr + εrϕ,i, (2)

where ψri = ‖per − pei ‖2 is the geometric distance between the rover, r, and the satellite, i, at position pei .
The receiver clock range bias is denoted as βr := c∆c, where ∆c is the clock bias and c is the speed of
light. The receiver clock range bias is assumed to be slowly time-varying, and to be the same for all
satellites in the constellation. The integer ambiguity is denoted Nr

i , with λ being the wavelength. The
atmospheric disturbances of the range measurements are denoted εrρ,i and εrϕ,i, and consists of the systematic
environmental errors due to signal path obstruction in the ionosphere and troposphere.

Introducing the base station measurements, expressed by substituting the superscript r to s, the range
measurements can be differenced to cancel the common environmental terms. When the rover and base
station are sufficiently close to each other, i.e. the baseline between them is less than 20km, the environmental
errors experienced by the two receivers are considered to be the same, i.e. εrρ,i = εsρ,i = ερ,i and εrϕ,i = εsϕ,i =
εϕ,i.7 For the ith satellite, the environmental errors are canceled in the single-differenced measurements:

∆ρi = ∆ψi+ ∆β, (3a)
∆ϕi = ∆ψi+ ∆Niλ+ ∆β, (3b)

where ∆ρi = ρri −ρsi , ∆ϕi = ϕri −ϕsi , ∆β = βr−βs, ∆Ni =Nr
i −Ns

i , and ∆ψi = ψri −ψsi is the length of the
geometric baseline between rover and base station. The integer ambiguity is a vector, ∆Ni ∈Rm, comprised
of the ambiguities of the available satellites; ∆Ni = [N1;N2; . . . ;Nm].

The clock error ∆β can be removed by double-differencing the measurement against a satellite h at the
same epoch:

∇∆ρih =∇∆ψih, (4a)
∇∆ϕih =∇∆ψih+∇∆Nihλ, (4b)

where ∇∆ρih = ∆ρh−∆ρi, ∇∆ψih = ∆ψh−∆ψi, ∇∆φih = ∆φh−∆φi and ∇∆Nih = ∆Nh−∆Ni. It
is assumed that the raw measurements are time stamped simultaneously by the receivers, such that the
corresponding measurements for the two satellites can be found at the two receivers. Double-differencing the
raw measurements reduces the dimensions of the observer, since clock error estimates are no longer needed.
In the context of RTK-GNSS it can be advantageous to reduce the noise by double-differencing, since the
residual measurement error, according to Ref. 19, should be less than 1/4 wavelength to solve the integer
ambiguity.

B. Ultra Wideband (UWB)

Ultra wideband is a radio technology that transmits over a very wide range of frequencies, typically several
GHz. It is characterized by moderate range (typically 200 m) due to power limitations. UWB transmitters
can not only be used for communication, but also for range measurements with sample rates in tens of Hertz.
The technology has increased in popularity since the United States Federal Communications Commission
(FCC) allowed for unlicensed use of the 3.1-10.6 GHz spectrum in 2002.20 In particular, impulse-radio UWB
(IR-UWB), has become popular for centimeter-level accuracy ranging applications.

Advantages with UWB include robustness to interference, resistance to multipath, low energy consump-
tion,21 small footprint, as well as good time resolution allowing for centimeter level precision of range
measurements.20 Disadvantages include range limitations, as well as the need for additional equipment in
the UAV.

UWB ranging can be either synchronous or asynchronous.20 For synchronous ranging, the time-of-flight
(ToF) between the nodes are measured by comparing the timestamp of the received message with the current
time in the node. For this reason, the ranging precision depends on accurate synchronization of the clocks
of each node. This can be mitigated using asynchronous two-way ToF ranging, where one node transmits
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a message to a second node, which simply transmits the message back. Again the first node compares the
timestamp with the current time. However, as mentioned by Ref. 17, the one-way communication required
by the asynchronous approach offers more flexibility since the range accuracy and rate of communication is
not affected by introducing additional rovers to the system.

One common way to model UWB range measurements, as given in e.g. Ref. 22, is to include a bias term
and a zero-mean noise term:

µrj = lrj +αr +αj +wrj . (5)
Here, lrj = ‖per− pej‖ is the geometric distance between the rover r and the UWB node j. The noise term,
wrj , represents the zero-mean white noise. The bias associated with the rover, including clock bias, radio
oscillation frequencies and variations in the speed of light,20 is summarized in αr, while the equivalent bias
terms associated with UWB node j are summarized in αj . The experimental study in Ref. 21 shows a
distance-dependence in the bias and in the noise standard deviation, which both are fit to a linear function
using the least squares recursion. In the following, the bias and standard deviation will be considered
constant, as in Ref. 15. Furthermore, only line-of-sight (LOS) operation will be considered. See Ref. 15 and
Ref. 22 for studies on LOS and non-line-of-sight (NLOS) range measurements. By using the pseudo-range
measurements from UWB node j to the rover and base station, the clock-bias from the node is removed
using single differencing:

∆µj = ∆lj + ∆α, (6)

where ∆lj = lrj − lsj , and ∆α= αr−αs.

C. Interconnection

N1 N2

rs

S1

S2

µr1 µ
r
2

µ s
1

µs2

ρ r1 , ϕ r1

ρ
r 2
, ϕ

r 2

ρ s1 ,
ϕ
s1

ρ
s 2
, ϕ

s 2

Figure 1: Conceptual setup of rover, base station, GNSS-satellites and UWB nodes

The reason for choosing to integrate UWB and RTK-GNSS is that they have some complimentary
properties. While multipath can be a considerable error source in GNSS, this is not as pronounced for UWB
due to the higher frequencies in the signal. On the other hand GNSS provides global coverage, whereas
UWB coverage is significantly limited by the range of the signal. Additionally both systems are vulnerable
to errors, if it is the only position sensor installed in the rover. Therefore the measurements from the two
sensors can be beneficially fused, allowing for global coverage, and redundancy in critical situations such as
landing a UAV, or UAV inspection in areas with high GNSS multipath noise levels.

A conceptual setup of the rover, base station, GNSS-satellites and UWB nodes is shown in figure 1. Two
satellites, S1 and S2, are shown transmitting to the base station, s, and rover, r. Additionally, two UWB
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nodes, N1 and N2, are depicted. The diagram has been simplified by including only two satellites and two
UWB nodes. Both the rover and the base station are equipped with GNSS and UWB receiver, allowing
for double-differencing of the GNSS and single-differencing UWB signals as explained in section II.A and
section II.B. In addition, the rover is equipped with an inertial measurement unit (IMU) and a magnetometer.
In order to solve the range measurement equations for the three dimensional position of the rover, the time,
and the bias, at least five GNSS satellites must be within LOS. Similarly, the setup needs five UWB nodes
that are located close to the base station, around an area of special interest, typically a region that is critical
for the mission. The relative position of the nodes to the base station is assumed constant and known.

III. Problem Definition

Inertial navigation using a nonlinear observer in a dual receiver configuration is considered, where a
stationary base station supplies a moving rover with GNSS range measurements. The common atmospheric
disturbances can be canceled provided that the rover is sufficiently close to the base station, by determining
the double-differenced range measurements. The inertial navigation is further aided by UWB measurements
from a set of nodes. The nonlinear observer is an extension of the double-differenced observer developed in
Ref. 10, extended to include single-differenced UWB range measurements.

This paper seeks to estimate the position, linear velocity and attitude (PVA) of a moving rover by use
of tight integration of inertial measurements in the Body-frame aided by global GNSS and UWB range
measurements. The GNSS data include pseudo-range and carrier-phase measurements, where the integer
ambiguity are initially considered as real valued and can later be fixed to integer value for increase precision.
The UWB system will provide short ranged measurements with high precision to be used when the rover
enters an area of special interest, which might be GNSS denied or challenged. Estimation of the rover PVA
is of interest as well as an evaluation of the benefits of using UWB measurements for additional aiding.

The kinematic model is stated as:

ṗer = ver , (7a)
v̇er =−2S (ωeie)ver +fe+ge(per), (7b)

q̇eb = 1
2q
e
b ⊗

 0
ωbib

− 1
2

 0
ωeie

⊗ qeb , (7c)

ḃb = 0, (7d)
ṗes = 0. (7e)

Here per and pes are the position of the rover and base station, while qeb , ver and ωbib are the attitude represented
by a unit quaternion, the linear and angular velocity of the rover, respectively. The angular velocity of the
Earth, ωeie, and the position dependent gravitational vector-function, ge, are assumed known. The specific
force experienced by the rover is denoted fe, while bb is the Body-frame gyro bias associated with the angular
velocity measurements.

A. Measurement Assumptions

It is assumed that a sensor suite is mounted on the vehicle with inertial and global range measurement units.
Moreover, it is assumed that the following measurements are available:

• Specific force as measured by an IMU, fbIMU = fb.

• Angular velocity experiencing a bias, as measured by an IMU, ωbib,IMU = ωbib+ bb.

• Magnetic field as measured by a magnetometer, mb.

• Pseudo-range as measured by a GNSS receiver from the ith satellite, ρri .

• Carrier-phase as measured by a GNSS receiver from the ith satellite, ϕri .

• UWB range as measured by a UWB receiver from the jth node, µrj .
Furthermore, it is assumed that pseudo-range, carrier-phase and UWB measurements are available to the
stationary base station, with at least m≥ 5 common satellites and n≥ 4 common UWB nodes.
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IV. Nonlinear Observer

The proposed nonlinear observer structure consisting of a nonlinear attitude observer, a translational
motion observer (TMO) and a gain computation, is visualized in figure 2. The block diagram also includes
the required sensors; inertial, magnetometer, GNSS and UWB range sensors. Two GNSS receivers are
necessary, one mounted on the rover and one on a stationary base station. The stationary receiver supplies
the data for calculation of the satellite position, pei , in addition to the range measurements. The UWB nodes
are positioned such that the receiver on the rover can determine single-differenced range measurements.

UWB
Nodes

Rover
GNSS

Receiver

Base
GNSS

Receiver

MAG

IMU
Attitude
Observer

Riccati
Solver & Gain
Computation

Translational
Motion

Observer

µr
j , µ

s
j

ρr
i , ϕ

r
i

pe
i

ρs
i , ϕ

s
i

K

fb
IMU

ωb
ib,IMU

mb

σ̂, q̂b
e

b̂b

p̂e
r, v̂e

r

β̂

f̂e

Figure 2: Block diagram of the proposed nonlinear observer structure

The proposed nonlinear observer is a modification to the loosely-coupled nonlinear observer initially
presented in Ref. 5, which has been expanded in Ref. 9 to tightly-coupled systems using range and range-
rate measurements, and further expanded in Ref. 10 where both a single-differenced and a double-differenced
measurement structure was proposed.

The attitude observer is supplied with inertial measurements as well as a specific force estimate from the
TMO. For the loosely-coupled system in Ref. 5 this was shown to be exponentially stable with a semiglobal
region of attraction with respect to attitude observer initialization and local region of attraction with respect
to translational motion observer initialization, due to the cascaded structure. An additional feedback, of
rover position estimate, from the TMO to the gain computation is required to compute the injection terms
necessary in the TMO.

The following sections will elaborate on the individual parts of the observer structure.

A. Attitude Observer

The attitude of the rover is determined as the rotation between Body- and ECEF-frame, using inertial
measurements in Body-frame. The recent nonlinear attitude observer from Ref. 4, estimating the gyro bias
in addition to the attitude as a unit quaternion, is restated as:

˙̂qeb = 1
2 q̂
e
b ⊗

 0
ωbib− b̂b+ σ̂

− 1
2

 0
ωeie

⊗ q̂eb , (8a)

˙̂
bb = Proj

(
−kI σ̂,‖b̂b‖ ≤Mb̂

)
. (8b)

Here, the Proj(·, ·)-operator is a multi-dimensional saturation function that projects the gyro bias estimate
to within a sphere with radiusMb̂. The gain, kI , is a positive constant, and σ̂ is an injection term determined
from two vectors in the Body-frame, νb1 and νb2, with corresponding vectors in the ECEF-frame, νe1 and νe2 :

σ̂ = k1ν
b
1×R(q̂eb)ᵀνe1 +k2ν

b
2×R(q̂eb)ᵀνe2 , (9)
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where the tuning gains k1 and k2 satisfy k1 > kp and k2 > kp for some kp > 0. The vectors in Body- and
ECEF-frame can be chosen in various ways, and will here be considered as:

νb1 = fbIMU

‖fbIMU‖
, νb1 = f̂e

‖f̂e‖
, νb2 = mb

‖mb‖
×νb1, νe2 = me

‖me‖
×νe1 . (10)

It is vital that the vectors νe1 and νe2 are not co-linear for the system to be observable. The magnetic field in
ECEF-frame is assumed available, e.g. from a database. The estimated specific force, f̂e, is fed back from
the translational motion observer.

B. Translational Motion Observer

Once the estimated attitude q̂eb and the injection term σ̂ are established, they can be used in estimating the
translational motion of the UAV. Additionally, the translational motion observer relies on the specific force
measurement fbIMU , the GNSS pseudo-range measurements ρri and ρsi from Eq. (1), the GNSS carrier-phase
measurements ϕri and ϕsi from Eq. (2), as well as the UWB pseudo-range measurements µrj and µsj from
Eq. (5). Similarly to Ref. 23 the measurement noise is omitted in the analysis of nominal stability, but will
be included in the simulations in section V.

By expanding the double-differenced observer from Ref. 10 with the UWB injection terms

eµ,j = ∆µj−∆µ̂j
= ∆µj−∆l̂rj −∆α̂rj , (11)

where ∆l̂j = l̂rj − l̂sj , and ∆α̂= α̂r− α̂s, the translational motion observer becomes:

˙̂per = v̂er +
m−1∑
i=1

(
Kpρ
i eρ,mi+Kpϕ

i eϕ,mi
)

+
n∑
j=1

(
Kpµ
j eµ,j

)
, (12a)

˙̂ver =−2S(ωeie)v̂er + f̂e+ge(p̂er) +
m−1∑
i=1

(
Kvρ
i eρ,mi+Kvϕ

i eϕ,mi
)

+
n∑
j=1

(
Kvµ
j eµ,j

)
, (12b)

ξ̇ =−R(q̂eb)S(σ̂)fbIMU +
m−1∑
i=1

(
Kξρ
i eρ,mi+Kξϕ

i eϕ,mi

)
+

n∑
j=1

(
Kξµ
j eµ,j

)
, (12c)

f̂e =R(q̂eb)fbIMU + ξ, (12d)

˙̂pes =
m−1∑
i=1

(
Ksρ
i eρ,mi+Ksϕ

i eϕ,mi
)

+
n∑
j=1

(
Ksµ
j eµ,j

)
, (12e)

∆ ˙̂α=
m∑
i=1

(
Kαρ
i eρ,mi+Kαϕ

i eϕ,mi
)

+
n∑
j=1

(
Kαµ
j eµ,j

)
, (12f)

∇∆ ˙̂
N =

m−1∑
i=1

(
KNp
i eρ,mi+KNϕ

i eφ,mi

)
+

n∑
j=1

(
KNµ
j eµ,j

)
. (12g)

where K∗∗∗ are gain matrices, and e∗ are injection terms. The injection terms are defined as the difference be-
tween the true and the estimated measurements: eρ,mi :=∇∆ρmi−∇∆ρ̂mi and eϕ,mi :=∇∆ϕmi−∇∆ϕ̂mi,
in which the estimated double-differenced pseudo-range, carrier-phase and geometric range are given by

∇∆ρ̂mj =∇∆ψ̂mj
∇∆ϕ̂mj =∇∆ψ̂mj +∇∆N̂mjλ
∇∆ψ̂mj = ‖p̂er−pej‖2−‖p̂er−pem‖2−‖p̂es−pej‖2 +‖p̂es−pem‖2.

To analyze the stability of the error state x̃= x− x̂, with x̃=
[
p̃r, ṽr, f̃ , p̃s,∆α̃,∇∆Ñ

]ᵀ, with ∇∆Ñmi =
∇∆Nmi−∇∆N̂mi, it is desirable to put the system on the closed loop form ˙̃x = (A−KC) x̃. Thus, it is
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necessary to express the injection terms by the error state x̃:

eµ,j = ‖per−pej‖2−‖pes−pej‖2−‖p̂er−pej‖2 +‖p̂es−pej‖2 + ∆α̃. (13)

Further, following Ref. 10, the norm h(per) = ‖per−pej‖2 is approximated by a second order Taylor approxi-
mation.

h(per) = ‖p̂er−pej‖2 + crᵀj p̃
e
r +h.o.t., (14)

where c∗† = p̂e
∗−p

e
†

‖p̂e
∗−pe

†‖2
, with † ∈ {i, j} and ∗ ∈ {r,s}, is a general expression for the estimated line-of-sight

vector between ∗ and †. Through the same steps, a similar approximation can be found for the base
station: h(pes) = ‖p̂es − pej‖2 + csj p̃

e
s + h.o.t.. The coefficients are combined in Cµ,j =

[
crj ,0,0,−csj ,0,1,0

]
,

Cρ,mi = [crmi,0,0,−csmi,0,0], Cϕ,mi = [crmi,0,0,−csmi,0,λ1i,m−1], with 1i,m−1 = [0, . . . ,1, . . . ,0] describing an
(m− 1)-dimensional zero-vector with a non-zero ith element. The double-differenced coefficients are given
as:10

crmi = p̂er−pei
‖p̂er−pei ‖2

− p̂er−pem
‖p̂er−pem‖2

, csmi =− p̂es−pei
‖p̂es−pei ‖2

+ p̂es−pem
‖p̂es−pem‖2

.

The injection terms can then be expressed as

eµ,j = crj p̃r + csj p̃s+ ∆α̃ + h.o.t.
= Cµ,j x̃+εl,j +εls,j , (15)

eρ,m,i = Cρ,m,ix̃+εψ,i+εψs,i, (16)
eϕ,m,i = Cϕ,m,ix̃+εψ,i+εψs,i, (17)

where ε∗ are the linearization errors from truncating the higher order terms in the Taylor expansion. By the
same arguments that Ref. 9 applies for GNSS pseudo-range, the UWB linearization error is assumed. The
linearization errors are bounded as:

‖εl,j‖ ≤
1
l
‖p̃r‖22, ‖εls,j‖ ≤

1
ls
‖p̃r‖22, ‖εψ,i‖ ≤

1
ψ
‖p̃r‖22, ‖εψs,i‖ ≤

1
ψ
s

‖p̃r‖22 (18)

where l and ls are positive, lower bounds on the distance between the UWB nodes and rover, and base
station. Similarly ψ and ψ

s
are positive, lower bounds on the geometric range between the satellites and

rover, and base station.
Now the convergence of the estimates can be analyzed, by expressing the error dynamics as:

˙̃x= (A−KC) x̃+ δ1(t, x̃) + δ2(t, χ̃) + δ3(t, x̃), (19)

where χ̃ =
[
r̃, b̃
]ᵀ. As no additional dynamics are introduced by the UWB measurements, this is similar

to Ref. 10. All the terms have been augmented to accommodate the inclusion of the UWB bias term
∆α to the state-space. Ref. 5 shows that δ1(t, x̃) = [0;δ12(t, x̃);0;0;0;0], where δ12(t, x̃) = −S(ωeiex̃2 +
(ge(per)−ge(per− x̃1)), and further that δ2(t, χ̃) =

[
0;0;0; d̃;0;0

]
, with

d̃= (I−R(q̃eb)ᵀ)R(qeb)
(
S(ωbib)fb+ ḟb

)
−S(ωeie)(I−R(q̃eb)ᵀ)R(qeb)fb−R(q̃eb)ᵀR(qeb)S(b̃)fb. (20)

The most significant changes are that the matrices K and C have been expanded to include the gains
and linearized coefficients associated with the UWB injection terms, and that δ3(t, x̃) =Kε(t, x̃) includes the
UWB linearization terms εµ,j from Eq. (15) in addition to the GNSS linearization terms ερ,i and εϕ,i from
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Eq. (16) and Eq. (17). The matrices are:

A=



0 I3 0 0 0 0
0 0 I3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, K =



Kpρ
1 · · · Kpρ

m−1 Kpϕ
1 · · · Kpϕ

m−1 Kpµ
1 · · · Kpµ

n

Kvρ
1 · · · Kvρ

m−1 Kvϕ
1 · · · Kvϕ

m−1 Kvµ
1 · · · Kvµ

n

Kζρ
1 · · · Kζρ

m−1 Kζϕ
1 · · · Kζϕ

m−1 Kζµ
1 · · · Kζµ

n

Ksρ
1 · · · Ksρ

m−1 Ksϕ
1 · · · Ksϕ

m−1 Ksµ
1 · · · Ksµ

n

Kαρ
1 · · · Kαρ

m−1 Kαϕ
1 · · · Kαϕ

m−1 Kαµ
1 · · · Kαµ

n

KNρ
1 · · · KNρ

m−1 KNϕ
1 · · · KNϕ

m−1 KNµ
1 · · · KNµ

n


, (21a)

C =
[
Cρ,m,1; · · · Cρ,m,m−1; Cϕ,m,1; · · · Cϕ,m,m−1; Cµ,1; · · · Cµ,n

]
. (21b)

Here, n is the number of UWB-nodes, while m is the number of available satellites, which both may change
with every epoch.

Due to the inclusion of the UWB injection terms, the proof of Proposition 1 in Ref. 9 is insignificantly
modified. Firstly, Eq. (19) is transformed by η = Lθx̃ to assign a desirable time-scale structure to the
dynamics. Here, Lθ = blockdiag

(
I3,

1
θ I3,

1
θ2 I3,

1
θ3 I3,

1
θ4 1, 1

θ5 In,
1
θ6 Im

)
to include the additional states. By

following Ref. 9, the derivative of the Lyapunov function candidate U(η,t) = 1
θη
TP−1η becomes:

U̇ ≤−γ1‖η‖22 + 2
θ
‖η‖2 · ‖CᵀR−1‖ · ‖Eθ‖ ·

2
m−1∑
i=0

(ε2ψ,i+ε2ψ,i) +
n∑
j=0

(ε2l,j +ε2ls,j)

+ 1
θ
γ2γ4‖η‖22 + 1

θ3 γ3γ4‖η‖2 · ‖χ̃‖2,

where Eθ = CLθC
+, and where C+ is the Moore-Penrose right pseudo-inverse of C. The constants γ1, γ2,

γ3 and γ4 are positive constants, independent of θ. The rest of the proof follows Ref. 9, yielding exponentially
stable error dynamics with a local region of attraction with respect to the initialization point. Here it is
assumed that the UWB and GNSS ranges are upper and lower bounded, that their range measurements
come from at least five satellites, where at least three of the LOS vectors are linearly independent, and that
the position of their transponders are known. Further it is assumed that the specific force and its derivative
are bounded, that (A,R− 1

2C) is completely uniformly observable, that the initial conditions are nice, and
that the observer gains are chosen appropriately, see Assumptions 1 and 3−8 in Ref. 9 for details.

C. Riccati Solver

The few gains in the attitude observer are directly tuned, however, for the translational motion observer the
gains must be time-varying and the large number of gains require other methods.

One approach to determine the gains is the Riccati solver, also utilized by the KF, where the discrete-time
time-varying Riccati equation is solved giving the gain and the covariance matrices, K and P . The gain
matrix is determined using the symmetric, positive definite matrices Q and R, which can be interpreted as
the covariance of the process and measurement noise. The matrices P , Q and R can be stated similarly to
when used in a KF, as the observer error dynamics is the same as for the KF thereby allowing the observer
gain to stabilize and tune the error dynamics. The matrices are determined using an iterative process for
each discrete time instance, k:

Pk|k−1 =AdPk−1|k−1A
ᵀ
d+Qᵀ, (22a)

Kk = Pk|k−1C
ᵀ (CPk|k−1C

ᵀ +R
)−1

, (22b)
Pk|k = (I−KkC)Pk|k−1 (I−KkC)ᵀ +KkRK

ᵀ
k. (22c)

Here, Ad = eA∆tIMU is the discretized A matrix, where ∆tIMU is the IMU sample rate. The Riccati solver
can be implemented such that the covariance for the state estimate, Pk|k−1, Pk|k and the gain matrix Kk
are only updated when new range measurements arrive.

For the stability proof it is assumed that the gain matrix is found from the transformed error dynamics,
Ref. 9:

K := θL−1
θ K0Eθ, (23)
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where θ≥ 1 is a tunings parameter, while K0 := PCᵀR−1 where P satisfies the time-scaled Riccati equation.
An accurate initialization method was proposed in Ref. 9, ensuring stability when the gain matrix K is

determined by solving the time-varying Riccati equation.

V. Simulations

This section offers a simulation study of a UAV operating in GNSS denied or challenged areas. The goal
of the simulations is to evaluate the UWB as aiding sensor and determine the effect it contributes to the
state estimation.

A. Implementation

To simulate sensor data from a UAV, the simulator developed in Ref. 24 is used with an Aerosonde UAV
model. The measurements are generated from eqs. (1), (2) and (5), at 5 Hz for the GNSS and 10 Hz for
the UWB. Here, ψri and lrj are calculated from the known satellite and UWB node positions, with λ set to
0.1903 m. Measurement noise is added to the range measurements, where the GNSS noise are first order
Markov processes and the UWB noise is white noise. The Markov processes have a time constant of 60s,
and is generated from white noise with standard deviation of 5 m. Additional white noise is added to the
GNSS measurements to simulate receiver noise with standard deviations of 0.10 m and 0.001 m for the
pseudo-range and carrier-phase measurements, respectively. The white noise on the UWB measurements are
simulated with standard deviation of 0.026 m corresponding to the BeSpoon UM100 UWB module, whereas
the IMU data is simulated with noise levels corresponding to the Analog Devices 16488 IMU; acceleration:
0.0015m/s2, angular rate: 0.16◦/s and magnetometer: 0.45mGauss.

The nonlinear observer is implemented in a corrector-predictor architecture [25, p. 300], where the
corrector part consists of the aiding measurements and can be implemented at low rate, while the predictor
part is implemented at IMU frequency. The observer runs at 400 Hz, which is the frequency of the IMU, while
GNSS and UWB measurements arrive at their appropriate frequencies. When GNSS/UWB measurements
are not received, the corresponding elements in the measurement matrix C, in the gain matrix K, and in
the injection terms e are masked out.

For the attitude observer the parameters are chosen as Mb = 0.0087,k1 = 0.8,k2 = 0.2,kI = 0.004. The
gains in the translational motion observer are calculated using the discrete time-varying Riccati equation
Eq. (22). The covariance matrices can be initialized as diagonal matrices, where the diagonal elements
correspond to the individual state or measurement variance: In this simulation, the covariance matri-
ces are given by R = blkdiag(0.2Im−1,2 · 10−6Im−1,0.956 · 10−4In) and Q = blkdiag(10−18I3,10−5I3,2.5 ·
10−8I3,10−18I3,10In,10−7Im−1).

B. GNSS Dropout during Flight

During an outage in GNSS coverage the inertial navigation estimates will drift from the true value. It
is therefore of interest to see how the addition of UWB measurements might prevent the estimates from
drifting in GNSS challenged areas. This scenario compares the position estimates with and without UWB
measurements for a simulated fixed-wing UAV in a steady, banked clockwise turn. A simulated dropout of
GNSS measurements is enforced in the time interval from 35s to 60s, as indicated by the solid vertical lines
in figs. 3 to 6. Similarily the UAV is within range of the UWB nodes in the approximate interval of 30 to
62s, as indicated by the dashed vertical lines in the same figures.

In this simulation, five UWB node are placed in the vicinity of the flight path. Four of the nodes form
a square of height 10 m and width 600 m, placed vertically and perpendicular to the flight path. The fifth
node is placed perpendicular to the centre of the square, in center height 500 m behind the square. The
range of the UWB nodes is set to 700 m.

Two simulations are included: a) using only GNSS as aiding, and b) using GNSS and UWB as aiding.
The results of the simulations are shown in figure 3 and figure 4, depicting the position estimation error in
NED-frame. The estimation error of the base station is shown in dashed lines, with the rover estimation
errors shown in solid lines. The period of GNSS dropout is shown between the two vertical solid lines,
whereas the period in which the UWB measurements are available is shown with vertical dashed lines.

11 of 16

American Institute of Aeronautics and Astronautics



0 20 40 60 80 100 120

Time, second

-1

0

1

2

E
rr

o
r 

z
, 
m

e
te

rs

0 20 40 60 80 100 120
-1

0

1

2

E
rr

o
r 

y
, 
m

e
te

rs

0 20 40 60 80 100 120
-1

0

1

2

E
rr

o
r 

x
, 
m

e
te

rs

Figure 3: Position error using only GNSS aiding,
GNSS dropout from 35s to 60s
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Figure 4: Position error using GNSS and UWB aid-
ing, GNSS dropout from 35s to 60s

The estimation error in figure 3 is seen to divert due to the missing aiding, whereas the additional use of
UWB nodes in figure 4 ensures a smaller diversion from the desired position (note the difference in scale on
the vertical axes). For the case with UWB available the error of the rover position is less than 0.53 m away
from the true position, whereas the case with only GNSS aiding experience rover position errors exceeding
2.91 m. In both cases, the position error is quickly reduced once the GNSS measurements are available again.

The errors in attitude estimation are shown in figure 5 and figure 6, and is expressed in Euler angles in
the Body-frame. The qualitative behavior of the attitude error is not visibly affected by the GNSS dropout,
neither with nor without UWB aiding.
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Figure 5: Attitude error using only GNSS aiding,
GNSS dropout from 35s to 60s
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Figure 6: Attitude error using only GNSS and UWB
aiding, GNSS dropout from 35s to 60s
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C. Landing of UAV in GNSS Challenged Area

In order to test the performance of the proposed observer in GNSS challenged area, a landing scenario is
investigated. The UAV starts with a relative altitude of 4 m to the desired landing zone. For this scenario
the four first nodes form a square of size 5× 5 m, which represent the corners of a net for the UAV to
land in. This square is placed vertically and perpendicular to the flight path such that the landing target
position of the UAV is in the center of the square. The fifth node is placed perpendicular to the centre of
the square, 15 m behind it. The GNSS measurements are simulated with multipath errors when the UAV
approaches landing. The multipath is simulated as additional Markov noise, which is generated from white
noise with standard deviation of 1 m and 0.1 m for the pseudo-range and carrier-phase respectively. The
Markov process has a time constant of 60s. Due to the increased GNSS noise, the R-elements corresponding
to the GNSS carrier-phase and pseudo-range measurement were multiplied by a factor of 50, while all other
tuning parameters remained the same.
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Figure 7: Position error using only GNSS aiding,
simulated GNSS multipath
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Figure 8: Position error using GNSS and UWB aid-
ing, simulated GNSS multipath
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Figure 9: Attitude error using only GNSS aiding,
simulated GNSS multipath
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Figure 10: Attitude error using GNSS and UWB
aiding, simulated GNSS multipath

The error in the estimated position without UWB aiding, shown in figure 7, generally has a larger
magnitude than for the UWB aided case in figure 8. This is especially true for the final stage of the landing
approach where the error in the estimated position is 0.32 m for the final position in the UWB aided case,
whereas in the non-UWB case the norm is 1.60 m. A viable explanation for the improvements for the UWB
aided case is the improved geometry configuration as the UAV gets closer to the landing target, since the
angle between the UWB range measurements increase with decreasing distance to the net. The attitude
errors for the two cases are of similar magnitude.

D. Monte Carlo Simulation

To compare the results with and without UWB, 100 simulations of the landing scenario in section V.C
are run. For each set of simulated measurements, the observer is run once with and once without UWB
measurements. Figure 11 shows a comparison of the root mean square error (RMSE) of the end position
for the two cases, while Table 1 shows the RMSE averaged over the 100 simulations. The inclusion of UWB
measurements decreases the rover position RMSE of the end point by close to three orders of magnitude:
the norm of the RMSE averaged over all the simulations is reduced from 1.37 m to 0.584 m. The reduction
is particularly pronounced in the z-axis. However, the inclusion of UWB increases the norm of the RMSE
for the final base station position from 2.40 ·10−9 m to 1.75 ·10−5 m2, but they are both zero for practical
considerations.

Table 1: End position mean square errors (RMSE), landing scenario

Rover Position (m)

x y z

GNSS 4.31 ·10−1 5.34 ·10−1 1.05
GNSS+UWB 3.70 ·10−1 2.43 ·10−1 2.50 ·10−1
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Table 2: Position root mean square errors (RMSE), circle scenario.

Rover Position(m)

x y z

GNSS 5.03 ·10−2 4.67 ·10−2 9.31 ·10−3

GNSS+UWB 5.02 ·10−2 4.66 ·10−2 9.05 ·10−3
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Figure 11: Rover position RMSE for the landing
scenario, with (red) and without (blue) UWB
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Figure 12: Rover position RMSE for the modified
circle scenario, with (red) and without (blue) UWB

A similar Monte Carlo simulation is performed on a setup comparable to section V.B, but in order to
compare the accuracy of the system with and without UWB, the case is assumed more ideal: the UAV is not
experiencing any GNSS dropout and the UWB transponders is assumed to have infinite range. The RMSE
values, averaged over all the runs, for the base station position and the attitude and position of the rover
are found in Table 2. Due to the longer duration of this test, only 50 Monte Carlo simulations was run for
this scenario. The UWB leads to a very slight reduction of the rover position RMSE: the norm is reduced
from 7.20 · 10−2m to 7.19 · 10−2m. The RMSE for each run is plotted in figure 12, where the follows the
blue almost exact and is thus hardly visible. This limited reduction shows that the position accuracy in the
ideal case is not affected by the inclusion of the UWB nodes, since the position accuracy for RTK GNSS is
already very good.

VI. Conclusion

This paper has presented an extension to a double differenced nonlinear translational motion observer
with applications for UAVs. The extension enables tight integration of ultra wideband range measurements
with INS and real-time kinematic GNSS. Simulations have showed that the UWB extension increases the
operational window of UAVs in GNSS-denied regions, by keeping the position error well within 1 meter,
despite loss of GNSS. Also when GNSS measurements are available, but are influenced by multipath, the
UWB extension showed improved performance over the GNSS-only case, particularly in the z-axis. Through
a Monte Carlo simulation with 100 runs, the root mean square error for the position estimate of a UAV in
landing was reduced by close to one order of magnitude when UWB measurements where included.
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